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ABSTRACT.   We generalize Marshall Cohen's notion of transverse cellular

map to the polyhedral category.    They are described by the following:

Proposition.   Let f :   K —* L   be a proper simplicial map of locally finite

simplicial complexes.    The following are equivalent:

(1) The dual cells of the map are all cones.

(2) The dual cells of the map are homogeneously collapsible in  K.

(3) The inclusion of L  into the mapping cylinder of f is collared.

(4) The mapping cylinder triad  (C,, K, L)   is homeomorphic to the product

triad  (Kxl; Kxl.KxO) rel K = K x 1.

Condition (2) is slightly weaker than /"*   (point) is homogeneously collap-

sible in K.   Condition (4)  when stated more precisely implies  / is homotopic

toa homeomorphism.   Furthermore, the homeomorphism so defined is unique up

to concordance.

The two major applications ate first, to develop the proper theory of

"attaching one polyhedron to another by a map of a subpolyhedron of the

former into the lattet".   Second, we„classify when two maps ftom X  to  Y

have homeomorphic mapping cylinder triads.   This property turns out to be

equivalent to the equivalence telation generated by the relation fr^g,

where  /, g:   X —» Y  means  /= gr for  r:   X —* X  some transverse cellular map.

Marshall Cohen has developed (see [C.]) a theory of transverse cellular

mappings defined on manifolds.   They satisfy a slightly weaker condition than

collapsibility of point-inverses.   They are close to homeomorphisms in that they

share with homeomorphisms the property that their mapping cylinder is a product.

Their interest is that they are precisely all the maps which satisfy this property.

In this paper,  we generalize the notion of transverse cellularity to proper

maps of locally compact polyhedra.

Proposition.   Let f:    K—>L   be a proper, simplicial map of locally finite

simplicial complexes.    Then the following are equivalent:

(1)   For every  A £ L, the dual cell of A  with respect to f,  DÍA; f) idejined

to be f~   DÍA; L))   is homeomorphic to the cone on DÍA; f) rel DÍA; f) (where

DÍA; f)^f-YDÍA; L)).
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(2) For every A £ L,  D(A; f) "St point homogeneously in  K (for homogeneous

collapsing see [A]).

(3) The inclusion L C C, (C. = the simplicial mapping cylinder of f)  is

locally collared.

(4) (C  ; K, L)  is p. I. homeomorphic to (K x A; K x 1, AC x 0) rel AC = K x 1.

A map satisfying these is called transverse cellular.

Note that the third and fourth conditions are independent of the triangulation

of / because the mapping cylinder homeomorphism type is a p. 1. invariant of the

map.   So it makes sense to speak of a p. 1. map being transverse cellular.   Also

note that (4) implies   |AC|  is p. 1. homeomorphic to   |L|.

We use transverse cellularity to give the p. 1. definition of attaching one

polyhedron to another.   Let  XQ   be a closed subpolyhedron of a locally compact

polyhedron  X and let /:   X„ —► Y.   be a proper p. 1. map to another locally com-

pact polyhedron.   We define a regular extension of / to be a proper p. 1. map  F:

X —» Y and a closed p. 1. embedding   ¿:    Y„ <—   Y such that

(i)    F-1(z(Y0)) = X0,and

(ii)    F|X0 = zo/, and

(iii)    F:   X

X0 = i -

YQ   is transverse cellular.

We show that such always exist and prove the required uniqueness theorem:

ropos ition .  Let

Fl ¿1 F2
—> Yj«— Y0 and X —► Y2<

be regular extensions of f :   XQ —> Y„  where  XQ C X.

There exists a regular extension X—*F Y*—1 YQ   of f and transverse cellu-

lar maps  G   :    Y —*Ya,a=l,2, with  G"1 (¿a(YQ)) = ¿(YQ)  and making the follow-

ing diagram commute.

In particular, Y{  and  Y2  are p- L homeomorphic.

The other major application is to a classification of mapping cylinders.

Define a relation   a;     between p. 1. maps.   If  fQ:   XQ—>  YQ  and  fy   Xj-
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r j   then fQ zze /j   if   YQ = Y    and there exists a transverse cellular map  r:

XQ  —»   Xj   satisfying  fQ = f j o r.    =s    generates an equivalence relation which

we will call =t; .

Proposition.   Let fQ:   XQ —► Y and f.:   X. —» Y be proper p. I. maps.   Then

the following are equivalent:

(D /o « fv
(2)  There exists a p. I. homeomorphism b:   (C¡ , XA = (C/ , X.) rel Y.

Oddly enough, if one varies the range by a transverse cellular map, too, then

one gets a diametrically opposed result.

Define  fQ *-*efl  for fa :   Xa—» Ya,  a = 0, 1, to mean there exist transverse

cellular maps  d:   XQ —» Xj  and  r:    YQ —> Y    with /t o d = r o f0-   Call the gener-

ated equivalence relation «-♦ .

Proposition.  /„ «_♦ /.   if and only if there exist homeomorphisms  d:   X'0 —► X.

and r:    Y„ —> Y    such that f.   is homotopic to r o f0 o d~   .

I would like at this point to express my thanks to the referee, perhaps on the

readers'   behalf as well as my own.   His detailed comments—running in length to

half that of the manuscript—resulted in a complete recasting of the paper and the

correction of a serious error.

I.    Preliminaries. We will be looking at the piecewise linear topology of

locally compact polyhedra.   Unless otherwise stated all polyhedra are locally

compact, subpolyhedra are closed and maps are p. 1. and proper (inverses of

compact sets are compact).   The corresponding simplicial category is that of

locally finite simplicial complexes and proper simplicial maps.   For general

background as well as relations between infinite complexes and locally compact

polyhedra in particular, see Hudson's book [H].   However, we will also draw

heavily on the results in and the notation of Cohen's paper on regular neighbor-

hoods [C2] and my thesis [A].   In particular, we will use the notation for intrinsic

dimension developed in the latter.   We define  dix; X) to be the intrinsic dimension

of  x in  X;   I'ÍX), the intrinsic z-skeleton, is   \x £ X:   dix; X) < i\; and in a com-

plex   K a simplex  A  is said to be a "nice face" of  B  if  A   is a face of  B and

dix; X) is constant as  x varies over interior A U  interior B.

We christen by the name "the Alexander trick" the many results which come

from the fact that for compact polyhedra  X and   Y the product of the cones:

(cX) x icY)  is homeomorphic to the cone   c' [(cX x V) U (X x cY)] rel (cX x Y) u

(X x cY) and the fact that  (cX x Y) \j (X x cY)  is homeomorphic to the join,

X * Y.   In particular, for   Y = |0i,   cY is an interval  / and so (cX) x I  =

c'HcX x 0) U (X x /))   rel    (cX x 0)  ij (X x /).        Also,     (cX) x / S

c 'HcX x / ) U  (X x /)), using   Y = {0, 11.
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While on the subject of cones, we need to introduce the convention of the

empty polyhedron 0, satisfying cone  0 = cone point.

In developing a category approach to mapping cylinders, we need the right

category.

We introduce the category of "simplicial maps with chosen deriveds".

Objects.  Simplicial maps   /:    AC —► L  together with a choice of derived sub-

divisions on   AC and   L, such that  /:   77AC—» 77L   is also simplicial.   (When  77AC is

a derived subdivision of  K and  A £ AC, we will use  77A  for the point-choice in  A

of the subdivision , e.g. the "barycenter".)

Morphisms.  A morphism   G:   /„ —► /.    where / :    AC     —> L       a = 0, 1, is a

pair of simplicial maps   (written   G = (G ,, G  ))  G,:    AC —> AC    and   G  :    L„ —» L

also simplicial with respect to the chosen deriveds and such that /,G , = G /„.

Examples.  If  AC is a complex, ACQ   a subcomplex and  77AC is a derived sub-

division of   AC then the identity and inclusion maps id „:   AC —»AC and inc: AC —»AC

with the derived  77 chosen on domain and range  are   objects  of this  category.

Furthermore, if /:    AC —► L  is an object of the category with deriveds   77AC and

77L, then there are natural morphisms relating the identity maps and /:

df = (idK, /): idK — /,        rf = (/, idL): / — idL-

There are also obvious functors from this category to the simplicial category:

"Domain" and "Range" and on the derived level "77 Domain" and "77 Range".

II.   Cone complexes.

Definition.  A cone complex  S on a locally compact polyhedron  X  is a

locally finite covering of  X  by compact polyhedra (called the cells of 6) with a

boundary map d defined on  6, satisfying

(a) For each a £ S,  da C a and is a union of (necessarily finitely many) cells

of 6.

(b) For a, r distinct elements of S,   a n r = 0 where   a   is defined to be

a - da.

(c) For each a £ 6, there exists a homeomorphism a = cone  da (rel da).

(d) If a £ 6 and dimension a = 0, then and only then  t9tr = 0 (the empty

polyhedron).

// c is weakened to c1. da is collared in o, then we call S a general com-

plex on  X.

If c is strengthened to c". Each (o, do) pair is a ball and boundary-sphere

pair, then (following custom) we call  6 a cell complex on  X.

Auxiliary definitions.   (1) The incidence relation a < r means  ctC dr.

(2) If A  is a subset of  X, then "0 meets   A" means  o Ci A / 0 .   Note that
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from (a) and (b), if o meets  r then o = r or o < r.   (Note "o meets  r" is not

symmetric.)

(3) By (a) and (b) for each x £ X there is a unique o £ S such that a meets

x, i.e. x £ o.   This  o is called the carrier of  x.

(4) If dimension  o = 0, then we call o a vertex.   Note that for a cone com-

plex  do = 0  implies  a is a point by  (c) and our convention about the empty poly-

hedron.

Definition.  Let  S be a cone complex on  X.   A choice of homeomorphism

fa:   o = cone do rel do is called a structuring of a.   Such a choice for each o

in  S is called a structuring of  6.   S together with a structuring is called a

structured cone complex.

Example.  If  K is a locally finite simplicial complex, then the dual cells of

the complex form a cone complex on   \K\  with a natural structuring given by the

fact that D(A; K) = 27(A) * DÍA; K).

Remarks. For a cone complex there exist many different structurings and, in

particular, at least one. However, by the Alexander trick any two structurings are

isotopic, i.e. if / , / : o = cone do rel do then / is isotopic to / . In fact,

by the next remark, the isotopy of / ~ / to the identity on o rel do extends to

an ambient isotopy of  X.

For a general complex, if /:   0^0 rel do and is isotopic to  id^ rel do,

then the isotopy and, a fortiori  /, extends to  X.   Just extend the isotopy up the

cells by induction on dimension, noting that an isotopy of  id^r extends to an

isotopy of id    by the fact that  dr C r is collared.   Thus, if x, y £ o ate joinable

by a path x    in o with  d(x ; o) constant, then by  [A, Definition II. 7] d(x ; X)

is constant.

Definition.   If & and  5) are cone complexes on  X  and   Y respectively, a

map y :   S —► 3   is called a cone map if it preserves incidence, i.e. o < t implies

y(o) < y(r), and if y (vertex) is a vertex.

With this definition, cone-complexes and structured cone complexes become

categories. We can similarly define the category of general decompositions and

general decomposition maps.

Proposition 1. There is a covariant realization functor from structured cone

complexes to the p. 1. category defined as follows: Let Í&, \f ' \) be structured

cone complexes on X1  for  i = 0, 1   and y :   S   —» S     be a cone map.

Then define   \i&, \f'\)\ = Xi and \y\   to satisfy

\y\\o = (f y (a))-l° (cone \y\\ do) o if °).

Hence, if y: 6 —»& is a cone map, then by picking structurings we can

find a map f:   X    —» X     carried by y, i.e.  fío) C [y(cr)]  .
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Proof.  Let   |y| = y on vertices and proceed by induction up the cells of  S.

Remarks.  (1)  If y:   6 —» 5) and we pick different structurings   {/   i,  \f'\ on

S and  \gT i,  !gr' S on  S then realizing the commutative diagram

(6, IfJ)-Y—~ (5, jgr|)

id id

(s, i/;í) —r~ a igr'i)

shows that the two realizations of  y differ by homeomorphisms, which are

ambiently isotopic to the identities with isotopies carried by  6 and  5).

(2) If g: X —» Y is a homeomorphism carried by an isomorphism y: S —» 2),

and !grS is a structuring on 5) then fa = (cone g\do)~ l o g . o g is a structuring

on  S, with   |y| = g.

(3) If g:   X —► Y is a map carried by y then g is homotopic to  |y|  with the

homotopy carried by  y.

Subcomplexes.

