SPACES OF SET-VALUED FUNCTIONS

R V

DAVID N. O'STEEN(1)

ABSTRACT. If X and Y are topological spaces, the set of all continuous functions from X into CY, the space of nonempty, compact subsets of Y with the finite topology, contains a copy (with singleton sets substituted for points) of Y^X , the continuous point-valued functions from X into Y. It is shown that Y^X is homeomorphic to this copy contained in $(CY)^X$ (where all function spaces are assumed to have the compact-open topology) and that, if X or Y is T_2 , $(CY)^X$ is homeomorphic to a subspace of $(CY)^{CX}$. Further, if Y is T_2 , then these images of Y^X and $(CY)^X$ are closed in $(CY)^X$ and $(CY)^X$ respectively.

Finally, it is shown that, under certain conditions, some elements of X^Y may be considered as elements of $(CY)^X$ and that the induced 1-1 function between the subspaces is open.

If X and Y are topological spaces then Y^X denotes the space of all continuous functions from X into Y. We shall assume throughout that all function spaces have the compact-open topology, which, we recall, is that topology having as a subbasis $\{(A, W)|A \in X \text{ is compact, } W \in Y \text{ is open}\}$ where $(A, W) \equiv \{f \in Y^X | f(a) \in W \text{ for each } a \in A\}$. CY will designate the space of nonempty, compact subsets of Y and will be assumed to have the finite topology, which is obtained by taking as a subbasis $\{\overline{t}_U | U \text{ is an open subset of } Y\} \cup \{\underline{t}_U | U \text{ is an open subset of } Y\}$, where $\overline{t}_U \equiv \{A \in CY | A \cap U\}$ and $\underline{t}_U \equiv \{A \in CY | A \cap U \neq \emptyset\}$. (2) A basis for CY is formed by the collection of all subsets of the form $t_U \cap (\bigcap_{i=1}^n \underline{t}_{V(i)})$ where U and each of $V(1), \dots, V(n)$ are open in Y. $(CY)^X$ contains a copy (with singleton sets substituted for points) of Y^X

 $(CY)^X$ contains a copy (with singleton sets substituted for points) of Y^X and we first show that Y^X is homeomorphic to this subspace of $(CY)^X$ and that, if X or Y is T_2 , $(CY)^X$ is homeomorphic to a subspace of $(CY)^{CX}$. Further, if Y is T_2 , then these images of Y^X and $(CY)^X$ are closed in $(CY)^X$ and $(CY)^{CX}$ respectively.

Theorem 1. Y^X is homeomorphic to a subspace of $(CY)^X$ and, if Y is T_2 , this subspace of $(CY)^X$ is closed.

Proof. Define $\phi: Y^X \to (CY)^X$ by $\phi(f)(x) = \{f(x)\}$. Since $\{\{y\} | y \in Y\}$ is a

Received by the editors October 21, 1970 and, in revised form, July 30, 1971. AMS 1969 subject classifications. Primary 5428, 5465.

Key words and phrases. Function spaces, finite topology, compact-open topology.

⁽¹⁾ The author would like to acknowledge support by N.D.E.A. Title IV Fellowship.

⁽²⁾ Note that we are not assuming elements of CY to be necessarily closed, as is the case with the space of compact subsets of [5].

homeomorphic copy of Y contained in CY, the continuity of f certainly implies that of $\phi(f)$. This shows ϕ to be well defined and that ϕ is 1-1 is clear. Now if (A, W) is a subbasic open set in Y^X then $\phi((A, W)) = (A, \overline{t}_W) \cap \phi(Y^X)$ which, since ϕ is 1-1, shows ϕ to be open. Likewise, if (A, \mathbb{I}) is a subbasic open set in $(CY)^X$ containing $\phi(f)$, then, since A is compact and $\{\overline{t}_U | U \in Y \text{ is open}\}$ is a basis for the subspace topology of $\{\{y\} | y \in Y\}$ in CY, there exist finitely many open subsets, $U(1), \dots, U(n)$, of Y such that $\{\phi(f)(a) | a \in A\} \subset \bigcup_{i=1}^n \overline{t}_{U(i)}$ and $\bigcup_{i=1}^n \overline{t}_{U(i)} \subset \mathbb{I}$. Thus $f \in (A, \bigcup_{i=1}^n U(i))$ and $\phi(A, \bigcup_{i=1}^n U(i)) \subset (A, \mathbb{I})$ which implies the continuity of ϕ .

