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HARMONIC ANALYSIS ON F-SPACES WITH A BASIS

BY

J. KUELBSO) AND V. MANDREKAR(2)

ABSTRACT.  We establish Bochner's theorem and the Levy continuity

theorem in the case that the underlying space is a real F-space with a basis, and

then examine the infinitely divisible probability measures on a class of such

spaces.

1.  Introduction.   We generalize Bochner's theorem and the Levy continuity

theorem of Fourier analysis to the case that the underlying space  E   is a real F-

space with basis and then study the infinitely divisible measures on such spaces.

This extends the results of  [2] which handles the situation where  E  is a Hilbert

space and of [3] where  E  was an  /    space, 0 < p < 00.  It is also related to the

work of V. Sazonov ([61, [7l), Yu. V. Prokhorov ([5], [61), and to the study of the

infinitely divisible measures on a separable Hilbert space which is due to S.R.S.

Varadhan in [ll].

We first establish some terminology in y 2.  In §3 we give Bochner's theorem

(Theorem 3-1) and in Corollary 3.1 we link Theorem 3.1 to the results of [2l and

[3l-  ?4 is devoted to the continuity theorem.   These results are of some interest

in themselves but it is their application to Gaussian measures and other infinite-

ly divisible laws which is of most interest to us. In fact, the proofs of Theorem

3.1 and Theorem 4.1 are much the same as those given in [3l when E = /  (2 < p < 00)

so we do not provide the details here.

In §5 we give some applications to Gaussian measures.  In particular, Theorem

5.1 characterizes the Fourier transform of a Gaussian measure, Theorem 5.2 gives

necessary and sufficient conditions in terms of the Fourier transforms for a fami-

ly of Gaussian measures to be conditionally compact, and Theorem 5.3 deals with

the convergence of Gaussian measures on  E provided, in each case, E  has what

we call Property B.  Corollaries 5.2 and 5-3 then relate these results to the case

E = I  ,  2 < p < ~.  In fact, Corollary 5-3 was previously known to N. N. Vakhania

([8], [9l).   Finally, in §6 we characterize a large class of spaces whose quasi-

norm is accessible in both directions as Orlicz spaces. This result is found in
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Theorem 6.3 and Corollary 6.2 again relates to the  /    spaces, 2 < p < oo.   In Cor-

ollary 6.3 we also have a similar characterization of those spaces with Property B.

In the last sections of the paper we study the infinitely divisible laws on

these Orlicz spaces.   In particular, §7 is devoted to the representation theorem of

the Fourier transform of an infinitely divisible law, §8 centers on the limiting be-

havior of sums of small independent random variables with values in the Orlicz

spaces, and in  §>9 we apply the results of §8 to obtain a central limit theorem.

2.   Terminology and preliminaries.  Throughout the paper, F   will denote a real

F-space with basis  \b   \.  Here, as is usual, an F-space is a   topological vector

space whose topology is given by an invariant metric, i.e.  dix, y) = dix - y, O),

which is also complete in this metric.  We will  let   ||x|| = dix, 0).   Then   || • ||  has

all the properties of a norm, except possibly homogeneity, and since F is a topo-

logical vector space it does satisfy the property that  lim   \\a   x    — ax\\ = 0 when-

ever  \a   \  is a sequence of reals converging to a  and  ix    } is a sequence in  E

converging to x.  In this case, we will refer to   | • ||   as a quasi-norm so as to

distinguish it from a norm.

Since  E  has a basis, for each x £ E  there is a unique sequence of real num-

bers  i/3   S suchthat  lim, ||x -   £    =,/3   b   || = 0, and it is easy to see that  E  is

separable.  We will write the expansion of x  as     X°° = iß   ^x^     an<^ tn's emPna"

sizes that the coefficients generate coordinate functionals on  E.  It is clear that

these coordinate functionals are linear and it is well known that they are continu-

ous as well.   Further, it is possible to assume without loss of generality (and we

do) that   ||x|| = sup^H   £ *     ßni*)bn \\.  We also make the additional assumption

that the basis elements  \b   \ ate adjusted so that  \\b   || < 1  (this is always possi-

ble).  In case   || • ||   is actually a norm and F  is then a Banach space we can and

will assume  \\b   || = 1  for n'= 1, 2, •••   .

As usual  F*   will denote the space of continuous linear functionals on F.

Then  E*   is a linear space and the  F  topology on  F*, i.e, the weak-star topology,

is the topology obtained by taking as a base all sets of the form  Nif, A, e) =

ig: |/(x) - g(x)| < e, x e A\ where / £ E*,  A   is a finite subset of F, and e > 0.

