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ABSTRACT.   In this paper we begin a classification of simple and semisimple to-

tally antiflexible algebras (finite-dimensional) over splitting fields of char. ^2, 3..

For such an algebra A ,  let  P  be the largest associative ideal in A     and let /V+

be the radical of  P.   We determine all simple and semisimple totally antiflexible

algebras in which N ■ N =0.   Defining A   to be of type  (m, n)  if N     is nilpotent

of class  m  with  dim/1  = n,  we then characterize all simple nodal totally anti-

flexible algebras (over fields of  char. f( 2, 3) of types (n, n) and (n — 1, n) and

give preliminary results for certain other types.

1. Introduction.  A totally antiflexible algebra is a nonassociative algebra

(finite-dimensional) satisfying

(1) (x, y, z) = {z, y, x)    (the antiflexible law)
and
(2) (*. x, x) = 0,

where  (x, y, z) = [xy)z — x(yz).   Throughout this paper we assume char. ¡¿2,3  and

we define x • y = (xy + yx)/2.   The algebra A     is that formed from A   with multi-

plication x • y.   Define  (x, y) = xy - yx.

Define x    = x, x = x x  and x'    = x, x"        = x'    ■ x.   It is known that a

totally antiflexible algebra A with char. / 0 need not be power-associative [6].

However A     is known to be power-associative so x'm ■ x" = x for all posi-

tive integers m, n. We will call y nilpotent or nil if, for some n, y'n = 0. If x

in A implies x = al + z for a in the base field and z nil and if the set of nil

elements is not a subalgebra, we say that A   is nodal.

2. Preliminaries. We will state some known results on the structure of simple

and semisimple totally antiflexible algebras.   We also need (see [l], [7])

Definition 2.1.  A field  K  is said to be a splitting field for an algebra A   if

every primitive idempotent e of AK is absolutely primitive and if every element in

(AK)   (1) for e primitive can be written as ke + y with k in K and y nilpotent or y = 0.

Definition 2.2.  Let A   be an algebra over a field  F    of char. /= 2, 3-   The map-

ping 0: A x A —>B   for B C A   will be called an antiflexible map provided  B C

|x: xy = yx for all y  in A S and
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(3) <p  is bilinear over F,

(4) 0(x, x) = 0,

(5) <f>(x2, x)= 0,

(6) (f>(x, y) = 0 if y  is in  B,

(7) cp((x, y), z) = 0.

This </>   in our definition is similar to maps used in [l], [4], [7].   For char.

^ 2,  (4) is equivalent to

(8) <f>(x, y) = - cp(y, x).

Also, for char, jí 3,  (5) is equivalent to

(9) <p(x ■ y, z) + <p(y ■ z, x) + <p(z ■ x, y) = 0.

For  a, ß  in  F  and antiflexible maps cp., A,   define  acb    + ßcp     by

(arpj + ß(p2)(x, y) = acp^x, y) + ß<ß2(x, y).

For char. ^ 2, 3,   it is clear that  cup.   + ß(p     is an antiflexible map.

Definition 2.3.  Let A  be an algebra over a field of char. ^2,3 and let <p  be

an antiflexible map.   Define A(cf>) as the algebra formed from A   with multiplica-

tion replaced by x * y = xy + tp(x, y).

It is known [4]  that A   is antiflexible if and only if A((f>)  is.   From this, the

following lemma is obvious.

Lemma 2.1.  Let A  be an algebra over a field of char. ^2,3 and let cp  be

an antiflexible map.   Then A   is totally antiflexible if and only if A(<p)  is totally

antiflexible.   Also, if if,   is an antiflexible map on A(<p)  then A(<p)(if,) = A(cp + if,).

We now summarize certain results in [l], [4], [7l  by the following two theorems.

Theorem 2.1.  // A   is a simple not associative totally antiflexible algebra

over a field F  of char. ¡¿2,3  then A     is associative and A - A , + •■•+ A
' ' '      ' In

where A . = A     (e .) for e . primitive.   Furthermore,  (p(x, y) = Vi(x, y)  is an anti-

flexible map and A = A  (cp).

Theorem 2.2.  If A   is a semisimple totally antiflexible algebra over a field F

of char. ^ 2, 3  then A = C + D  where  C = 0  or C  is an associative semisimple

ideal with identity  e and D     is associative.   If D ¿ 0 then D = A, + • ■ ■ + A
' ' In

where A . = A , ,(e .)  for e. primitive,   i ¿ n,  and either A    =A,,(e  )  for e    primi-
i 11;' i   r n lin' n  r

live or A     is nil and A    = A.Ae + e , + ■■■ + e      ,).   Furthermore, if w, x  in C
n «00 1 n— 1 '

and y,  z  in D define (p  by cp(w + y, x + z) = Y2(y, z).   Then rp   is antiflexible

and A = (C © D+)(<p).

We will thus be interested in those algebras from which simple or semisimple

algebras can be constructed.

Definition 2.4.   A totally antiflexible algebra will be called nearly simple (nearly

semisimple) if there is an antiflexible map ci  such that A((p)  is simple (semisimple).
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We will now state some preliminary results on nearly simple and nearly semi-

simple algebras.   Obviously, an associative semisimple algebra  C  is nearly semi-

simple.

Theorem 2.3.  Let A   be a totally antiflexible algebra over a field F  of char.

;t 2, 3 and let A = C + D where  C  is a semisimple associative ideal with identity

e and D = A , + ■••+ A     with A . = A , ,(e .)  for e . primitive,   i /= n,   and either1 77 I III' Ie

A    = A , ,(e ) for e     primitive or A     nil and A    = A„„(e + e, + ••• + e      ,).   Also,
n 1 1       72       ' n    r 72 72 00 1 72-1

assume D     is associative.    Then A   is nearly semisimple if and only if C © D

is nearly semisimple.

Proof.   To begin with, let w, x  be in C  and y, z  in D.   Define

qS(w + y, x + z) = Yl (y, z).

We claim that 0  is an antiflexible map.   The proof is a routine verification of the

conditions öf Definition 2.2.   Recall also that, in a totally antiflexible algebra,

An(/)A00(/) = A00(/)An(/)= 0 for / an idempotent.   Also,  A = (C © D+)(0).

