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A METHOD OF SYMMETRIZATION AND APPLICATIONS. II

BY

DOV AHARONOV AND W. E. KIRWAN(l)

ABSTRACT. In this paper we make use of a new method of symmetrization in-

troduced in [lj to study various covering properties of univalent functions.   More

specifically, we introduce   a generalization of a classical problem raised by Fekete

and give a partial solution.

1.  Introduction.   Let  D here and throughout this paper denote a plane domain

containing the origin with mapping radius (inner conformai radius)   1  at  0 ([3] is

a good reference for definitions in the paper).   Let  /,   denote the linear measure

of DO \w\atgw = 2kn/n\ where  k denotes an integer and   1 < ¿ < 72.  M. Fekete

conjectured that the minimum value of II?./,   as  D ranges over the class of all

simply connected domains with mapping radius   1  at  0  (in the sequel we write

riD, 0) = 1) is  ]4, and that the extremal domain is the complement of 72 radial

slits extending to  °°  along the rays atgw = 2kn/n with the tip of each slit being

at a distance  "v!4   from the origin.  M. Marcus [5] proved this conjecture using a

generalization of a method of symmetrization introduced by G. Szegö   [8].   In   this

note we consider a natural generalization of the above problem.   Let

(1.1) °   < O XTT < 02<T < • ■ •   < OnV <  277

be  72 angles and denote by   /,   the linear measure of  D C\\w\atgw = o,tt\.  What

is the minimum value of II"     /,   over the class of domains  D with riD, O) = 1  and

can one characterize the shape of the extremal domain?   It is not difficult to show

that the extremal domain is the complement of radial slits along the rays atgw =

o, tt.  Are there choices of the  o,   other than  a, 77 = 2kn/n (where the problem

reduces to the Fekete problem mentioned above) when the tips of the slits are

equidistant from the origin?  In this note we answer this question in the affirmative.

Further, when the  o, tt ate restricted so that

(1.2) OkTT=   277- On_k + xTT ( 1   < k < «),

which we will always assume in the sequel, we determine an expression whose
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extreme values give the minimum of II?. I,   over the class of domains  D.   For cer-

tain values of the  o,, this expression is closely related to the Vandermonde de-

terminant.

The main tool in this paper is a method of symmetrization for plane domains

introduced in [l].   This method of symmetrization generalizes the method of sym-

metrization introduced by Marcus and is  defined as follows.   Let  G be a plane do-

main containing  0.  If the disk   \z\ < p is contained in  G define

<■/»*■S.T
where  E = E   (cp)  is the intersection of  D with Sz | |z| > p, atgz = cp\, and

R(<p) = pexpLp(cp).

R(cf>) is of course independent of p.  Let A = i0^}]*,  and B = \ß, }?_,  be two

sequences of real numbers with  |a, | = 1.   Define

~\    l/n

(1.3) PAn)(cp)= R(»\cp, A, B)=   I      [R("k<P + ßk)

The   P  [A, B\ = P    symmetrized domain of  G, denoted  P  G, is defined by

PnG=|z|z= re1*,   0<r<R("\cp),   0 < cp < 2n\.

Notes.   1.  With the choice afe = 1,  ßk = 2kn/n,  P     symmetrization reduces

to the method of symmetrization defined by Marcus [5].

2. P  G is a simply connected domain, starlike with respect to  0.

3. If l(cp) denotes the linear measure of D H \w\ atgw = cf>\, it is not hard to

show that  l(cp) > R(cp) and equality holds if and only if D n \w\ atgw = cp\  is con-

nected.

4. It was shown in [l] that r(G, O) < r(P G, O).

5. The choice  «=2, a1 = l,  a2 = -l  and ß1 = 0 = ß2 is particularly im-

portant in this paper.   In this case the symmetrized domain is symmetric about the

real axis and the distances from  0 to the boundary along the two rays arg w = ±cf>

(O < c/j < 2zr) are equal.

2.  The main theorems.

Theorem 1. Let D denote a plane domain containing 0 with r(D, O) = 1. Let

n = 2m be an even integer and let {©".wj?, satisfy (1.1) and (1.2). // z\ denotes

the linear measure of D O \w\ atgw = o,rr\  then
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,-Vj-Vt
j - ak\(2.1)   n\>- •». -¿i n ñ?i n i«

where the minimum is taken over all sequences  0 = zz„ <«,<•••<«    =1    2o", =1 0—1— —       777 ' R

^- ~Q77. for I < k < m and Yf-rfl- ~ 2-   The inequality is sharp.

