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PLURISUBHARMONIC FUNCTIONS AND CONVEXITY PROPERTIES

FOR GENERAL FUNCTION ALGEBRAS

BY

C. E. RICKARTÍ1)

ABSTRACT.  A "natural system" consists of a Hausdorff space  2   plus an alge-

bra a   of complex-valued continuous functions on  2   (which contains the constants

and determines the topology in   2) such that every continuous homomorphism of   a

onto C  is given by an evaluation at a point of   2 (compact-open topology in  31). The

prototype of a natural system is [C  , ?],  where ?   is the algebra of polynomials on

C  .  In earlier papers (Pacific ]. Math. 18 and Cañad. J. Math. 20), the author stud-

ied ä-holomorphic functions, which are generalizations of ordinary holomorphic func-

tions in C  , and associated concepts of a-analytic variety and a-holomorphic con-

vexity in   2.   In the present paper, a class of extended real-valued functions, called

a-subharmonic functions, is introduced which generalizes the ordinary plurisub-

harmonic functions in C  .   These functions enjoy many of the properties associated

with plurisubharmonic functions. Furthermore, in terms of the a-subharmonic func-

tions, a number of convexity properties of C     associated with plurisubharmonic

functions can be generalized. For example, if   G is an open a-holomorphically con-

vex subset of  2   and  K is a compact subset of  G,  then the convex hull of  K with

respect to the continuous a-subharmonic functions on   G is equal to its hull with

respect to the a-holomorphic functions on   G.

Introduction.   In previous papers ([10], [11], [l2])we have investigated cer-

tain  properties of general function algebras which may be regarded as generaliza-

tions or analogues of familiar results in the theory of analytic functions of several

complex variables.  We continue this study with the present paper in which a num-

ber of results for plurisubharmonic functions and associated convexity notions are

extended to the general situation.

The setting for our investigations is a system [2, 21]  consisting of a Haus-

dorff space S  and an algebra  U  of complex-valued continuous functions on X.  It

is always assumed that 21  contains the constant functions and determines the

topology in 2,  i.e. the given topology in S   is equivalent to the "coarsest" or

"weakest"  with respect to which all functions in  21 are continuous. We also call

this the U-topology.  The topology in the algebra 21  is the compact-open topology,
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i.e. uniform convergence on compact subsets of 2.  We shall also assume through-

out that [2, SI]   is natural in the sense that every continuous homomorphism of 21

onto the complex numbers C   is given by evaluation at a point of 2.  The proto-

type of a natural system is [C", $],  where  C"   is ordinary «-dimensional complex

space and fî is the algebra of polynomials in  n  complex variables.  Thus, in the case

of an arbitrary natural system [2, 21],   it is convenient to think of the algebra 21

as playing a role analogous to that of the polynomials in the case of [C", Sß].

Other examples of natural systems are (1) any infinite cartesian product of complex

planes, again with the algebra of polynomials, (2) a Stein manifold with its alge-

bra of global holomorphic functions, and (3) the Gelfand representation of a com-

mutative Banach algebra on its space of maximal ideals.

The first problem here is to obtain, for a general natural system [2, 21],   an

appropriate extension of the usual notion of plurisubharmonic function in C".  The

analogous problem for holomorphic functions, which leads to the notion of 2I-¿o/o-

morphic function in 2,  is dealt with in the papers cited above ([10], [ll]).  One

definition for plurisubharmonic functions in C"  goes as follows:  Let  G be an

open set in  C"  and / a function defined on  G  with values in [— °°, <*>).   Then  / is

plurisubharmonic on  G provided it is upper semicontinuous and, for every holo-

morphic map r¡  of the open unit disc  D  of C     into  G,  the composition function

/ ° T¡  is subharmonic in  D [4, p. 271].   In the case of [2, 21],   one can define a

mapping of the disc  D  into 2  to be "holomorphic" if a 077  is holomorphic in  D

for each a e 21.  Having done this, one can then formulate a definition of "pluri-

subharmonic " function on an open set in 2  exactly as in the case of  C".  Un-

fortunately,   this   approach   breaks   down   in   general   since   there   may not exist

any nonconstant holomorphic maps of D  into 2. Such is the case, for example,

with Stolzenberg's hull without analytic structure [14].   This hull is a compact

polynomially convex set in C     which, along with the algebra of all polynomials

on it, constitutes a natural system.  In such an example, every upper semicontin-

uous function would, by default, be "plurisubharmonic".   Because this kind of

pathology can occur in the general situation, a sharper definition is needed.

Our approach is to obtain the desired class of functions by extending in an

appropriate way the class  log|2I|   of functions of the form  log|a |,   where  a 6 21.

This process, which is described in the next section, gives the ordinary plurisub-

harmonic functions for [C",  ¡ß]   and leads in the general case to functions, which

we call "2I-subharmonic", exhibiting many properties analogous to those of   ordi-

nary plurisubharmonic functions and providing interesting convexity properties for

[2, 21].   A similar approach is used by Lelong [7] in some of his work on plurisub-

harmonic functions in  C"  and by Bochner and Martin [1, p. 143] in their study of

Hartogs' functions.  A crucial difference, however, is that our extension process is

local in character.   The method of obtaining the ?I-subharmonic functions by
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extending the class  log 121 |   is similar to that of obtaining the 2I-holomorphie func-

tions by extending the class  21.  For this and other reasons, it is desirable to re-

call briefly the definition of the 2I-holomorphic functions.

First let J"  be an arbitrary family of complex-valued functions defined on sub-

sets of 2.  Then a function g, with domain of definition Ju  ,   is said to be locally

approximable by elements of J"   if there exists for each point of   I     a neighbor-

hood U  such that g  is uniformly approximable on  UCySj    by elements of J". The

collection   of   all   functions   that   are   locally approximable by elements of J"   is

called the local extension of i and denoted by loc J". It is obvious that J Ç locJ". If J =

locJ ,  then J"   is said to be locally closed.   Although the local extension of J

need not be locally closed, it is easy to see that there always exists a smallest

locally closed family that contains J".  We call this the local closure of J  and de-

note it by J".     .In this terminology, the 'S.-holomorphic functions are the elements

of 21.     .We also denote the family of all 2I-holomorphic functions by    §.

In §1 we introduce a general closure operation on subsets of the upper semi-

continuous functions in 2  which, when applied to  log|2I|,   gives the 2l-subhar-

monic functions.  Many of the basic properties of these functions are established

along with the fact that they reduce in the special case of C"  to the ordinary

plurisubharmonic functions.   In §2 various maximum properties of 2I-subharmonic

functions are established, the most important of which is a local maximum prin-

ciple.  In §3 the notion of 2I-subharmonic convexity for a subset of 2   is intro-

duced and some of the properties of such sets are obtained.   In §4 the connection

between 2I-subharmonic convexity and 2I-holomorphic convexity is investigated.

1. 21-subharmonic functions.   The functions that we shall consider are de-

fined on arbitrary subsets of 2,  take values in the extended real numbers [-oo, °°)

(i.e. the value -oo   is admitted while +°°   is excluded), and are upper semicontin-

uous (u.s.c). We denote by  U  the class of all such functions. Note that U  is

obviously closed under multiplication by nonnegative reals and under restrictions,

i.e. if / e 11  and X C £,,  then the function f\X  obtained by restricting / to the

set X belongs to  U.  Also   U   is "closed under addition" in the sense that, when-

ever /, g £ U  and 3). O 3)   4 0,  the function /+ g defined on 3), n 3)    belongs

to  U.  Thus, with the obvious convention, we can say that il   is "closed under

linear combinations with nonnegative real coefficients".

We introduce next the class i_a of all functions / of the form /= rc-1log|a|,

where n is a positive integer and a e 21. Obviously, £a Ç U. Also £a contains

all real constants (including —oo) and is closed under linear combinations with

nonnegative rational coefficients. Our objective is to extend £ in U by "clos-

ing" it with respect to a special closure operation defined on subsets of U. We

begin by defining two preliminary closure operations acting on an arbitrary subset

?  of II.
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(1) Denote by J"   the set of all functions in ll  that are locally the pointwise

limits of nonincreasing sequences of functions belonging to J'.