Definition.  Let S be a complex of  X and  XQ  a subpolyhedron of  X.   "S

restricts to  XQ", or "6 induces a complex on  X„" if for each  a £ S such that o

meets  XQ,  a l~l Xn ^ cone (¡9a n X„) rel do C\ X.Q.   Then we define  &|X„ =

\o n XQ:   a £ & meeting  XQS with d(a n XQ) = (acr) C\  XQ.

(Convention.  If r?cr D X„   is empty, we say  do n XQ = 0  so ex O XQ  is a

point of  a, a vertex of  S|XQ.)

If  S restricts to  XQ  and for each o meeting  X0,  (o, o D XQ) =

cone (do, da O XQ) rel da then we say  6 induces a cone complex on the pair

(X, x0).

Example.  If a meets   XQ  implies  a C XQ, i.e.  X„  is a union of elements of

S then  6 induces a complex on  (X, XQ).

The definition of "S induces a complex on  (X, XA)" is precisely what is

needed to obtain a structuring on the pair:   That is, a structuring of  S such that

/   (o n XQ) = cone (do O X„) when  a meets   XQ.   The analogue of Proposition 1

is true.

Similarly, S induces a complex on (X; |Xa!)  [Xj  a family of subpolyhedra

if for o £ S, there exists  fa:   (a, iff O Xa,i) = cone (c9ct, ¡c/ff n Xa, i) rel do

where  {X  , i is the subclass consisting of those   Xa's which   o   meets.    Again

the analogue of Proposition 1 holds.

If  6  induces a complex on  XQ, then whether  S  induces a complex on the

pair is a collection of weak unknotting problems for cones:   For each  a meeting

X„, is the pair of cones  (ct, o  Ci XQ) a cone pair?   For example, if  XQ O ff is a

point  p then the question is whether  p can be a cone point for o (which
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amounts to:   does it have a minimal intrinsic dimension in ct?).   This weak un-

knotting question is examined in [A].

Extending structurings.   In applications the following problem arises:   Let  6

be a complex on  X  inducing a complex  6Q   on  XQ  and assume that we are given a

structuring on  GQ, when can we find a structuring on  6 which restricts to the given

one on 6Q?

Clearly, it is necessary that  6  induce a complex on the pair (X, XQ)  but in

fact more is required.   This question is equivalent to a collection of unknotting

problems for embedding of cones.

Let /:   cX —» cY be an embedding with  f~   (Y)= X.   Lickorish [L] has

taught us what is means for / to be unknotted:    "/ unknots" means there exists

h:   cY^cY rel Y such that  h o/= c(/|X).   If X C Y and / |X  is the inclusion,

then / is  unknotted  iff there exists  g:   cY S cY rel Y extending /.   For  h un-

knots  / iff h~    extends  / in this case.   Thus we have

Proposition 2.    Let  &   be a cone complex on  X, restricting to  XQ   z272zi let

\f'   ,:   o' £ &\XA  be a structuring on G|X0.    Then the following are equivalent:

(1) The given structuring of S |X„   extends to one of 6, i.e. for all o £ &

meeting XQ, /(otiX   ):   o O XQ 2J cone ido O XQ) rel do H  XQ  extends to a ga:

o 25 cone z3zj rel do.

(2) There exists   \h   :   o £ 6 !  a structuring of G, with  ha o (/o-nv   )~   :

cone ido D XQ) —► cone do is unknotted for all o meeting  X„.

(3) For every structuring  \h   :   o £ Gj   of 6, hcro(f0.nX)~    is unknotted for

all o meeting  X„.

Remark.  In applying this result we will use the criteria for unknotting

developed in [A]  in terms of homogeneous collapsing of sets and conewise homo-

geneity of the map.

III.   Mapping cylinders.    We now review the theory of mapping cylinders due

to Marshall Cohen ([C.], [C,]).   It is perhaps worth the bother of introducing

category jargon in order to note which constructions are canonical.   One of the

themes of this section is that many p. 1. constructions are done by choosing a

triangulation and then using a functorial simplicial construction.   The choice of

triangulation destroys the naturality of the construction.   This is usually re-

covered, but only to a limited degree, by a corresponding uniqueness theorem

which usually states that the construction is independent—in some sense—of the

choice of triangulation.   Thus, for example, "stellar neighborhood of   KQ  in  K"

(where   K„   is a subcomplex of   K) is a functor on the category of pairs of sim-

plicial complexes.   The corresponding p. 1. notion of a regular neighborhood of a

subpolyhedron is obtained by choosing a particular triangulation of the polyhedral
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pair  (X, XQ); namely, a first derived of one where  X0   is triangulated as a full

subcomplex of X (see [C2], the truly enlightened approach to regular neighbor-

hoods).   The uniqueness theorem for regular neighborhoods says that the result is,

up to ambient isotopy, independent of the choice of triangulation.   However,

naturality with respect to mappings is lost in the transition to the p. 1. category

and to get it in any particular case, we choose our triangulations   more carefully

(i.e. to make the map in question simplicial) and use the naturality on the simpli-

cial level.   With these remarks in mind we turn to the mapping cylinder.

If /: AC —► L is a proper simplicial map of locally finite complexes and r)K,

■qL ate derived subdivisions with respect to which / is still simplicial, then we

define the mapping cylinder of /,   C,, to be the subcomplex of  L * 77AC:

Cf = \Ar¡B0 ■ ■ ■ r)Bn: BQ < Bj < • ■ • < Br £ AC and fBQ > A £ L\ u L.

Subdividing  L * 77AC to 77L * 77AC induces a subdivision  77C, on the mapping

cylinder:

77C/ = Í77A0 ... 77Afe77ß0 ••■ 77ßn:

A0 < - - - < Ak £ L, Ak < fB0. B0 < ■ ■ ■ < Bn £ K\ u 77L.

If   K and   L  are infinite then the joins are not locally finite.   However, the

mapping cylinders are because  / is proper.   For let   L =U°° ,L. with  L. finite

complexes and let   AC. = /*"   L.  (also finite because  / is proper).   Then   K =

U00. K.,   C, = \<)°a_,Cf |i<    and  77C. = U°°_i *7^-/|K .'•   K each term of the L-sequence

is contained in the interior of the next then the   K,  C, and  77C, sequences also

satisfy this.   But obtaining such a sequence for  C. and  77C,  implies that they are

locally finite.

The mapping cylinder  C. and the subdivided mapping cylinder  77C    define

functors from the category of simplicial maps with chosen deriveds to the usual

simplicial category.   The functor applied to the morphism  G:   /„ —► /,   written

C(G):   Cf  —»  C¡    or t7C(G):   77C/   _» 77C/   is  just the restriction of G   * r¡Gd or

77G   *77G,   to the  subcomplex of the  join.    Note that if   A < fQB   then GfA <

GTfQB =flGdB so C(G) actually does map C.    to Cf        Note that C(G)

and 77C(G) are proper maps, by a variation of the above union argument.   Also

note that  77C(G)  is just the map  C(G) on the subdivided mapping cylinders, more

precisely, they induce the same map of underlying polyhedra.

Recall the functors "Domain",   "Range",   "77 Domain" and "77 Range"

from simplicial maps to the simplicial category.   There are a host of natural trans-

formations relating the mapping cylinder to their  functors.

The retraction of the mapping cylinder onto its base   P,:    77C, —» 77L defined

by

P/Mo • ■ • r)Akr,BQ ■ ■ ■ rjBj = r,A0 . • ■ 7,Afe77/B0 • • • r,fBn
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is a natural transformation  P.:    r\C   _, 77Range /.   There are also obvious inclu-

sion transformations:

27 Domain / —» C., r/Domain / —» 77C., Range / —> C    and 27 Range /—» 77C  .

p
Furthermore, 27Range /—> 77C  —»   '27Range / is the identity and  77Domain /—►

p
TjC.—»   '27 Range / is just /.

Finally, we recall that for two ordered simplicial complexes there is an

associated triangulation of the product.   In the case of  / = [0, 1] with  0 < 1   and

27K with the incidence ordering a general simplex of  27K x / is of the form:

(t7A0, 0) ... ivAk, 0)irjAk+l, l)... irjA^ l)   with AQ < • • • < Afe < Afc+1 < ... < A^ e K.

Thus, there is a natural isomorphism:   /„:   rjC^    ~ 77K x / on the full sub-

category determined by the identity maps.   Note that the projection  Pltj     is

associated under this isomorphism with the projection onto the first coordinates

77j,:   77K x / —► 27K, and we get an important commutative diagram:

(*) \ \

where the map across the top is  f x L

It is important to know that the mapping cylinder cannot be defined func-

torially for the p. 1. category.   This is because the obvious candidate for the map-

ping cylinder for /:   X —»  Y, i.e. JJ <[/(x), x] C Y * X:   x £ X\ u Y is not, in

general, a subpolyhedron of   Y * X, e.g. if / is  id..   However, following the pro-

gram which introduced the section we can, with Cohen, speak of a mapping

cylinder of a p. 1. map, i.e. choose a triangulation of / and use the simplicial

mapping cylinder.   Cohen's proof of the associated uniqueness theorem is an

elegant application of the cell complex method and transverse cellularity.

*        *
L   be a simplicial map and f   :    K   - 1*L    aProposition 1.  Let f:   K

subdivision of j.   Choose deriveds to obtain the mapping cylinders  C, and   C  ».

There exists a p. I. homeomorphism  H:   C. —► C  * rel K [j L satisfying
' *

H(Cf\K  )= Cf*\K*  for all subcomplexes   KQ   of K iwhere  KQ   is the subdivision

of KQ   induced by  K ).

Proof.  (See [Cj, Proposition 9.51].)

The relation between mapping cylinders and regular neighborhoods is rather

close.

If   V  is a regular neighborhood of  L  in  C,, where   /:    K—* L, then  ÍV, V)
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= (C., K) rel L ([C,, 9.3] and uniqueness of regular neighborhoods).   For the rela-

tion the other way see [C,, 9.7] or Proposition VI. 4.

Given a complex   L and a choice of derived  77L, we can cut   L  up into a cone

complex using the dual cells of   L.   Cohen defines an associated structure on   K

and   C,, where  /:    K —> L  is a simplicial map with chosen deriveds.   For A £ L:

D(A; f) = f~lD(A; L) = \r1BQ ■■■ -qB^ A < fBQ and  BQ < ■ - - < Br £ ACS,

D(A; f) = f-lD(A; L)= Í77B0 ■•• tjB^ A < fBQ and   BQ < • • • < ß„ £ AC¡,

Q(A; f) = PJlD(A; L) = Í77A0 . . . vAk: r,BQ . ■ ■ VBk £ r,Cf: A < AQ\,

Q(A;f) = PJlD(A;L)=\riAQ - - . r,Ak: r,BQ ■ ■ ■ r,Bk £ r,C ■ A < AQ\.

From the definition we obtain several important facts.

(Dl)   D(A;f)= Lk(A; Cf) n 77AC.

(D2)   Let  A   be a top dimensional face of A.   Then

(D, D)(A; /) = (N, Ñ)(f-lr,A; D(A; /)).

In particular, if A   is a vertex of  L, this is

(D, D)(A; f) = (N, Ñ)(f~lA; 77K).

(D3) Q(A; f) = 77A *(Q(A; f) U D(A; /)) and there is a simplicial isomorphisrr

rel D(A; f) of Q(A; f) U D(A; f) with the subdivision of   Lk(A; C A induced by

77C,.   It is defined by the identity on  D(A; f) and the well-known isomorphism

between AJ(A; L) and -qLk(A; L).

(D4) The decomposition is natural in the sense that (*)  induces the following

commutative diagram for any  A £ L.

[(D,  D)(A;f)]xl

riC(d)j, r j, r]C(r)

1-LjL. (Q, Q)(A;f)--U[(D, D)(A; L)] x I

(D, D)(A; f) -    (D, D) (A; L)

One of the crucial facts about this decomposition is that the pieces are

nested regular neighborhoods [C., Proposition 5.6] and [C,, Lemma 1.2].

Proposition 2.   Let A £ L  and A  a top-dimensional face of A.    Then

D(A; f)  is a regular neighborhood of f~Xr\A   in D(A; f)  with boundary  D(A; f).

So in particular, if |AC|   is a p. I. manifold so are all the  D(A; f)'s and

D(A; f)'s.
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Remark. The canonical nature of the proof makes the relative theorem an easy

variation.   Thus, if   KQ  is a subcomplex and   LQ = /(rO  then for A £ KQ  the pair

ÍDÍA; /), DÍA; f\KQ)) is a regular neighborhood of f~lr¡A  in  (D(A; f),D\A; f\KQ)).

From this result we obtain several facts about this decomposition.