Now suppose A   is nearly semisimple so A(ip)  is semisimple for some if/.   Now

A(iff) = (C© D+) (0 + if/) so  C © D+ is nearly semisimple.   Also,   C © D+ = A(- 0).

Now if (C © D  ) (iff)  is semisimple then A(0 - 0)  is semisimple.

In a similar way, we can prove

Theorem 2.4.  Let A   be a totally antiflexible algebra over a field of char.  /=

2, 3  and assume A     is associative.    Then A   is nearly simple (nearly semisimple)

if and only if A     is nearly simple (nearly semisimple).

Proof.  The only additional fact we need is the fact that 0(x, y) = Vi(x, y)  is

an antiflexible map on A.   It is known [3, p. 474]   that if A     is associative and A

is antiflexible then  ((w, x), y) = 0.   It is then easy to verify the fact that 0   is an

antiflexible map.

Theorem 2.5.  Let A  satisfy the hypotheses of Theorem 2.3 and let  Z = cen-

ter of C.    Then A is nearly semisimple if and only if Z ©  D    is nearly semisimple.

Proof.   For any antiflexible map 0 on A,   |0(x, y)\ C |x: xy = yx  for all y  in

A\.   Hence,  |0(x, y)\  O CC Z.   The proof is then routine.

We remark that Z © D     is the largest associative ideal in A   .

The above results reduce the problem of finding all simple (semisimple) alge-

bras to the following two problems:

I. Find all nearly simple (nearly semisimple) associative commutative alge-

bras.

II. Given a nearly simple (nearly semisimple) associative commutative algebra A, find

all simple (semisimple) algebras that can be constructed, using antiflexible maps, from A.
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A nearly simple algebra possesses an identity element and the adjunction of

an identity element to a nearly semisimple algebra does not destroy its being nearly

semisimple.   Hence, throughout the rest of this paper, we will assume that each

algebra considered has an identity element.

3. Conditions on cp(x, y).

Theorem 3.1.  Let  P  be an associative commutative algebra over a field of

char. / 2, 3  and let <p  be a bilinear map from  P x P —> B C P such that <p(P, B)

= 0.   Then cp  is an antiflexible map if and only if, for every n; y .,-••, y   ,

n        I \

do) z^ín^'^=o-

Proof.   If <p satisfies (10) then it must satisfy (4) and (5).   Also (x, y) = 0 in

P  so (7) is satisfied and cp   is an antiflexible map.   Conversely, let ci  bean anti-

flexible map.   Then, for «=1,2; <p  satisfies (10).   Assume (10) for n < k and

let y ., • • • , y,    .   be given.   For z = fl.    \y., we have from (9) (since  P   is com-

mutative)

ai) #y*+iJv z) + ^k2' yk+i] + «M^A+r yk] = °-

But, using (10) with  n = k yields

(i2) #y*+iy*'z) = - <f>{z> y^k) = Z ^(ll>v yú

Putting (12) in (11) yields (10) with  n = k + 1   and we are done.

Except where otherwise stated, we will assume that A   is a totally antiflex-

ible algebra with identity element over a splitting field  K of char. ¡¿2,3 and that

A     is associative.   Hence, A = A , + ■ ■ ■ + A     with A . = A , ,(e .) for e . primitive
1 n lili i r

and A .A . = 0 if i -í i.   For, since A     is associative then A , Ae) + A. Ae) = 0
z    j ' 10 0 1

for any idempotent  e  (see also [5], [7]).   In addition, since   K is a splitting field,

each element in A .  has the form  ae . + z  for  a in  K and z  nil.   Thus, A has a
Z I

basis consisting of primitive idempotents and nil elements.   We define the follow-

ing sets:

(13) N = Sx: x is nil!,

(14) N. = N.   ,   •  N with N. = N,
i        i— I 1

(15) N ■ - N. - AV. + 1   (quotient or difference algebra),

(16) M. = U: x ■ NC M._A with MQ = 0.

Define  T  : y —» y • x  and note that, since there is an identity element 1 in

A  and A     is associative, x —*T     is an isomorphism of A     with \T  \.   Thus, if
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dim A = n,   we can think of A     or of one of its subalgebras as an algebra of commu-

tative n x n matrices.

For some  m, N    ~ 0 with N       , ¿ 0.   We say that A  (or N)  is of type  (m, n)
m m-I ' i r •

if A     (or N )  is isomorphic to an algebra of commutative  n x «  matrices for 72 =

dim/1  with N    = 0 ¡¿ N      ,.   The algebra A  (or N)  is said to be of class m.
772 772—1 °

Definition 3.1. The algebra .4 (or A/, the radical of /O is of type (m, n, d., ■ ■ ■ , d )

if A (or fV) is of type (m, n), dim A'! = d. for 1 < /' < q and dim/V'. = 1 for q < i <

m- I.

Note that if N . = N ...   then N. = N. for all  /' > z.   Hence, either N. = 0  or
2 2+1 27'— 2

dim A/'   > 1.
2

Lemma 3-1.   7"Ae following hold for x  in M.,  y  ¿ri A/, antr! z   ¿n N .+    wztn

/ > 1 > 1 :

(a) x • y = 0.

(b) // 0   ¿s on antiflexible map, 0(x, 2) = 0.

Proof.   The proof of (a)   is by induction on  i.   By definition,   M.  ■ N. = 0.

Suppose  M.   .  • A7, = 0 for  k > t — 1   and choose x  in  M.,  y  in  A/        and  z   in

N where  j> i> 1.   Then x ■ (y ■ z) = (x ■ z) ■ y = 0  for x ■ z  is in  M.   ;   and

M.   , ■ A/.   , =  0.   Therefore,  M■ ■ N. = 0.   If <¿   is an antiflexible map on  ^,   we2-1 ;~ 1 '        2 ; ^ r

can regard 0  as an antiflexible map on  P = A   .   Hence, (a) and Theorem 3-1 imply

(b).

The results of the following theorem are found in [l], [7].