(2) Denote by Js  the set of all functions in ll  that are locally the supremum

of functions from J .

Note that the requirement that elements of J    belong to ll  is automatically

satisfied.  It is also automatic in the case of Js  if the function involved is locally

the supremum of only a finite number of functions from ,f.  For arbitrary J   the sets

J"    and Ss are always closed under restrictions.  It is also easy to see that, if J"

is closed under addition, then the same is true of J"    and J"5.  If J"   is closed un-

der addition of constants and multiplication by all nonnegative rationals, then J

and  Js  are closed under multiplication by all nonnegative reals.

The operations "*"  and  "s"t  as well as the operation of "local extension"

used in defining 2I-holomorphic functions, are closure operations in the sense of

the following general definition:  Let S be an arbitrary abstract set of points and

let    :X —» X    be a mapping which associates with each subset  X  oí S another

subset X*.  Then  "    "is called a closure operation in S  if it satisfies the fol-

lowing properties:

(i) 0* = 0(0 the empty set),

(ii) X C X    for every  X Ç S.

(iii) X   Ç X     implies  X   C X   .

The closure operation is said to be proper if it satisfies the additional property

(iv)  (X*)* = X*,  for every X Ç S.

A set X  is said to be *-closed if X* = X.   Note that both  0 and S ate

*-closed.  Also, the intersection of an arbitrary collection of *-closed sets is

*-closed.  Therefore every subset of S  is contained in a smallest *-closed set,

viz. the intersection of all *-closed sets that contain it.   The smallest *-closed

set that contains a given set X  is called the *-closure of X  and denoted by X(* '.

Note that  "(*'"  ¡s a proper closure operation.

If   "*1" and "*2" are two closure operations in   S,   then the com-

position  "*1*2";  where  X*1   2 = (X   0*2,  is also a closure operation in S.   More-

over, it is easy to verify that  X* '   2 = X  if and only if both  X   ' = X  and X   2 = x.

Therefore  X*1   2 = X  if and only if X   2   1 = x.   It follows, in particular, that

(»1*2? _ (*2* 1 ).

Returning to the two closure operations " t"  and "*"   in  ll,  introduced

above, we consider the composite operations   "is"  and  "*»**,  Since it is the

associated proper closure operations that are important, we may, by the above re-

mark, restrict attention to  "s   ".

1.1.   Definition.   The -^-closure of the set X     in   ll  is denoted by öa   and

its elements are called ^.-subbarmonic functions.   A function / is called tl-harmonic
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if both / and  — / are 2I-subharmonic.   The set of all 2I-harmonic functions is de-

noted by Ka .

By the preceding remarks, the set à     is closed with respect to each of the

operations "**", "is"t "s>> ancj i<i>>_  ^s we shall see, the 2I-subharmonic func-

tions are a natural generalization of plurisubharmonic functions in C".

The notation used in Definition 1.1 appropriately emphasizes the dependence

of the sets i-a , o     and K,   on the given system [2, 21].   However, in the follow-

ing discussion, we shall omit the subscript when no confusion can result.  The set

of all 2I-subharmonic functions defined on a set H C 2  is denoted by ö(fi).   The

subset of o(ii)  consisting of continuous functions is denoted by  Co(íí).  Similarly,

we denote by H(fi)  the subset of ö(0)  consisting of 2I-harmonic functions.  Note

that K (fi) C Cö(O)   and elements of K (Í2)  do not assume infinite values.

The following proposition is very useful in the study of o.  It is formulated

for the closure operation  "sl"  but is valid for an arbitrary closure operation "*".

The proof, which involves a straightforward transfinite induction, will be omitted.

(See [5, p. 191] or [ll, p. 279].)

1.2. Proposition.   There exists an ordinal ¡i  such that to each v < p.  there

corresponds a set o   C U  with the following properties:

(i) SQ = <£,  S   = S,   and Sa C.  S^ for  0 < a < ß < p.

(ii) lfV<fi.   "then Sv = (Ua<l/Sa)si-

With this decomposition of o,  we can use induction arguments to establish

properties of the 2I-subharmonic functions.   In particular, any property that involves

only a finite number of functions and is satisfied in ö    for some v  will be satis-

fied in o  if it is preserved by  "s "  and *'*■".

Since the set aQ contains the constants and is closed under linear combina-

tions with nonnegative rational coefficients, the set ö    is closed under linear

combinations with nonnegative real coefficients.  Moreover, the latter property is

clearly preserved under  "*"  and  "*",  Therefore o  is closed under linear com-

binations with nonnegative real coefficients.  The set K  consists of functions with

finite real values and is closed under linear combinations with arbitrary real coef-

ficients.  Observe also that a function will belong to &  if and only if it belongs

locally to ö.  More generally, we have the following theorem.

1.3. Theorem,   o  is closed under local uniform limits.   (I.e.   locu = S-)

Proof.   Let g  be a function which is locally approximable by elements of ö.

Then, for each 8 e-^   ,  there exists a neighborhood N  of S and a sequence

1/ ! C S, with NO®   C 3),  ,  such that a e N n 3)    implies

/ (o) < - n    if p (a) = - oo,
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and

g La) - I/« < fjo^ < g (a) + \/n     M g(a) / ~ °°.

We show first that g £ il.  For this it is enough to show that g\(N (1 i )  fill.

Therefore, let aQ £ N n ~l     and assume  g(o~Q) < t.   Choose  n  such that - n < t -

l/n and gwQ) < t— 2/n.   Then we have fn(vQ) < t - \/n.  Since fn ell,  there

exists a neighborhood  N' of aQ  such that  N' C N  and a £ /V' O X     implies

fJ,o) < t - l/n.  Since gia) < / (a) + l/n for all a £ /V n 5)  ,  it follows that

g (a) < /  for CT £ N' n  3) .   Therefore,  g £U.

Observe next that if we set

gk(a) = max[g(cr), - k],       a £ ¡D ,

then gk ell,  ê(c)<gt+1W<gtW,   for all  &,   and

g(a) =  lim g, (ff),        o- eiP   .
fe-»o     " K

Therefore, if we show that g,   e S  for each  &,  then it will follow that g £ S   = S.

Set

/   . (o) = max [/ (o), - k],       a e ïi i ,

then f k £ S.  Also,  g(o) = -oo   implies  gk(o) = - k and /„¿(f) ■= —'A  for n > k.

Hence, if n > A,  then g^ff) - l/n < /nfe(ff) < gfe(cr) + l/n for all a   £ N O ÍD  .

Since  /  i - l/n £ S  and

g.(ff) = sup 1/  ,(a) - l/n},       a e Nn.T ,

it follows that g,   £ Ss = u,   so g £ o,  completing the proof of the theorem.

Consider next a real-valued function X  defined on an, possibly infinite, inter-

val [a, b).   Assume that y   is nondecreasing and convex.  Thus, if   a< r < s < b,

then y(r) < X(s)  and

x ((1 _ 0) r + 0s) < (1 - 0) y (r) + 6 X (s)

for  0< 6 < 1.  The function y  is automatically continuous on (a, b)  and, for con-

venience, we extend y  continuously to the half-open interval [a, b)  by setting

y (a) =  lim   yti).

Thus y (a) < y(f)  for all / £ (fl, &)  and, if a = -oo,   then y (a) = -°°  is possible.

It follows from the convexity that the limit

7«   -   lim     -
/ +        s - t

s-*r

exists for all / £ (ö, 6)  and that the graph of y   lies above the line through the
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point it, y (r))  with slope equal to m[t  i.e.  y(r) + m(is - i) < y(s),   s e ia> b).

Since y  is nondecreasing,  m   > 0 for all t.

