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DAVID N. O'STEEN (1)

ABSTRACT. If X and Y are topological spaces, the set of all continuous
functions from X into CY, the space of nonempty, compact subsets of Y with
the finite topology, contains a copy (with singleton sets substituted for points)
of Y, the continuous point-valued functions from X into Y. It is shown that
Yx is homeomorphic to this copy contained in (CY)" (where all function spaces
are assumed to have the compact-open t%pxglogy) and that, if X or Y is T2, (CY)X
is homoemorphic to a subspace of (CY) “". Further, if Y is T_, then these images
of YX and (CY)X are closed in (CY)X and (CY)CX respectively.

Finally, it is shown that, under certain conditions, some elements of xY may
be considered as elements of (CY)X and that the induced 1-1 function between
the subspaces is open.

If X and Y are topological spaces then yX denotes the space of all contin-
uous functions from X into Y. We shall assume throughout that all function spaces
have the compact-open topology, which, we recall, is that topology having as a
subbasis {(4, W)|A C X is compact, W C Y is open} where (4, W) =
if € Yxlf(a) €W for each a € A}. CY will designate the space of nonempty, com-
pact subsets of Y and will be assumed to have the finite topology, which is ob-
tained by taking as a subbasis {7U| U is an open subset of Y}U {l_ul U is an
open subset of Y}, where £ ;={A €CY|ACU}andt ;=lA€CY|ANU#GL(D) A
basis for CY is formed by the collection of all subsets of the form ¢ v N
N :.'= It—V(i)) where U and each of V(1), -+, V(n) are open in Y.

(CY)X contains a copy (with singleton sets substituted for points) of Y%
and we first show that YX is homeomorphic to this subspace of (CY)X and that,
if XorYisT, (CY)X is homeomorphic to a subspace of (CY)¢X. Further, if
Y is T, then these images of YX and (CY)X are closed in (CY)X and (CY)CX

respectively.

Theorem 1. YX is homeomorphic to a subspace of (CY)X and, if Y is T,
this subspace of (CY)X is closed.

Proof. Define ¢: YX— (cY)X by ¢ (N (x) = {f(x)}. Since tiyl|y e Y} isa
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homeomorphic copy of Y contained in CY, the continuity of [ certainly implies
that of ¢(f). This shows ¢ to be well defined and that ¢ is 1-1 is clear. Now
if (A, W) is a subbasic open set in YX then (4, W)) = (4, TW) N ¢ (YX) which,
since ¢ is 1-1, shows ¢ to be open. Likewise, if (4, U) is a subbasic open

set in (CY)X containing ¢(/), then, since A is compact and {Z_UI UCY is open}
is a basis for the subspace topology of {{y}|y € Y} in CY, there exist finitely
many open subsets, U(1), -+, U(n), of Y such that {¢(/)(a)|a € A} C

U ?: IE-U(i) and 7. lt_u(i) CU. Thus f€ (A4, U :.’= 1U(z')) and

d(A, U ;’= ) U(i)) C(A, U) which implies the continuity of @.

Suppose that Y is T, and let g be an element of (CY)X = ¢(YX). Then
there is a point x of X and distinct points y, and y, of Y such that iy v y2} C
g(x). Choose disjoint open subsets U(1) and U(2) of Y such that y, €U(1) and
¥, € U(2) and then g € ({x}, t—u(l)nf—U(Z))' Since ({x}, LyyN t_U(z)) N
qS(YX) =3, q.‘)(YX) is closed in (CY)X.

Lemma 1. If either of X or Y is T, and if B is a subbasis for Y, then
{(A, B)|A is a compact subset of X and B is an element of B} is a subbasis for
the compact-open topology on YX.

Lemma 2. CY is T, ifand only if Y is T, and CY is regular (T | and T,
if and only if Y is regular.

For Lemma 1 see [2] and [3], and for Lemma 2 see [S]. (It is not necessary

for compact subsets of Y to be closed in order to prove either part of Lemma 2.)

Corollary. (CY)X is T, if and only if Y is T, and (CY)X is regular if and
only if Y is regular.

Proof. This follows from Lemma 2 and the fact that (CY)X is T, if and only
if CY is T, and cy)X is regular if and only if CY is regular.

Theorem 2. If X or Y is T, then Bl(cY)X] ={(4, t_U)lA C X is compact
and U CY is openlu {(4, t PIA CX is compact, UCY is open} is a subbasis
for (CY)X.(3)

Theorem 2 is an immediate consequence of Lemmas 1 and 2.