Theorem 3-2.  Let A   be a totally antiflexible algebra over a field of char. /

2, 3-    Then A   is simple (semisimple) if and only if (/, .4) </ I where  I is any ideal

(nil ideal) of A   .

Theorem 3.3.   Let A be a totally antiflexible algebra over a splitting field of

char. /2,"b with A     associative.    Then A   is semisimple if and only if

(17) for every nonzero x  in M.   there is a y in N with (x, y) /= 0,

(18) no nil element in \(x, y)\ generates a proper nil ideal.

Proof.  First, suppose  A   is semisimple and note that (18) is trivially satis-

fied.   Now, let  / = |x  in  M.: (x, y) = 0 for all y in   A7}.   The algebra  A  has a

basis of idempotents and nil elements.   We have  JN = NJ = / • A/ = 0.   Since  A

is associative, if  e  is an idempotent,  A = A     (e) + A     (e).   If x  is in  /  and  y

is in  A/ then x = x. + xQ  and  y = y, + y0  for xy, y.   in  A ..(e) and   x , yQ in

A     (e).   The product xy = 0  so 0 = xy = x.y. + x.y.   and x.y   = x y   = 0.   Hence,

(ex)y = (xe)y = x.y = x.y. = 0.   Similarly, y(ex) = y(xe) = 0  so (ex, y) = (xe, y) = 0.

Since J    = 0  then (ex)   = (e • x)   = (e ■ e) ■ (x ■ x) - 0.   Thus,  ex = xe  in  / and

/  is a nil ideal of A.   We conclude that  / = 0  so (17) is satisfied.
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Conversely, suppose (17) and (18) are satisfied in A  and let /   be a proper

nil ideal of A  with x ^ 0,  x  in /.   We first show / n M    ¿  0.   For, if x is not in

M,   then, since  M.C M, C • • • C M      ,=N  where  N' " = 0,  we have an integer i
1 0 1 72 — 1 °

with x  in M . but not in M .    ,.   There must be an element y in N  such that x • y

is in  Mj   and since x ■ y  is in / we have  M   n J ¿ 0.   Now let u be nonzero in

M    C\ J.   By (17) there is a  v  in N  with z = (u, v) £ 0.   Clearly, z is in /.    If z

is not nil we contradict the assumption that /   is nil.   If z  is nil and /  is the ideal

generated by z  then  / is not nil by (18).   However / C /   so /   is not nil.   We have

proved A   semisimple.

Define H (A) by

(19) H(A) = [x: (x, y) = 0 for all y in Ai.

In all known examples of semisimple totally antiflexible algebras (see [3l, [4], [6]),

H(A)n N = 0.   In many of these, N ■ N = 0.

Corollary 3.1.  Let A   be a totally antiflexible algebra over a field of char. £

2, 3  with A+ associative.   If either H(A) D/V=0 or N ■ N = 0 then A   is semi-

simple if and only if A  satisfies (17).

Proof. Since ((x, y), z) = 0 for all x, y, z then |(x, y)\ C H(A) and the condi-

tion H(A) n N = 0  implies (18).   Suppose  N ■ N = 0 and A   satisfies (17).   Observe

that  N = M     so (17) implies that if x  is nil then x  is not in H(A).   Hence,  H(A)

C\N = 0 and we are done.

Lemma 3-2. // R is a nodal algebra over a field F with R power-associative

and if ] £ R is an ideal of R then j is nil or zero. Thus R is simple if and only

if R is semisimple.

Proof.   Let x be a nonnil member  of /  and write x = a ■ 1 + z  with z  nil and

a ¿ 0,  a in F.   Define  u = - (l/a)z and define « as an integer with u n = 0.

Then 1 = (l - «) - Ü + a + • • ■ 4- z/'"-1) = (l/cx)x • (1 + u + ■ • • + z/"-1) is in / so

J = R.
We shall construct two nodal algebras A, B with A    = B+ in which H(A) = H(B)

contains nil elements.   The algebra  B satisfies (17) but not (18) and A is simple

but H(A) O N £ 0.   Let P  be the associative commutative algebra generated by

1, w, x, y, z  subject only to the conditiqns that w    =x    = y   = z    =0 and N • N

■ N = 0 where N  is generated by w, x, y, z  and  1 is the identity element of P.

Thus,  P  has a basis   1, w, x, y, z, w ■ x, w ■ y, w • z, x ■ y, x • z, y • z.

Let fp(x, y)  be defined on this basis by <p(z ■ y, x) = — cf>(x, z • y) = (f>(z ■ w, y)

= - <p(y, z ■ w) = - <p(z ■ x, y) = cp(y, z ■ x) = - cp(z ■ y, w) = <p(w, z ■ y) = 1, cp(x ■ y, w)

= - <p(w, x ■ y) = cp(y • w, x) = - c/>(x, y • w) = z, c/>(zf • x, y) = - cp(y, w • x) = — 2z

and <£(z/, i/) = 0 where (zt, v) is any other pair of basis elements.   Extend d> bilinearly



1972] ON ANTIFLEXIBLE ALGEBRAS 225

to all of P x P. Now, define if/(u, v) by \fj(u, v) = a- 1 + ßz if ch(u, v) = ß ■ 1 + az.

Assume char. / 2, 3 and let A = P(0), B = Pdf/).   Since 0(/V, N) =if/(N, N)<£N, A and B

are nodal.

It is verified that 0 and if) aie antiflexible maps by routinely checking (8) and (9).

In addition, H(A) = H(B) = |al + ßz: a, ß in F\ so H(A) fllV = H(B) DN = \ßz: ß in F\.

In both A and B, (17) holds.   Routinely, we can show that A   is simple while z,

z ■ x, z ■ y and z ■ w span a nil ideal of B.

Theorem 3.4.  Let A  be a totally antiflexible algebra over a splitting field F

of char. /= 2, 3 with A     associative.   Then A   is simple if and only if

(20) for every x  in M.   there is a y  in H with  (x, y) /= 0,

(21) no element of |e(x, y)\ generates a proper ideal where  e  is a primitive

idempotent,

(22) for each primitive idempotent  e  in A, \e(x, y)\  is not nil.