1.4. Theorem.   Let f £ ö  and assume that the range of values of f is contained

in the half-open interval [a, b)  on which the nondecreasing, convex function y

is defined.   Then vo/eo.

Proof. Observe first that since X is continuous it follows that y»/£ll.

Also, since o contains the constants and m > 0, the function y(r) + m[f- t)

belongs to o  for each  t £ ia, b).   Therefore, if

g(io) = max[y ia), y(r) + m(ifio) - t)],

for a eh,, then also g   £ v.  Moreover, for each t € {a, b),  g ko) < y (/(a)),

a e3)/.   If  fio) = a,  then gt = y (fio))  for every  t. If fio) e (a, b),   then gtio) =

Xifio)), for l = fio).  Therefore, supper) = yifio)), o £C£)f, so y o / e Ss = S,

completing the proof.

1.5. Corollary,  (i) // / e S and / > 0,  then fl e S for arbitrary real i> 1.

(ii) If f £ b,   then e' € ö.   In particular, if g  is logarithmically "ñ-subharmonic

(i.e.   g> 0 and logg e S),   then g e S.

(Hi) For arbitrary a 6 21,   èozè  log | fl |   aW |ß|   belong to S.

We now extend (iii) of Corollary 1.5 to 2i-holomorphic functions.

1.6. Theorem.   // h  is an arbitrary li-holomorphic function then both \og\h\

and \h |   belong to o.

Proof.   Our problem is to show that  |!q | Co and  log|oj | Ç ö where §  is the

family of all 2I-holomorphic functions in 2.  Denote by J   the family of all h £ §

such that both \h\  e§  and  log | h\  £&.  Then 3"   is maximal in  §  with respect to

the property that |J"| Ç S and log I? | Ç S. We must prove that 3" = §. Since

2Í C J,  by Corollary 1.5 (iii), and iç  is the smallest locally closed family con-

taining 21,  it will be sufficient to prove that  loc J" = J   or, in view of the maximal

character of J",  that  |locJ | C§  and  log|loc3"| C S.

Observe first that  | loc J | Ç loe |3" | Ç S,  where the last inclusion is given by

Theorem 1.3.  That  log|locJ" | Ç S  is more difficult.   Let h £ loc3".  Then, for

arbitrary 8 £ S)h, there exists a neighborhood  V  of S and \f \ C 5"   such that

lim/ra(ff) = hia)  uniformly on   V O J), .  For an arbitrary positive integer k, define

\h\kio)= max(e-fe,  \hio)\),       o € %,

and

|/  L(o-ï = maxie" k,  \f io)\),       o £ Vnï> .
n  k, u n        ' b
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Then  lim|/ l¿(c) = l^li^  uniformly on  V n i/¿.  Moreover since the functions

l|/ | ,S  and  \h\,   ate uniformly bounded away from zero for fixed k,   we also have

lim  log|/Jfe(ff)=log|Ä|   (ff)
n->oo

uniformly on   V n îj.  Observe next that

log \fn\k(a) = max(- k, log \f¿fr)\),       ff eVn %

Since ö  contains the constants and  log |/ |  £ S,   it follows that  log t /„I t e Ss = d.

This implies that  log|£|,   e loco. Hence log|A|,  eö, by Theorem 1.3.  Finally

observe that  log|¿| < log|i|,+. < log|¿|,,   for all k,  and

lim  log|A|.(ff)= log|¿(ff)|,        ff ef,
ife->oc h

Therefore,  log|¿|  eS   = o.  Thus  log|locj|Ço  and the proof is complete.

1.7. Corollary.   Let  h  be an arbitrary u-holomorphic function.

(i) // h  is never zero, then log j ¿ |   is U-harmonic.

(ii) // h = u + iv,   where u and v are real, then u and v  are ^.-harmonic.

In the introduction it was pointed out that the obvious generalization to

[2, 21]   of the definition for plurisubharmonic functions in  C"  was in some cases

not restrictive enough.  It is important to know, however, that our 2I-subharmonic

functions do always satisfy the general definition even though the condition in-

volved is not in all cases sufficient for a function to be 2I-subharmonic.  It will

be convenient to consider holomorphic maps, not only of the unit disc, but also of

an arbitrary open set of the plane into 2.  Thus if  U  is an open set in C  and r¡

maps   U into 2,  then r¡ is holomorphic if   a o r¡  is holomorphic in the ordinary

sense on  U for every a € 21.  Note that such an r)  is automatically continuous.

Also, it is not difficult to prove that, if h  is any 2I-holomorphic function defined

on rjiil),  then hot] is an ordinary holomorphic function on U.

1.8. Theorem. Let r] be an arbitrary holomorphic mapping of an open set U of

C into 2 and let f be an arbitrary ^.-subharmonic function defined on r](U). Then

f °r]  is subharmonic in the ordinary sense on  U.

Proof.  Observe that if / e£, then f = n~  log|fl|,  where a e2í,  so f°r¡ =

n~    log | a or¡\ .  By hypothesis,  a o r]  is holomorphic and hence  / o r\  is subhar-

monic on  U.  Therefore, the theorem is true for elements of ¿L  and every choice of

■q and   U. Now denote by J   the subset of ö  consisting of all those functions for

which the theorem is true.  In other words, if / e J  and rj  is any holomorphic map

of an open set  U into 2  such that rjiU) Ç h., then / o r¡  is subharmonic on  U.

We thus have iCJCa  and must prove that J = S.  Since  §  is the smallest
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s -closed subset of ll  that contains i_,  it will be sufficient to prove that J    =

J = J .  Therefore let g  be an arbitrary element of either J"5  or J"   and let 77  be

a holomorphic map of  U Ç C  into 2   such that rjiu) Ç 3)   .  Since g £ u  and 77  is

continuous, g o 77  is u.s.c. on   (7.  Also let £»  be an arbitrary point of  U.  Then

Assume first that g e J"s.  Then there exists a neighborhood  N  of 7)(£n)

such that

gio) = supi/Cor):/ 6 5,  NnS^^, /<jon Nn3)g|,

for each a £ N O J3   .  Since  77   is continuous, there exists a neighborhood   V  of

C0  in   [/  such that 77 (V) Ç N n 3)  .  By hypothesis, if / £ ?  and  Nfl 3)   Ç î)f,

then / o 77  is subharmonic on  K.  Also, if / < g  on  NO D   ,  then / o 77 < g o 77

on   V.   Therefore, g ° r¡  is the supremum on  V  of subharmonic functions.  Hence

g ° 77  is subharmonic on  V [6, Theorem 1.6.2].   Thus g o 77   is locally subharmonic

and is therefore subharmonic on  U.  This completes the proof that Js = J.

Next assume that g £J .  Then there exists a neighborhood  N  of rjiCJ and

!/ ! C 5  such that  /V O D   Ç 3). ,   p(ct) < /   ..(a) < / (a),  for all n and a £ N C\ 3) .

and lim/n(a) = gio) for a £ N C\ 1)  .  Choose a neighborhood   V  of ¿,Q such that

77(V) Ç N O !/   .  Then /   o 77  is subharmonic on  V  for each n.   Also, for ¿, £ V,

(g o t?)(O <(/B + 1 o77)(C) <(/„o77)(0 and lim(/   o'^)'(C)- («oijXO,   Again it

follows that g o 77  is subharmonic on  V [6, Theorem 1.6.2] and, being locally

subharmonic, is subharmonic on   U. This proves that J   = J  and completes the

proof of the theorem.

It follows from the above theorem that, in the case of [C",  5ß],   a ^-subhar-

monic function defined on an open set in  C"  is automatically plurisubharmonic.

The converse, that every plurisubharmonic function is ^-subharmonic, is also

true but nontrivial.  The proof depends on two well-known approximation theorems

for plurisubharmonic functions.  (See, for example, [4, Theorems 13.91 and 13.10].)

First let PS denote the set of all plurisubharmonic functions defined on open sets

in  C"  and let  CPS denote the subset of PS consisting of continuous functions.