If x £ F we will define, for N = 1, 2, • • •,

N °°

PN* =   Z ßk^bk'       Qnx =     Z   ßk^bk>
k = l k=N+l

and for y £ F*, N = 1, 2, • • • , we define

N

k=i
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Lemma 2.1.   The set    U w = i   ^N^*^  zs dense in E*  with respect to the  E

topology on  E  .   In fact, if y £ E* .there exists a sequence \yN\  in  E*  such

that  \yN \ converges to  y   in the  E  topology on  E*.

Proof.  Suppose y £ E*.   Then for x £ E  we have by the continuity of y that

yW=   E? = i.V*>y(*A>-  Put^N=   Z*=i/V ■>?(*.*).  ThenyN£PNiE*) fot
N = 1, 2, • • •   and  ly^ ¡ converges to y  in the  E  topology on  E*, so the lemma

follows.

The vector space of all sequences of real numbers with the topology of co-

ordinatewise convergence is denoted by  /.  The subset of  / consisting of all

bounded sequences will be denoted by  /     and  /      will symbolize the positive

cone of  /    , i.e.  x = \x . \ £ I + iff x . > 0  for each  z  and x £ I    .   For  0 < p < <x  we

let  /    denote  the  subset  of / consisting  of all sequences which have   ||x|| =

Í   Z°° = 1 \X¡\P I finite where  x = \x. \.  Thus, for  1 < p < oo, we have   || • ||   as

the usual norm for /   , and for  0 < p < 1,  || • \\p generates an invariant metric un-

der which  /    is an   F-space.  The positive cone of  /    will be denoted by  /   .

3.  Bochner's theorem on  E.   Let p be a probability measure on the Borel

subsets of E  where by Borel sets we mean the minimal sigma-algebra containing

the open sets.  Then the Fourier transform of p  is a complex-valued function <f>

defined on E    (the topological dual of E) satisfying <p ix) = /Eexpiz'(x, y )\duiy)

where  (x, y)= x(y).

If we let 3*  denote the algebra of cylinder sets, i.e. sets of the form  i y £ E :

[ix l, y) , • ■ • Ax   .y)]£A! where x   , ■ • • , xn e E*   and  A is a Borel subset

of  R   , and  $(!?)  the minimal sigma-algebra containing A, then it is easy to see

that  </> uniquely determines  ¡i on  ®(3").  Now  iB(?)  is contained in the Borel

subsets of E  and since  E     is a complete separable metric space it is known

that they actually coincide.  Hence there is a one-to-one correspondence between

probability measures on the Borel subsets of E  and their Fourier transforms. To

simplify many subsequent statements in the remainder of the paper we assume

that all measures are defined on the Borel subsets of  E.

If À 6 /      and  1/x   :   & £ A \ is a family of probability measures on  E  such

that

ioo \

x^--  E AA[j3fc(x)l2<~j = l(3.1) Ha ;

for each  a £ A, we say  k is sufficient for the family  \p.   : a £ A \.  In other words,

the map x —» ( ^k. ß . ix), yÀ7/3   (x), ■••)   is an  /^-valued random variable for

each  a  .
"a
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If for each y e E we have sup \ß (y)| < oo, it then follows that any À £ /

is sufficient for any family of   probability measures on  F.

A family of probability measures ip : a £ A\ on F is a X-family for some

À £ /      if À is sufficient for  \iia: a £ A S  and for every e, 8 > 0  there is a sequence

\eN \  such that

VaXxiE--       Z      VrV*)]2 < 4 > 1
( k=N + \ )

implies

plx eE: Z ßk^h
k=N+l

< hiS)\  > 1 - ie + eN)

where  lim., f., = 0 and  h is a strictly increasing continuous function on  [0, oo)

with  biO) = 0.

It is quite clear that any family of probability measures on a real separable

Hubert space is a A-family with  À = ( 1, 1, • • • )  and  h (S) = 8    .

Lemma 3.1.  // ip  : a £ A}  is a conditionally compact set of probability mea-

sures on E  then  \ßa: a £ A i  is a X-family for every  À £ / +   which is sufficient

for \ua: a £ A|.

Proof.   Let e, 8 > 0 be given and choose  À £ /      such that  À is sufficient
£> oo

for ip  : a £ A!. Since ip  : a e A\ is conditionally compact there exists a com-

pact set    K  in  E  such that p (K) > 1 — e for each  a £ A.  Hence there exist

points  p      ••• , pT e K such that if Sip, y) = \x £ F: ||x - p\\ <  y\  then  K Ç

Uj=lSip.,8/3).
Now select  N  suchthat  ||   Z^=N+1 ßk^P?bk H < S/3  for  * = l>-"> T-

Then fot x e K we have   ||x - p . || < 8/3 for some  p . and hence

Z ßk^\
fe=zV+l

Z      ßk^h-       Z     *W*,
k= N+l k=N+l

Z     ¿W*A
k=N +1

<   II* - P,ll  + Z [^w - /wi*J
fe=i

+ 5/3 < 8

since  ||x - p ,|| = supN || £ t »i[j8*W _ A^Pp^J- Thus there exists an N such tnat

for each a £ A

fza   x£E:

ife=N+l

so clearly  ip  : a £ A ! is a A-family.