Proof.  If A   is simple then (20) is true from Theorem 3-3 and (21) is obvious.

If e   is primitive with |e(x, y)\ nil, recall the fact that A = A     (e) + A     (e) and

write C = (N n A     (e)) + A     (e).   It is routine to check C-ACC.   Also, e  is in

H(A).   If u is in (C, A) then  u - eu + u    with zz     in A     (e)  and eu in A     (e).

Since |e(x, y)\  is nil,  e#  is in AÍ  so (C, A) C C and C  is a proper ideal of A.

Conversely, suppose A   satisfies (20), (21) and (22).   Let /   be a proper ideal

and suppose x / 0, x  in /.   Since A=A(e)+--- + A     (e ) for e. primitive

then x = x, + • • ■ + x     for x .  in A ,, (e .).   We have some x . ¿ 0 so y = x . = e .x  is
1 n 2 112 2 J i i

in /.    Either y  is nil or y  is not nil.   If y  is not nil then y = <xe. + z  with  a in

F,  a /= 0 and z  nil.   Write  m = — (l/a)z and note that for some  n, e. = (l/a)(e. - u)

• (e . + u + ■ ■ ■ + u ")  is in /.   Now, for arbitrary  u, v,  e .(u, v)  is in /.   Since

\e .(u, v)\ is not nil, some z = e .(u, v) ¡4 0, and by (21), z  in /  must generate A

so A = /.

Now, suppose y is nil.   If y  is in M     let zz = y;  if not there is a z with  zz =

y ■ z  in M   :   In either case, k is in / O M .   Note also that u  is in A     (e.).

There is a  v such that (zz, v) / 0.   From [4], we know that (u, v) is in some A    (e.)

so e.(zz, v) /= 0 and e.(«, v)  is in /   so e.(zz, v) generates A.    Hence  } = A  and

we have proved A   simple.

4. Algebras with N ■ N = 0.

Lemma 4.1.  // A   is a semisimple algebra over a splitting field of char. ^ 2, 3

with A+ associative and N • N = 0 /¿e« |(x, y)! O N C /7(A) n /V = 0.

Proof.  We need only note that if z  is in H(A) C\ N then \az\  is a nil ideal.

We will first be interested in those associative commutative algebras which

give rise to nodal simple algebras.   The following definition is thus convenient.
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Definition 4.1.  An algebra A  will be called nearly nodal if A = F • 1 + N

where  F   is the base field,   1   is the identity of A   and N  is the set of nil elements

of A.

Note that a nearly nodal algebra is nodal if and only if N   ¿ N.

Theorem 4.1.  Let  P  be a nearly nodal associative commutative algebra over

a field of char. ^2,3  with N ■ N = 0.   Let |x.!n_.   be a basis for N.    If cp  is an

antiflexible map then  P(<p)  is simple if and only if there is a nonsingular matrix

X = ((x ..))  with d>(x ., x.) = x .. • 1.
¡; ^      l        1 1]

Proof.  Suppose  P(<p)  is simple.   Then H(P)f\ N = 0  so \cp(x, y)\ = \a ■ 1} =

H(P).   Hence ch(x ., x .) = x .. • 1.   Now y in N  can be written y = Y", a .x ..   By
T" ¡ J i] J J CJt  -III '

the bilinearity of cp, cp(y, x .) = ¿t"-. *•*•■ ■ 1-   Hence,  X  can be regarded as a

linear mapping from N  into  V (F)  (space of «-tuples over F).   By Lemma 3.2

and Corollary 3.1,  P(cp)  is simple if and only if y j= 0  implies  X(y) ¡¿ 0.   This

says that X  is nonsingular.   Conversely, if X  is nonsingular then for each y

ther is an x. with cp(y, x.) = a • 1,  a ¡¿ 0.   Hence, there can be no ideals in P(cp).

Definition 4.2.  If (f>  is an antiflexible map from A x A   —► F • 1   and if X =

((x ..))  such that, for a basis jx .}?_',   of N, d>(x ., x .) = x .. • 1   then  X  is said to
i, z j -1 ' ~    i      ; jj

represent cp  relative to the basis  fxi"_  .

Lemma 4.2.  Let cp  be an antiflexible map from A x A —► F • 1.   Tu^o matrices

X and  Y represent cp  relative to different bases if and only if they are congruent.

Proof.   The proof follows from observing that cS  can be regarded as a bilinear

form and then using standard linear algebra results (see [2, pp. 177—180]).

Theorem 4.2. A nodal antiflexible algebra over a field of char. ^2,3 and

N ■ N = 0  is simple if and only if, for some basis  |x.S"_    of N,  cp(x, y) = xA(x, y)

is represented by the matrix

X 0

X,

yhere x.

Proof.  We know that cp(x, y)  is skew-symmetric.   It is a well known fact (see

Exercise 9, p. 186 in [2])  that any skew-symmetric matrix  C  is congruent to a

matrix having the following diagonal block form:

0

0 c
c =

0    -1

Our result then follows from Theorem 4.1.
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Theorem 4.3. // P  is a nearly nodal associative commutative with N ■ N = 0

algebra over a field of char. /= 2, 3  then P  is nearly simple if and only if dim P

is odd.

Proof.   If  P  is nearly simple then there is a 0  with P(0)  simple.   Relative

to some basis, 0  is represented by the matrix X  of Theorem 4.2.   Thus,  dimN

is even so dimP  is odd.   Conversely, the 0 represented by X  in Theorem 4.2

yields a simple algebra  P(0).

Theorem 4.4.  Let  P  be an associative commutative algebra over a splitting

field F  of char. /= 2, 3  with N ■ N = 0.   Then P  is nearly simple if and only if

(23) there is an identity element in P,

(24) for every primitive idempotent e,  dim P. .(e) > 3,

(25) either  1   is not primitive or dim P  is odd.

Proof. If P is nearly simple then (23) is satisfied. If 1 is a primitive idem-

potent, P is nearly nodal and Theorem 4.3 tells us that dim P is odd. Thus (25)

is satisfied.   We will now prove (24).