Also denote by L the set of all functions of the form n~l log|¿|,  where n is a

positive integer and  h    is defined and holomorphic on some open set in  C".  Now

consider a function f £ PS with an open set  G as its domain of definition.   Then,

by the first approximation theorem, if f/CC G,  there exists a sequence {/ !  of

continuous (in fact, ¿-times continuously differentiable) plurisubharmonic func-

tions on  H such that /„(£) > fn + liQ > /(£)  and /n(£) — /(£)   for Í£H.  This

implies immediately that  PS ÇiCPS) .  Now, by the second approximation theorem,

if  U is a domain of holomorphy in  C"  and / is an element of  CPS defined on U,

then, for  V CC U and each Ç £ V, /(£) = supig(£): g e L,  g < f on   V\.  Since
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each point of C"  admits arbitrarily small neighborhoods that are domains of holo-

morphy, it follows immediately that  CPS Ç L   .  Combining these results, and using

Theorem 1.6, we have   PS C (CPS) Ç Ls   C § „ ,  which, with Theorem 1.8, com-

pletes the proof of the following theorem.

1.9. Theorem.  In [C", P],   a function defined on an open set is plurisubhar-

monic if and only if it is ^¡-subharmonic.

2. Maximum properties of 2I-subharmonic functions.   Let  K be a compact sub-

set of 2  and S  a collection of u.s.c. functions defined on  K.   A closed subset

B  of K is called an J-set if

max fia) = max/(ff)
creB creK

for every / £ J.  A simple Zorn's lemma argument shows that there always exists

at least one minimal J-set.  Moreover, under appropriate conditions on J , there

will exist a unique minimal J-set, which we call the Silov boundary of  K relative

to J   and denote by ff<r K. Sufficient conditions for uniqueness are that J   be

closed under addition and contain the constants along with enough functions to

determine the topology on   K.  In particular, it is sufficient for J   to be closed

under addition and contain  log|2I|   (restricted to  K).  The proof of the existence

of d„K under these conditions is a straightforward adaptation of the proof for the

existence of the Silov boundary for an algebra of functions [3, Theorem 15.1 J-

The Silov boundary of  K relative to S(K)   thus exists and we denote it simply by

de K.   Also, since  § contains Jl,  it is easy to see that deK contains the ordin-

ary Silov boundary, d^K,  of  K relative to the algebra  21  (restricted to K).  If ß

is a compact 2I-convex set, then, just as in the case of the 2I-holomorphic func-

tions [11, Lemma 2.5],   it turns out that (9cO = ¿LÍ2.   This is a nontrivial fact

which depends on local maximum properties of the 2I-subharmonic functions that we

we shall now develop.

As might be expected, local maximum properties of 2I-subharmonic functions

rest ultimately on the Rossi local maximum modulus principle for Banach alge-

bras [13, Theorem 6.1].   We shall use the following special case of the Rossi

principle:   Let Q  be a compact U-convex subset of 2  and let   U be a relatively

open subset of iî\a   Û.   Then, for every a £ 21,

max      |fl(ff)| = max |a(ff)|.

It is worth noting here that, in order for the Rossi principle to hold in this situa-

tion, 0  must be the space of maximal ideals (spectrum) of the algebra  2I„   ob-

tained by closing 21 |ß  in  C(fi).   This is equivalent to the condition that [fl, 21]
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be natural, which in turn, since  [2, 21]   is assumed to be natural, is equivalent to

the condition that 0  be 2I-convex [11, Proposition 1.3].

For the discussion which follows, it will be convenient to introduce some

definitions which generalize the above situation.  First we define a subset of 2

to be essentially open if it is a relatively open subset of some closed set in 2

(e.g. the set Q\<9H0  above).  Thus an essentially open set is simply the intersec-

tion of an open set and a closed set in 2.  If a set is essentially open, then it is

obviously a relatively open subset of its closure.  In general, we will denote an

esentially open set by A     and its closure by A.  We also set Y ■ A\AQ  and note

that r  is equal to the boundary of A    in A.

Now let A    be an essentially open set with compact closure  A  and let J

be a given subset of  II.  Then J  is said to satisfy the local maximum principle in

AQ    and AQ  is said to be J-local if for every set  U Ç AQ,  relatively open in A ,

and every / 6 II, with   U C 3). and f\U €.?,  it is true that

max      fio) = max fio).
o-ebd^U cr£ij

If A     is J-local, then every relatively open subset of A_  is also J-local.

Let C  be a family of complex-valued functions and denote by  |C|   the family

of absolute values of functions in C.  Then the set A     is said to be Q-local pro-

vided it is  |C | -local.  Thus if fi  is compact and 2I-convex in 2,  then ß\<9   0 is

21-local.  A fundamental property of 2I-subharmonic functions is that 2I-local im-

plies ô-local.   Before establishing this fact, we prove a localization lemma.

2.1. Lemma.   Let A     be essentially open with compact closure and let  U  be

a relatively open subset of AQ.   Also let g  be an element of ll  such that  U C 3)

and

max     gio) < 0 = max g io).
o-ebdai' aeU

Then there exists a point 8 £ U with the following property: For every neigh-

borhood N of 8, there is a nonnegative integer m and an element u £ 21 such

that, if  gN = mg + log \u\,   then

max g   ia) < 0 = g  Id).
creTbdA(A/n!7) ™

Proof.  Consider the set Z =\a £ U: gio) = 0!.   By hypothesis,   Z C U and,

since g is u.s.c,  Z  is closed and hence compact.  Take  8 to be any strong

boundary point (see [9, 3.3.15]) of Z relative to the algebra  21 z   obtained by

closing 211 Z  in  CÍZ).   Let N be an arbitrary open neighborhood of 8.  If Z C N,

then the function gN = g (i.e. take  m = 1   and  u = 1 ) already has the desired

property.   If Z ¿ N,  then, since  ¿5  is a strong boundary point, there exists u £ 21
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such that max,y ez\N \u(c)\ < e~    < \u{8)\ = 1,  so

max     log\u(a)\ <- 1 < log|«(ö)| = 0.
&eZ \N

Set  V = iff £ U: log|a(ff)| < - l}.   Then  V  is relatively open in  AQ and  Z\N C V.

Next set B = [bd¿(/V n U)]\k.   Then B  is compact and Z n  6=0.  If B = 0,

then  bdA(N D ÍJ) C V  and the function gN = log|z¿|   (i.e. take   m = 0)   has the

desired property.  Therefore assume B 4 0 and set  s = max(TeBg(ff).   Since

Z fl B = 0,  it follows that  s < 0.  Therefore there exists a positive integer m

such that ms + log |« | A < 0,  where  | u |A = maxi|«(ff)| : a £ A}.   Now let gN =

mg + log |k|.   Then clearly gN(S) = 0.  Furthermore, for a £ B = bdA(/V n   U)\V,

gN(ff) < ms + log | a | a. < 0 and, for a £ V D   bdA(/V D   Í/),   gN(ff) < m • 0 +■ (-l) = -l.

Therefore,

max
crebdA(NnU)

8NW < 0,
i)    "

and the lemma follows.

2.2. Theorem.   // an essentially open set with compact closure is U-local,

then it is also è-local.