The following example demonstrates that if neither X nor Y is T, then
BI(CY)X] need not be a subbasis for (CY)X.

Example 1. Let R and S be two disjoint, countably infinite, dense subsets
of (0,1).

We define a topology T[O,l] on [0,1] such that ff[o,l]I(O,l) is the usual

(3) For the case that Y is T,, Theorem 2 is shown in [2].
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topology and such that {1} C U ({0} C U), where U is an element of 3'[0’1], if

and only if U is open in the usual topology for [0,1] and R CU (§ CU). With
this topology [0,1] is a compact, T space. Let (X, J,) be [0,1] - (R U §) with
the subspace topology inherited from ([0,1], "j.[o,l])' (X, fTX) is a compact, T,
space.

Let Y' =([2, 31U {4} U {5}) and define a topology j.Y' on Y' such that
j.Y'H:Z’ 3) is the usual topology and such that {3}, {4}, or {5} is a subset of U,
where U is an element of “TY" if and only if U is open in the usual topology
for ([2, 3] u t4}uis)) and {2} CU. Let (Y,fry) be Y' - {2} with the subspace
topology inherited from (Y’, 3'Y,), We note that (Y’, j.Y') is a compact, T, space
and that (Y, ff'Y) is a compact, T, space. Further (2, 3],{4} U (2, 3], and {5}U
(2, 3] are compact subsets of (Y, 3'),).

Let /: X = CY be defined by [(q) = (2, 3] if and only if ¢ € ((0, 1) N X),
f(0)=(2, 3 ui4}, /(1) =(2, 3] U5} It is easily shown that [ is continuous
and therefore [ € (CY)X.

Now (2, 3], (2, 3] ut4}, and (2, 3] U{5} are all open in (Y, T ) Thus
[« (2,3)uia} N Lea, 3’])U (r (2,3JulsiN Ly 3])] = Z is an open subset of CX.

Further, it is clear that f € (X, Z), open in (CY)X, since X is compact and
f(q) € Z, for each g € X.

To show B[(CY)X] is not a subbasis for (CY)¥X it will be sufficient to
show that every finite intersection of elements of B[(CY)X] containing { con-
tains an element of (CY)X not contained in (X, Z). Further, we should first note
that g € (CY)X is contained in (X, Z) only if g(g) is a subset of (2, 3] U {4} or
g(g) is a subset of (2, 3] U {5}, for each g € X.

Let B = ( n" ) Nl ( n”’_l(D] _V(]))) be a finite intersection of
elements of %[(CY)X] contammg /. Wxthout loss of generality, we may assume
Ly )) would equal (CY)X.

Assummg no A, contains both 0 and 1, we first claim X ¢ (Y7 =;A;- Sup-
pose X C U:’_ ;- Thenlet K = the union of all A, such that 1 KAI, 1<i<
n, and let L = the union of all A, suchthat 0 £A., 1<i<n Neither K nor L
isempty, 0 €K, 1 €L, KUL =X, and both K and L are compact. Let g be an

no A contains both 0 and 1 else (A

element of R and let U, , U,, +++ be a nested sequence of open subsets of
(fo, 17, 3[0 l]) such that n, 1U, = . For the sequence {U, ﬂX} of open
subsets of (X, § x) it either is, or is not, the case that there exists an 7 such
that, for each m > n, U, N X CL. If there exists such an =, then an open cover
of L having no finite subcover can be constructed and, if there does not exist
such an 7 one can do the same for K. Thus the assumption that X C U =14

i
leads to a contradiction, and, therefore, there exists a point % of X such that

R AU A,
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Define the function g: X — CY by g(?): Y and g(q) =/(q) if q = X. Since X is
and [ is continuous, it follows that g is continuous. Hence g € (cy)X.
From the definition of g, g € n?=1(Ai w(),for glA;=flA;, 1<i<n.
For each g € X, g(q) N (2, 3]#(3 and, since any open subset of Y intersects
(2, 31, it follows that g € n”’ ,t V(])) and therefore g € B.

Since g(x) is an element of nelthet t)fz slufs} Dot r (2.3]ulsh & is evident-
ly not an element of (X, Z). Thus B[(CY)*]
open topology on (cY)X.

T,

is not a subbasis for the compact-

Evidently Y being T, does not imply that CY is T, for, in the above ex-
ample, the element (2, 3] of CY is not closed.(4)
To prove the following lemmas, see Theorem 2.5.2 and Corollary 9.6 of [5]

respectively. (That compact sets be closed is not necessary in either.)

Lemma 3. If X is any topological space and @ is a compact subset of CX,
then UAeaA' is a compact subset of X.