(D5) The dual cells  \D(A; /):   A e L} U \QÍA; /):   A £ L\ give a general de-

composition of   6,((C. - L),   K) (note    (C. - L) = C. iff / is onto and, in fact,

(C. - L) = C.' C C. where  /':    K —» /(K) is the same as  /).    Recall that a

general decomposition satisfies the axioms of a cone-complex decomposition

except   that    o = cone do   is weakened to do C o is collared.   The boundary is

defined by  dDÍA; f) = D(A; /) and  t9Q(A; /) = QÍA; f) U D(A; /).

(D6)  Note that the intrinsic dimension in  DÍA; f) and in   \K\  ate essentially

the same.   More precisely, if A  is a top dimensional face of A, then

dix; DÍA; f)) = dix; DÍA; /)) - 1,   x e DÍA; f),

dix; DÍA; f)) = dix; DÍA; /)), x £ DÍA; f) - DÍA; f)

(because the boundary of a regular neighborhood is collared) and this implies by

induction on dim A,

dix; DÍA; f)) = dix; K) - (dim A + l).

(D7) We occasionally need the fact that the dual cells of the complex   K re-

fine the dual cells of the map /:

DÍA; /)=  U¡D(B; K): fB = A\.

IV.   Transverse cellular mappings.  We now develop in detail the theory of

transverse cellular mappings.   This is the natural meeting point for the last two

sections as this is precisely the case where the dual cell decomposition is a cone

complex on the domain.

Definition.  An onto simplicial map /:   K —» L  is called transverse cellu-

lar if for each  A £ L,  DÍA; /) ^ cone DÍA; f) rel DÍA; /).

Proposition 1.   Let f:   K —> L  be an onto simplicial map with deriveds

chosen so that f:   r]K—» 27L   is simplicial.   If f is transverse cellular, then there

is a p. I. homeomorphism

c: ÍC ; K, D^ÍL x l; L xl, LxO)    tel L = L x 0

carried by the isomorphism of cone complexes:
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yf(Q(A; f)) = D(A;L)xI^(r]A, 0) *[D(A; DxiU D(A; L) x l],

yf(D(A;f)) = D(A; L) x 1.

Since j o C(r A is also carried by this complex map, it is homotopic rel L to

the homeomorphism through maps carried by y,.

In particular, f is homotopic to a homeomorphism through maps carried by the

restriction of y, taking dual cells of f to those of L.

Proof. Note that if we use the natural structuring on 0(A; f) = r¡A * dO(A; /),

then G. is a cone complex on the pair (C ,, L) and S,|L is just the dual cells of

L  with the natural structuring.   So the homeomorphism   |y,|   will be the identity on

L.
Relating cone complexes  [D(A; /) x I\ on  AC x A to 6", gives a similar theo-

rem changing C(d A oj       to a homeomorphism of (AC x A; AC x 1, AC x 0) to

(Cf; K, L) tel Kx 1 = AC.

This generalizes in a straightforward way to pairs.   Let /:   (AC,  KQ) —►

(L, L0) be an onto simplicial map with LQ = /(ACn) (ACQ = / ~  LQ is not necessary).

Then b,|C^|i<    = byi K  j interpreted as an equality of general complexes.   Because

(Q(A; f), Q(A; f\KQ))  is always a cone pair by (D3) of §111, the only cone prob-

lems involve the dual cells.

Assume /:   K—► L  is transverse cellular, and so 6, is a cone complex.

Then /:   AC.—► LQ is transverse cellular  iff   6, induces a cone complex on  Cf •

So we define "/:   (K,  KA —► (L,  LA  is transverse cellular" to mean  S, induces

a cone complex on the pair (C,, CA^ ).

If f: (K, KA —► (L, L.) is a transverse cellular, then by using a structuring

on the complex pair, we can obtain a homeomorphism c: C, —► L x A as in Propo-

sition 1 satisfy in addition: c(Cak ) = L x I. In particular, / can be homotoped

to a homeomorphism as a map of pairs.

Thus going from transverse cellularity of / :   AC—► L  and /:   K Q —>L0 to

transverse cellularity of /:   (K,  KQ) —► (L, LA  is equivalent to the usual collec-

tion of weak unknotting problems of whether the pair of cones  (D(A; f),

D(A; f\KA) is a cone pair.   We shall later see that if it happens that  AC„ =

f~  (LQ)  then /:   (AC,  ACQ) —♦ (L, LQ) is  transverse  cellular  if / is  transverse

cellular on each term of the pair.

Proposition 1 generalizes for families of subcomplexes.   Transverse cellu-

larity   is defined by the condition that  6, induces a cone complex on the family of

mapping cylinders.

There is an important sharpening of the relative  case:

Proposition 2.   Let f:   (K, KA—> (L, LA  be a transverse cellular map with

/|ACQ an isomorphism, then there is a homeomorphism
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c: ÍCf; K, D^-ÍL x I; L x 1, L x 0))   rel L = L x 0

carried by  y. and equal to j¡^  oCírA¡^ ) on C A /<  .    The homotopy of c with

j,   oC(r.) CZ272 be taken tel Cá¡^    tj L.

Proof.  In this case if A e LQ and  B = if\KQ)~lA  then  DÍA; f) n K
0

DÍA; f\K0) = 276 *DÍA; f\KQ).   Since  DÍA; f\KQ) is a subcomplex of DÍA; /), the

inclusion map  27B * DÍA; f\K.Q) —»lnc DÍA; f)  is conewise homogeneous (each

open cone-line lies entirely in one simplex).   Hence if q:   ÍDÍA; /), DÍA; f\KA) =

cone ÍDÍA; /), DÍA; f\KQ)) rel DÍA; /)  (recall /:   ÍK, KQ) — (L,  L Q)  is trans-

verse cellular), q o inc unknots [A, Corollary IV. 8l and hence we can find a

structuring on DÍA; f) which extends the natural structuring on  DÍA; j\KA.

Using this structuring we sharpen the relative case of Proposition 1, because the

homeomorphism we obtain of C/|/<    = L„ x 1 by using the natural structuring is

^OoCW|K0)-

Criteria for transverse cellularity.   The definition of transverse cellularity as

it stands appears rather ad hoc.   Its usefulness depends on relating the defini-

tion to regular neighborhood theory to give a more directly verifiable condition

than the definition.

Proposition 3.   Let f:   K —> L  be an onto simplicial map.    Then the follow-

ing are equivalent:

(1) / is transverse cellular.

(2) For all A £ L,   DÍA; f)  is a regular neighborhood of one of its points in

DÍA; f) where A   is a top dimensional face of A.

(3) For all A £ L,   DÍA; f) ^  point homogeneously in  K.

Let f:   ÍK, KA —» (L, L A  be an onto simplicial map of pairs such that f:

K r-» L  and /:   K „ —► LQ are transverse cellular.    Then the following are equiv-

alent:

(1) fÍK,  KA —> (L,  L „)  is transverse cellular.

(2) For all A £ L0,   ÍDÍA; /), DÍA; f\KA)  is a regular neighborhood of a

point of DÍA; f\KQ)  in  ÍDÍA; f), DÍA; f\KQ)).

(3) For all A £ LQ, DÍA; f) N  DÍA; f\KQ)  homogeneously in  K.

Proof.  Recall that by   Proposition III. 2,  DÍA; f)  is a regular neighborhood

of / ~   27A   in  D(A; f)  with boundary  DÍA; /).   Then the following are equivalent:

(1) DÍA; f) ^ cone DÍA; f) rel DÍA; /).

(2) DÍA; f) is a regular neighborhood of a point in D(A ; /).

(3) DÍA; f) N> point homogeneously in DÍA; /).

(3) ^>(2) by [A, III. lid].   (2) =£> (1) by uniqueness of regular neighbor-

hoods.   (1) ^> (3) by collapsing down by the cone isomorphism.   Homogeneity of

the collapse in DÍA; f) follows because  DÍA; f)  is bicollared.
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Applying (D6) of §111, we can replace in (3), "homogeneously in D(A; /)"

by "homogeneously in  AC".

In the case of pairs, (2) =^ (1) is again uniqueness of regular neighborhoods.

(1) =^ (3) is collapsing a cone to a subcone, again using (D6) of vIII to relate

intrinsic dimension conditions.   To obtain (3) =^ (2), we first recall the remark

that follows Proposition 111.2, that the pair D(A; (f, /|AC0))   is a regular neigh-

borhood pair of f~lr¡t\   in D(A; (/, f\KQ)).   Then by [A, III.   lid], D(A; f)  is a

regular neighborhood of D(A; /|AC0) mod D(A; f\KQ) in AJ(A; /), and since f\KQ

is transverse cellular,  D(A; /|ACQ)  is a regular neighborhood of a point in

D(A;/|AC0).   (2) follows from [C2, 7.9 b].

Corollary 4.    Let f :   K —> L be an onto simplicial map and for each x £ L,

f     (x) \ point homogeneously in  AC, then   f is transverse cellular.

Let f:   (AC, ACQ) —» (L, L „) be an onto simplicial map with f\K and f\KQ

transverse cellular and let f~  (x) ^»  (f\KA~ (x) homogeneously in  K.    Then f

is transverse cellular as a map of pairs.

Proof.  D(A; f) is a regular neighborhood of a point by [A, III.61.   For pairs,

recall the remark following Proposition III.2  and apply, analogous to the absolute

case, [A, strengthened version of Theorem III.6 described on pp. 439—440].

Two results from this corollary are

Corollary 5. Let f: (AC, KA —» (L, L Q) be a simplicial map with f: AC —> L

and f: K„—> L„ transverse cellular and assume KQ = f~ L . Then f: (AC, AC„)

—» (L,  LA  is transverse cellular.

Corollary 6.   Let f :   (B, S) —» (X,  Y)  be an onto p. I. map with f ~lY = S and

such that  B   is a p. I. ball with boundary  S and such that for x £ X, f ~  (x) is

collapsible.    Then any triangulation of f is transverse cellular and hence  X is a

p. I. ball homeomorphic to B  with boundary   Y.

Because of Corollary 4, we ask the following:   X. x» point homogeneously in

X, and  p £ XQ; then does  Xqn»  p homogeneously in X?

Lemma 7.   Let X_ C X and assume  Xn  collapses to a point homogeneously

in X.    Then for p £ XQ,   Xn \,    p  in X  iff d(p; X) = min ia*(x; X):   x £ XQ\.

Proof.  Define  ttz(X0; X) = min \d(x; X):   x £ XQ\.   Then if XQ \b X 1  in  X

then z7z(XQ; X) = ?tz(X,; X), for it is easily seen to be true for elementary geometric-

al homogeneous  collapses.      Hence, if XQ "s , p  in  X, then  zzz(X0; X) =

m(p; X) = d(p; X).

Conversely, if 772 = tzz(X0; X)  then since  XQ ~N  pt  homogeneously and since

[A, III. lOl this can be done in order of decreasing intrinsic dimensions,

X0\,¿ X0 nAm(X) = X0 n (Am(X)- Am~1(X)) N. pt in X.   Now if dip; X) .
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727'(X0; X) then  p £ XQ O ImÍX)  which  is  collapsible  and  hence   XQ   n

F"(X) \ p.    Since  X0 n /m(X) = XQ  n (/m(X) - r_I(X))  (222  is minimal), this

collapse is homogeneous in X.

Corollary 8.   Let f:   K —> L  be an onto simplicial map with f~ (x) Ni point

homogeneously in   K for each x £ L  and let  K. CK such that f\KQ is a

homeomorphism onto   fiKQ) = LQ.   Then  if for each y £ K , diy; K.) =

min\d(z; K): z £f~  fiy)\,   then f: (K, KQ)—► (L, LQ)  is transverse cellular.

Proof.   Lemma 7 and Corollary 4.

The necessity for homogeneous collapsing is illustrated by the   map from the

disc shown below so that /_  ia) = [a, b], so f\b  is an isomorphism,

but clearly no homeomorphism of balls will take the interior point  b  to the bound-

ary point a .   Note that the collapse  [a, b]  \ b  is not homogeneous.

We now show that despite its simplicial definition, transverse cellularity is

a p. 1. phenomenon.   To do this, we use the fact that the simplicial mapping

cylinder is a p. 1. invariant and then follow Cohen by proving a strong converse to

Proposition 1.

Proposition 9 (closed).   Let f :   K —» L  be a simplicial mapping and  Y a

subpolyhedron of L, then P~,   (Y)  is p. I. homeomorphic to a mapping cylinder for

f\f-\Y) telf-\Y) U  Y.

Proof. Let P" l(Y) n K = f \Y) = X. Triangulate /|X to obtain /: KQ -*

LQ simplicial with KQ (resp. LA a refinement of K (resp. L). Note that we do

not assume that  K0 is obtained from a subdivision of  K.