Proof.   Assume that the given essentially open set A.  is 2I-local.   Then,

since the logarithm is increasing and d   = X. = log|2I|,   the set  A     is also d„-

local.  Next let J   be any set of functions with o.ÇjC ll,  which is closed un-

der addition, and denote by §  either J     or J   .  Note that ^   is also closed un-

der addition.  Now, by Proposition 1.2, the desired result will follow  by induction

if we show that J"-local implies §-local for the set A   .  Therefore suppose, on the

contrary, that A.  is J"-local but not C^-local.  Then, using the fact that y  contains

all real constants (since d    C Cj)  and is closed under addition, we can obtain   U,

relatively open in A      and a g £ ll   such that   U Ç 2) , g\U £ §,  and

max     g (er) < 0 = max g (ff),
crebd^í' ereil

Thus Lemma 2.1 applies.   Let o be the point of  U given by the lemma.  Since

g\ U £ tj  and Ç)  is either J"s   or J" ,  there exists a neighborhood  Ng  of o  such

that, on the set N g O X   ,  the function g  is determined by .Ï   in accordance with

the definition of J"s or J" .  Choose a smaller neighborhood  N  of 8  such that

N H A- C /Vg  and let g,,   be the corresponding function given by Lemma 2.1. Thus

gN = mg+ log I "I,   where  m  is a nonnegative integer and  u e 21,  and we can

choose  r so that

max g   (ff) < r < 0 = g.,{8).
o-ebd^(NnU)

Now assume that § = Js.  Then, for each a € A/g D X
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gia)= sup\fio):f£J~, f <g  on  NgO  3jg).

For arbitrary f £<5 with f < g  on  Ng n £      set fN - mf + log | a|.   Then /N < gN

on  Nsn î    and, for each o £ N <¡ O 3)  ,
o g ' o g'

gN(or)= sup \fNio):f £J~, f<g  on  /Vgn3)g|.

Hence we can choose f £J, with /< g on N § n 1>  , such that r< fNi8).  Since

/nÍSn  on N8 n^  '  anc* nence on bdA(AÍ n  L/),   it follows that

max fNio)<fNi8)<   max_fNio).
o-ebda(Nr\U) ae\'C\U

This contradicts the assumption that A    is J-local and completes the proof for

Now assume  § = J .  Then there exists a sequence  {/ ! C J   such that, for

all 77,  5)   C 3),  , g < fn + l < fn, and \fn\ converges pointwise to g on Ns D 3)  .

For each »,  define f'n = mfn + log|«|.   Then }/¿ S C 5",   gN < f'n^< f'n,  and i/^|

converges pointwise to gN   on  N? Pi L  .  Note that  0 ¿ bdA(N n  (7) C N § n J)  .

Hence,  for each ct £ bdA(N H  (7),   there exists  nCT such that w > 72a implies

/  (ct) < r. Since /     is u.s.c, there exists a neighborhood  N     of a  such that

/    (ct') < r for a' e N   n X   .  The set bdA(N O  ÍV)  is compact so is covered by a

finite number of the neighborhoods  N   ,  say l/V^.:  i= 1, • • •, &!•

Let n 0 = maxi/7^ , • • •, «^ ,.   Then

fn0 < fna.     on  wo-¿ n 3)g  for each  t,

so /^   (ct) < r,  er £ bdA(N n fJ).   Moreover,   0= gN(<5) < f'n iS)  and  5 e N n  l>  so

max /LW < max_ /'   (ct).
crebdA(Nn(7)       ° creNnU      °

This contradicts the assumption that A     is J-local and completes the proof of the

theorem.

2.3. Corollary.  // Í2   is a compact ^.-convex set, then (9    0 = c9<- 0.

For the next theorem recall that a point 8 in 2  is called an independent

point of [2, 21]   if 8 £ K ,  for any compact set  K C 2,  implies  8 £ K,   where  K

denotes as usual the (necessarily compact) 2I-hull of  K in 2 [11, p. 275]-   The

point 8 is said to be locally independent if there exists a neighborhood  A/<-  of ô

such that 8 is an independent point of [Ng, 21].   By a general version of the local

maximum modulus principle, a point of 2   is independent if and only if it is locally

independent [11, Theorem 1.8].  Note that [C", Sß]  has no independent points.

2.4. Theorem.   Let f be u-subharmonic on an open set  G Ç 2.   If 8  is any

point of G which is not an independent point of [2, 21],   then
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Proof.  Set

f(8) = lim sup f(a).
<T-»o

lim sup/(ff) = inf  sup   fia),
o—S Ng cre/v'

where  /Vg ranges over all neighborhoods of 8 contained in G and  Ng   denotes the

deleted neighborhood  Ng\iS}.   Since  / is u.s.c, we have immediately that  s <

f{8).   Since 8 is not locally independent and points of 2  admit arbitrarily small

2I-convex neighborhoods, there exists for each Ng  a compact set   KC Ng,  with

K~C Ng,  such that 8 e K* but 8 i K. We have, by Corollary 2.3,   a§K~ =

d   K~ Ç K.   Therefore,

f{8) < max /(ff) <   sup   fia).

Since  A/g can be arbitrarily small, it follows that fi8) < s,   completing the proof

of the theorem.

2.5. Corollary.   Let fl  be a compact ^-convex set in 2  and let f be  21-

subharmonic on fl.   Then, for every 8 £ fly?-.ft,

fi8) = lim sup fia).
<y-*S

In the following theorem, which generalizes a well-known result for ordinary

subharmonic functions, the set AQ  is again essentially open with compact clo-

sure and is 2I-local. Since the strong local maximum modulus principle holds for

holomorphic functions defined on open sets in C", the set A  , for the special

case [C", ^],   could be an arbitrary bounded open subset of C".

2.6. Theorem.   Let  U he a relatively open subset of &n and let  h, g  be func-

tions such that h  is continuous on  U and ^.-harmonic on  U while  g  is u.s.c. on

U and ^.-subharmonic on   U.   Then g < h on bd^ U  implies g < h  on   U.

Proof.   By the definition of 2I-harmonicity, both h and  — h  ate continuous on

U and 2I-subharmonic on   U.  Therefore, the function g — h  is u.s.c. on   U  and

2I-subharmonic on  U.  By hypothesis, g — h < 0 on bd¿ U. Since A    is 2I-local

it is also ö-local, by Theorem 2.2, so it follows that g — h < 0 on   U.  Hence,

g < h  on   U and the theorem is proved.

2.7. Corollary.   // g and h are both U-harmonic on  U,   then g = h on bdA U

implies g = h  on  U.

3.  Convexity with respect to 2I-subharmonic functions.   Let  G be an arbitrary

open subset of 2  and consider the set  Co(G)   of all continuous 21-subharmonic

functions defined on  G.   (The value -oo  ¡s permitted for elements of  Cd(G).) Also
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let J"   be an arbitrary subset of  Cü(g).   For a compact set  K C G, ,we define the

i-hull of K, in the usual way, to be the set

K^=   iff £G:/(ff) < max/(o),/ £ ?).
°        ( SefC )

Since elements of J   are continuous, the set   KÍ  is relatively closed in  G.  If

K Ç H Ç G,  then the intersection of Kc  with the set  H will be denoted by  K£ H.

The set  KQ H  is called the J-bull of K in H.

3.1. Definition.   If  K_  is compact for every compact set   KC C,  then  G  is

said to be J-convex:  If H C G and  KG „   is compact for every compact set KÇ H,

then  H  is said to be J~-convex in  G.

For the special case ? = CS(G), the cS(G)-hulls are called "2I-sh. hulls"

and denoted by KG and KG „. Also, in this case, we use the term "2I-sh. con-

vexity"  in place of "CbÍG)-convexity".

If J" = |C|,   where C  is a family of complex-valued functions defined on  G,

then J-convexity reduces to the usual C-convexity.  In the special case, C =

211 G,  we denote the C-hull of the compact set   KC C by KG. Note that  KG =

K   r\ G,  where   K     is the 2I-hull of  K  in 2.  If  KG   is compact, then  K   = KG U

(K  \G)   is a decomposition of the 2I-convex set   K    into disjoint closed sets, each

of which, by a general result, must be 2I-convex [ll, Proposition 1.4].   Since

KC KG,  it follows that  K   = KG<  Therefore,  2I| G-convexity of  G  is already

equivalent to 2I-convexity of G  in 2.  This implies that 2I| G-convexity of an open

set H in  G  is also equivalent to 2I-convexity of H  in 2.