Suppose that Y is T_2 and let g be an element of $(CY)^X - \phi(Y^X)$. Then there is a point x of X and distinct points y_1 and y_2 of Y such that $\{y_1, y_2\} \subset g(x)$. Choose disjoint open subsets U(1) and U(2) of Y such that $y_1 \in U(1)$ and $y_2 \in U(2)$ and then $g \in (\{x\}, \underline{t}_{U(1)} \cap \underline{t}_{U(2)})$. Since $(\{x\}, \underline{t}_{U(1)} \cap \underline{t}_{U(2)}) \cap \phi(Y^X) = \emptyset$, $\phi(Y^X)$ is closed in $(CY)^X$.

Lemma 1. If either of X or Y is T_2 and if \mathcal{B} is a subbasis for Y, then $\{(A, B)|A$ is a compact subset of X and B is an element of $\mathcal{B}\}$ is a subbasis for the compact-open topology on Y^X .

Lemma 2. CY is T_2 if and only if Y is T_2 and CY is regular (T_1 and T_3) if and only if Y is regular.

For Lemma 1 see [2] and [3], and for Lemma 2 see [5]. (It is not necessary for compact subsets of Y to be closed in order to prove either part of Lemma 2.)

Corollary. $(CY)^X$ is T_2 if and only if Y is T_2 and $(CY)^X$ is regular if and only if Y is regular.

Proof. This follows from Lemma 2 and the fact that $(CY)^X$ is T_2 if and only if CY is T_2 and $(CY)^X$ is regular if and only if CY is regular.

Theorem 2. If X or Y is T_2 , then $\Re[(CY)^X] \equiv \{(A, \overline{t}_U) | A \subset X \text{ is compact and } U \subset Y \text{ is open}\} \cup \{(A, \underline{t}_U) | A \subset X \text{ is compact, } U \subset Y \text{ is open}\} \text{ is a subbasis for } (CY)^X.(3)$

Theorem 2 is an immediate consequence of Lemmas 1 and 2.

The following example demonstrates that if neither X nor Y is T_2 then $\mathcal{B}[(CY)^X]$ need not be a subbasis for $(CY)^X$.

Example 1. Let R and S be two disjoint, countably infinite, dense subsets of (0,1).

We define a topology $\mathcal{I}_{[0,1]}$ on [0,1] such that $\mathcal{I}_{[0,1]}|(0,1)$ is the usual

⁽³⁾ For the case that Y is T_2 , Theorem 2 is shown in [2].

topology and such that $\{1\} \subset U$ ($\{0\} \subset U$), where U is an element of $\mathcal{T}_{[0,1]}$, if and only if U is open in the usual topology for [0,1] and $R \subset U$ ($S \subset U$). With this topology [0,1] is a compact, T_0 space. Let (X, \mathcal{T}_X) be $[0,1] - (R \cup S)$ with the subspace topology inherited from ($[0,1], \mathcal{T}_{[0,1]}$). (X, \mathcal{T}_X) is a compact, T_1 space.

Let $Y'=([2,3]\cup\{4\}\cup\{5\})$ and define a topology $\mathcal{T}_{Y'}$ on Y' such that $\mathcal{T}_{Y'}|[2,3)$ is the usual topology and such that $\{3\},\{4\},$ or $\{5\}$ is a subset of U, where U is an element of $\mathcal{T}_{Y'}$, if and only if U is open in the usual topology for $([2,3]\cup\{4\}\cup\{5\})$ and $\{2\}\subset U$. Let (Y,\mathcal{T}_{Y}) be $Y'-\{2\}$ with the subspace topology inherited from $(Y',\mathcal{T}_{Y'})$. We note that $(Y',\mathcal{T}_{Y'})$ is a compact, T_0 space and that (Y,\mathcal{T}_{Y}) is a compact, T_1 space. Further $(2,3],\{4\}\cup\{2,3\}$, and $\{5\}\cup\{2,3\}$ are compact subsets of (Y,\mathcal{T}_{Y}) .

Let $f: X \to CY$ be defined by f(q) = (2, 3] if and only if $q \in ((0, 1) \cap X)$, $f(0) = (2, 3] \cup \{4\}$, $f(1) = (2, 3] \cup \{5\}$. It is easily shown that f is continuous and therefore $f \in (CY)^X$.