Z ßk^bk <8\ > 1
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Now let a( • )  be a convex function on [0, °°)  such that  a(0) = 0 and  a(s) >

0 if s > 0.   Further, assume for every compact set  K of E  there exists an r > 0

such that y £ K implies  Aiy) = Z °°= i a[ß} Ml < r' anc* ^or every r > 0 there

exists  M > 0 such that A (y) < r implies    Z 7=1 ^ßz^Ml < Myi \\y\\) where y( • )

is another continuous function on  [0, oo)  such that y(0) = 0.   If the quasi-norm

|| • ||   on  E  admits the existence of functions  a( • )  and  y( • )  having the above

properties we will say that it is accessible.  We also note that if a( • )  and

y( • )  satisfy the conditions indicated then  a( . )  is continuous and strictly in-

creasing on [0, oo),  yis) > 0 for s > 0, and that  y( • )  can be taken to be increas-

ing on  [0, oo).  We note that the accessibility of the quasi-norm on  E  implies

that the map y —► iß   (y), ßAy), • • •)  is continuous from the compact subsets of

E  into the (topological) subspace  /    of  / consisting of those sequences  x = ¡x . j

for which 2j°° = 1Q-(-'c¿)  is finite.   Under additional conditions on  a this subspace

becomes an Orlicz space (cf. §6).

We now provide some examples of spaces which have an accessible norm.

First of all notice that the  /    spaces, 2 < p < oo, have an accessible norm with

a(s) = sp'2  and  yis) = sp.  Similarly, if E = /      1 < p < 2, then  E  has an acces-

sible norm with  a(s) = s  and yis) = s 2; if  E = I ,  0 < p < 1, then  £  has an

accessible quasi-norm with  ais) = s  and yis) = s   'p . For an example of a space

with accessible norm which is i

real sequences  \x .} with norm

12/7(1+;)

with accessible norm which is not an  /    space, consider the Banach space  E  of

i«,ill -2
7 = 1 i=2

Z M('+l)/'

Here  ßAx) = x ., thus if a(s) = s  we have

ItâWzlfï-I* t A
7 = 1

2 = 2'

il
7 = 1

1(7+1)/;
27/(1+7)

Hence  E  has an accessible norm if  As) = s  and  yis) = s2.  Other similar examples

follow immediately.   For examples of a different type consider those in §6.

If the quasi-norm on  E   is accessible then by the  r -topology  we will mean

the  topology  on   E*  generated by taking as a subbase all translates of sets of the



118 J. KUELBS AND V. MANDREKAR [JuIy

form \x £ E*: T(x, x) < 1 \ as   T( • , • )  varies over the symmetric, positive def-

inite,  bilinear forms on  E*  which are jointly weak-star sequentially continuous

on  F*  and satisfying     £ ~ = ̂ it kk ) < oo  where  tkk=Tißk,ßk).   Bilinear forms

having the above properties will be called a-operators.   In view of Lemma 2.1

and the bilinearity it is easy to see that  T is uniquely determined by  /.. =

Tiß.,ß.),  i,j= 1, 2, ...   .

Lemma 3.2.  The sets \x e E* : T ix, x) <\\ and all translates form a basis

¡or the   t -topology as  T( • , • )  ranges over the  a-operators.

The proof of Lemma 3.2 follows in a standard manner and hence is omitted.

The classical version of Bochner's theorem asserts that a function  c/>(x),

x £ R   , is the Fourier transform of some probability measure on  R    iff <p is posi-
n "

tive definite, c/>(0) = 1, and  cp is continuous at zero.  In a real separable Hubert

space  tí it is possible to introduce a topology    r (which is determined by certain

compact operators) such that a function  <p on  H    = tí is the Fourier transform of

some probability measure on H iff r/> is positive definite, (piO) = 1, and  <p is con-

tinuous at zero in the r-topology.  The Hubert space result is due independently

to  L. Gross  [21 and to V. Sazonov's earlier work [6].  In [3] the work of [2] and

[6]  is generalized to the  /     spaces.  Here we will give a Bochner-type theorem in

case  F  has an accessible quasi-norm.  Its proof is much like that of Theorem 2.3

of [3] and involves analogues of Lemmas 2.3 and 2.4 of [3].  Due to these simi-

larities the proof of Theorem 3-1 will not be included.   However, the formulation

of this theorem provided us with some interesting questions and corollaries and

it is these that we begin to examine in the following sections.