If e  is  primitive  with dimPn(e) =  1   then  P..(e) = |ae:   a  in  F\  is
IV  ' ~ 11 an

ideal in any algebra  P(0).    If   e =  1,  Theorem 4.3  implies  dim P     (e) / 2.

Suppose   dimPjj(e) =  2  and  e /=  1   and let A  =  P(0).     Then   A  = A     (e) +

AQ0(e)   and  Au(e)o N = |ax:  a in   F]   for some   x   with x2   =0.    If  y   is

in /4Q0(e)  then xy - yx = 0.   Hence A   .(e) nil isa nil ideal in A   and A   is not

simple.

Suppose  P  satisfies (23), (24),  and (25) with 1 not primitive and write  P =

PjjUj)©  •■■ffiPjjU ) with each e. primitive.   We will define two antiflexible

maps 0  and if/  on each  Fn(e   ) and then extend them bilinearly to all of P.   Let

|x.!"       be a basis for P. ,(e   ) n N.    Un  is even let n = 2k while if n  is odd2   2—1 1 1       772

let n = 2k + 1.   Define

%      (xi, ■ 1>    if ¿<2k and j<2k,
&x., *7) = <

\0, otherwise,

where  X = ((x..))  is the matrix of Theorem 4.2.   If n  is even define ib(x ., x.) = 0,
it '      i     ]

while if n is odd define

i/z(x ., x .) =
T     1     i

em> «'-1'.7»«».

-em,    i=n, 7 = 1,

0, otherwise.

Extend 0  and y> to all of Pn(e   ) bilinearly with 0(e, A/) = if/(e, N) = d>(N, e) =

i//(N, e) = 0.

After extending 0, i/r  to all of P define A = P(0 + t/r).   We claim that A   is
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simple and totally antiflexible.   It is clear that cp  and if,  ate antiflexible so we

need only show that A   is simple.   Let /  be an ideal of A,   ] ¿ 0.   Since  e J C J

then, for some  m,   j C\ Pll(em) £ 0.   It is easy to show that / D (Pn(em) ON)/

0 so choose x ¿ 0 in / n P, Ae   )f\ N.   Also, let |x.|"_,   be a basis for  P, Ae   )
J I 1     m 27-1 11m

flN  with  k as previously defined.   Now,  x = Y" = , ct.x..   If « = 2&  it is clear that

there is a y  with cf>(x, y) = 1   so  / = A   so we will assume that  n + 2k + 1.   If

c/>(x, x .) = 0 for ; < 2k then, since  X   is nonsingular,   a. = 0 for  i < 2&.    Hence

x = a x     with  a   ^ 0 and   e    = t/r(x,/a   ,  x)   is in /.   However, x, = e   x,   is
7272 72 m      ~      V     n 1ml

then in /   so  1 = cp(x., x A)  is in /.    Consequently J = A   and we have proved A

simple.

Theorem 4.5-  Le/  P  be an associative commutative algebra over a splitting

field F  of char. / 2, 3  with N ■ N = 0.   Then  P  is nearly semisimple if and only

if
(26) P  is not nil,

(27) for every primitive idempotent e, dim P. .(e) / 2,

(28) e  principal implies  dimP-n(e)^ 1,

(29) e  principal and primitive implies  dim P. .(e)  is odd and dimPnf)(e)  is

even.

Proof.   If e   is primitive then dim (P. .(e) O /V) = dim P. .(e) - 1.   Let  P  be

nearly semisimple so that some  P(cf>)  is semisimple.   Clearly, (26) is satisfied.

If dim Pjj(e) = 2  then, as above,  Pn(e) C\ N  is a nil ideal of P(cp).   Thus (27)

holds.   If e   is principal and not the identity element then adjoin an identity ele-

ment 1 to P(cf>).   It is routine to show   1 — e  primitive and the algebra formed is

semisimple.   Hence, (28) is true.   Now, if e   is primitive and principal with Pac¡(e)

= 0 then  P(cp)  is nodal and simple so dimP.Ae)  is odd.   Suppose  e  is primitive

and principal with  PQAe) j¿ 0  and let A = P(cp)  be semisimple.   We know

Au(e)A00(e) = A00(e)Au(e)= 0  so cp(A ( Ae), A0Q{e)) = cp(A0Q(e), A j ,(e)) = 0.

By Lemma 4.1,  \cp(x, y)\C\ae\.   Thus for x, y  in A     (e), <p(x, y) = a,^  e  and the

restriction of cp  to A     (e) D N  yields a mapping S  from  (A     (e) H A/) x

(Au(e)n/V)  to F.    By Theorem  3-3 and the fact that cf>(A u(c), A 00(e)) =

c/>(A00(e), A . .(e)) = 0, S  is nonsingular and dim(P, Ae) C\ N)  is even.   Similarly,

dimPQ0(e) = dim(P0Q(e) Ci N)  is even.   This establishes (29).

Conversely, let P satisfy (26), (27), (28) and (29).   Since  P  is associative

and commutative,

P=Pu(e1)©-..©Pn(e(?)©P00(e)

where each e.  is primitive and  e = e. + • ■ • + e     is principal.   Of course,  P0Q(e)

may be zero.   As before, we will define two antiflexible maps cp  and if/   on each

P, Ae   ) and on  P.„(e)  and then extend them bilinearly to all of  P.    Let |x.["_,
11m 00 ' 2 7-1
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be a basis for P, ,{e   ) f~l N  or  P..(e).   If n  is even let n = 2k and if ra  is odd
1 1     m 00

let n = 2k + 1.   Define

i < 2k and  j < 2k,Íx..e     if"
0, ot

cf>{x.,

otherwise,

where X = ((x..))  is the matrix of Theorem 4.2.   If n is even, define i/z(x., x.)

otherwise

iff(x    x )

Í = 1, /■ = «,

e,      ; = «,;'=!,

0, otherwise.