Now (2, 3], $(2, 3] \cup \{4\}$, and $(2, 3] \cup \{5\}$ are all open in (Y, \mathcal{T}_Y) . Thus $[(\overline{t}_{(2,3]} \cup \{4\} \cap \underline{t}_{(2,3]}) \cup (\overline{t}_{(2,3]} \cup \{5\} \cap \underline{t}_{(2,3]})] \equiv Z$ is an open subset of CX. Further, it is clear that $f \in (X, Z)$, open in $(CY)^X$, since X is compact and $f(q) \in Z$, for each $q \in X$.

To show $\mathfrak{B}[(CY)^X]$ is not a subbasis for $(CY)^X$ it will be sufficient to show that every finite intersection of elements of $\mathfrak{B}[(CY)^X]$ containing f contains an element of $(CY)^X$ not contained in (X, Z). Further, we should first note that $g \in (CY)^X$ is contained in (X, Z) only if g(q) is a subset of $(2, 3] \cup \{4\}$ or g(q) is a subset of $(2, 3] \cup \{5\}$, for each $q \in X$.

Let $B=(\bigcap_{i=1}^n (A_{i'}, \overline{t}_{W(i)})) \cap (\bigcap_{j=1}^m (D_j, \underline{t}_{V(j)}))$ be a finite intersection of elements of $\Re[(CY)^X]$ containing f. Without loss of generality, we may assume no A_i contains both 0 and 1 else $(A_i, \overline{t}_{W(i)})$ would equal $(CY)^X$.

Assuming no A_i contains both 0 and 1, we first claim $X \not\subset \bigcup_{i=1}^n A_i$. Suppose $X \subset \bigcup_{i=1}^n A_i$. Then let K = the union of all A_i such that $1 \not\in A_i$, $1 \le i \le n$, and let L = the union of all A_i such that $0 \not\in A_i$, $1 \le i \le n$. Neither K nor L is empty, $0 \in K$, $1 \in L$, $K \cup L = X$, and both K and L are compact. Let q be an element of R and let U_1, \cdots, U_n, \cdots be a nested sequence of open subsets of ([0, 1], $\mathcal{F}_{[0, 1]}$) such that $\bigcap_{r=1}^{\infty} U_r = q$. For the sequence $\{U_r \cap X\}_{r=1}^{\infty}$ of open subsets of (X, \mathcal{F}_X) it either is, or is not, the case that there exists an n such that, for each m > n, $U_m \cap X \subset L$. If there exists such an n, then an open cover of L having no finite subcover can be constructed and, if there does not exist such an n one can do the same for K. Thus the assumption that $X \subset \bigcup_{i=1}^n A_i$ leads to a contradiction, and, therefore, there exists a point x of X such that $x \not\in \bigcup_{i=1}^n A_i$.

Define the function $g: X \to CY$ by g(x) = Y and g(q) = f(q) if $q \neq x$. Since X is T, and f is continuous, it follows that g is continuous. Hence $g \in (CY)^X$.

From the definition of $g, g \in \bigcap_{i=1}^{n} (A_i, \overline{t}_{W(i)})$, for $g \mid A_i = f \mid A_i, 1 \le i \le n$. For each $q \in X$, $g(q) \cap (2, 3] \neq \emptyset$, and, since any open subset of Y intersects (2, 3], it follows that $g \in \bigcap_{j=1}^{m} (D_j, \underline{t}_{V(j)})$, and therefore $g \in B$.

Since $g(\tilde{x})$ is an element of neither $\bar{t}_{(2,3]\cup\{4\}}$ nor $\bar{t}_{(2,3]\cup\{5\}}$, g is evidently not an element of (X, Z). Thus $\Re[(CY)^X]$ is not a subbasis for the compactopen topology on $(CY)^X$.

Evidently Y being T_1 does not imply that CY is T_1 for, in the above example, the element (2, 3) of CY is not closed.(4)

To prove the following lemmas, see Theorem 2.5.2 and Corollary 9.6 of [5] respectively. (That compact sets be closed is not necessary in either.)

Lemma 3. If X is any topological space and \mathfrak{A} is a compact subset of CX. then $\bigcup_{A \in G} A$, is a compact subset of X.

Lemma 4. If $f \in (CY)^X$ and $A \subset X$ is compact, then $\bigcup_{x \in A} f(x)$ is a compact subset of Y.

Theorem 3. $(CY)^X$ is homeomorphic to a subspace of $(CY)^{CX}$, with the compact-open topology, provided that either of X or Y is T_2 .