In the special case, C = CG,  where CG   is the family of all 2I-holomorphic

functions on G,  we use the terminology "sll-holomorphic convexity", in place of

"CG-convexity", and denote the hulls  KG        and   K respectively by  KG

and  KG ^.  In the usual finite-dimensional cases, 2I-holomorphic convexity re-

duces to ordinary holomorphic convexity and 2I-sh. convexity reduces to p-con-

vexity, as defined by Gunning and Rossi [4, p. 276]. Since, by Theorem 1.6,

l^lGl Ç \GG\ Ç CS(G),   it follows that  K£ Ç KG Ç K¿ Ç k",  so these sets have

compact closures.  Also we observe that 2I-convexity of  G  implies 2I-holomorphic

convexity which in turn implies 2i-sh. convexity.  We shall explore in more detail

the relationship between 21-holomorphic convexity and 2I-sh. convexity in the next

section.  In this section we develop some of the basic properties of 2I-sh. con-

vexity.

Let  G be an open subset of 2.   For u £ Cd(G)  and real  /,  set  Giu < t) =

Iff £ G:  uia) < t\.   Then  Giu < I{) Ç Giu < tj,   fot í, < t2,   and  G = \jGiu < t).

Let K be a compact subset of Giu < t)  and, for convenience, set  K  = KG D

Giu < t) = KG c,u<ty Since   KG   is relatively closed in   G and  K   C K^,   it fol-

lows that  K¿C\ G Ç Kç..   Moreover, since   u  is continuous and  KC Giu < t),  we have
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sup     u ia) =   sup u (ct) = max u (ct) < t,

aeR nG creK creK

so Kt n G C G(k < r).  Therefore Kt n G = Kr Observe that the set K, will be

compact if and only if it is closed and will be closed if and only if  K   C G.   It fol-

lows that  G(z7 < /)  will be 2I-sh. convex in  G  if and only if  K  C G for every com-

pact set  K in  Giu < t).

3.2. Theorem,  (i) // either G is %l-sh. convex or Giu < t) C G,   then Giu < t)

is u-sh. convex within  G.

(ii) // Giu < t) C G for all real t,   then G  is U-sh. convex.

Proof.   For the proof of (i), let  K be an arbitrary compact subset of Giu < t)

and observe that

Kt= K"n Giu < t) ÇK^nGiu < t).

If G is 2I-sh. convex, then KP is compact, so KP = KP C G and hence K C G.

Also, if Giu < t) C G, then K¿ C G. Therefore, in either case, Giu < t) is 2I-sh.

convex within  G,  by the preceding remarks.

For the proof of (ii), let  K  be an arbitrary compact subset of  G and choose

/ > maxcreK uio).   Then

K^ C G iu < t) C G iu < t) C G.

Since   KP_   is always relatively closed in  G,  it follows that  K£   is in fact closed

and therefore compact.  Thus   G  is 2I-sh. convex.

The results in the remainder of this section require compactness conditions

on the open sets involved.  The first result is a converse to part (ii) of the above

theorem.  (Compare [6, Theorem 2.6.7].)

3.3- Theorem.   Let  G  be an open, a-compact subset of 2.   // G  is 2I-si. con-

vex, then there exists g £ Guíe)  such that, for every real t,   Gig < t) CC G.

Proof.  Since  G  is cr-compact, there exists a sequence ! Gn \  of open sets

such that  G   CC G   .. ,  for all 72,  and G = UG  . Since  G  is also  2I-sh. convex,
n n + 1 ' _        ' n    _

we can assume further that Gn CG... Set  F   = G  j.,\G  .  Then \F  \  is a
n 72 + 1 n «Tin n

sequence of compact sets and

G\Gn=   y F
k=n

fe'

Since  Gn CG   ,,, it follows that GnC\ F       = 0. Hence, for each 8 £ F   ,,,
n n~rl7 n n + 1 ' n + 17

there exists &g € Co(G) such that max p; uÂo) < 0< uÂ8). Since u« is contin-

uous, there exists a neighborhood Vg of 8, with VjC C, such that inf^y J'^.a) > 0.

Since Pjj + j is compact, it is covered by a finite number of the neighborhoods V g,

say  Vg ,•••,  Vg   .  Define
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v (ct) = max \u 5 (ct), • • • , u<>   io)\,       o £ G.
n Sj bm

Then v    £ CeiG)  and
n

max  v (ct) < 0 <     min     v  (ct).

ft rc + 1

After modifying  f    by a positive multiplicative constant, we can assume that

max   jr.   v (ct) <-7zlog2  and  login + l) < min^^r?        v (ct).   Now, replacing V    by
creo«    n o & crer'?J + i     n *      * °      n      J

w   = e  ", we have  w   > 0,  w    £ Cö(G),   and

max w (ct) < 1/2",        72 + 1 <    min      w^o).

™cn     * a€Fn + l

Finally, we define
00

g (ct) =   2_,  wk^'       o £ G.

k=\

If k > 72,   then  G   CG      Therefore, for o £ G  ,

1_Z ->}< z
fe=n+l fe=n+l    ^

It follows that the series for g   converges uniformly on  G  .  In particular, it con-

verges locally uniformly in  G,   so g £ C&ÍG).

For arbitrary real ¿,  choose n > t.   Then, if 5 e G\G  ,  there exists  m > n

such that 8 £ F   . Since the functions w,   ace positive, we have g(<5) =£T ,wkiS)>

w      ,(<5) > m > t.   Therefore,  G(g < t) C G    and, since   G   CC G,  it follows that
m—1 — ' ° —     n ' n '

Gig < t) CC G.

3.4. Corollary.   // G  is an open o-compact, 2I-s¿. co?2[7ex set in 2,   then there

exists a sequence \G  \  of open sets with  G   CC G   +, CC G = UT-i ^k sucb that

each  G     is U-sh. convex within  G.
n

We shall obtain below, as a consequence of the next theorem, a converse to

the result in Corollary 3-4.  (See Theorem 3-7.)

3.5. Theorem.   Let  G and H  be open sets in 2,   with HCG,  where G  is

locally compact and H  is 2I-s¿. convex within  G.   Then, for every compact set

K in  H,   KP   25 compact and contained in H.

Proof.   Assume that  K  is a compact set in  G  such that  K£ = F U F , where

F is compact and  F Cl F   = 0. We shall prove that  F" = F.

Since F  is compact and  G  is locally compact, there exists an open set   U,

with compact closure and hence a compact boundary, bd U (possibly empty), such

that F C V CC G,   F' n (7=0. Note that bdUC g\k".  If bd (7 = 0, then we

have immediately that  F^ = F  (since the function g  such that gio) = 0,  for

ct e Í7,  and g(cr) = 1,  for ct e G\(7, belongs to CS(G)). Therefore, assume that bdi7/0.
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For each S £ bd U, there exists /. £ Cd(G)  with

max   f gia) = max/g(ff) < 0 < fÁ8).
creK™ o-eK

Set Ng = iff£G: 0</g(ff)}.  ThenNg is an open neighborhood of o. Since bd U

is compact, it is covered by a finite collection of these neighborhoods.  Denote

this finite covering by N^ — , N^ with associated functions /,>•••> fn-  Let

í    = max|/.(ff) : ff £ K;  i = 1, ■ • • , n\'0

Then tQ < 0.  Choose  t such that  tQ < t < 0,  and set   V = iff £ g\(7:  /¿(ff) < r;

z = 1, « ••, n}.   Then  V is open and contains  F .  Observe that for each i,fia)> 0

if ff £ (bd U) O N. while /.(ff) < r < 0 if ff £ V.  Therefore,  (bd U) n V = 0 and

hence  Un V = 0, so G = (c\u) U (g\v).   Now define

g j(ff) = max i/Xff): z = 1, • • • , n},        a € G,

g2(ff) = maxií, gj(ff)}, a eG.