Lemma 4. If { € (CY)X and A C X is compact, then UXEA/(") is a compact
subset of Y.

Theorem 3. (CY)X is homeomorphic to a subspace of (CY)X, with the com-
pact-open topology, provided that either of X or Y is T,

Proof. Define a function 3: (CY)X — (CY)€X by 2(N(A) = D where A €
CX, and D € CY such that D = UxeA/(x). D is a compact subset of Y by
Lemma 4 and thus, if / € (CY)X, then (/) is a function from CX to CY, and we
first show that 2(f) is actually an element of (CY)CX .(5)

It suffices to prove that the pre-images of subbasic open sets are open. Let
t , be a subbasic open set of CY containing 2(f)(A) where A € CX. Since [
is continuous, {x|f(x) € t_U} = Z is open in X. Hence Z—z is open in CX, and,
since f(x) €t , for each x €A, A € t—z. Clearly, if B € t_Z then f(b) €1,
for each b € B and hence 2(f)(B) € t—U' Similarly, if 2(f)(A) € t » where V C
Y is open, then there is an element @ of A such that f(a) € t - Since
{x] [(x) E_I_V} =W is open in X, ¢ W is an open subset of CX containing A and
2 (N (t,)C L. Thus () e(CY)CX,

Clearly X is 1-1.

Now we shall show that I is continuous. Since X or Y is T , we know
that CX or CY is T,. Thus by Lemma 1, (@, )|@ C CX is compact and
UCY is openju {(Cf t )l@ CCX is compact and U C Y open} forms a subbasis
for (CY)CX.

(4) Compare with Theorem 4.9.2 of [5].
(5) It is shown in Lemma A of [6] that 1C_§‘1s an element of YX then 3, 0¢(]), where
¢ is as in Theorem 1, is an element of (CY)



1972] SPACES OF SET-VALUED FUNCTIONS 311

Let (@, t—u) and (D, LV) be subbasis elements of (CY)CX. If [ € (CY)X
such that 2(f) € (@&, ;-U) then, by Lemma 3, UAEGAE (®@* is a compact subset
of X. Further, if g € (CY)X, Z(g) € (@, FU) if and only if g(x) € t—U
for each x € @*. But this is true if and only if g € (@, Z—U)‘ Hence | €
(@, t_U), open in (CY)¥, and (@, t_U) c (@, Z-U)‘

Now =(f) € (D, t ) implies that if D € 9 then there exists some x € T
such that f(x) €t ,,. ByLemma 3, UDej)D = D" is a compact subset of X and
x| f(x) € t__v} = W is an open subset of X. Further, N W @ since D € T
implies that 3(/)(D) € ¢ |, which implies that there exists some x € D such that
f(x) € t - But this says that x € W, and, since x € D*, we have x € (D*N w).
Hence for each D € T, there exists some x € D such that x € (T*N W). Since
D* is compact, it follows that, if X is Tz' P*, as a subspace of X, is regular.
Therefore, since D*N W is open in the subspace topology of T*, there exists
for each x € (£* N W), a subset O(x) of X, open in the subspace topology of
P*, such that x € O(x) C 0(x) C(D*N W). Note that the closure of O(x), in X,
is contained in P* since 9* being compact and X being T, implies that >
is closed.

If Y is T, then CY is T, Further, for x €(P*N W), if g is an element of
[(T* 0 w) - (@A MIND* then f(x)#[(q), since [(x) €t , and [(q) £ t
Thus, since CY is T, and f is continuous, there are disjoint sets, M(x,q) and
N (g), open in the subspace topology for £* and containing x and g respectively,
such that M(x, g) C(D*NW). Since ©* is compact and (D W) - @D "Wl
D* is closed in D*, it follows that [(D*N W) = (D* N W)] n D* is compact,
which implies that there exist N(g N N(qk) such that Ufﬂ N(g) >
[B AW - (@ AW N D*. Hence x € ME_ Mx, ¢,) = 0x) C (OGN D) C
@*n w).

Thus, whether X or Y is T2 we have, for each x € (T*N W), a sgbset
0(x), open in the subspace topology for P* such that O(x) C(0(x) N T*) C

(D*N W). Each O(x) is open in the subspace topology for £* and hence, for
each x € (D*N W), there exists a set 0'(x), open in X, such that O(x) = 0'(x) N
L.