Proof. Define a function $\Sigma: (CY)^X \to (CY)^{CX}$ by $\Sigma(f)(A) = D$ where $A \in$ CX, and $D \in CY$ such that $D = \bigcup_{x \in A} f(x)$. D is a compact subset of Y by Lemma 4 and thus, if $f \in (CY)^X$, then $\Sigma(f)$ is a function from CX to CY, and we first show that $\Sigma(f)$ is actually an element of $(CY)^{CX}$. (5)

It suffices to prove that the pre-images of subbasic open sets are open. Let \overline{t}_{II} be a subbasic open set of CY containing $\Sigma(f)(A)$ where $A \in CX$. Since fis continuous, $\{x \mid f(x) \in \overline{t}_{U}\} \equiv Z$ is open in X. Hence \overline{t}_{Z} is open in CX, and, since $f(x) \in \overline{t}_{U}$, for each $x \in A$, $A \in \overline{t}_{Z}$. Clearly, if $B \in \overline{t}_{Z}$ then $f(b) \in \overline{t}_{U}$ for each $b \in B$ and hence $\Sigma(f)(B) \in \overline{t}_{U}$. Similarly, if $\Sigma(f)(A) \in \underline{t}_{V}$, where $V \subset V$ Y is open, then there is an element a of A such that $f(a) \in \underline{t}_{V}$. Since $\{x \mid f(x) \in \underline{t}_{V}\} \equiv W$ is open in X, \underline{t}_{W} is an open subset of CX containing A and $\Sigma(f)(\underline{t}_{W}) \subset \underline{t}_{V}$. Thus $\Sigma(f) \in (CY)^{CX}$.

Clearly Σ is 1-1.

Now we shall show that Σ is continuous. Since X or Y is T_2 , we know that CX or CY is T_2 . Thus by Lemma 1, $\{(\mathcal{C}, \overline{t}_{II}) | \mathcal{C} \subset CX \text{ is compact and } \}$ $U \subset Y$ is open} $\cup \{(\mathcal{C}, \underline{t}_{U}) | \mathcal{C} \subset CX \text{ is compact and } U \subset Y \text{ open} \}$ forms a subbasis for $(CY)^{CX}$.

⁽⁴⁾ Compare with Theorem 4.9.2 of [5].

⁽⁵⁾ It is shown in Lemma A of [6] that if f is an element of Y^X then $\Sigma \circ \phi(f)$, where ϕ is as in Theorem 1, is an element of $(CY)^{CX}$.

Let $(\underline{\mathbb{C}}, \overline{t}_U)$ and $(\underline{\mathbb{D}}, \underline{t}_V)$ be subbasis elements of $(CY)^{CX}$. If $f \in (CY)^X$ such that $\Sigma(f) \in (\underline{\mathbb{C}}, \overline{t}_U)$ then, by Lemma 3, $\bigcup_{A \in \underline{\mathbb{C}}} A \equiv \underline{\mathbb{C}}^*$ is a compact subset of X. Further, if $g \in (CY)^X$, $\Sigma(g) \in (\underline{\mathbb{C}}, \overline{t}_U)$ if and only if $g(x) \in \overline{t}_U$ for each $x \in \underline{\mathbb{C}}^*$. But this is true if and only if $g \in (\underline{\mathbb{C}}^*, \overline{t}_U)$. Hence $f \in (\underline{\mathbb{C}}^*, \overline{t}_U)$, open in $(CY)^X$, and $\Sigma(\underline{\mathbb{C}}^*, \overline{t}_U) \subset (\underline{\mathbb{C}}, \overline{t}_U)$.

Now $\Sigma(f) \in (\mathfrak{D}, \underline{t}_{V})$ implies that if $D \in \mathfrak{D}$ then there exists some $x \in \mathfrak{D}$ such that $f(x) \in \underline{t}_{V}$. By Lemma 3, $\bigcup_{D \in \mathfrak{D}} D \equiv \mathfrak{D}^{*}$ is a compact subset of X and $\{x \mid f(x) \in \underline{t}_{V}\} \equiv W$ is an open subset of X. Further, $\mathfrak{D}^{*} \cap W \neq \emptyset$ since $D \in \mathfrak{D}$ implies that $\Sigma(f)(D) \in \underline{t}_{V}$ which implies that there exists some $x \in D$ such that $f(x) \in \underline{t}_{V}$. But this says that $x \in W$, and, since $x \in \mathfrak{D}^{*}$, we have $x \in (\mathfrak{D}^{*} \cap W)$. Hence for each $D \in \mathfrak{D}$, there exists some $x \in D$ such that $x \in (\mathfrak{D}^{*} \cap W)$. Since \mathfrak{D}^{*} is compact, it follows that, if X is T_{2} , \mathfrak{D}^{*} , as a subspace of X, is regular. Therefore, since $\mathfrak{D}^{*} \cap W$ is open in the subspace topology of \mathfrak{D}^{*} , there exists for each $x \in (\mathfrak{D}^{*} \cap W)$, a subset O(x) of X, open in the subspace topology of \mathfrak{D}^{*} , such that $x \in O(x) \subset \overline{O(x)} \subset (\mathfrak{D}^{*} \cap W)$. Note that the closure of O(x), in X, is contained in \mathfrak{D}^{*} since \mathfrak{D}^{*} being compact and X being T_{2} implies that \mathfrak{D}^{*} is closed.