We define isomorphic cell complexes on  P7  (L A  and C T\K    whose realiza-

tion will give the desired homeomorphism.

Let o £ L   , with A e L  the carrier of o and let  B £ K be such that [B = A.

That the complexes exist follows from the sublemma:

Sublemma.  (1)  C~       \. is a  dim (/ ~  (ff)   n B) + 1 p.  /. ball with bound-

ary = C»   ,t:, uC.,1 •    u(/~ l(o)  H B) U o.
7        l\f    V)n/3 j\i    V)nB       v

(2) P7lío) O C.\„  is a  dim(/-1(a)   C\ B) + 1  p.  /. ball with boundary

= ÍPJ \b) n c7| B) u (PJ tor) n cy| á) u (/ ~ Ha) n s) u a.

Assuming the sublemma we compare the following complexes by the obvious

isomorphism and obtain the homeomorphism:
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\PjKo) H Cf\B, f-l(o) OB, a:     a £ LQ  and /B = Car (ff) in Li

(decomposing  (P7   (LQ); AC0, Lq)).

\C~     , , f~l(o) n B, ff: ff £ L. and /B = Car (ff) in  L\

(decomposing  (C/"|/<0; ACq,  Lq)).

The key to proving the sublemma was given in the proof of  [C, , 9.5]-   In fact,

since  /:   /_   (ff)  C\ B —> o is an onto linear map of a convex cell, for the proof of

part 1, we need only note that  d(f~l(o) O B) = (f~\b) O B) U (f~X(a) n A3), and

apply Corollary 6 to  (/      (o) O B) x A —» C-
/|/-l(cr)n/3

, obtained from (*) of §111.

To prove the second part, we again use the commutative diagram (*) which

restricts to the following:

B x A

C(d¡)oj-Bl

f

C,

Hence, C(dA o/„     restricts to a map:

((/-'(ff)nB)x/; (f-l(a)n B)xl, (f-l(o)DB)xI,

(f~l(o)nB)x l,(/_1(ff) n B)xO)

-»(/>;-Ka) n c,,B; PjHó) nc,|B, p^W nc/|é, /"Ha) ns, a).

Furthermore, the inverse of each point is collapsible by [C., 3-3] or see §VI.

The result follows from Corollary 6.

Proposition 9 (open).   Let f:    K —* L  be a simplicial mapping and  U an open

subset of L, then  P~   (U)  is p. I. homeomorphic to a mapping cylinder for

f\f~l(U) rel Í7U f~l(U).

Proof.  Triangulate with refinements of   AC and   L  to obtain  /:   /_   (U) —» (7

and a mapping cylinder  Cf.   We want to obtain a homeomorphism of   P7   (U) with

Cf.   To do this we use the Morton Brown infinite union swindle and repeatedly

apply Propositon 9 (closed).

Let   ¿7 = (J1" , V., \V ! an increasing sequence of finite subcomplexes of   U.

Since each   V. is compact, Proposition 9 (closed) applies and we have, for each

i,   k.:   P7l(V.)Sí P-1(V.)= C~.      , rel V.  U/_1(V.).   We refer to the proof
'2/2 ; , /|/-1<V¿) » ' » F

of Proposition 9 (closed) to show that we can assume Ze. + [|P~ (V .) = k{. Then

U^.zé.: P~1(t7) ^ Cf. To refine the proof of Proposition 9 (closed) note that

the cell-complexes constructed for  P7   (V..,) and  C-.      , have as subcom-
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plexes respectively the cell complexes for   P7   ÍV.) and   C~,      , .   So if
. .        f\f-AVi)

k.:   P.    (V■) —» C-,   _. has been defined preserving this complex isomorphism,
7 17 \V j)

k.,,   can be realized to extend  k..
i +1 i

Now we obtain a p. 1. invariant criterion for transverse cellularity.

Proposition 10.   // / :   K—► L    is a simplicial map,  with  Ln   a subcomplex

of L and rC = /""   Ln, z¿e72 ièe following are equivalent.

(1) D(A; /)   is a cone on DÍA; f) for all A £ L - LQ.

(2) C, is locally collared on  L - Lfi.

(3) For any choice of triangulations, f:    \K - KQ\ —► \L - LQ\   is transverse

cellular.

(4) There exists a triangulation of j :    \K - KA —► \L - LA   which is trans-

verse cellular.

Proof.  (2) ^> (1) by induction on dim L.

By  local collaring,  we  have  for A  £ L - LQ   the   isomorph  of  its

link-recall property (D3) of §111—is a cone, i.e. 0(A; /)UD(A; /)ûi cone DÍA; L)

tel DÍA; L), implying in particular  DÍA; f) ¡= 0 so /is onto   L - L„.

Since QÍA; f) = PJ  DÍA; L) it follows from Proposition 9 (closed) that

ÍQÍA; /); DÍA; f), DÍA; L)) is homeomorphic to a mapping cylinder of /|D(A; /).

Hence, by inductive hypothesis  /|D(A; /)  is transverse cellular (since

DÍA; L) C OÍA; f) is collared) and so by Proposition 1, (Q(A; /); DÍA; /), OÍA; L)) is

homeomorphic to ÍDÍA; f) x I; DÍA; f) x 0, DÍA; f) x 1).   Hence the cone   QÍA; f)

U DÍA; f) is just  DÍA; f) with an exterior collar.   So  DÍA; /)SÉ  QÍA; f) ij

DÍA; f) and is hence a cone.

(1) ^(2).   If DÍA; f) is a cone for all  A £ L - LQ then  y    gives a cone

complex  isomorphism between QÍA; f) U DÍA; f) and   ÍDÍA; L) x I) U

ÍDÍA;   L) x 1) indexed by  iß:   A < B\.   So  LkiA; C  ) is a cone by §111 (D3).

Essentially, we just reverse the above argument.

To relate these to (3) and (4), note that by Proposition 9 (open)

P7 '(L - LQ) is homeomorphic  rel|K-KQ|u   |L-Ln|   to any mapping cylinder

for  /:    \K - K0\ —* \L - L0\.   Hence, (4) =^> (2) a fortiori by Proposition 1.

Finally, given (2), let  / be any triangulation of f\ \K - KQ\.   By Proposi-

tion 9 (open) again, Pj   (L - LA is homeomorphic to  C? and hence   \L - LQ\ C

Cf   is collared.   Now (2) =^ (1) applied to the absolute case of / gives  /

transverse cellular.   Thus (2) ^^ (3).

Clearly, (3) ^ (4).

Remark.  From the proof of (2) =^ (1) we obtain a useful fact about trans-

verse cellularity on the dual cells.   Let  /:    K —» L  be simplicial and, A £ L

and   LkiA; Cf)Si cone Lze(A; L)  rel Lk(A; L); then
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(1) /|AJ(A; /) is transverse cellular.

(2) D(A; f) is a cone on  D(A; f).

(3) /|D(A; /) is transverse cellular.

(1) and (2) are directly contained in the above proof.   From it we obtain an

isomorphism

(Q(A; f) U D(A; /); D(A; f), D(A; L))

S*((D(A; f)x I) U(D(A; f) xl); D(A; f) xl, D(A; /) x 0);

coning this and using the Alexander trick, we get a homeomorphism

(Q(A; /); D(A; f), D(A; L))Sé (D(A; f) x A; D(A; f)xl, D(A; f) x 0).

Since   Q(A; f) is by Proposition 9 a mapping cylinder for /|D(A; /), Propo-

sition 10 implies that   /|D(A; /)  is transverse cellular.

We have used the invariance of the mapping cylinder and of the property of

local collaring to obtain invariance of transverse cellularity.   Note that the logic

of this argument depended on the obvious p. 1. invariance of the property

f  (x) Ni point homogeneously, which is stronger than transverse cellularity.

The dependence comes from repeated applications of Corollary 6, in Proposition

9 for example.

From Corollary 10, we can define a p. 1. map /:   X —» Y to be transverse

cellular if it is so for any triangulation.

Quasi-concordance and quasi-isotopy.  We also obtain a method for making

constructions of transverse cellular mappings.   Recall that a general decompo-

sition of a space is a collection of pieces that fit together like a cone complex

but  do is only collared in  a instead of ff = cone do.   An isomorphism of gen-

eral decompositions is a bijection preserving incidence in each direction.

Proposition 11.   Let f:   X —» Y  be an onto p. I. map carried by an isomor-

phism y:   6 —>2)  with 6, S general complexes on X and  Y respectively and

f~  (dyo) = da.   Assume that f:   a —» y(o)  is transverse cellular for each o £ 6.

Then f is transverse cellular.

Proof.   Proceed by induction on the dimension of cells in  6.   Assume

dim X = n and that there is only one 72-dimensional cell.   Let a be the top

dimensional cell of  6 and  Xa = C1(X - ff) = U(G- ff), and   Ya = C1(Y - yo) =

U(S - yo).   By inductive hypothesis  /:   Xa—»  Ya  and   /:   do—* ydo = dyo ate

transverse cellular.   Since  /"   ydo = do,  f:   (ff, off) —» (ytr, dyo) and  /:

(X   , do)—>(X   cr,   dyo)  are transverse cellular by Corollary 5.   Triangulating so

that everything is subcomplex, we obtain isomorphisms

'A (C/\X(T> Cj\3o) = {Ycr' Y^o) x /    rel Ya=Yax 0,

h' (c/k' C/W = (ya' yda) x '    rel ya = ya x °"
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Since  do C o is collared, we can change  j2  to agree with  j.   on  C.i,   .

(Extend the concordance of  id-,ao. given by  f.fT     to a concordance of id       and

compose with  j2.   Note that if A   is compact and  B C A   is collared then any con-

cordance of idß   extends to one of  id^   because ÍA x I; A x 0 (J B x I, Axl)s

(A x /; A x 0, A x 1   U B x /).)   Glue them together to obtain ;':   C, S Y x I rel Y

= Y x 0 and hence / is transverse cellular by Proposition 10.

In general, just deal with all of the 22-dimensional cells at the same time as

above.

Remarks.  Alternative to the assumption f~  idyo) = do, we can just assume

/:   (o*, do) —► iyo, dyo) is transverse cellular.

For a converse to this theorem, see Proposition V.9.

Corollary 12.   Let f:   X —► Y, g: Y —» Z  be transverse cellular p. I. maps.

Then gf is transverse cellular.

Proof.  Triangulate to obtain   K—AL—>8 M  simplicial. Since   g   is

transverse cellular, we have  DÍA; g) = cone DÍA; g) fot  A e Al.    By Remark 3

after Proposition 10, /|D(B; /)  for each  B  in  L  is transverse cellular.   DÍA; g)

and  DÍA; g) fot each  A  in  M  is a union of dual cells of   L  by  (D7) of §111 and

hence DÍA; gf) = f~lDÍA; g) is a union of dual cells of /.   So / :   ÍDÍA; gf),

DiA;gf)) —» ÍDÍA; g), DÍA; g)) is transverse cellular by the above proposition

and Corollary 5-   Since  ÍDÍA; g), DÍA; g)) is a cone pair, (DÍA; gf), DÍA; gf)) is

by Proposition 1.

In applying Proposition 11 to cone complexes to make inductive construc-

tion, we will need the following:

Lemma 13.   Let f:   X —» Y  be a transverse cellular map.    Then cf: icX, X)

—>(cY,  Y) ithe cone of f)  is transverse cellular.

Proof.  By Corollary 5, we need only show  cf :   cX —► cY is transverse

cellular.   Triangulate so that  /:    K—> L  is simplicial.   Choose deriveds so that

/:   77cK-» 27cL is  simplicial.    /_1(F)=K   so for A e L, D(A; c/)N

DÍA; f)\   point homogeneously.   (c/)_   (c) = c so  Die; c/)^.  (cf)~   c = c

homogeneously.

Consider the simplicial maps   q:   r¡K —* r¡cK and  q:   r¡L —t-qcL  where

qír¡A) = rjcA  fot A £ K or  L.   Note that  q 0/ = cf o q, and  qÍDÍA; L)) =

DicA; cL).   Hence, q:   DÍA; f) ^ DicA; cf).   Hence  DicA;cf)\  point.   Since

the collapse of  DÍA; f)  is  homogeneous   in   K and  since  diqix); cK) -

dim(x; K) + 1  for all x, the corresponding collapse of DicA; cf) is homogeneous

in cK.

Transverse cellularity follows from Proposition 3.