If ff e(G\(j) D (g\v),   then fia) > t,   for some  i,  so g^ff) = g2(ff).   Therefore,

if we let

(ff) =

(ff),      er e g\V,

So),      a e g\77.' 2'

then g  is well defined in  G.   Furthermore, since the constant  t and each of the

functions /. belong to Co(G),   it follows that g e CviG).   Observe next that  F C

U C g\v while  F'CVC g\~Ü.  Hence

max gia) =  max g  (ff) < t    < t,
creF o-eF     '        ~   °

while, for each ff e F ,   g(c) = g-,^) > '•   Therefore  FG C G\F .   Furthermore,

FG S kg-  so we conclude that FÇF^Ç KgV = F.   Therefore, F£ = F.

Now let  K be a compact subset of tí.   Then the set  K^ H = KG n H is com-

pact so  K" = (KG n W) U (Kg\W)  is a decomposition of  K" of the type con-

sidered above.  Therefore, since  K Ç K™ n H, it follows that  K" = K" n W,  com-

pleting the proof.

3.6. Corollary.   // G  fln¿ f/ are as in the theorem and if tí = tí    U tí ,   where

tí. H  H.= H.  r\ H. = 0,  rÂera H,  ana? H. are a/so 2I-s¿>. convex within  G.

The following theorem is the promised converse to Corollary 3.4. An arbi-

trary collection of sets will be called increasing if the union of any finite sub-

collection of its elements is contained in an element of the collection.
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3.7. Theorem.   Let G be an open locally compact subset of 2 which is the

union of an increasing collection of open sets each of which is 2I-s¿. convex with-

in  G.   Then  G  is 2I-sè. convex.

Proof.   Let   K be a compact subset of  G.  Then there exists an element  H  of

the increasing collection of open sets which contains   K. Since  H is 2I-sh. con-

vex within  G,  Theorem 3-5 applies and we conclude that  KG  is compact.   In

other words,  G  is 2I-sh. convex, as claimed.

We close this section with an approximation theorem.

3.8. Theorem.   Let G be a locally compact open set in 2 and let SX  be a sub-

set of G which is compact and^L-sh. convex within  G ii.e.  flG = Í2).   Then there

exists an open set H,  with ß C H Ç G,  such that H is U-sh. convex within G.

Proof.   Choose an open set  U such that 0 C Í7 CC G.   Applying to the set fi

the same construction used with  F in the proof of Theorem 3-5, we obtain a func-

tion g.  £ CoiG)  such that

maxg1(ff)<0<    min    g.io).
tren o-ébdU

Now choose a real number r such that 0 < r < min^, , y g.io),   then ÜC Uig. < 0) CC

Uigl < r) C U,  where   Uigl < t) = {a £ U: g{io) < t\.   Observe that

G = U ig j < r) U  {G\U ig ! < 0))

and, if ct £ Uigx < r) n ÍG\uig1 < 0)),   then g {io) > 0.  Next define

g2(ff) = maxiO, gj(a)|,       a £ G.

Then g2 £ CS(G)  and g ¿a) = g2io)  for o £ Uigl<r) n (G\uigl < 0)).   There-

fore, if

Igj(ff),        ct 6 /7(gj < r),

_
g2io),       CT6G\(7(gj < 0),

then g  is well defined in  G and  belongs to Cö(G).   Furthermore,   Uig. < 0) =

G(g < 0).  Since Gig < 0) C G,  it follows by Theorem 3-2 (i) that G(g < 0)

is 2I-sh. convex within  G.  Therefore the theorem follows with H = Gig < 0).

4. 2I-subharmonic vs. 2I-holomorphic convexity. We have already observed

that 2I-holomorphic convexity always implies 2I-sh. convexity.  It is a fundamental

convexity problem to obtain a converse to this statement.  More precisely, if  G  is

an open set in 2  and  H  is a subset of  G,  then the problem is to obtain appro-

priate conditions on  G, or on H, under which 2I-sh. convexity of  H within  G

will imply 2l-holomorphic convexity of H within  G.  The most interesting, and also



20 C. E. RICKART [July

most difficult, case occurs when  H = G.   This is the problem of determining when

2I-sh. convexity implies 2I-holomorphic convexity.  In the case of [C",  ^],   every

ip-sh. convex (i.e. p-convex) domain is holomorphically convex.  This is also true

more generally for Riemann domains [4, Theorem 4, p. 283].  Since convexity

properties of this kind are already difficult to prove in these special cases, it is

not suprising that we have been unable to generalize the more delicate results.

Nevertheless, it is possible to obtain in the general case certain convexity the-

orems that are still nontrivial in finite dimensions.  The proof of our first result,

though short, involves most of the theory of natural systems. (Compare [8, Propo-

sition 3, p. 56] and [4, Theorem 16, p. 279]-)

4.1. Theorem.   Let G be an open, U-holomorphically convex subset of 2 and

let  K be a compact subset of G.   Then Kr = KG.

Proof.   Observe first that, since  G  is 21-holomorphically convex, the system

[G, Cg] is natural [ll, Theorem 3-5].   Therefore  KG  is a compact CG-convex

subset of  G.  Note also that, since  2I|gCCg  and  |(-'G| Ç S,  it follows that the

class of all CG-subharmonic functions in  G coincides with the class of all 21-

subharmonic functions defined on subsets of G. Therefore, by Corollary 2.3, with

[2, 21]  replaced by [G, C._],   we have

d,KG = d6GK2^K-

This implies   KG C KG  and, since   KG C KG  is always true, the theorem follows.

Remark.   Note that the inclusion, ffVK.- Ç K,  obtained in the above proof,

implies a stronger conclusion than the one stated in the theorem; viz., the hull

of K  z'n  G with respect to d(G)   (rather than just  CS(G))   z's equal to  KG.  Using

this fact, we obtain a generalization of a result due  to Bremermann [2, Theorem 4].

4.2. Theorem.   Let  G  be an open, 11-bolomorphically convex subset of 2  and

let S, T be subsets of G with S u T CC G.   //

max   |¿(ct)| =   max     |£(ff)|

o-eT aeSUT

max / (cr) =    max   / (ff)

o-eT creSUT

for all h eLr,   then also

for all f eS(G).

Proof.   The hypothesis of the theorem is equivalent to the condition that the

set S U T be contained in the LG-hull of  T  in  G.   Therefore, by the above re-

mark,  S U T  is contained in the d(G)-hull of  T in  G,  which implies the desired

result.
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4.3- Theorem.   Let  G  be an open ^.-holomorphic ally convex subset of 2  and

let H C G.   Then, in order for H  to be ^X-holomorphically convex within  G,   it is

necessary and sufficient that  H  be ïL-sh. convex within  G.

Proof.  We have only to prove the sufficiency.  Hence assume that  H is 2I-sh.

convex within G and let  K be a compact subset of //.   By Theorem 4.1, K" = Kc

so K^ H = KG n H = K™ n H = K" H. Since H is 2I-sh. convex, the set  KG h,

and hence   KG „,  is compact.  In other words,  H is 2I-holomorphically convex

within  G,  as desired.

The above theorem, along with Theorem 3-2, gives the following corollary.

4.4. Corollary.   Let u £ CMC).   Then, for arbitrary real t,  the set Giu < t) =

\o £ G:  u(ct) < t\  is îl-holomorphically convex within  G.

The same arguments used in the proofs of Theorems 4.1 and 4.3 may be used

to establish a result for 2I-convexity.

4.5. Theorem.   Let  H be an open set in 2.   Then a necessary and sufficient

condition for H to be 'H-convex is that it be 21-s/j. convex within 2.

Proof.   The necessity is obvious.  Therefore assume that  H is 2I-sh. convex

within 2 and let  K be a compact subset of//.   Then, exactly as in the proof of

Theorem 4.1, we conclude that   K2 = K  .  Since  H is 2I-sh. convex within 2, the

set K2 n H is compact. Thus,  K   =(K   C\ H) \jiK  \h)  is a decomposition of

K    into disjoint compact sets.  Therefore, each of the sets   K   n H and  K    \H

is also 2I-convex [l 1, Proposition 1.4].  Since  KC K    Pi//,   it follows that  K   =

K    n H C H.   Therefore  H  is 2I-convex and the theorem is proved.