If Y is T_2 then CY is T_2 . Further, for $x \in (\mathbb{D}^* \cap W)$, if q is an element of $[(\overline{\mathbb{D}^* \cap W}) - (\mathbb{D}^* \cap W)] \cap \mathbb{D}^*$ then $f(x) \neq f(q)$, since $f(x) \in \underline{t}_V$ and $f(q) \notin \underline{t}_V$. Thus, since CY is T_2 and f is continuous, there are disjoint sets, M(x,q) and N(q), open in the subspace topology for \mathbb{D}^* and containing x and q respectively, such that $M(x,q) \in (\mathbb{D}^* \cap W)$. Since \mathbb{D}^* is compact and $[(\overline{\mathbb{D}^* \cap W}) - (\mathbb{D}^* \cap W)] \cap \mathbb{D}^*$ is closed in \mathbb{D}^* , it follows that $[(\overline{\mathbb{D}^* \cap W}) - (\mathbb{D}^* \cap W)] \cap \mathbb{D}^*$ is compact, which implies that there exist $N(q_1), \dots, N(q_k)$ such that $\mathbf{U}_{i=1}^k N(q_i) \supset [(\overline{\mathbb{D}^* \cap W}) - (\mathbb{D}^* \cap W)] \cap \mathbb{D}^*$. Hence $x \in \mathbf{\Omega}_{i=1}^k M(x,q_i) \equiv O(x) \in (\overline{O(x)} \cap \mathbb{D}^*) \subset (\mathbb{D}^* \cap W)$.

Thus, whether X or Y is T_2 we have, for each $x \in (\mathbb{D}^* \cap \underline{W})$, a subset O(x), open in the subspace topology for \mathbb{D}^* such that $O(x) \subset (O(x) \cap \mathbb{D}^*) \subset (\mathbb{D}^* \cap W)$. Each O(x) is open in the subspace topology for \mathbb{D}^* and hence, for each $x \in (\mathbb{D}^* \cap W)$, there exists a set O'(x), open in X, such that $O(x) = O'(x) \cap \mathbb{D}^*$.

Now if $D \in \mathfrak{D}$, $f(D) \in \underline{t}_{-V}$ which implies that $D \cap (\mathfrak{D}^* \cap W) \neq \emptyset$ and thus $D \cap O'(x) \neq \emptyset$ for some $x \in (\mathfrak{D}^* \cap W)$, since each such x in $\mathfrak{D}^* \cap W$ is covered by some O(x). $\{\underline{t}_{-O'(x)} | x \in (\mathfrak{D}^* \cap W)\}$ is an open cover of \mathfrak{D} and because \mathfrak{D} is compact there exist $x(1), \dots, x(r)$ elements of $\mathfrak{D}^* \cap W$, such that $\mathfrak{D} \subset U'_{l=1} \underline{t}_{-O'(x(l))}$. Thus, if $D \in \mathfrak{D}$, $D \cap O'(x(l)) \neq \emptyset$ for some l such that $1 \leq l \leq r$. Since $D \subset \mathfrak{D}^*$, this implies $D \cap [(O'(x(l))) \cap \mathfrak{D}^*] \neq \emptyset$.