Extend 0 and ¡A  to all of P,,(e   ) or P..(e) bilinearly.f ' 1 1        772 00

After extending 0, if/  to all of P,   define A = P(0 + 0).   We claim that A   is

semisimple and totally antiflexible.   Clearly, A   is totally antiflexible.   If x  is

nonzero in N,  x = x,+■■■ + x    + xn: x . in P, ,(e .) n N for  z > 0,  x.   in  P     (e).
1 g        0'     z 11    2 '0 00

If x. fí 0 then there is a y  in  P.Ae.)  if /> 0  or P 00(c)  if /'= 0  such that

0(x ., y) /= 0.   Since 0(x ., y) = 0,   i / j, we have 0(x, y) ^ 0.   Since |0(x, y)S  con-

tains no nil elements, Corollary 3.1 implies A   is semisimple.

These two theorems characterize those associative commutative algebras that

are either nearly simple or nearly semisimple when N ■ N - 0.   Also, Theorems

4.1 and 4.3 characterize the nodal simple antiflexible algebras in which  N ■ N = 0.

5. Nodal algebras of type (n, n) and (n — 1, n). We now focus attention on

nodal algebras. If A is such an algebra then dim A = 1 + dim/V. The following

is immediate from Theorem 3.1.

Lemma 5.1. // 0  is an antiflexible map on an associative commutative alge-

bra  P  of char. ¡¿2,3  then for x  in  P and integers  n,   a with n > a > 1,

0(x"~" xa) = O0(x"-1, x)  and n<p(xn~\ x) = 0.

Theorem 5.1.  Suppose  N  is an associative commutative nilpotent algebra

over a field F.    If dimAf. = 1   then there is an x  in N .       (if z = 1,  set x = 1   in

F) andan a  in N such that xa  is not in N .^,.   If x  in N.   .   (if z = 1, x  in F)
2 + 1 ' 2— i ' '

and a  in N are such that xa  is not in N ...   and if c  is in N. for  i > i then  c =
2+1 ' 7

axa3"'      + n for a in F and n  in N ....   Furthernore, if i> i then dim/V. = 1   or' j+1 '   ' - ;

N. = 0.

Proof.  Since dim/V. = 1   then there isa y  in N.  such that if  c is in N.  then
2 J 1 2

c = ay + n for  a in  F  and n  in N ....   By definition,  N. = N .   ,N  so there is an
' z+1 ' i i— 1

x in A/._.  and a  in N with xa not in N.+  .   That is, xa = ßy + n.   with ß / 0,

ß  in F and «j   in A/. + ..   Clearly, c = (a/ß)xa + n - (a/ß)n.   and n~(a/ß)n.   is

in A/¿+j.   Such a formula holds for any x in AÍ.   ., ¡j  in /V with xa not in zV.+,.
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We fix x  and a  and note that the general result holds for  ; = ».   Suppose it holds

for  i = k.   If d is in A/,.,    then d =Y 5 -, ß   c   b     for  c      in  N,,   b     in  N  and
1 k + l ¿-'m-l'   m   m   rn m km

ß     in F.   However,  c    = y    xa  ~'      + «     for y     in F  and «     in  N, ., .   We
'm '      m      ' m m ' m rn ß + 1

now observe that xè     is in N .  so xè    = 8   xa + «'     with 8     in  F  and  «'     in

N....   Thus
2 + 1

d= y ß c b
¿.j  r^m   m   m

m=l

=   Y  ß   y   xb   a*-f+1 +   Y ß   n   b
¿j  r^m'rn      m ¿_t ^m   m   m

m=l m=l

=   y ß   y  8   xak-i+2 +   y (ß   y   n'ak-i+1+ß   n   b   ).
/ i  ~mrm   m ¿j    r^m'm   m "m   m   m

m=l m=l

However, «' a     !      and «   b     are each in N,       so d = a'xa  ~l      + «'  for a'
'm mm k+2

in F  and «'   in N, ...   Finally, if  / > z,  either N. = 0  or dim/V . = 1.
fe+2 ' '       ; —   ' 7 ;

The following follows from a footnote in [8, p. 10].

Lemma 5-2.  // N  is an associative commutative nilpotent algebra of class  k

over a field F  of char. 0 or char. >  k then there is an x  in N such that x        ^ 0.

Lemma 5-3.  // N  is an associative commutative nilpotent algebra of class  k

with dim A/     = 1   over a field F  of char. >  m then there is an x  in N with
m ' '

xk~l 7¿0.

Proof.  Write  Q = N - N    , ,   and note that  0   is of class   772 + 1.   Let [x]  be

the image of x  in N  in the natural map from N —► N - N    ...   Since  char F >m

+ 1,  there is an element [y]   in Q  with [y]m ¿ 0.   Thus, ym   is not in N   +..   If

772 = 1,  set x = 1   while,   if  772 > 1,  set x = ym~   .    In either case define a = y.   We

have x  in  N      ,   and a in  N with xa  not in  N    ...   Since  N,    , ¿ 0  there is a
m— 1 m + 1 *— 1 '

nonzero element c  in  N,    ..   From Theorem 5.1 and the fact that  N, = 0, c =

axak-m = ayk-1.   Therefore, yk~ l £ 0.

Theorem 5.2. Suppose  N  is an associative commutative nilpotent algebra of

dimension  « - 1   over a field F.   If N  is of class  k and if char   F = 0  or char   F

> k or char   F > « — k + 2  then there is an x  in N with x f 0.

Proof.   By Lemma 5.2, we need only consider the case  k > char   F > « - k + 2.

By Lemma 5.3, it is sufficient to have  dim/V     = 1   where  m = « - k + 1.   Assume
' ' m

dimN'. > 1   for  i < m  so dim Ai'. > 2  for  i < m.   Now,  « - 1 = dimN* +• • • + dim/V'    ,
2 — 2 — — 1 k—l

> 2t?2 + dim/V     ., + ••■+ dim Af ,    , > 2m + (k - m - l) = m + k - 1 = «  which is im-
— m + 1 k-1 —

possible.   Thus,  dimA/    = 1.
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Theorem 5-3.  '/ Ai   z's of type  in, n) then there is an element a   in N such

that N  is spanned by a, a   , ■ ■ ■ , a"~   .

Proof.  When  k = n,   the hypotheses of Theorem 5.2 are always satisfied.