An application is the following uniqueness theory for the homeomorphism

associated to a transverse cellular map.
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We say that fQ, f':   X —> Y are quasi-concordant if there exists   F:

(X x /; X x 0, X x 1) -♦ (Y x A;  Y x 0,  Y x 1) transverse cellular with  F~l(X x i)

= X x z  and  F. = /,- ,   ¿ = 0, 1.   If  F  is also  level-preserving, we will call  F a

quasi-isotopy.   The importance of this equivalence relation is the following:

Lemma 14.   Let f:   K —* L   be a transverse cellular simplicial map and let

/:   K—> L   be a   p. I. homeomorphism carried by y..    Then f and j are quasi-

isotopic.

Proof.  Consider the cone complexes  \D(A; f) x ¿, D(A; f) x A:   A £ L, i' =

0, lj  and \D(A; L) x i, D(A; L) x /:   A £ L, i = 0, 1 !  on   AC x A and   L x A respec-

tively and let  y be the obvious isomorphism of cone complexes.   Extend  /x0  and

and  / x 1  to a map of   K x I —► L x A, carried by y, by proceeding up the cells

coning inductively with cone points at the '/ level using the Alexander trick.   F  is

transverse cellular on  D(A; /) x l's and is so on the   D(A; f) x 0's by the remarks

following Proposition 10.   On the remaining cells, the   D(A; f) x l's, F  is trans-

verse cellular by induction, i.e. F  is transverse cellular on  D(A; /) x A u

D(A; f) x I   by induction and  Proposition 11,   so it is on  D(A; f) x I by Lemma 13.

Another application of Proposition 11 proves that  F  is transverse cellular on

X x A.

Note that  F as constructed  is level-preserving, i.e. F  is a quasi-isotopy.

Proposition 15.  (1)  Two homeomorphisms are quasi-concordant iff they are

concordant.

(2) Two homeomorphisms associated to a transverse cellular map are con-

cordant.

(3) A homeomorphism is quasi-concordant to a transverse cellular map iff it

is concordant to an associated homeomorphism.

(4) Transverse cellular maps are quasi-concordant iff associated homeomor-

phisms are concordant.

Proof.  Proposition 2.

For a strengthening of these results in the compact case to their analogues

for quasi-isotopies see the last section.   Also we will show that our definition

of quasi-isotopy is equivalent to the more natural definition:   a level-preserving

map  F with  F    transverse cellular for all    t (Corollary V. 10).

V.  Regular extensions.  We construct for the p. 1. category the proper way of

attaching one polyhedron by a map of a subpolyhedron to another one.   Topolog-

ically if /:    XQ —» Y with  XQ C X then we can think of  X \J,   Y as   X/f U Y

where  X/f is obtained by "crushing" XQ  by the equivalence relation  x = x'

means  f(x) = f(x' ), and where the union, X/f U Y has intersection  XQ/f =

f(XQ).   We generalize this to the simplicial category following Cohen.
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We call a subcomplex  KQ  of  K well situated if A £ K with A n KQ = 0

implies   LkiA; K) n KQ  is empty or a simplex.   For example, if  KQ is a full sub-

complex of   K, then   KQ  is well situated in 77^   K where   77        is a derived

modulo  K0.

Suppose that   KQ   is well situated in   K = /V(KQ; K) U P, (P   nzV(K0; K) =

NÍKQ; K)) and that  /:    K„ —»  LQ   is a simplicial mapping, then the stellar exten-

sion  F:   K —► L  is   defined to be the  unique, simplicial map of   K —'

(LQ * NÍKQ; K)) (j P which is the identity on   P and  /on  KQ, where   L  is de-

fined to be the image of this map \J LQ.   Note that   L is locally finite and  F is

proper.

Example.  Cid.):   C¡Q     —♦ C. is a stellar extension of /:   K —► L  (K regard-
z K '

ed as range of id„).

The key property of stellar extensions, which relates them to transverse

cellular maps is given by the following results of Cohen which calculates the

preimages of points under a stellar extension [C., 3.3].

Proposition 1.   Let  KQ   be a well-situated subcomplex of K, f :   KQ —> L„  a

simplicial map and F:   K —» L  the stellar extension of f.   Then:

(1) for y £L0,   F~liy) = f-Hy);y £ P,  F~ l(y) = y; y e NÍLQ; L) -

(L„ U  P),    F~   (y)  is a convex cell.

(2) // K = rjK   K then for y £ N(LQ; L) - (LQ U P), F~l(y)  is contained in

the interior of a simplex of K and so F:   \K - K0\ —» \L - Ln\   is transverse

cellular.

Proof.  (1) is [C,, 3.3] and the first part of (2) is an easy extension of that

proof.   The transverse cellularity follows from Corollary IV.4.

Just as in the case of regular neighborhood theory where we must sharpen

the notion of stellar neighborhood to obtain p. 1. invariance so also in the case

of stellar extension of a map.

If   K0  is a full subcomplex of   K, f :    fC —> LQ  an onto simplicial map and

rjK   K a derived  mod KQ, then the stellar extension,   F:   27^,   K —> L, associated

to /, is called a derived stellar extension, or a derived extension of /.   Using

derived extensions we will be able to develop the corresponding p. 1. theory.

Note that if K = A2, KQ = A1 and LQ = A then the image of K under the

stellar extension of /: KQ —> L_ is a one simplex but the image after going to

the derived is a two ball.

The theorem motivates our p. 1. definition.

Definition.  Let  XQ  be a subpolyhedron of  X  and  /:   XQ —♦ YQ  a p. 1. map.

A regular extension of / is a map  F:   X —* Y and an embedding   z:    YQ —» Y

satisfying
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(1) F|X0 = i of    and   F-1(Y0) = X0.

(2) F:    X - XQ —» Y - YQ   is transverse cellular.

We have seen that any derived stellar extension of a triangulation of / gives

a regular extension.   This is    essentially" all there are.

Let   F,:    AC —» L {   be a simplicial map with a full subcomplex   LQ  of   L     and

K
0 F     (LQ) (necessarily a full subcomplex of   AC).   Choose deriveds   mod AC

and   L»   suchthat   F.:   r/<   K—> ri    L,   is simplicial, then we can factor  F,,u 10 0' 1

simplically, through the derived stellar extension  F:   r^   AC L  of  F{\K0:

K
0 LQ.   That is, there  is a unique   G, simplicial and making the following

diagram commute:

^0*

L

We use a special case of the following situation:

Lemma 2.   Let X

s ions of f:   XQ

ing commutes:

Yl —H Y0  and X Y«—'V.  are regular exten-

Y„  and G:    Y —> Y.   such that G     i. Y„ = ¿Y0 and the follow-

Then  G  is transverse cellular.

Proof.  Identify   Y„  with its images under   z, ¿.   and triangulate to obtain the

simplicial diagram
E\

*(LV L0)

/G

(AC, K0)

Let  A £ L  , then since   F    = GF, the definition of dual cells gives the

commutative diagram:

(D, AJ)(A; Fj) (D, D)(A; Lj)

(1) A £ L0, then since   G|LQ = idLQ and  G~AL0)= LQ, (D, D) (A; G) =

(D, D) (A; L) and is consequently a cone pair.   For later reference note that in
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this case it then follows that (D, D) ÍA; F A = (D, D) (A; F).

(2)  A e Lj - LQ, then by Proposition IV.10 (D, D) (/4; F.) is a cone pair.

But DÍA; G) decomposes to the cone-complex  \DÍB; L):   A < GB\ and by

applying F_1, we decompose  DÍA; Fj) by i.D(B; F):   A < GB|, which is also a

cone complex by Proposition IV.10 applied to  F.   (Compare this with the proof of

Proposition IV.12.)   Realizing the obvious isomorphism gives a homeomorphism of

pairs  (D, D) ÍA; Fj) ^ (D, D) ÍA; G).   Since the former is a cone pair, the latter is.

Corollary 3.   Let f:   X —► Y  awöf* g:    Y —* Z with f and gf transverse cellu-

lar, then g  is transverse cellular.

Proof.  / and  gf ate regular extensions of the "empty map" and Proposition

2 applies with   YQ = 0.

Combining Corollary 3 and Corollary IV.12 we see that if / and  g are trans-

verse cellular then gf is and if / and   gf ate transverse cellular then  g is.

However, g and  gf may be transverse cellular and  / not so.   For let   Y be a mani-

fold  (with  dY = 0) and   B be a codimension 0  ball in   Y.   If  g is a regular exten-

sion of  B —»point then g has collapsible point-inverses and is thus transverse

cellular.   Now if  /:    Y —►  Y with  /_1(ß) = ß  and  /1 Y - B = identity then  gf = g

and is thus transverse cellular.   But since  / can do anything inside the ball it

clearly need not be transverse cellular itself.

We now apply Lemma 2 to obtain the "uniqueness theorem" for regular

extensions.

Proposition 4.   Let XQ   be a subpolyhedron of X and f:   XQ —>  YQ   be a

p. I. map.

(1) A p. /. TTzzzp  F.:   X —» Y,   and an embedding  i:    YQ —» Yj   satisfying

F.|XQ = i of and F~  (YA = X„   is a regular extension of f iff there exists a

derived stellar extension of a triangulation of f, F:   X —» Y, and a transverse

cellular map G:    Y —» Y;   with  G-1(/(yo))= YQ  and GF = Fy

(2) Let  Fy   X -» Yj, ¿,:    YQ -» YJ   and F-,:   X -> Yv ¿2:    YQ -* Y2  be

regular extensions of f.   Then there exists a regular extension F:   X —»  Y,

¿:    YQ—> Y and transverse cellular maps   Ga:    Y —» Ya with  G~ (/a(V0)) =

¿(Y0) for a = 1, 2  and making the following diagram commute:

X

Fl/        F\^2

/ G]      ▼      G2  ^*-

Yx   +-     Y   -.   Y2

V        i        /
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Proof.  (1) follows from Lemma 2 one way and Corollary IV.12, the other.

(2) follows directly from Lemma 2, just triangulate so that  F.   and   F-.  ate

simultaneously simplicial.

Remark.  For a rather different "uniqueness theorem" for regular extensions

see Proposition VI.9.

One might suspect that we have allowed too much with transverse cellular

maps and that if we restricted our definition to triangulations of derived stellar

extensions we might be able to get a uniqueness theorem relating two extensions

by conjugation with a homeomorphism.   This is not usually possible as the follow-

ing example shows.

Let  (AC, ACq) = (A  , A  ), LQ = A    and   K    equals stellar subdivision of   K at

A .   Then if F:   77  , K —>L and F : 77  . AC*—>L   are the derived stellar extensions then
A a z *

the singularity sets are not homeomorphic.    S(F) is a  2-simplex and  S(F ) is

two 2-simplices joined at a vertex.

Of occasional usefulness is the following feeble analogue of Cohen's power-

ful result for regular neighborhoods [C2, 6.1].

Lemma 5 (Stellar Extension Lemma). Let  AC   be well situated in  K and f:

AC« —► L.  a simplicial map with  F:   AC —► L  the stellar extension of f.   Any sim-

plex A £ N(KQ; K) - (KQ U Ñ)   can be written A = BC where  B = A O KQ.    if for

any such A all faces  BC, where  B < B and f(B) = f(B), are nice faces (see

[A, II12]), then F:   |AC| —» \L\   is a regular extension of j.

Proof.  Referring to  [C,, 3.3] as in the proof of part (2) of Proposition 1, we

see that this is precisely the condition needed to insure constant intrinsic

dimension of all convex cell  F~X(y) fot y £ N(LQ; L) - (LQ  U Ñ ).

Regular extensions provide a tool for constructing transverse cellular maps.

Proposition 6.   Let XQ   be a subpolyhedron of X and f:   XQ —►  YQ   a p. I.

map.    Let  AC —»F L *—' LQ   be the triangulation of a regular extension of f, i.e.

|AC| = X, |LJ = Y and | ACQ | = XQ.    Then the following are equivalent.

(1) For all A £ ¿(LQ),   D(A; F) N point homogeneously in X.

(2) F:    K —► L   is transverse cellular.
F, z,

(3) For every regular extension of f, X—>        Yi*~      Y0' Fl   *s transverse

cellular.

Proof.  By Proposition IV. 10 (1) is equivalent to (2).   Clearly, (3) implies (2).

(2) =^(3).   By Proposition 4.(2) we can obtain a regular extension

X—*F2 Y2*—'2 Y0   "between" F  and  Fy   We will show that   F2  is transverse

cellular, whence   F,   will be by Corollary IV.12.

Triangulate so that  F2, F and the connecting transverse cellular map G:

y    —» |L|  are simplicial.   For  a a simplex of   |Ln|, we know that  D(io; F) is a
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cone on its boundary and we must show this for  DÍi-.o; FA.   But just as in the

proof of Lemma 2, part (1)  (D, D) (z'2ct, F2) = (D, D) (zct, F).   So  F2   satisfies

condition (1) and as (1) => (2), F2   is transverse cellular.