Thus each D contains a point of O(x(l)) for some l such that $1 \le l \le r$ where $D \in \mathcal{D}$. Now $E = \bigcup_{l=1}^r (\overline{O(x(l))} \cap \mathcal{D}^*)$ is closed in the subspace \mathcal{D}^* , and

hence compact, and is also contained in W. Thus, for each $x \in E$, $f(x) \in \underline{t}_V$, and further, if $D \in \mathcal{D}$, there exists some $x \in D$ such that $x \in E$. Thus $f \in (E, \underline{t}_V)$ and, if $g \in (E, \underline{t}_V)$, then for each $D \in \mathcal{D}$, there exists an element $x \in D$ such that $x \in E$ and hence $g(x) \in \underline{t}_V$. This implies that $\Sigma(g) \in (\mathcal{D}, \underline{t}_V)$. Hence $f \in (E, \underline{t}_V)$ and $\Sigma((E, \underline{t}_V)) \subset (\mathcal{D}, \underline{t}_V)$. This shows Σ to be continuous.

Let (A, W) be a subbasic open set of $(CY)^X$, and then $\mathfrak{C} = \{\{x\} \in CX \mid x \text{ is a point of } A\}$ is a compact subset of CX. If $f \in (A, W)$, then from the definition of Σ , $\Sigma(f) \in (\mathfrak{C}, W)$. Further, it is clear that if $\Sigma(f) \in (\mathfrak{C}, W)$ then $f(x) \in W$, for each $\{x\} \in \mathfrak{C}$, which implies that $f \in (A, W)$. We have shown $\Sigma((A, W)) = (\mathfrak{C}, W) \cap \Sigma((CY)^X)$ which is open in $(CY)^{CX} \cap \Sigma((CY)^X)$, and, since Σ is 1-1, this shows Σ to be open.

Let \mathcal{C} denote the image of Σ . An element of $(CY)^{CX}$ will be called *consistent* if and only if it is an element of \mathcal{C} . An element of $(CY)^{CX} - \mathcal{C}$ will be called *inconsistent*.

Corollary. An element f of $(CY)^{CX}$ is consistent if and only if, for each $A \in CX$, f(A) = D, where $D = \bigcup_{x \in A} f(\{x\})$.

Easy examples, where X and Y are finite discrete spaces, show that $(CY)^{CX} - \mathcal{C}$ may be nonempty. We may also observe that \mathcal{C} is not necessarily closed by letting X be a two point discrete space and Y the Sierpinski space.(6) However, if Y is T_2 we have the following theorem.

Theorem 4. If Y is T_2 then C is a closed subset of $(CY)^{CX}$.

Proof. Suppose f is an inconsistent element of $(CY)^{CX}$. Then there is an element A of CX such that $f(A) \neq \bigcup_{x \in A} f(\{x\})$.

Assume there is a point p of Y such that $p \in f(A)$ but $p \notin \bigcup_{x \in A} f(\{x\})$. Now $\{\{x\} | x \in A\} \equiv \mathcal{C}$ is a compact subset of CX and this implies that $f(\mathcal{C}) \equiv \{f(\{x\}) | x \in A\}$ is a compact subset of CY. Hence, by Lemma 3, $\bigcup_{x \in A} f(\{x\})$ is a compact subset of Y. Therefore, since Y is T_2 , there exist disjoint open sets, U and V, of Y such that $p \in U$ and $\bigcup_{x \in A} f(\{x\}) \subset V$. Then f is an element of $(\{A\}, \underline{t}_U) \cap (\mathcal{C}, \overline{t}_V)$, which is an open subset of $(CY)^{CX}$ and clearly contains no element of \mathcal{C} .

Now assume there is a point p of Y such that $p \in \bigcup_{x \in A} f(\{x\})$ but $p \notin f(A)$. Then there is an element x of X such that $x \in A$ and $p \in f(\{x\})$. Since f(A) is compact and Y is T_2 , there exist disjoint open sets, U and V, of Y such that $f(A) \subset U$ and $p \in V$. Therefore, f is an element of $(\{A\}, \overline{t}_U) \cap (\{\{x\}\}, \underline{t}_V)$, an open subset of $(CY)^{CX}$ which contains no element of C. Thus $(CY)^{CX} - C$ is open which completes the proof.

⁽⁶⁾ By the "Sierpinski space" we mean a topological space consisting of two points, x_1 and x_2 , with the totality of open sets being $\{x_1, x_2\}$, $\{x_1\}$, and \emptyset .

If $f \in X^Y$ then f^{-1} is a set-valued function from the image of f to Y. Theorem 5 shows how, under certain conditions, some elements of X^Y may be considered as elements of $(CY)^X$. However, the function between the two subspaces is not necessarily a homeomorphism.