Proof.   Let  D be a domain satisfying the hypothesis of the theorem.  We sym-

metrize  D using the special form of P     symmetrization discussed in Note 5 of

§ 1.   Let D*  denote the symmetrized domain and  /Í   the linear measure of D* O

\w\ atgw = okn\.   Clearly  /Î = /*    ,    ,„   It follows from Note 3 of § 1 that

l*k = [Rio. it) P(o„   ,    ,77)1'-  <[/,/     ,   Xa
k k 72+1—fe — ~-  k n + l—k'

and consequently

(2.2) Ull<U fsi
fe=l fe=i

Also,  À = riD*, 0) > riD, 0) = 1.   Let  D = \w\Xw £ D*\ and Î,   the linear measure
ä r. to-

ot  D Ol \w\ atgw = o,rr\.   Then  riD, 0) = 1  and so if  D  is an extremal domain for

this problem then, by (2.2),

» n n n

iK<rK<rK^iK
k-l k=l k=l k=l

Hence there exists an extremal domain for this problem that is starlike with re-

spect to  0 and satisfies  /,  = /      .    ,   for   1 < k < n.  Using the monotonicity of

riD, 0)  (i.e., riD  , O) < ÁD 2, 0) if D, CD.) it follows that this extremal domain

is the complement of slits extending to  °° along the rays atgw = o.tt with the dis-

tance from 0 to the tip of the ¿th slit being  /,.  Since  a, 77 = 2n - o     i_u7T ancl

^k = '      l-k' lZ roll°ws from the Herglotz representation for starlike functions [2,

p. 529] that a function of the form

_ 77!- 1

(2.3) /(*) = z(l - z)~V° (1 + a)     m   J] [(1 - exp(z^)2) (1 - expi-iek)z)] -^/2,

fe=l

where   2m = n,  0 < 0fe < 277,   2ok =!£*âo'^  (0 < k < m) and Xn'/jfe = 2 maPs tne unit

disk   U onto this extremal domain.  Thus an extremal domain for this problem is

obtained by minimizing II? _ ./,   over domains obtained from functions of the form

(2.3) for varying <9fe.  With z = ei4>, y = sin2(</>/2), aQ = 0, am = 1 and sin2(Qj2) =

a,   for   1 < k < 772 - 1, (2.3) can be replaced by
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(2.4) \i^)\2~-^Y\\y-ak
fe=o

The values of <f> that correspond to the tips of the slits on the boundary of f((J)

ate determined from the  zzz  roots of the equation

(2.5)

777 j,

y _^ = 0
¿r« y ~ ak

(y=sin^).

If z  , • • • , z    denote points on   |z| = 1  which are the pre-images of the tips

of these slits, then since   lk = l„+l_k  and  V" *« + *-*# ^^ = f/K + l-JI

and consequently

72 m

Ulk = U\f{z?\2 (zrexp(icpi))
k=\ 7=1

(2.6) ¿nn k
16    j.-i k = o

II III",-**

-^k

-*>*

+i

16"
k = 0 ;'=1

If y., • • ■ , y     denote the roots of (2.5), then for each fixed k,  0 < k < m,

y i ~ ak' ' ' ' ' y m ~ akare the roots of YjT^o7!-^* ~ (fly_ ak)^= °- Hence

777 772

(2.7) niy,--flJ = 2'7*  n   l«y-
;=l

2 -'k     11 fe1
; = 0;;>fe

Substituting (2.7) in (2.6) we obtain

(2.8)

r 1 ™       1

II ^ = 77777 II   J ^UK"0
Ze = l °       fc = 0 i>¿

1 rn

fT=r- il'?*\* n \ai
: = ° 0<k<j<m

Taking the minimum of (2.8) over all  a,,  0 < a, < 1, we see that the proof is

complete.