Proposition 7.  Let  KQ  be a full subeomplex of K, and f:   K0 —i L. a

simplicial map.   If for all A £ LQ, DÍA; f) N point homogeneously in  K, then any

regular extension of /  is transverse cellular.

Proof.  By Proposition 6 we need only show the derived stellar extension F:

7"/<   K —► L  satisfies  DÍA; F) "N point homogeneously in   K fot A £ LQ.   But

DÍA; F) N   DÍA; f)    homogeneously in   K because   £_   nA = f ~   r]A  and the rela-

tive version of Proposition III.2, mentioned in the remark following it, imply that

DÍA; (F,/)) is a regular neighborhood pair of / ~   27A   in  DÍA; ÍF, /)).   Collapsing

follows [C2, 7.10 a] and  [A, III. 11].

Beware:   Homogeneity of a collapse in  K  and in KQ  are independent condi-

tions.   In particular, /:    i<0 —» LQ   transverse cellular need not imply   F  trans-

verse cellular.

We conclude this section with the converse of IV.12 promised earlier.

Proposition 8. Let f : X —* Y be a transverse cellular map with U C Y

subpolyhedron, V = f~ ÍU) C X with Frontiery 11 = 11 and Frontier.. V = V.

Assume the following conditions hold.

(a) V = f-\Í1).

(b) Lez C(U; Y) = Y - Int U = (Y - U) U LI   similarly  C(V; X), then

U D ÜC C(U; Y),       VD VC C(V; X)

are assumed to be locally collared inclusions.

Then, f:   (X; V, C(V; X), V)-* ÍY; U.   CÍU; Y),   Cl)  is transverse cellular.

Proof.  Triangulate to obtain  /:    K —> L  simplicial with   LQ = U a subcom-

plex and hence   LQ = U a complex.   Let  KQ = V = f ~   (LQ) and   K0 = V =

/-Ul0).
If  A £ L - LQ then

ÍD(A;/|K0), AeL0'

DU;/)- <
(d(A;/|C(K0; K)),     A $ LQ.

Hence, since  / is transverse cellular each of these two collapses as required.

We need only worry about simplices of  LQ.   In fact, because  /"   (LQ) = KQ we

know DÍA; /)N. D(A; f\KQ) homogeneously in  K and hence  DÍA; f\KQ) \

D(A;f\K0) and  D(A;/|C(Kn; K)) S  D(A;/|KQ) (by local collaring  DÍA; f) -

DÍA; f\Kn) nas two components with these closures).   So it suffices to know

f\K„:   KQ —> LQ  is transverse cellular.
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Now we use the natural retractions:   T(:   N(K Q; r]KQ) —► 77AC Q  and   T2:

N(LQ; r)LQ) —> ̂ Lg.   We have the commutative diagram:

/V(AC0; t,AC0)      /|/V    ► /V(L0; 77L0)

T. T.

'S L0

Now /|/V   is the union of maps /|D(A; /) for A £ ZV(ÈQ; Ln) -(Ñu LQ).

Since  / is transverse cellular on  (D(A; f), D(A; /)) it is transverse cellular on

N (AC 0; rjK0) by the remarks to Proposition IV.ll.

On the other hand the maps   T.   and   T2  ate transverse cellular, by Corollary

VI.5 of the next section, and so, by Corollary 3  /|AC0  is also transverse cellular.

Remarks.  (1) Note that in this proof if we only assumed   U C U and   V C V

collared then we would obtain /:   (V, V) —► (U, Ù) transverse cellular.   We

only use local collaring on the outside to insure that the homogeneous (in   AC)

collapse of  D(A; f\K0) n» point is also homogeneous in (C(AC; K), AC „).

(2) If f :    AC —> L  is a transverse cellular simplicial map with chosen derived

and  L0  is a full subcomplex of  L, /_   LQ = AC, then the theorem applies with

U = N(L0; 77L) and   V = N(KQ; 77AC).

(3) Iterating the result gives a theorem in the following situation.   Let  /:

X —► Y  be a transverse cellular map and define sequences:    Y=Y_.7J>Y0DY0D

Y, 3Y. 7J... 7>Y    DY    and  X . = / " l(Y ■),  X . = / " '( Y .) where   Y.  is a regular
11 72 72 t ' t 1 ' 1 2 °

neighborhood with boundary   Y .  in   r ._,   for  z = 0, • • • , 72 and similarly for X.

(respectively,  Y¿ - Y    is open in   Y._x  with   Y   C Y.   collared  for   z = 0,

• • • , n and similarly for  X.).   By Proposition 8,

/: (Xf_i; X, Xz_1 - Xz, X.)w(F._i; Yt, Y._, - Y, Y;)

is transverse cellular for  i - 0, .... n (respectively, by Remark (1) /:

(X., X.) —» (Y-, Y ■) is transverse cellular for   ¿ = 0, • ■ ■ , n).   From this follows
y      l' l Z' 2

the promised converse:

Proposition 9-   Let f :   X —» Y  be a transverse cellular map and assume

y :   G—>S   ¿s a7Z isomorphism of general decompositions carrying f, i.e.  /(ff) =

y(ff), aW /-1(dyff) = der.    TA>e72 f \a :   (a, do)—* (yo, dyo)  is transverse cellular.

This allows us also to verify the satisfying definition of quasi-isotopy

mentioned after Proposition IV.15-

Corollary 10.   Let  F:   X x I -» Y x /  be a map with  F~X(Y x i) = X x i for

i = 0, 1.    Then the following are equivalent:
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(1) F  is transverse cellular.

(2) F: (X x /; X x 0, X x 1) -♦ (Y x /; V x 0, Y x 1)   is transverse cellular.

If F  is level-preserving and X  and  Y are compact these are equivalent to:

(3) F,:   X —♦ Y  is transverse cellular for all t £ I.

Proof.   (1) =^ (2) by Remark (1) after Proposition 8 letting (U,  Ù) =

(Y x /,  V x 1).   Now assume F  level-preserving.

(1) => (3). Let /  be any subinterval of /, then F: (X x /, X x /) —»

(Y x J,  Y x J)  is transverse cellular by Remark (1) after Proposition 8.   A

fortiori, F :   X—> Y  is transverse cellular for   each t  in  /.

(3)=£»(1). Triangulate so that  X x / —»      V x /-»" / is simplicial (this needs

compactness, else    72   is not proper).   Choose deriveds preserving the diagram.   If

A £ Y x I with 77/4 = / a zero simplex, then D(A; /) Ni DÍA; F\X x t)  homogene-

ously in  X x /, as   F~   Y x t = X x t.    Since   F     is  transverse  cellular,

DÍA; F\X x t) \, point homogeneously in  X x / and hence in  X x /.   If nA = J a

one simplex, then since   F    .  is transverse cellular and  DÍA; F) C X x r¡J, F:

DÍA; F) —» DÍA; L x I) is transverse cellular by Proposition 9, using  !D(ß; F):

ttB = ]\ and  iD(B; L x /):   nB = J\  as general complexes on  X x 17/ and   Y x 27/

respectively.   Since   DÍA; L x I)  is a cone on  D, DÍA; F)  is.

VI.   Classification of mapping cylinders.   We begin by applying the result on

regular extensions to mapping cylinders.   First, the relation between regular ex-

tensions and mapping cylinders.

Proposition 1.   Let f :    K —» L   and g:    L —► M  be simplicial maps with chosen

deriveds, with g  onto.    Call g:   f—»go/ the morphism defined as the pair

(id„, g).    The map Cig):   C, —» C    . is a regular extension of g:   L —♦ AI.

Proof.  We apply the criterion of Lemma V.5 and we must show for

Ar)CQ ■ ■ ■ r¡Ck £ C     and A < A  such that g(A) = giA), that At7C0 . . . r¡Ck  is a

nice face of Ar]C0 • • • r]C,   in   C.  (since this is for any  g, the condition giA) =

giA) gives no information, and we do not use it).   But

Lk(ArjCQ • • • r,Ck; Cf) = LkiA-qCQ; C/|c  ) * Lki-qCQ ■ ■ ■ 27Cfe; DÍCQ; K)),

Lk(XnC0 ■ ■ ■ T¡Ck; Cf) = Lk(Xr]C0; C^c  ) * LkiVC0 ■ ■ ■ rjCk; DÍCQ; K)).'0

The latter join factor is held in common.   So to prove the result, we need

only show that  AtjCq  is a nice face of  AtjCq  in  C¡\c   ■   But  C/|cn  1S a

dim CQ + 1   ball with boundary   CQ U fCQ U  Cf\acn  so DOtn  A-qCQ  and  Ar)CQ  ate

interior simplices.

Note  here—as  I failed to in my original manuscript—that g can be transverse

cellular without  Cig) being transverse cellular.   I was not wary of the misuse of
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Proposition V.7, mentioned after its proof.   However, a weaker result is true and

useful.

Corollary 2.   Let g:   K —> L   be a transverse cellular simplicial map.   Then

rjC(d ) o j¡,   :   T)K x I —> 77C    is transverse cellular.

Proof.   jK  is an isomorphism and   C(d ) is transverse cellular, by the above

Propositions V.6 and V.7.   Note that for A £ L, D(A; g) collapses homogeneously

in   K x 1   by transverse cellularity and hence in  C(id„) because   K x 1   is

collared in  C(idK).

There is a corresponding morphism  / :   g o f —> g given by the pair of maps

(/, id^)  but the corresponding map C(f )'■   C     . —> C    is in general not a regular

extension of / if / is not transverse cellular.   For in particular if C(f ) were a

regular extension then it would be transverse cellular on a complement of a regu-

lar neighborhood of  77AC to the complement of a regular neighborhood of 77L.   By

restricting to the boundaries we would obtain a transverse cellular map of   K onto

L and hence that   AC is homeomorphic to   L. Oddly, the analogue of Corollary 2

can be strengthened.

Proposition 3.   Let f:    K —»L  and g:   L —> M  be simplicial maps with

chosen derived, with  f transverse cellular.    Then C(f ):   C     , —* C    is transverse
' ' gol g

cellular.

Proof.   C(f ) preserves the decomposition maps:

D(A;go/)-»D(A;g),        Q(A; g o /) -, Q(A; g),     fot A £ M

and   C(f ) on  Q(A; g o f) is the cone on  C(f )\Q(A; g o /) U D(A; g o /).

Since  D(A; g) is a union of  D(B; L)'s, D(A; go/) is a union of D(B; f)'s.

Now  / is transverse cellular mapping  D(B; f) —► D(B; L) fot  B £ L by Proposi-

tion IV.10 and remarks thereafter.   Hence, by Proposition IV.11, /:   D(A; go/)

—► D(A; g) is transverse cellular.

Hence, C(f ) is transverse cellular on each  D(A; go/) and hence by Propo-

sition IV.11 and Lemma IV.13 applied to an induction up the dimension of the

Q(A; g o f)'s, C(f ) is transverse cellular on each of these pieces.   The map is

then transverse cellular on the whole thing by yet another application of Propo-

sition IV.ll.

We now prove the mapping cylinder regular neighborhood relation that we

mentioned earlier.   It is essentially  [Cj, 9.7], but his retraction is a little

different and for later work we must have the result for the natural retraction of a

simplicial neighborhood.

Proposition 4.   Let  KQ   be a full subcomplex of K and let  T:   N(KQ; 77AC) <—*

77AC   be the simplicial retraction defined by  T(j]A) - r\(A C\  ACQ) for A £

N(Kn; K).
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Then  CT\Ñ(KQ;VK) & N(K0; 77AC) rel AC0   u ¡V.

Proof.  Define  A77, for A £ K, to be the subcomplex of  77AC obtained by sub-

dividing the simplex  A.   Let  U = N(KQ; K) - (ACQ U ZV(AC0; AC)).

By [C2, 2.16] the following is a  cell-complex   on MAC; 77AC):

\N(K0 O A; A7'): A £ Í7S U t/V(XQ n A; A77): A £ U\ U K„,

and we claim that the following is a cell-complex on   CTt¿¡-

ÍCT|Ñ(/<0nA;A^: ^ e Í7| u |/V(/C0 n A; A77): A e Í7S U /CQ.

The result will then follow that by realizing the obvious cell-complex isomorphism.

To show that we have a cell-complex on  CT|.\  we must show that

CT\Ñ(K(f>A;Arl) is a dim  A  ball with boundary   equal to  CT^{K(¡nA . dA 77) U

(AC0  O A) u /V(AC0 C\ A; Av).   For this we show that  T:   Ñ(KQ  O A; A71) -* AC0 n

A  has collapsible point-inverses.   This and Proposition 1 allow us to apply

Corollary IV.6 to the map

c(dT)

Ñ(KonA;A^)xI    ->CT|Ñ(KonA;A^)

as in the proof of Proposition IV.9 (closed).