Theorem 5.3 becomes a corollary to Theorem 5.2.

As an immediate corollary to Lemma 5.1, we have

Lemma 5-4.  // 0   ¿s an antiflexible map on an associative commutative alge-

bra P  of char. /= 2, 3  then for x   in  P and integers  n,   a with n > a > 1,

0(x"-<x, xa) =0  if n £ 0 (modp).

Theorem 5.4.  Let  P = F ■ 1 © N where  N  is an associative commutative

nilalgebra of type  (n, n)  over a field F  of char. /= 2, 3-   The algebra  P  is nearly

simple if and only if char   F  divides  n.

Proof.  We first assume  P  is nearly simple.   By Theorem 5.3, there is an ele-

ment a  in N  with N  spanned by a, a   ,■■■ , a"~   .   It is easy to verify each M .

is spanned by a"~'  and each N.  is spanned by a', ■ ■ ■ , a"~   .   Now, Lemma 3.1

implies (p(al, a1) = 0 whenever i + j > n.   Theorem 3-3 (or 3-4) then states

<f>(an~   , y) / 0 for some y - a a + ■ ■ ■ + a      .an~ l.   We conclude 0(zz"~   ,  a) /= 0.

However nif>(a"~   , a) = 0 so n = 0 (mod/))  for p = char   F.

Now, assume  n = kp for p = char   F.    If we define

Í0,     i + j^n,
/',     i + j = n,

<p(al, a') = {

then the proof in [6] for the case  k = 1   will generalize and  P(0)  is a simple

nodal algebra.

We have determined all nearly simple associative commutative algebras of

class 2. In classifying nearly simple associative commutative algebras of type

(m, n), we can assume  m > 3-

Having determined nearly simple associative commutative algebras of type

(«, n),  our next interest is those of type  (n - 1, n).   If dim/V'   = 1   then  dimN'. =

1   for all  i < n - 2  so that dim/V = n - 2.   Since  dim/V = n — 1   we conclude

dim N    = 2  and  dim N . - 1   for 2 < z' < n - 2.   We have proved the following lemma.

Lemma 5.5.  // N  is of type (n - 1, n) then N   is of type (n - 1, n, 2).

Theorem 5.5.  Let N be an associative commutative nilalgebra of type

(n - k, n, k + l)  over a field F with  char. /= 2.   If n > k + 3  then there are ele-

ments a, b.,   i = 1, • • • , k,  with N spanned by a, ■ ■ ■ , a"~        , b  , • • • , b, ; ab. =

0;  b2 = a.a""k-1;  b .b . = A ..an~k- l.'     i i '     i  j        ij

Proof.   By Lemma 5-3, since char   F /= 2  and dim/V' = 1,  there is an  element
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a  in N  with a"~ ¡r£ 0.   Let  c.,■•■, c,   be chosen so they are not in N     and

a, ■ ■ ■ , a"~        , c,,••■, c,   are a basis for N.   (This is possible since  dimN . =

k + 1.)   We know a2, ■ ■ ■ , an~k~X   form a basis for N   ,

n-k-1 fn-k-l \

Define  &. = c- £ £,-*- ' /3 ..a!_ !, ; = 1, • • • , k.   Clearly ae. = 0, ;= 1,-- • , k.

Now,   b2   is in A/,   so  b2 =  Y 1~fe_1y.^  and'7 2 T ¿j 2-2 ' 27

H-*-2

0 = (ab.)b. = ab2 =    y      y..al+ï.

2 = 2

Hence, y .. = 0 for 7 = 1, • ■ • , k and  i = 2, • ■ • , n — k — 2.   Defining  a . = y      ,        .

we have  b2 = a.an~k~1.
j 1

Lemma 5.6.  If cp  is an antiflexible map on an associative commutative alge-

bra  P  of char. ^  2,3   z« which ab = 0 then cf>(aT, bs) =0  if r > 1   or s > 1.

Proof.   If r > 1   then

cp(ar, bs) + cp(bsa, a''1) + cf>(bsar-1, a) = 0.

Since  bsa = bsar~    = 0, cp(a', bs) = 0.   The proof when s > 1   is similar.

Theorem 5.6.  Let  P = F • 1 © N where  N  is an associative commutative nil-

algebra of type  (n — k, n, k + l) with n — k > 2  over a field F  of char. ^ 2,   3.

The algebra  P  is nearly simple if and only if the following hold:

(a) A/  zs spanned by a, ■ ■ ■ , a"~        , b.,■■•, b,   where ab. = b. = b.b. = 0,

i,  j m  I, . . . , k.

(b) Either n — k = chat   F with  k even or « — k = m chat   F for m > 1.

Proof.   By Theorem 5.5, there are elements  a, b.,- ■ ■ ,b,   with N  spanned by

a,--., an-k~\ b,,--- , b,.   Furthermore, ab . = 0, b2 = a.a"-k-1, b.b. = X..an~k- 1
1 fe ' 2 '      2 2 2    7 27

for all  i, f where each  a, A...   is   in   F.    From this, it is clear that M   is a sub-' 7      27

space of the space spanned by a"~   ~   , b,,■■■, b,.

Assume  P   is nearly simple.   Then there is a ci  with  P(e,6)  simple.   We first

show that each  b.  is in M.    To do this, it is necessary and sufficient to prove

that each  a. = 0 and each A. = 0.   If x ¿ 0  is in  M,   Theorem 3-4 assures the
1 'J

existence of a y  in A/  with <p(x, y) ¿ 0.   Thus, if x  in M  has the property that

cp(x, y) = 0 for all y  in N  then x = 0.   Since a"~   ~     is in  M,   each  b.   and each

b.b. ate in M.
2 7

Lemma 5.6 implies cf>(b , a7) = 0 for all  z, /'.   Since  « - k - 1 > 1, cf>(b., b.)