Theorem 2.   With the notation of Theorem 1, if n = 2m + 1   z's an odd integer

then

IP*>     min TT^T
7<kiw* n

k=\ 0<a,<l ^ fe = 0 0</k<7<7i

\ak-a;\
■*k**i

-T] J 2

11 1
7 = 1

T/je inequality is sharp.
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For odd n, n = 2m + 1, an argument similar to one used in the proof of Theorem

1 shows that a function of the form

772 / ^

/(z) = z(l - z)-^0 Y[ [(1 - *exp(- i6k))il - zexpiidk))]   k

fe=l

maps   U onto the extremal domain.   The equation for odd  72 analogous to (2.4) is

(2.9) !/(^)|2=¿ñly-^f"fe       (y=sin2f).
fe=o \ /

The proof of Theorem 2 proceeds from this equation in precisely the same way as

the proof of Theorem 1 from (2.4).

If 72 = 1, Theorem 2 is   a consequence of the Koebe-% Theorem.   If n = 2,

Theorem 1 gives the result that

(2.10) V igà*-
4VV i2-v)2-^

where rj = 2a,.  This result was previously obtained in [l] and [4].  We will now

give some examples illustrating Theorems 1 and 2 for other values of tz.

Example 1.  Let 72 = 3.  Then  ff2?7 =77, r¡0 + rj 1 = 2, and by Theorem 2 for any

domain  D with r(D, O) = 1,

IK>    mini^V^-zzfV2.
z, = 1 0<a<l  42

V,/2

The minimum occurs when  a = 4/(4 +17,) and hence

Example 2.  Let 72 = 4.  If D is a domain with riD, O) = 1, then by Theorem 1

4

lk>    min   4   >{p    )      [r,1)     U2)      a       °      l  il - a)       l      2.
k=l 0<«<1 X       / '       V   ¿  '

The minimum occurs when zz = (ry0 + 77^/(2 + 77j) = (2 - t¡2)/Í2 + r/^ and hence

^2 + r,xV-V2/2 + 27^2-^0

zfe = l

c»no    (2+")2"'
*=0 (2-27^        2(2-770)        C
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Example 3.  Let n - 5.  If D is a domain with r(D, 0) = 1  then, by Theorem 2,

(Vn+vA-iVn+vATT, !
(2.11)     II '**    ™°   "i

fe = l 0<a<fe<l 4

n*

fe=0

a

-(T,^\l-a)~^/2(l-b)-^/2.• \a-b\

The values of a and  A, that minimize (2.11) are solutions  a = u and A> = v of the

equations

7?! 1?1  + T72 ^0 +  ^l
+-+- = 0,

2(zz- l)        «-f »
(2.12)

^2 r/i + 7?2      7?0 + 7'
+-= 0.

2(iz- l)       «- v v

We multiply these equations by  zz    and  v    respectively and add the two ex-

pressions obtaining a new equation.  We then multiply by  u and  v respectively and

add the two expressions obtaining a second equation.   If we now subtract these two

equations, the equation

(2.13) (2 + (3/2)t,1)h+ (2+ (3/2)q2)v= 4

results.  Solving for  v in (2.13) and substituting in the first equation of (2.12) we

obtain a quadratic equation in  zz  that has two positive roots   0 < zz. < u?.  Similar-

ly substituting for  u in the second equation of (2.12) we obtain a quadratic equation

that has two positive roots  0 < v    < v..  It follows from (2.13) that only  (zz., v.)

and  (u2, v A) can be solutions of (2.12).  We claim that  a-u     and  b = v.   ate the

values that give the minimum in (2.11).  First we note that since the minimum in

(2.11) is attained, there is a solution  (u, v) of (2.11) with   u < 1   and  u < v, and

hence at least one of the pairs  (u., v.) and (u2, v A satisfies this inequality.

This implies that  zz, < v..  Suppose that  u. < zz? < ¡v    < v.   and  u~ < 1.   Then

v. — u. > v2 — u2.  However, it is not hard to show that this is incompatible with

the first equation of (2.12).   Thus  (u  , v.) is the only one of the two pairs with

zz. < v.   and  zz < 1  (except for the trivial case  u. = u2) and consequently gives the

minimum of (2.11).

If, in Theorem 1,   o, 77 = 2kn/(n + 2) (l < k < m) and  a      , = a, 77 + v =

2(zzz + k + 1)77/(77 + 2) (l < k < m), then  rjQ = r]l = • • • = r¡    = 2/(m + l).  In this case

the determination of the minimum of (2.1) is equivalent to maximizing the Vander-

monde determinant  V(a., a,, • ■ • , a   ) over the region  0<a„<a,<-..<a    <1.
Ul 772 ° —        U   — 1   — —       772   —

The latter problem was solved by Stieltjes [7] and Schur [61  Using their result we

have the following theorem.