Now if D €D, /(D) € £, which implies that DN(D* N W)@ and thus
DNO'(x)# @ for some x € (D*N W), since each such x in P*NW is covered by
some O(x). {t_ol (x)l x € (P*A W)} is an open cover of D and because P is com-
pact there exist x(1), ---, x(r) elements of D*~ W, such that Dc

?=It—-o'(x(1))‘ Thus, if D e, DNO'(x(D))# @ for some [ such that 1<
I <r. Since D CT*, this implies DN[(0'(x(])) N D*1 @.

Thus each D contains a point of O(x(/)) for some [ such that 1 </<r

where D € . Now E = ;=1(0(X—(_1)_) A D*) is closed in the subspace £*, and
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hence compact, and is also contained in W. Thus, for each x € E, f(x) € Ly,
and further, if D € D, there exists some x € D such that x € E. Thus [ € (E, t_v)
and, if g €(E, t_v), then for each D € T, there exists an element x € D such
that x € E and hence g(x) € ¢ |,. This implies that 2(g) e (&, t ). Hence [ €
(E. t ) and Z((E, t,)C ®, t_v). This shows 3, to be continuous.

Let (A, W) be a subbasic open set of (CY)X, and then @ = {{x} € CX|x is a
point of A} is a compact subset of CX. If / € (A, W), then from the definition of
2, 2(f) € (@, W). Further, it is clear that if 2(f) € ({, W) then f(x) € W, for each
{x} € @, which implies that f € (A, W). We have shown 3((4, W)) = (& W) n
S((CY)X) which is open in (CY)Xn 3((CY)X), and, since I is 1-1, this shows
3. to be open.

Let C denote the image of Z. An element of (CY)X will be called consis-
tent if and only if it is an element of C. An element of (cY)¢X - C will be call-
ed inconsistent.

Corollary. An element f of (CY)CX is consistent if and only if, for each
A €CX, f(A) =D, where D = UxeA/({x})

Easy examples, where X and Y are finite discrete spaces, show that
(cy)¢¥-¢ may be nonempty. We may also observe that  is not necessarily
closed by letting X be a two point discrete space and Y the Sierpinski space.(6)

However, if Y is T, we have the following theorem.
Theorem 4. If Y is T, then C is a closed subset of (cY)CX.

Proof. Suppose [ is an inconsistent element of (CY)©X. Then there is an
element A of CX such that f(A) # UxeA fUx).

Assume there is a point p of Y such that p € f(A) but p £ UxeA/({xD.
Now {{x}|x € A} = @ is a compact subset of CX and this implies that [(Q®) =
{/({x})| x € A} is a compact subset of CY. Hence, by Lemma 3, UxeA/(ix}) is a
compact subset of Y. Therefore, since Y is T ,, there exist disjoint open sets,
Uand V, of Y such that p € U and UXGA/({x}) CV. Then [ is an element of
({4}, t_U) n (@&, t—v), which is an open subset of (CY)®X and clearly contains no
element of C.

Now assume there is a point p of Y suchthat p € |J,  ,/(x}) but p £
f(A). Then there is an element x of X such that x € 4 and p € f(Ix}). Since
f(A) is compact and Y is T, there exist disjoint open sets, U and V, of Y
such that f(A) CU and p € V. Therefore, f is an element of ({4}, t_U) N
(H{x}}, 2.), an open subset of (CY)X which contains no element of C. Thus

(CYCX_C is open which completes the proof.

(6) By the “‘Sierpinski space’’ we mean a topological space consisting of two points,

%, and % with the totality of open sets being {xl, xZ}, {xlf, and @.



1972] SPACES OF SET-VALUED FUNCTIONS 313

If f€XY then /"l is a set-valued function from the image of f to Y.
Theorem 5 shows how, under certain conditions, some elements of XY may be
considered as elements of (CY)X. However, the function between the two sub-
spaces is not necessarily a homeomorphism.

Let DY {f € XY|/ is open, closed, and onto} and let DX = {f € (CcVX|f is
disjointly 1 -1, UxeM/(x) is open (closed)whenever M C X is open (closed), and

Uxexf(x) = Y} (By *‘disjointly 1-1’’ we simply mean that if x, and x, are
distinct elements of X then [(x D Nflxy)= d.)

Theorem 5. If Y is compact, X or Y is T, and D;# @, then s, defined
by YN (x)=f"1(x), is a 1-1, open function from D% onto (D;ﬁ

Proof. If { is in DY, it is easily verified that (/) 69%‘1.(7)

Let b 69)5 and define f: Y — X by f(y) = x if and only if y € h(x). Then
feDY and ¢(f) =b. Clearly ¢ is 1-1.