Let $D_X^Y = \{f \in X^Y | f \text{ is open, closed, and onto} \}$ and let $\mathfrak{D}_X^X = \{f \in (CY)^X | f \text{ is disjointly 1-1, } \mathbf{U}_{x \in M} f(x) \text{ is open (closed) whenever } M \subset X \text{ is open (closed), and } \mathbf{U}_{x \in X} f(x) = Y \}$. (By 'disjointly 1-1'' we simply mean that if x_1 and x_2 are distinct elements of X then $f(x_1) \cap f(x_2) = \emptyset$.)

Theorem 5. If Y is compact, X or Y is T_2 , and $D_X^Y \neq \emptyset$, then ψ , defined by $\psi(f)(x) = f^{-1}(x)$, is a 1-1, open function from D_X^Y onto \mathfrak{T}_Y^X .

Proof. If f is in D_X^Y , it is easily verified that $\psi(f) \in \mathcal{D}_Y^X$. (7) Let $h \in \mathcal{D}_Y^X$ and define $f: Y \to X$ by f(y) = x if and only if $y \in h(x)$. Then $f \in D_Y^Y$ and $\psi(f) = h$. Clearly ψ is 1-1.

We have only to show that ψ is open: Let (A, W) be a subbasis element of X^Y and let $f \in (D_X^Y \cap (A, W))$. Now since W is open in X, and $f: Y \to X$ is continuous and onto, it follows that X must be compact and that X - W must be compact. Hence $(X - W, \overline{t}_{Y - \overline{A}})$ is open in $(CY)^X$. Assume X is T_2 . If $x' \in (X - W)$ and $x \in f(A)$ there exist disjoint open sets U(x) and V(x, x') containing x and x' respectively and, since $\psi(f) = f^{-1}$ is an element of \mathcal{D}_Y^X , it follows that $\bigcup_{p \in U(x)} \psi(f)(p)$ and $\bigcup_{p \in V(x, x')} \psi(f)(p)$ are disjoint open sets, containing $\psi(f)(x)$ and $\psi(f)(x')$, respectively. By repeating this process for all $x \in f(A)$, we observe that $\{\bigcup_{p \in U(x)} \psi(f)(p) | x \in f(A)\}$ is an open cover of A and since A is compact there exist x_1, \dots, x_m elements of f(A) such that $\bigcup_{j=1}^m (\bigcup_{p \in U(x_j)} \psi(f)(p)) \supseteq A$. But

$$\bigcap_{j=1}^{m} \left(\bigcup_{p \in V(x_{j}, x')} \psi(f)(p) \right) \supset \psi(f)(x')$$

and

$$\left[\bigcup_{j=1}^{m}\left(\bigcup_{p\in U(x_{j})}\psi(f)(p)\right)\right]\cap\left[\bigcap_{j=1}^{m}\left(\bigcup_{p\in V(x_{j},x')}\psi(f)(p)\right)\right]=\emptyset.$$

This implies that no point of $\psi(f)(x')$ is in \overline{A} , for each $x' \in (X - W)$. Therefore, $\psi(f) \in (X - W, \overline{t}_{Y - \overline{A}})$ if X is T_2 .

Now assume Y is T_2 . Then $A = \overline{A}$ since A is compact, and thus $(X - W, \overline{t}_{Y - \overline{A}}) = (X - W, \overline{t}_{Y - A})$. But $x \in (X - W)$ implies that $x \notin f(A)$, which implies

⁽⁷⁾ It is essentially shown in [5] that $\psi(f)$ is continuous if and only if f is open and closed (where the notation f^{-1*} is used instead of our $\psi(f)$).

 $\psi(f)(x) \cap A = f^{-1}(x) \cap A = \emptyset$. Hence $\psi(f) \in (X - W, \overline{t}_{Y - A})$. Therefore, if either of X or Y is T_2 , $\psi(f) \in (X - W, \overline{t}_{Y - \overline{A}})$.

Let $g \in ((X - W, \overline{t}_{Y - \overline{A}}) \cap \widehat{\mathcal{D}_{Y}^{X}})$. We know $\psi^{-1}(g)$ exists and is exactly one element of D_X^Y . Let $y \in A$. Since $g(x) \cap \overline{A} = \emptyset$, for each $x \in (X - W)$, it follows that $\psi^{-1}(g)(y) \in W$. Thus $\psi^{-1}(g) \in (A, W)$ which implies that $g \in \psi((A, W) \cap D_X^Y)$. This shows $((X - W, \overline{t}_{Y - \overline{A}}) \cap \widehat{\mathcal{D}_{Y}^{X}}) \subset \psi((A, W) \cap D_X^Y)$ which, since ψ is 1-1, completes the proof that ψ is an open function.