Theorem 3.  Let n = 2m and 0,77 - 2kn/(n + 2) for I < k < m.  If D is a domain

with r(D, O) = 1   then
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*¡=i

(2.14)   ^ JLlm
- ?"-2 \    2

33 • 55 ••• (2z7z - 1) 2277- 1 -12/(777+1)

_22 .  33 ... (m+ l)m + l .  22 .  33 ... (m_ !)m-L

TAje inequality is sharp.

Proof.   Since  77n = 77 .=•••= rj    = 2/(??z + l), we have from Theorem 1 that

IK > 1        m + 1

--  *-4«-l\    2 0<zz.<l
n i«y

0<fe</<777

As mentioned above, Stieltjes and  later Schur proved that

•4/(777+1)

max |^

0<fl [<■••<%<!     0<7</fe<77

lß2-ßfel

= 2 - 772 (777 + 1 )/ 2
22 ■ 33---U+ l)m+1 • 2- 33--- (zTz-1)"2-1

33.  55... (2m_ film-I Î
/2

and the proof is complete.

Corollary.   Let m  be a positive integer and 0,77 = 2kn/(m + l) for  1 < k <

If D  is a domain with r(D, O) = 1   then

m

IU
fe=l

1       Im + 1

-    .772—1   \        2 53...U+l)m+1

■ (2m- l)2m-1

2. 3J...(f

]  2/(777+1)

a«a" /Aje inequality is sharp.

Proof.   Let  D    denote an extremal domain for this problem.   Using an argument

similar to one used in the proof of Theorem 1, it follows that  D     is the comple-

ment of radial slits along the rays arg w = 2kn/(m + l)  (l < k < m) and that  D     is

symmetric with respect to the real axis.   Let fQ(z) map  U onto  DQ and set gfí(z)

= L/q(z  )]    for z in Í7. gQ(z) maps   U onto a domain whose complement consists of

radial slits along the  « = 2m rays arg w = 2kn/(2m + 2) = 2kn/(n + 2) for   1 < k < m

and arg w = 2(k + l)zr/(« + 2) for  m + 1 < k < n.  If g Az) maps   (7 onto the extremal

domain of Theorem 3 with n = 2m  then

<2-i5> nw>nw-
k=i     fe=i
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gj((i) is symmetric with respect to the real axis.   In addition we may assume

gj(z) is an odd function.   To see that this is the case, we symmetrize  g Ail) using

(1.3) with

R(2)(0) = [R(ç>). Rid, + rr)YA.

The symmetrized domain  D*  is symmetric with respect to the origin and, because

of the nature of gA\U), with respect to the real axis.   If gAz) maps   U conformally

onto D*  with g2(0) = 0 and g2(o) > 0 then

(2-16) nw=nw-
*=1 feel

Now  g2'(0) = r(D*, 0) > ÁgAsU), 0) = 1  and  g {(z) is an extremal function for (2.14).

It follows that g2'(0) = 1, for otherwise  (l/g2 (o))g2(z)   would map  U onto a do-

main with mapping radius 1 and by (2.16) contradict the fact that g ¡(z) is an ex-

tremal function.   Since we may assume g j(z) = gAz) and hence odd, gAz) =

[/j(z  )] 2 where  f {(z) maps   U  1-1   onto the complement of radial slits along the

rays arg w = 2kn/im + l).  Also, for 1 < ¿ < 722,

W-UMV   0=0,1)

Therefore from (2.15) we have

777 7Í 72 77!

nw=nw^nw=iiw-
7e = l k=l fe = l fe = l

Thus  /    is extremal function and the proof is complete.

3.   Shape of the extremal domain.   The extremal domain for (2.10) is the

complement of radial slits extending to infinity along the rays arg w = axrr and

atgw = 277 - (7.77 with the tips of the slits being equidistant from the origin.  As

was shown by Marcus, if o, tt = 2krr/n for  1 < k < 22, then the extremal domain again

has the property that the complement consists of radial slits whose tips are equi-

distant from the origin. We will now examine each of the examples of the previous

section to see under what conditions on the   o tt the extremal domains of these

examples have this property.

Example 1.  In this case 72 = 3.  We will show that the tips of the slits on the

boundary of the extremal domain are equidistant from the origin only if  o^tt = tt/3,

a2n = n and ct,27 = 577/3, i.e. when the extremal problem (2.1) reduces to the one

considered by Fekete and Marcus.