= a.cp(an~k~l, b.) = 0 for all  i, j (also by Lemma 5-6).   Thus, for each  z,

cp(b2, y) = 0 for each y  in N  so b2 = 0.   If p > 1,  ap  is in  Af2   so cp(bJb., ap) =
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X..0(zz"-y ~   , a  ) = 0 by Lemma 3.1.   From Lemma 5.6, since  n - k — 1 > 1,  we

derive <p(b .b , bp) = \..(p(an~k~\ b ) = 0.   Finally by Theorem 3.1, <f>(b.b., a) =

- d>(b .a, b.) - cp(b .a, b .) = 0.   We conclude  b b. = 0 and have shown that M   is

spanned by an~   "   , b .,-••, b,.

Since an~k~1   is in M  there is a y  in N with 0(£2n-fe_1, y) ¡¿ 0.   If p > 1,

z/  is in  N2  so 0(M, z?p) = 0.   Also, as above, for each  z, cp(an-k~l, b) = 0.   We

conclude cp(an~k-1, a)/ 0.   From Lemma 5.1,  (n - k)d)(a"-k- \ a) = 0  so char   F

divides  re - ¿.   We further note that cf>(an~k~a, aa) = acf>(an~k~l   a)  so, for  a  not

divisible by char   F, ch(an~k-a, aa) / 0.

Define q = char   F  and assume  n - k = q.   Since  P   is spanned by  1, a, ■ ■ -,

a"~   ~   , b  , • • • , b, ,  if x  and y  are arbitrary,

g-1 fe

0(x, y) = 80+ Y 8ial + X Vihr
.=1 2=1

From (6), we know that, for any 2, 0(0(x, y), z) = 0. Lemma 5-1 implies 0(a\ a')

= j<f>(ai+>- 1, 1) and (z + j)qS(ai+i~ \ a) = 0. Hence, (p(a\ a') = 0 unless i + j = zj.

For s > 1,   Lemma 5.6 implies 0(£. _. y .è., zzs) = 0.   Thus, for s > 1,

9-1

0 = 0(0(x, y), fl*) =  Y S¿0(«¿, as)

2=1

= 8       6(a«-s, as) = s8       <p(a«-\ a).

Since   1 < s < q and cp(aq~1, a) / 0, 8  _s = 0.   Letting y¡=8 _laq~1 +'£l'¡=lyibi>

we have 0(x, y) = y    +8    with y     in M.   Now, for any z,   0 = 0(0(x, y), z) =

0(y1, z) + 0(SO> z) = 0(y,. z)-   If y. 7^ 0 there must be a z  in /V with 0(y., z) /

0  so we conclude y    = 0 and 0(x, y)  is in  F • 1.

We know that for  b = £ . _   r\ b. / 0  there is a z   in  /V  with 0(6, z) ¡= 0.

Since ab = 0, 0(è, as) = 0 when s > 1.   Thus,   if  b  satisfies q>(b, b .) = 0 for all

/ then ch(b, a) / 0.   If we write qS(b, a) = ß    / 0 and <f>(aq~   , a) = ß    / 0, we have

shown /3     and /3     to be in  F • 1.   Define x = ß  b - ß aq~     and verify 0(x, z) =

0 for all z   in  P.   However, the simplicity of  P(0)  implies 0(x, z) ¡¿ 0 for some

z.   We have proved that for any  b there is a j with 0(è, b .) ¡= 0.

Define /3 .. = 0(è ., è.),  z, / = 1, ■ • • , k.    For any set 77 ., • • • , r¡,   there is a  /

with  £^_, rj.ßi-=Yjí=i r/¿(A^ ' ^-W 0-   Defining B  as the matrix  ((/3 ..))  we con-

clude that B  is a nonsingular matrix.   If we let Q = F • 1 © F • b ©■ • -ffi F ■ r>fe and

let 0' = 0 restricted to Q, then Q(0') is a nodal simple subalgebra of P(0).   Since Ç}(0 )

is  of class 2, Theorem 4.3 says that dimQ   is odd so k  is even.

For the converse, first assume that  P  satisfies   (a) with  k even.   Write  r =

n — k.   Define 0  on the basis as follows:
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•        ■ Í0'
{a1, a') = ¿

i + j ¿ r,

(30) <p(a

i + j = r.

(31) <M^V b ) = x;. • 1     where  X = ((*..))  is the matrix of Theorem 4.2.

(32) cp(as, b.) = cf>(b., as) = 0    for all  i, s >  1.

ßji 0(1, x) = 0(x, 1) = 0        for all x  in  P.

Extend  0   bilinearly to   P x P.    Let  x  = 8Q + Y-âi ^z"! + Zi^^i^i   De a

nonzero element in an ideal  /   of   P(0).    If some  y. ^ 0  then there is a  /

with 0(x, &.)= ±y. in /.   If each y. = 0 then, for some /, 5. ¡¿ 0.   If S. ^ 0 and

char   F  divides  /  (or ; = 0) then 0(xa, ar~'~   ) = (—/'- 1)5 . = - § .  is in  /.    If

§ .   ^ 0 with / and char   F  relatively prime then 0(x, ar~') = - / 8 . ¡¿ 0  in in /.

In any case,  F • 1 C /   so / = P(cf>).

Now, suppose P satisfies (a) with & = A + 1 odd so A is even. Write r =

n — k. We know r = m char F with 772 > 1. Let a = char F. Define c/> on the

basis as follows:

(34)  </>(«
!0, i + /'¿ r,

j, i + j= r.

(35) 0(¿Y-  *.) -*iy -1     for  1, ; = 1, •••, ¿
where X = ((x..)) is the matrix of Theorem 4.2.

(36) <p(t>k, a) = - cp(a, bk) = aq.

(37) c/j(as, fe.) = <p(b., as) = 0    unless  s = 1  and i = /fe.

(38) 0(1, x) = 0(x, 1) = 0     for a!I  ¿  in   P.

Extend 0   bilinearly  to P x P.    It is straightforward to verify  P(0)  is simple.

As an immediate corollary, we have

Corollary  5-  Let  P = F • 1 ffi N where  N  is an associative commutative nil-

algebra of type (« - 1, «) with n — 1 > 2  over a field F  of char. ¡¿ 2, 3.   T¿e alge-

bra  P  is nearly simple if and only if N  is spanned by a, ■ • • , a"     , b where ab

= b   =0 and « — 1 = m char   F with m > 1.
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