We are reduced to looking at the map  T:   N(K0 n A; Av) —> A  O ACn.

To analyze it, let A = BD with  B = A C\  ACq.   Define a simplicial isomor-

phism so that the following diagram commutes:

N(B; A77)     *ft»   B77 xcO^

Let

zz   ,    ,«       iMß')> '?(D'))!    for0^B'<B   and   0 / D' < D,
cp(r)(B' D' )) =  ■> -

( (t7(B'), c),. for 0 = D'.

Note that  cp(N(B; A71)) = Bv x D71.

So if x £ A n K0, (T|/V)"'(x) is a ball because   (n^B71 x D71)~l(x)= x x

Dv   is.

Corollary 5.   Let  (AC, ACQ)  be a triangulation of (X x J, X x p) for ] a real

interval with endpoint p.   Assume  KQ   is full.   Then T:   N(KQ; 77AC) —» 77/Cg  is a

transverse cellular mapping.

Proof.   By Corollary 4 the mapping cylinder is homeomorphic to the regular

neighborhood which is a product.    T is transverse cellular by Proposition IV.10.
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Remark.  Uniqueness of regular neighborhoods gives a homeomorphism  h:

X x J -> X x J tel X xp, with  hiNiKQ; 27K)) = X x /'   (/'   = [p, q] a subinterval

of  /).   Then h\N:   NÍKQ; r¡K) —> X x q —> X  is a homeomorphism and we claim

that  h is quasi-concordant to   T\N.   Consider the composed map:

C^T)                                                    b
NÍK0; t)K) x I -» CT|¿ =* NÍK0; 27K)-► X x /' =X x /;

where   CÍd-A  is  transverse  cellular by Corollary  2   and the last map is in-

duced by an isomorphism of  /'   with  / taking  p to 0 and  q to  1.   Then on  0,

this composed map is   T\N and on   1 it is the above homeomorphism.

We now classify mapping cylinders.   Consider p. 1. maps from  X to   Y.   De-

fine an equivalence relation ^generated by /„ ^   /.   meaning there exists a

transverse cellular map r:   X —► X  quasi-concordant to  id„  and such that fQ =

ÍA-

Theorem 6.   Ler /„, /. :   X —* Y  be p. I.   maps.    The following are  equiva-

lent.

(l)/o~/,-
(2)  There exists a homeomorphism h:   Cf   ^ Ci    tel X U  Y.

Proof.  (1) ^»(2)    We may assume  /Q ~^   /.   since condition (2) is transitive

and symmetric.   If /Q = f.r, triangulate so that  /.   and  r (and hence  /„) are

simplicial, by Proposition 3, CÍr ):    C/   —► C/    is transverse cellular.   In fact it

is a transverse cellular map of  ÍC¡  ; X, Y) —> ÍC¡  ; X, Y) which  is   r   on  X   and

idy  on   Y.   So by Proposition IV.2, we can change   C(T) tel Y to obtain a homeo-

morphism ÍC1 , X)—»   ° (C/ , X).   The homeomorphism so obtained on  X  is quasi-

concordant to r and hence to idY   and so is concordant to  idx  by Proposition

IV.I5.   Since   X  is collared in  Ci    and   C¡ , we can change   22    by a concordance

reí Y to obtain h:   C,   ==< C,    tel X U Y.'0 ;i

(2) =i>- (1). Let  h:   C, ^ C     be a homeomorphism rel X U  Y, for  f, g:   X —»
7 =    g

Y.   For this proof, we let  d equal  CidAj~   :   X x I —► C,, and  d  equal

Cid )j~   .   Subdivide so that the following diagram is simplicial:

Xxi-^C.ic   J—Xxl
I g

and choose deriveds so that it remains so:

27X x / -^- j1C/ -£-* TjC   i- 2/(X x /).

Consider the following commutative diagram where the vertical maps are the

natural simplicial retractions of Proposition 4 and Corollary 5  (in particular, note

that   T,  and   T'    are not   P. and   P  ):
2 3 / g
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ÑÍX x 0; r/(X x /)) -► N(Y; rjC )

f

-^—Ñ(Y; 7¡C )~^—ÑÍX x 0; %X x /))

id
*ñy- AjXx 077XX 0 -

If we had allowed the domain space to vary in defining our equivalence

relation we would now be done for then  / relates to  T,  relates to  T,   relates to

g, as the other maps are transverse cellular.   The remainder of the proof is ob-

taining the sharp form of the result that we stated above.

Essentially, we have cut the diagram of maps at the e-level and looked at

the [0, f] piece.

However, we have now to look at the part "above the cut", the complements

of the regular neighborhoods  (C(A; rjB) = closure (B - NÍA; 27B))):

CÍX x 0; 27(X x /)) -^-» CÍY; rjC j) -^-* CÍY; 7,C ) J—CÍX x 0; r/(X x /)).

Now by Corollary 2, d:   X x I —> C. is transverse cellular off  X x 0  and so

Proposition V.8 and Remark (1), thereafter, implies that

d: ÍCÍX x 0; r¡ÍX x I)); zV(X x 0; rjiX x /)), X x l)   — ÍCÍY; r¡Cf); ÑÍY; tjCX X)

is transverse cellular, and similarly for   d.   So we can change  d and  d tel  X

to homeomorphisms of triads  q and  q .   We will also need homeomorphisms   k, k :

X x /-» X x / rel X x I with  k(X x [Q,M])Qt N(X x 0; 27(X x /))    and

k (X x [0, lA]) S NÍX x 0; 7,(X x /)).

This enlarges the   [0, e] diagram to the following:

X xlA = X X XxVi

k

1      ■ >     h     . y     ■
NÍX x 0; r¡ÍX x I)) ZZZZN(-Y^ 1Cfi -'N^Y' *£¿Z^ZI N(X x 0; 7j(X x /))

d \ /     8    J

X = Xx 0 X x 0

4

X

/   ~/ oT, o/e= T 2 od o k = T, o h o d o k where   T,  o k is quasi-concordant to

id.,   by the remarks after Corollary 5.   T,ohoqok e~T, oh o q ok o

ík~  q~  dk) =T¡ohodok tot since   q is quasi-concordant to  d, k~   q~   dk is

quasi-concordant to idy-

Similarly, g e~T'^ o d o k ~~g T, o q  ok.

Finally,   T, o q~ o k    ~T, oq   ok oik~    oq~~    ohoqok) = T,ohoqok.   Now



432
ETHAN AKIN [July

k       o a        o ¿ o a o z« is concordant to the identity because it is the restriction

to X x XA of a homeomorphism X x \/A, l] —» X x [l4 , l] which is  idv  on  1.
A

This theorem may be of interest in examining thickenings of polyhedra.   A

thickening  (m > 6)  of  X  is a manifold  Mm  together with an embedding   ¿:   X —»

Int M which is a simple homotopy equivalence.   More generally, an element

Jm(X) is a  regular  neighborhood pair (M, X)  where    M is an ttz manifold.   By

Proposition 4, there exists   T:    M   —»   X a retraction with  M=C.
r\dM

tel dM  U   X.   The above theorem tells us how   T can vary, i.e.  (M, X) deter-

mines   T up to equivalence ~.   For any real usefulness, though, we would seem

to need a theory of when an onto map  T:   N —* X, N a manifold  (d = 0) and  X  a

polyhedron, has   CT a manifold (note that since   ZV C C_  is collared so  ZV C c9CT).

Theorem 6 weakens to obtain other equivalence relation results.   Let fQ:

X0 _Y0 and /j:   x\— Yy

(1) Define  fQ ss^ /,   if   YQ = Y{  and there exists   r:   XQ —» X,   transverse

cellular with  f0 =/, or.   Call the generated equivalence relationä;.

(2) Define fQ ~    f^  if there exists   r:   XQ —► Xx  transverse cellular and

h:    Yj —►  Y0  a homeomorphism with f(. = hof, or.   Call the generated equiva-

lence relation S.

Corollary 7.   LeZ fQ:   XQ —> YQ  and fl:   Xy —* Yr

(1) fQ ä; /j    iff  Y0 = Yj   and there exists a homeomorphism h:   (Cf , XQ) —»

(Cfi,X1)tey0 = Yv

(2) fQ =s /,   iff there exists a homeomorphism h:   (Cf ; XQ,  YQ) —»

(C/^X,, Y,).

Proof.  That the equivalence relation implies the corresponding mapping

cylinder result goes through just as in Theorem 6.   The proofs the other way are

obtained from Theorem 6.   We will do the proof for (1).   If  h  is the homeomor-

phism of pairs rel Y, then one easily constructs a homeomorphism of Cf    and a

mapping cylinder for /j o (h\XQ) which is  rel XQ u  YQ.   Hence, /Q /-^ /j o

(A|X0) and /j i;* /lO(Ä|X0).   So /0^/r

From Corollary 7 and Proposition IV.10, we obtain a quick proof of an

alternate formulation of Corollary V.3:

Corollary 8.  Let /Q:   XQ —» YQ  arzzA f y   X} —» Yt   ¿>e p. /. zzzaps z^¿£/j

/0 gg / .    // /.   ¿s transverse cellular then j^   is.

We now apply the mapping cylinder results to obtain a different uniqueness

theorem for regular extensions.   Recall that the uniqueness theorem Proposition

V.4 part (2) involves varying the range by a transverse cellular map.   Such

variation can destroy nice properties of a map in general (see §VII) and it is

desirable to have a theorem of the domain variation type.
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Proposition 9.   Let XQ   be a subpolyhedron of X and f:   XQ —♦ YQ   be a
F i z i F ") 7i

p. /. 722t2p.    Let X—»       Yl*—     Y0  and X—»      Y2*— ¿YQ  be regular extensions

of f.    Then F y S F,.

Proof.   By Proposition V.4 part (2), we need only deal with the case where

there exists a transverse cellular map  G:    Yj —» Y    with  G~l(iAYA) =

¿¡(Yq),   G o ¿j = ¿2  and  F2 = G o Fj.   Triangulate  X,   Yj  and   Y2  so that  X0,

¿jÍYq) and   ¿2(^0^ are ^u^" subcomplexes and   Ej   and   G are simplicial (and so

F2  is too).   Choose deriveds so that everything is simplicial also.

Consider the simplicial map  CÍG):   Cp   —> Cp   .

By Proposition 1, CÍG) is a regular extension.   Hence, if  A  is a simplex of

Cp   - Y2,  DÍA; CÍG)) is a cone on its boundary.

Now if A e Y2 - i2(Y0),  DÍA; CÍG)) N DÍA; G) homogeneously in  CF

because   CÍG)~  77A = G~  r\A; so III.2 and [C2> VII.10] apply.   Since   G  is trans-

verse cellular we know that  DÍA; G) N> point homogeneously in   Yj.   But

DÍA; G) C I Y. - iAYA\  and the inclusion  Y. C Cp    is locally collared on

\Y. - z.(Y0)|   so this collapse is homogeneous in  CF   , too.   So  DÍA; CÍG)) is a

cone on its boundary for  A £ Y2 — iAYA), also.

This leaves the crucial case   A £ ¿2(Yq).   But since   CiG)~   ¿2(V0^ - zi^rp

and  C(G)z1|Y0= z.,/"1, we have  (D, £>) (A; CÍG)) = ÍD, D)U1i~1A; Cp  ), justas

in part (1) of the proof of Lemma V.2.

Thus, CÍG) is a transverse cellular map of triads   (Cp   ; r\X,  Y y)—►

iCF   ;  27X, YA.   So we can obtain a homeomorphism

(CP  ,  Y.)Q¿(CB  ,  Y A    tel  X.
f-j       1    .        t- 2

So by Corollary 7, Fj S F2.

VII.   Transverse cellularity and homotopy.  This section has its genesis in

the error discovered by the referee.

Let /0, /,:   X —» Y.   Then we can define a relation  /Q *-*e /j   if there exist

transverse cellular maps quasi-concordant to the identity:   d:   X —>X  and  r:

Y —* Y with rfQ = f.d.   Call the generated equivalence relation   «-► .

I originally "proved" Theorem VI.6 using *-* instead of ~.   However, this

is false.

In fact, the following proposition is an almost antithetical result.

Proposition.   Let /0, /,:   X —* Y  be p. I. maps with X and  Y compact.

f0 *-> f.  if and only  if f0  is homotopic to f v

Proof.  /0 «-►    /,   clearly implies homotopy so «-» does.