When 72 = 3, we have from (2.9) that



1972] A METHOD OF SYMMETRIZATION AND APPLICATIONS. II 287

(3-1} \f(e'*)\2=(l/l6)iVo\y-a\~Vl        (a=a).

From Example 1 of § 2 we have that the value of a which yields the extremal func-

tion is

(3.2) a =4/(4+7] A.

It follows from the symmetry of the extremal function that the tip of the slit along

the ray arg w = 77 is the image of the point z = - 1.   The tips of the other two slits

are the images of exp (icp.)  and exp (— i<f> ¡)  where sin  (cf>./2) = y = 2r¡Q/(4 + r¡A.

The tips of the slits are equidistant from the origin if and only if  |/(— l)|    =

|/(exp (zc^j))! 2 which by (3.1) and (3.2) is equivalent to 4t7q °t/1 l(4 + r¡ )~ 2 =

t?1   (4 + 7?^ or

(3-3) 4(Vo/(6-q0))V°=l       (,0+9i = 2).

77q = 2 and  77. = 2/3 are roots of this equation.   rjQ = 2/3  corresponds to  ct.tt =

77/3 and the slits are known to  be equidistant from the origin in this case.   It re-

mains to show that this equation has no other solution for 0 < qQ < 2.   If there was

another solution then the derivative with respect to  77 Q of the left-hand side of

(3.3) would vanish twice on 0 < r]0 < 2.   An easy calculation shows that this is

impossible.

Example 2.  In this case we will show that the slits on the boundary of the

extremal domain can be equidistant from the origin only if 77.. = r¡7, i.e. only if

o",77 = a.77 + 77 and  o,77 = cr277 + 77.   From (2.9) we have that the extremal function

f(z) satisfies

lAe'^^a/lây^ly-af^ll-yf ^        (y = sin2 (0/2)),

where, by Example 2 of "5 2,  a = (2 - r¡A/(2 + r¡.).   If exp(icp.), exp(- icp^),

exp(icp2) and exp (- icp 2) denote the points on   |z| = 1  that are mapped by f(z)

onto the tips of slits on the boundary of the extremal domain, then y. = sin (cp./2)

and  y2 = sin (cp2/2) ate the solutions of

(3.4) i\Jy + 77 /(y - a) - 77/(1 - y) = 0.

It follows from (3.4) that for the extremal function |y , - a| = |y - a| and hence

!/(e¿0l)¡2=|/(e^2)|2 if and only if y? °(l - y AV2 = y^(l _ y ̂  2_ Thus che

slits are equidistant from the origin for the extremal domain if and only if

(3-5) (y^y/^Cl-yJ/d-yA)712.

From (3.4), y.   and y2 are roots of a quadratic equation y    - by + c = 0.  The dis-

criminant, d , of this equation is  d   = 2r¡.(2 — r¡A)(2 - r¡A/(2 + 77.) .  Consequently
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(3.5) is equivalent to

(3.6) üb + d)/ib - d))V° = ((2 - b + d)/i2 -b- d))'2.

As an equation in the variable  d,  d = 0 isa solution of (3.6).  If r¡Q /= r¡2 we claim

that this equation has no other solution (and hence that the slits on the boundary

of the extremal domain are not equidistant from the origin).   Indeed if there was an-

other solution, then the derivative with respect to  w of

,   , ,      b + w ,     ¡2- b+ w
Giw) = 77., log--27    log

u        b - w

would vanish on  0 < w < d.   A rather lengthy but elementary calculation shows that

d < b,  d < 2 - b and

8iir]0-ri )/i2 + V.)) [d2 -w2]
G'iw)

ib2 - w2)[i2 - b)2 - w2]

and consequently  G'iw) does not vanish on  0 < w < d.  We will see in Theorem 4

that if 7/0 = 27.  then for the extremal domain the slits are equidistant from the

origin.

Example 3.  With the additional restriction that 27. = r¡2 we will show that in

this case the slits on the boundary of the extremal domain are equidistant from the

origin only when a, tt = 2kn/5.  As in the previous two examples, we have from

(2.9) that the extremal function /(z) satisfies

|/(e^)|2 = (l/l6)y~77°|y-air7?1|y-«2r771       (y = sin2 (</,/2)),

where by (2.12) a,   and  zz2  satisfy

271/2(«1 - 1) + 2-q1/ial - a2) + (27Q + r)])/a1 = 0,

(3.7)
771/2(z22 - 1) - 2r¡1/ial - a2) + (270 + r¡l)/a2 = 0.