The following example shows that $\psi \colon D_X^Y \to \mathfrak{D}_Y^X$ need not be continuous.

Example 2. Let X be the topological space consisting of the set of all real numbers of the form 1/i, $i=1, 2, \cdots$, together with 0, with the subspace topology inherited from the reals. Let Y be the topological space consisting of the set of all real numbers of the form 1/i, $i=1, 2, \cdots$, or of the form 2-1/i, $i=1, 2, \cdots$, together with 0 and 2 with the subspace topology inherited from the reals. We note that X and Y are both compact, T_2 spaces.

Define $f: Y \to X$ by f(y) = y, $0 \le y \le 1$, and f(y) = 2 - y, $1 \le y \le 2$. Observe that f is continuous, open, closed, and onto. Thus $f \in D_X^Y$. Now $\psi(f) \in ((\{0\}, \underline{t}_{\{1,2\} \cap Y}) \cap \mathcal{D}_Y^X) \equiv U$, open in \mathcal{D}_Y^X . We will show that given any basic open set, V, of D_X^Y , containing f, there exists an element of $(\mathcal{D}_Y^X - U)$ contained in $\psi(V)$.

Let $V = (\bigcap_{i=1}^{n} (A_i, W_i)) \cap D_X^Y$ be a basic open set of D_X^Y containing f. Let $M = \{A_i, 1 \le i \le n | 2 \in A_i\}, N = \{A_i, 1 \le i \le n | 2 \notin A_i\}.$

Let $K = \bigcup_{A_i \in N} A_i$. Assume $K \neq \emptyset$. Then K is a compact subset of $[0, 2) \cap Y$ and hence there is an element k of $(1,2) \cap Y$ such that if $k' \in K$ then k > k'. If $K = \emptyset$, choose k to be $1 + \frac{1}{2}$.

Suppose that $M \neq \emptyset$. Then if $A_i \in M$, there is a half-open interval Z_i such that $0 \in Z_i$ and $Z_i \cap X \subset W_i$. Let $Z = (\bigcap_{A_i \in M} Z_i) \cap X$ and choose an element z of Z such that $z \in ((0, 1) \cap X)$. If $M = \emptyset$, choose z to be $\frac{1}{2}$.

Let l be the greater of k and 2-z and define $g\colon Y\to X$ by $g(y)=f(y),\ y\le l$, and $g(y)=f(l),\ l\le y$. Clearly g is continuous, open, closed, and onto, and hence an element of D^Y_X . Also, $g\in (\bigcap_{i=1}^n (A_i,W_i)\cap D^Y_X)$ since $g|\bigcup_{A_i\in N}A_i=f|\bigcup_{A_i\in N}A_i,\ g(y)=f(y),$ for each $y\in ([0,l]\cap Y),$ and $g(y)\in \bigcap_{A_i\in M}W_i,$ for each $y\in ([l,2]\cap Y).$ However, $g^{-1}(0)=\{0\}$ and thus $\psi(g)(0)\notin \underline{t}_{-(1,2]\cap Y}$. This implies that $\psi(g)\notin ((\{0\},\underline{t}_{-(1,2]\cap Y})\cap D^X_Y).$ Therefore $\psi(g)\in (D^X_Y-U),$ and it follows that $\psi\colon D^Y_X\to D^X_Y$ is not continuous.

I would like to thank Dr A. R. Vobach for his valuable suggestions during the development of this topic. I would like also to thank the referee for his aid in simplifying the proofs and notation.

REFERENCES

1. C. Berge, Topological spaces, Macmillan, New York, 1963, pp. 109-115.

- 2. J. M. Day and S. P. Franklin, Spaces of continuous relations, Math. Ann. 169 (1967), 289-293. MR 35 #987.
- 3. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966, pp. 257-275. MR 33 #1824.
- 4. K. Kuratowski, *Topology*. Vol. I, new ed., rev. and aug., PWN, Warsaw; Academic Press, New York, 1966, pp. 160-187. MR 36 #840.
- 5. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), pp. 152-183. MR 13, 54.
- 6. P. Zenor, On the completeness of the space of compact subsets, Proc. Amer. Math. Soc. 26 (1970), 190-192. MR 41 #6151.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30601

Current address: 216 N. Elam Ave., Greensboro, North Carolina 27403