It would be desirable to weaken, if possible, the condition on  G  in Theorem

4.2.  In this direction, we show that, even without any restrictions on  G,  one can

still prove some local results involving certain concepts of "local convexity".

Any set  //  is said to be u-convex at a point 8 £ 2  if there exists an open

neighborhood   V  of S  such that   V O H  is 2I-convex.  If H is 2I-convex at every

point of 2,  then we say simply that  H is locally U-convex.   We also define in

an analogous way the notions of  u-holomorphic and  21-sè. convexity at a point

as well as local ^--holomorphic and local tl-sh. convexity.   By contrast, we shall

refer to the previous notions of convexity for H as global convexity.

A consequence of the naturality of [2, 21] is that every point of 2  has arbi-

trarily small open 2I-convex neighborhoods. It follows that the condition for an

open set to be locally convex, in any of the above senses, is actually a condi-

tion on its boundary.

4.6. Proposition.   // an open set H is globally convex, in any of the above

senses, then it is locally convex in the same sense.
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Proof.   Let S e 2  and take  V to be an open 2I-convex neighborhood of 8.  If

K  is a compact subset of  V n tí and  K„  denotes the appropriate convex hull of

K  in  tí,  then we have  K~nf/ Ç K~ÇK"c\ tí C V n tí.   Therefore, if  K~ is com-

pact, then KynH is a compact subset of V n H, completing the proof.

In terms of the notion of one set being convex within another, we can formu-

late the following more restrictive definition of convexity at a point: An open set

tí  is said to be relatively convex at 8  if there exists an open neighborhood   V  of

S  such that  V n H is convex within  V.   By the remarks following Definition 3.1,

we already know that relative 2I-convexity at S actually reduces to 2I-convexity

at o,   so there is nothing new.  The following theorem is a much stronger result

along the same lines.

4.7. Theorem.   Relative ÏL-sh. convexity (and hence also ^.-holomorphic con-

vexity) of an open set H at a point 8  is equivalent to ^.-convexity at 8.

Proof.  We must prove that relative 2I-sh. convexity implies 2I-convexity at

5.  Therefore let  V be a neighborhood of o  such that  V H H is 2I-sh. convex

within   V.  Let   U be an open 2I-convex neighborhood of o contained in   V.  If  K

is a compact subset of  U n tí,   then  K"nH UÇK  n ^vr\H y ^ U H H.  By hypoth-

esis,  Kynfi v  is compact so K  O KyL„ v is also compact. Hence  K¡jnH i¡  is

compact and we conclude that  U D tí  is 2I-sh. convex within  17.  Therefore we

may as well assume that  V is an open 2I-convex neighborhood of 8.  Then the

system [V,  2Í ]   (i.e. [V, 2I| V]) is natural[ll, Proposition 1.3].   Observe also

that i)   i v consists of those elements of da   defined on subsets of  V.  Therefore

U-sh. convexity of  V O tí within  V  is equivalent to 2I| V-sh. convexity within   V.

Finally, an application of Theorem 4.5, with [V, 21]   in place of [2, 21],   enables

us to conclude that  V C\ H is 2I| V-convex and hence 2I-convex, completing the

proof of the theorem.

4.8. Corollary. Let G and tí be open sets in 2, where tí is 2I-s¿. convex

within G. Then H is 'H-convex at each point of G. If tí C G, then tí is locally

^.-convex.

Consider any open set  G and a function  u e Cd(G).   For real  t,  set

Giu < t) = iff e G: uia) < t \  as in Theorem 3-2.   Let 8 e Giu < t)  and choose an

open 2I-convex neighborhood  V of 5 with   V C G.   Then  V  is also 2I-sh. convex

and, by Theorem 3.2,  V H Giu < t)  is ÜI-sh. convex within   V.  In other words,

Giu < t)  is relatively 2I-sh. convex at 5.  Thus we have the following corollary.

4.9. Corollary.   Let u e CS(G),  where  G  is an arbitrary open set in 2.

Then, for each real t,   the set Giu < t)   is "^.-convex at each point of G.   // also

Giu < t) C G,   then  Giu < t)   is locally U-convex.
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A domain G in C" will be holomorphically convex (p-convex) if and only if it is lo-

cally holomorphically convex (locally p-convex) [6, Theorem 2.6.10]. This is a nontrivial

result and the problem of obtaining an adequate extension to the general case remains

open. In fact, we are even unable to settle the weaker question as to when local 21-

convexity implies 2I-holomorphic convexity.

We close with a result which involves a convexity property more reminiscent

of the usual notion of convexity for a subset of a linear space.

Let 0  be an arbitrary subset of 2.  We call a point 8 £ 0  an inner point of

0  if it is not a locally independent point of the system [0, 21].   (See the remarks

preceding Theorem 2.4.) This amounts to saying that if  V is any neighborhood of

8, then there exists a compact set  K C V O 0 such that 8 £ K   \K. We shall al-

so call a point ¿5 £ 0  an extension point of 0  if any function which is 2I-holo-

morphic on a deleted neighborhood of 8 within 0  has an 2I-holomorphic exten-

sion to the full neighborhood in 0.  These notions, though formulated for an arbi-

trary set, are primarily of interest for a variety.  For example, if 0  is an ordinary

variety of dim > 2  (say, in C")   then each of its points is an inner extension point.

Finally we observe that, if 0  is an 2I-analytic subvariety of an open set   U in 2,

[ll, Definition 2.10], then it is 21-convex at each of its points.  To see this, let

o £ 0   and choose an open 2I-convex neighborhood  V  of 5 with  V C (7.   Then

V O 0  is an 2I-analytic subvariety of the 2I-convex set   V  so is 2I-convex [ll,

Theorem 2.12 ].

4.10. Theorem.   Let  G be an open set in 2  and 8 a point of 2 at which  G

is ^-holomorphically convex.  Also let %  be a set which is ^-convex at 8 and

¡or which 8 is an inner extension point.   Then 0\|ôi C G  implies 0 C G  (i.e.

8 £G).

Proof.   As in the proof of Theorem 4.7, we can choose an open 2I-convex

neighborhood  V oí 8 such that  V O G  is 2I-holomorphically convex and   VflQ

is 2I-convex. Since  8 is an inner point of 0,  there exists a compact set  K C

V n 0  such that o £ K~\k.   Note that  k" C V Pi 0.    Assume now that 0\íS¡

C G.   Then  K C V O G,   so   KÇnG   is a compact subset of  V CI G  that contains K.

If it happens that 8 £ KÇnG,  then there is nothing to prove.  Therefore assume

that ¿5 i Ky   ,-.  Then   K   \KwnG  is a relatively open subset of  K    which con-

tains  8. Since   K    cannot contain an isolated point outside of  K  [ll, Proposi-

tion 1.4],   it follows that the set  K   \^vnc  must contain points of  K    different

from «5.  Let 8    be one such point.  Then

8' £ v n (0\{o!) cv n g.

Hence there exists  h £i-Jyri(-  such that
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\btf)\>\b\ =\h\K.
KvnG

Note that the restriction of b to (V n @)\iô}  is 2I-holomorphic. Now since  S is

an extension point of ©,  hi8)  may be defined so that h  is 2I-holomorphic on

V O ©. In particular, h is 2I-holomorphic on K . But then the inequality \hi8 )\ >

\b\K contradicts the local maximum principle for 2I-holomorphic functions. There-

fore it must be true that 5 £ KwnG   so 8 £ G and the proof is complete.

If in the above theorem  G  is assumed to be 2I-convex at 8,  then the assump-

tion that ®  be 21-convex at 8 and that 8 be an extension point for 0  can be

dropped.  To see this, proceed as before to obtain an open 21-convex neighborhood

V of 8  such that   V O G  is 21-convex, and a compact set  KCl/n 0  such that

8 £ k"\k.   If 0\io5 C G,  then  K C V O G  so  K~ C V n G and hence 5  £ G.
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