The point  z = - 1  is mapped onto the tip of the slit along the ray argiz7 = 77.

Also, expG'cSj), exp(- i(f>A, exp(z'<p2) and exp(- z'r^) where  a, = sin2ich /2)

(¿=1,2) are the pre-images of the tips of the other slits on the boundary of fiil).

To show the slits are not equidistant from the origin unless  o, tt = 2kn/n we examine

the equation

|/(e^l)|2|/(e¿02)|2=|/(-D|4

which is equivalent to

(y1y2)T,0Ky1-z21)(y2-<22)r^|(y1-£Î2)(y2-z22)r^

^il-a/^U-aA2^.
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If we can show that (3.8) has only one solution for  27 j  with  27 j > 0, we will have

established our claim.  Recall that y1 and y2 are solutions of 770/y + r¡1/(y~aA +

r\x/iy - a2) = 0 and consequently by (2.7) (and the fact that 7^ = 77/

\hl - ai>(y2 ~ a?\ = t,?lßl(i?2 ~ fli)/2]>

|(yt - a2)(y2 - «2)| = [77^^ - aJ/2],

y ^2 = ^foaia2-

From these equations it follows that (3.8) is equivalent to

0.9) r,VXVHaia2)V°+VHa2 - a^ = 4[(l - ¿¿(l - a^K

Since  27. = 272, it follows from (2.13) that

(3.10) «j + a2 = 4/(2 + 327/2).

Using this equation and the fact that a.  and  a2 satisfy (3.7), it can also be shown

that

(3.11) flj • a2 = 4(1 - 2?1/2)/(2 + 377/2X2 + 27/2).

Using (3.10) and (3.11) we see after a short calculation that (3.9) is equivalent to

(3.12) 37?1(2+3271/2)77o+T?1(2 + 2?1/2)7?0  = [2,^1 - Vl/2)]V °[64(l - 27 fif K

If we denote the left-hand side of the previous equation by   Lit].) and the right-hand

side by R(r¡A then   we have LÍO) = R(0) and L(4/5) = R(4/5), 77j = 4/5 corresponds to

the case that fffe77 = 2¿77/5. Let ^6(27/ = logL^/ - log R(r] r).  An easy calculation

shows that 0(27/ is a convex function of 271  and hence  d}(r] ̂  has  77, = 0 and  77,

= 4/5  as its only zeros which implies that (3.12) and hence (3.8) has only one

solution on the interval 77, > 0.

In the previous examples we have seen that if 72 = 3 or 5 (and hence odd) the

slits on the boundary of the extremal domain are equidistant from the origin only

when okTT = 2¿77/tz (with 72 = 5 we had the restriction that 77, = 27 ).  For the case

72 = 4, the slits were equidistant from the origin not only if a, 77 = 2ku/4 but also

whenever 7/0 = r\2.  In the following theorem we prove a result for arbitrary even  72

that includes this observation for 72 = 4 as a special case.

Theorem 4.  Let lo-.nll'l .  satisfy

°2k + in-°~2kTT= ßn       U=l,---, a-1),

2t7 + cr^ - ff2n?7 = ßn,        alT7=1Aßn

and
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(3.14) aik*27r - a2fe + i77 = an      (*- 0, I,•• • , « -1).

Then Illl 1lk > y4(l/2na1)2n°l(l/(2-2naA)1~2nai.  The slits on the boundary of

the extremal domain are equidistant from the origin.

Proof.   The conditions (3.13) and (3.14) imply that

(3.15) ak7T=2rr-a2n-k + in       (k=l,---,2n),

(3.16) a?, + ßn = 2n/n,

(3.17) ok   277 = ak77 = 2n/n (k = 1, • • •, 2«).

Since (3.15) holds, we have from Theorem 1 that there is an extremal domain, A9,

for this problem that is the complement of slits that are symmetric with respect to

the real axis.   From (3.17) we see that if we symmetrize   D using (1.3) with  a,  =

1  and j8,  = 2kn/n, we obtain a domain  D*  which is again symmetric with respect

to the real axis and in addition satisfies the condition   /,    AD*) = L(D*) for  1 < k <

2« — 2.   That is, D*  is the complement of slits along the rays argizz = a,u that are

equidistant from the origin.   By an argument similar to one used in the proof of

Theorem 1, it follows that  D*  is an extremal domain for this problem.