We have only to show that ¢/ is open: Let (A, W) be a subbasis element of
XY and let [ € (D};n(A, W)). Now since W is open in X, and f: Y — X is con-
tinuous and onto, it follows that X must be compact and that X — W must be
compact. Hence (X — W, t_Y—A‘) is open in (CY)X. Assume X is T,. If x' €
(X — W) and x €(A) there exist disjoint open sets U(x) and V(x, x') containing
x and x' respectively and, since (f) = f~! is an element of .(Dﬁ, it follows
that Upeu(x)‘/’(/) (p) and Upev(x,x' )x,b(f) (p) are disjoint open sets, contain-
ing ¢ (f)(x) and ¥ (f)(x"), respectively. By repeating this process for all x €
f(4), we observe that {Upeu(x)l/’(f)(p)lx € f(A)} is an open cover of A and
since A is compact there exist x, ---, x  elements of f(A) such that

U ] = l(Up EU(x )'ﬁ(/)(P)) D) A. But

a V) ¢(/)(p)> > () x)

j=1 peV(xl.,x')

and
U U vl nlN U vl =9
j=1 PGU(xj) j=1 p€V(x].,x')

This implies that no point of (f)(x') is in A, for each x' € (X — W). There-
fore, Y (f) € (X —W, 7, 2) if X is T,

Now assume Y is T,. Then A = A since A is compact, and thus
X-w,t v = =X-wt Yo A) But x €(X — W) implies that x £ f(A), which implies

(7) It is essentially shown in [5] that Y(f) is continuous if and only if f is open and
closed (where the notation f~ * is used instead of our Y(f)).
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YD NA="Ux) NA =@ Hence ¥(f) € (X —W, t—Y—A)' Therefore, if either of X
or Yis T, ¢(f) e(x-w, 1 A)

Let g €((X — W, t— A)n ) We know ¥~ (g) exists and is exactly one
element of DY Let y €A Since g(x)N A = @, for each x € (X — W), it follows
that ¥~ 1(g) (y) €W. Thus ¢~ 1(g) € (A, W) which implies that g € y((4, W) N DY)
This shows ((x — W, Z—Y NP X) Cyl(A, w) nDY) which, since ¢ is 1-1,
completes the proof that i is an open function.

@X need not be continuous.

The following example shows that i: DY

Example 2. Let X be the topologxcal space consisting of the set of all real
numbers of the form 1/, i=1, 2, - , together with 0, with the subspace topol-
ogy inherited from the reals. Let Y be the topological space consisting of the
set of all real numbers of the form 1/i, i =1, 2, -+, or of the form 2 — 1/i, i =
1,2, ..., together with 0 and 2 with the subspace topology inherited from the
reals. We note that X and Y are both compact, T2 spaces.

Define /Y =X by f(y)=y, 0<y<1,and f(y)=2- ¥, 1 <y < 2. Observe
that f is continuous, open, closed, and onto. Thus fe DY Now ¢ (f) €
((fo}, ¢ L1, 2]nY)n (\X) = U, open in fDX We will show that given any basic open

@X

set, V, of DX, containing f, there exists an element of ( — U) contained in

l,ll(V)
Let V =( n?q(Ai, W) n D% be a basic open set of D;(’ containing f.
Let M={A , 1<i<n|2 eAi},N={Ai,1_<_ign|2¢Ai}.
Let K = UA enA ;- Assume K> (. Then K is a compact subset of [0, 2)n
1

Y and hence there is an element k£ of (1,2) N Y such that if &' € K then & > k.
If K=, choose k& to be 1+ 4.

Suppose that M @. Then if A, € M, there is a half-open interval Z,; such
that 0 €Z and Z NXCW,;. Let 7 = (nA eMZ )N X and choose an element
z of Z such that z € ((0, 1) NX). If M=¢, choose z to be Y.

Let [ be the greaterof k and 2 - z and define g: ¥ — X by g(y)=/(y), y<
[, and g(y)=f(]), I <y. Clearly g is continuous, open, closed, and onto, and
hence an element of DY Also, g e(n"_l(A w)nb ) since g|U, . ;e
/IUA eN ;&) —/(y) for each y € ([0, / ] nY), and gly)e nA,eM for
each y € ([1 21 NY). However, g~1(0) = {0} and thus U(g)(0) £ ¢ Lt2dnye This
implies that y(g) £ ((fol, ¢ L1, 2]m,) n 9X ) Therefore i (g) € (ﬁx — U), and it
follows that i: DY — fDX is not continuous.

I would like to thank Dr A. R. Vobach for his valuable suggestions during
the development of this topic. I would like also to thank the referee for his aid
in simplifying the proofs and notation.
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