Conversely, if /„   is homotopic to /j   then there exists  /:   X x I —* Y x I

level-preserving, /„   on 0 and  /.   on   1.   Triangulate so that the diagram  X x /
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_>   Y x / —»   r A is simplicial, and assume that the subdivision of  A, rl, has

vertices   tQ = 0 < Z[ < • • • < tn = 1.   Let  s. = ^(í.+ Z. + 1), i = 0, - - - , n - 1.   We

claim fs . «-►    /,. and fs . ♦-»    /,      .   So /0 «-» /..
2 * 2 2 e 2+1 u 2

Derive X x A, Y x A, r/ so that the above / and 77 diagram is still simplicial

and 77^., fi+1] = s.. Then, zV(X x t¿, rj(X x [t., /; + 1])) = X x [*., s.] with bound-

ary   X x 5..   Let  Tj!  zV(X x t. ; 77X x t^., Z. + ¡]) -»  X x z •   and   T2:

N(Y x zV; rjf.Y x [z¿, íf+|])) —• Y x /. be the natural retractions.   Then we obtain

the commutative diagram:

fs
X x s.

X x t.
ft,

Y x t.

So fs   «-»    /(    by Corollary VI.5.    Similarly, fs f'm-

VIII.   Equalizer theorems.  An application of transverse cellularity due in

essence to Dancis is  to the following conjecture.   Given two embeddings   gQ  and

g,:   X —» Y  then a sufficient condition for them to be ambient isotopic should be

the existence of a transverse cellular map /:    Y —» Z  with f„    = fg   , i.e. an

equalizer, e.g. if g:   X x I—» M  is an embedding into a manifold then let / be a

regular extension of ny o G~   :   G(X x l) —» X.   This we generalize below.   As

stated this is not quite enough, for if   Y  is a cone and  C  is a regular neighborhood

of the cone point of   Y, and  X  is a point then if g„  and  gj   put the point any-

where in the interior of  C, then a regular extension to   Y of  C —► point is an

equalizer for g0  and  gj, but, while isotopic, gQ  and  g1   need not be ambient

isotopic.

The proper statement is the following:

Proposition 1.   Let g„, g.:   X —> Y  be embeddings such that there exists f:

Y —» Z satisfying

(1) fg0=fgl  and is an embedding.   Let  ZQ = /g.(X).

(2) /:    (Y, g.(X))—» (Z, Z0)  is transverse cellular for  z = 0, 1.

Then g0  and g,   are ambient isotopic.

Proof.  By Proposition IV.2 there exist  / .:    Y -+ Z homeomorphisms asso-

ciated to / with /¿g¿ =fg-, i = 0, 1.  So f7l fQ: Y —♦ Y  is a homeomorphism

ambient isotopic to the identity taking  g0  to g;.   Both  f.'s can be assumed

carried by the same isomorphism of cone complexes from  X to  Y, and hence the

isotopy result.

A corollary is closer to the original theorem of Dancis.

Corollary 2.   Let gQ, g.:   X —» Y  be embeddings such that there exists Y D
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Y0 ^zSrjM U g\(x) and f:   Yn —» Z satisfying

(1) /á?o = /#i   ö"<^ '* fl homeomorphism of X with  Z.

(2) f~   ix) N. /"   (x) n  g.(x)  homogeneously in  Y for x eZ  za«í/  ¿ = 0, 1.

Then g„   zzt2zj? g,   are ambient isotopic.

Proof.  Any regular extension of / satisfies the conditions of Proposition 1,

see Corollary IV.4.

Remark.  In applying Corollary 2, we note that Lemma IV.7 implies that

/      (x) ,\   /"   (x) O g.(x), z = 0,  1, iff /~   (x) collapses homogeneously to some

point and

díf-\x)n g{x); Y) = min{díy; Y): y £f~lix)\,       i = 0, 1.

Corollary 3. Let G: X x I —► Y be an embedding such that for each x £ X,

diGix, t); Y) is constant for t varying in [0, 1], ¿¿e?2 the embeddings gQ and g.

are ambient isotopic.

Proof.  In Corollary 2, let   YQ = G(X x /) and  /= proj oC"1:    G(X x /) — X.

IX.   Fiberwise transversality.  Once upon a time, Dancis asked me if one

could prove a level-preserving version of Cohen's theorems on transverse cellu-

larity.   It was this question which started me on this work and so it is satisfying

to be able to include an affirmative answer.

Lemma 1.   Let X  be a compact polyhedron and let X—>     I he a p. I. map

such that for each subinterval J   of I, the inclusion w     ÍJ) C n~  (/)  is locally

collared, then there exists a homeomorphism h:   rr~   (0) x / —► X rel 72     (0)  with

rrhix, t) = t,  i.e.   h  preserves levels.

Proof.  A simple variation of the Hudson-Zeeman trick is used to cover

isotopies by covering them locally.

First, we define pieces of  h, locally.   If / C  / (subinterval) and  a £ J , then

by collaring there exists a homeomorphism  ia £ J    C J):

k: n~lia) x ]'=*V rel 77" Hfl)

where   V  is a regular neighborhood of  77"   (zz)  in  77"   (/).

Triangulate the diagram

„-Ha)x]' -L „-*(]') JUj'

and choosing  /Q  a small enough subinterval of  /    = [a, b], such that if  v is a

vertex of 77""   /0  or  k~  rr~   J0  then  rrv = a or  irkv = a.   Then we can change   k

so that it is level-preserving on  77"   (zz) x JQ, following the Hudson-Zeeman

technique of [H, 6.7].

Thus, for each  / in  /, we can find a neighborhood  J    of   t in  /, and a
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homeomorphism  k:   n~   (t) x /   _, rr~   (] ) level-pre serving and rel77-1(z).   To

construct the global homeomorphism we use the compactness of  A analogous to

the Hudson-Zeeman method for covering isotopies (see [H, 6.12.2]).   We can find a

sequence  0 = zQ < Zj < ■ • • < Z    =1   such that  Z. + 1 £ Jt    for  0 < ¿ < 72.   Inductive-

ly we define  H. + 1:   tt~'(0) x [0, Z¿ + 1] —» 77-1[0, Z. + 11 to be equal to  H.  on

77_1(0) x [0, Zj] and by letting   AC + 1U, /) equal  kt \P x(k~tlH .(x, t.)), t) fot  (x, t) £

tt_1(0) x [/., /.,,].   Then h = H  .
I t + l 72

Proposition 2.   LeZ /:    K x I —* L x I be a level-preserving,  transverse cellu-

lar simplicial map of finite complexes with  Lxl triangulated so that the projec-

tion 77:   Lxl —> a I  is simplicial for some subdivision ol.

There exists a level-preserving homeomorphism  g:    K x I —► L x A  carried by

y., and if T  is a subcomplex of ol such that f\K x T is a homeomorphism then

g can be taken equal to f on  K x T.

Proof.   By starting at  0 and proceeding up the one-simplices of ffA we reduce

the situation to a one-simplex   / £ ol.   So we must show that if /:    K x ] —>  L x

/ —>    /is simplicial we can find   g:    AC x / = L x /, where if / is a homeomor-

phism on   K x a  or   AC x b or both  ([a, b] = /) then g can be chosen to agree with

/ there.

For A £ L x a, D(A; L x j) = U \D(B; L x ]): A < B £ L x a\ U C(A; L x ])

where   (definition) C(A; L x /) = U \D(B; L x /): A < B £ L x ] - L x a\.

C(A; L x ]) is a cone on U[C(B; L x /):   A < B £ L x a\ because it is the

complement of a regular neighborhood of  AJ(A; L x a) in  b(A; L x J), see

[C2, 4.2].

/ preserves this decomposition, i.e. D(A; /) =  Uiß(ß; /):   A < ß £ L x a! U

C(A; f) where   C(A; f) = U \D(B; f):   A < B £ L x J - L x a\.

Now  /|C(A;/):   C(A; f) —» C(A;Lx ]) is transverse cellular since

/|D(B; /) is for each  B £ L x J■   Since  /    is transverse cellular (Corollary V.10),

/:   D(A; fa)-* D(A; L x a) is also.   Hence

(D(Á; f); C(A; f), D(A; fJ)^(D(A; L x ]); C(A; L x ]), D(A; L x a))

^((D(A; L x a) x A; D(A; L x a) x 1, D(A; L x a) x 0))

(for the latter homeomorphism see   [C2, 4.2 proof] or  [A, 6.2 proof]).

Now  77/:   D(A; f) —>[a, 77/] and  77:   D(A; L) —» [a, 77/] are simplicial maps.

So  (nf)~ X[a, t] in  D(A; /) is a regular neighborhood of D(A; fQ) with boundary

nf~l(t) and hence  nf~l(t)   is  collared  on both  sides.   Similarly,  for  77:

D(A; L) — [a, 77/].

Thus, both 77/: D(A; f) —> [a, 77/] and 77: D(A; L) —► [a, 77/] satisfy the

hypotheses of Lemma 1. Thus for each A £ L x a, there are level-preserving

homeomorphisms:
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kA: DÍA; fa) x [a, r,j] = DÍA; f)     tel DÍA; f a) x a = DÍA; fj,

lA:  DÍA; L x a) x [a, 27/] % DÍA; L)    reí DÍA; L x a) x a = DÍA; L x a),

and similarly for each  A e L x ¿2 we get a homeomorphism involving the interval

[77/, b].

Now choose any homeomorphism  g:    Kx \a, 27/, b\ —> L x \a, 27/, b\, carried

by

DÍA; f ) —► DÍA; L x a)    tot A £ L x a,

DÍB; f) -» D(B; L x J)    tot B £ L x J - L x j,

DÍA; fh) -, DÍA; L x b)    for A £ L x b.

Choose  g equal to / on any piece where  / is already a homeomorphism.

Note that gíCÍA; /)) = CÍA; L x J) for either A £ L x a or A e L x ¿>.

By induction we can extend  g  in a level-preserving way over   K x J-   If  g:

DÍA; f)   U DÍA; f   ) Z% DÍA; L x /) U DÍA; L x a) is defined either level-preserving

for A £ L x a, then

l~AlgkA: (DÍA; fj x [a, 27/])  u(D(A; Q x \a, r,j\)

->ÍDÍA; Lxa)x [a, 27/]) u(D(A; L x a) x \a, 27/i)

is a level-preserving homeomorphism.   We can cone this map using the Alexander

trick and extend  IJy   g kA  to a level-preserving homeomorphism on DÍA; f ) x

[a, rjj].   Composing with   /.   and   k7     extends   g as required.

As a corollary we can sharpen Proposition IV.15 to analogous results con-

cerning quasi-isotopies, in the compact case.

Corollary 3-  (1)   Tiz^o   homeomorphisms are quasi-isotopic iff they are isotopic.

(2) Two homeomorphisms associated to a transverse cellular map are isotopic.

(3) A homeomorphism is quasi-isotopic to a transverse cellular map iff it is

isotopic to an associated homeomorphism.

(4) Transverse cellular maps are quasi-isotopic iff associated homeomor-

phisms are isotopic.

It seems reasonable that Proposition 2 could be generalized by replacing  / by

A", i.e.

Conjecture.  Let   K x A" —> ' L x A" —>w A"  be simplicial with / transverse

cellular level-preserving.   Then there exists a level-preserving homeomorphism

g:    K x A" —► L x A"  carried by  y    and such that if /  is a union of faces of  A"

such that f\K x J is a homeomorphism then g can be chosen to equal /on   K x J.

A consequence of this conjecture, by induction on the simplices of  M, would

be the same statement with  M replacing  A".

Another corollary of this would be the following:
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Conjecture.  Let  p,:   Ej —»  ß  and  p2:   E2 —> B  be locally trivial p. 1. maps,

and let /:   £j —i E,  be a fiber-preserving transverse cellular map.   Then for any

<r > 0   there exists a fiber-preserving homeomorphism g:   E,  —► E_,  within e of /

(for any metric on  E?).

This would follow by triangulating  B  so that  E,   and   E,  are trivial over

each simplex of  B, and then subdivided so that the mesh of  E.   and  E2  are

z ?
small and  Ej—i'E. —>       B  is simplicial (hence  p.: E. —» B  is).   Proceed by

induction on the simplices of  B.

This result seems approachable in another manner.   For  A £ B let  E.   =

p~lA.   Then /:   (E x; EA:   A £ B) —> (E2; E* :   A £ B)  is transverse cellular as a

map of families.   So by family version of Proposition IV.1, we can find g:

(E. ; E.: A £ B)=5 (E2; E^: A £ B).   It is then a matter of changing g  inductively

to be level-preserving.   Thus we need something like  g:   FxA —► F x A  level-

preserving on  F x A  can be changed to a level-preserving homeomorphism.

Also, it should be noted that this family argument applies directly to block-

bundles, i.e. a block preserving transverse cellular map can be changed to a block-

bundle isomorphism.
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