From (3.13) we have that  2ff,77 = ßn and from (3.16) that  «ff.77 < 77.   Let /(z)

denote the function that maps   U onto the extremal domain of (2.10) with  77 = 2«0"..

From the geometry of  D*   it follows that g(z) = [f(zn)]1'n  maps   U onto  D.  Con-

sequently,

n ̂  > i
k=\

'^-Y'U-a
2«CTj I I 2 - 2«C71 J

2-272 o-

and the proof is complete.

4.   Final remarks.   Considering the method of symmetrization introduced above

and the way it was applied—the following question is natural:   Let  0< 6. < 67

< • • ■  < dn < 277.  Under what conditions on  5 = löj, • • • , 6  \ do there exist linear

transformations  HQ = \L v ■ ■ ■ , L   \,  L id) = a .6 + ß., where  a . = + 1   and  ß .  is

real, with the property that

n

(4.1) \jLk(Q) = S
fe = i

for  7 = 1, •••,«?

In order to answer the question we construct the set  H of linear transforma-

tions   Q with the properties

(i) Q(S) = S,
(ii) Q0 = a.6 + ßj (a. = + 1,  ß   teal).
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H is a group under composition as is easily shown.  It is also clear that  H. C H.

We will call Q a translation if a= 1  and an inversion if a= - 1.  A transla-

tion will be denoted by  T and an inversion by  P.

Using (i) and (ii) it is easy to see that the set of translations  H  in  H forms

a cyclic subgroup of  H.  Either H = H or, for any fixed inversion  P  in  H, H = H

U HP.   Indeed, if  T £ H is a translation it belongs to  H and if  P .  £ H is an in-

version  P. = XP implies  X is a translation, and so  P .  £ HP.  Let   T denote a

generator of H and  S, = UfeT 6,.   There are two cases:   Either  S.= S in which

case the  6. ate equally spaced, or  S    is a proper subset of  S.   For the latter case

let  6. £S\SV  By (4.1), 0. = Qdl  for some  Q £ HQ.  Since  $. (. S v  Q t H and so

Q = TkP for some k.  Thus  6. £ \JkTkPdl  and hence S = WJ^O^ u WJ^PdJ

which is the configuration of the   8,   in Theorem 4.

We may summarize  by saying that only two configurations of the   6,   ate pos-

sible in  order that (4.1) hold.   Either we have equally spaced angles or we have

the configurations of Theorem 4.

Based on the examples of § 3 and the information of this section, we pose an

open problem which seems to be interesting.  Do there exist configurations of the

6,   other than that of Theorem 4 and when the  6,   ate equally spaced such  that

the slits of the boundary of the extremal domain are equidistant from the origin?

BIBLIOGRAPHY

1. D. Aharonov and W. E. Kirwan, A method of symmetrization and applications.   I,

Trans. Amer. Math. Soc. 163 (1972), 369-377.
2. G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Mos-

cow, 1952; English transi., Transi. Math. Monographs, vol. 26, Amer Math. Soc, Provi-

dence, R. I., 1969.    MR 15, 112;    MR 40 #308.
3. W. Hayman, Multivalent functions, Cambridge Tracts in Math, and Math. Phys., no.

48, Cambridge Univ. Press, Cambridge, 1958.     MR 21 #7302.
4. M. Klein, Estimates for the transfinite diameter with applications to conformai

mapping, Pacifie J. Math. 22 (1967), 267-279.     MR 37 #1577.
5   M. Marcus, Transformations of domains in the plane and applications in   the theory

of functions, Pacific J. Math. 14 (1964), 613-626.     MR 29 #2382.
6. I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen

mit ganzzahligen Koeffizienten, Math. Z.  1 (1918), 377—402.

7. T. J. Stieltjes, Sur quelques théorèmes d'algèbre, Comptes Rendus 100 (1885),

439-440.
8. G. Szegö, On a certain kind of symmetrization and its applications, Ann. Mat. Pura

Appl. (4) 40 (1955), 113-119.    MR 17, 1074.

DEPARTMENT OF MATHEMATICS, TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY,

HAIFA, ISRAEL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARY-

LAND 20742