Theorem 3.1-   // F  has an accessible quasi-norm then a function  <f> on E

is the Fourier transform of a probability measure  iff

(i) rp(0) = 1, (¡j is positive definite,

(ii) <p is continuous in the t -topology,

(iii) the family of measures  \p    \ corresponding to  <f>iPNi • )) has a sub-

sequence which is a\-jamily for some  À £ /      satisfying   lim,    Y. °°_, \.t.. = 0

whenever 2j^°-, O-it ■■) < 00.  Here  a( . ), of course, is the function associated

with the accessibility of the quasi-norm.

If E = I      2 < p < 00, then a linear operator  T from  /*   into  /    is an S   -op-

erator if T can be represented as an infinite symmetric positive-definite matrix

it..) such that   ¿j°°j-. tpJ.    < 00.  Here, by positive definite, we mean that

Y/i   ■ = iiax -x ■ > 0 f°r a^ x e R     and all integers  n.  The r-topology on   /*  is

that topology generated by taking as a subbase all translates of all sets of the

form ix £ /   :   \ Tx, x ) < l| as   T varies over the S   -operators.  In view of Lemmi

3.2, it is easy to see that such sets actually form a basis.   Furthermore, our next
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lemma identifies the  r   -topology in terms of a  ra-topology.   Its proof is direct and

hence is omitted.

Lemma 3-3-   // E = /   , 2 < p < oo, then the norm of E  is accessible with

ais) = sp'    , yis) = sp and the   r -topology on  E* is equivalent to the  r  -topology.

Corollary 3.1.  if E = /   , 2 < p < oo, and cf> is defined on I*  then (ß is the

Fourier transform of a probability measure on I   iff

(1) ¿>(0) = 1, é> is positive definite,

(2) (ß is  r   -continuous,

(3) the family of measures  \p    \ corresponding to \<f)(PNi • ))\ is a k-family

for some  k £ I* ,~ ■' P12

Proof.  The sufficiency of (1), (2), (3) follows immediately from Theorem 3-1

and the previous lemma since  k € I    ,.   implies     /, °° _ , kt.. < oo  for all  |¡..|
r p/2 r tJ   Z   - 1      2     22 22

satisfying  Z^i'-      < °°-   Conversely, if cS is the Fourier transform on  / P of a

probability measure on  /    then Theorem 3-1 and the previous lemma imply (1), (2)

easily and (3) will also hold for every  A £ l*p/2  since  ^/v '  is conditionally com-

pact and Lemma 3-1 applies.

4.  The continuity theorem.  Suppose  / is the space of all real sequences with

the topology of coordinatewise convergence and  P   ( • )  is the product probability

on  / such that the   zth   coordinate is Gaussian with mean zero and variance k- >

0.  If p is a measure on  E  we choose  k £ IM  so that  k is sufficient for ¡i (such

a  k always exists if  supn \ß   iy)\ < oo  for all y £ E), and for x £ I we define a

"stochastic linear functional" on  E  in the following manner:

N

{x, y)   =lim  Jx^(y).

Throughout this section we assume that   sup   \ß   (y)| < oo  for all y £ E.  In case

E  is a Banach space this is not an additional assumption.

Lemma 4.1.   The stochastic linear functional (x, y) = lim..  ¿, l -,x ,ß,iy)  is

Borel measurable on  I x E  and if F = \ ix, y): (x, y ) exists and is finite] then

(Pxx//)(F)= 1.

The proof of Lemma 4.1 is similar to that of Lemma 3.1 in [3] and, for that

reason, is omitted.

If p is a measure on the Borel subsets of E  we define the extended Fourier

transform  cf>i • ) on  / as follows:

<hix) =   I    exp\i{x, y)\dpiy)       ix £ I).
JE
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Then  c/>( • )  is a Borel measurable function on  / which is defined almost every-

where with respect to the measure   P. .  Furthermore, since each x e E    generates

the unique sequence of real numbers  x = ix (¿>.), x ib .), • • • !,  we may consider

E *  as a linear subset of I,  and hence the terminology extended Fourier transform,

since for x £ E*, ef>ix) = <p(x).

Theorem 4.1.   Let  \p, \ be a sequence of probability measures on  E  with

Fourier transforms  ir/)., }.   Then  \p, \ converges weakly to a measure  p with

Fourier transform <fj iff ip   \ is a X-family for some X e I     which is also sufficient

for p,  í</>, i converges to <f> on a subset of E*  which is dense in  E*  with respect

to weak-star sequential convergence, and i</>   ¡ converges in  P.   measure to <f>.

Here again our proof parallels that of Theorem 5.1 of [3] and can be carried

out in an analogous manner with appropiate changes in this context.  Hence it is

omitted.   It should be mentioned, however, that the above result generalizes

Theorem 5.1  of [3l where F = /      2 < p < oo. However, it is not quite equivalent to the

result of L. Gross (the case E = /   ) but, as the results in §4 of [3l indicate, it is

the great symmetry of Hubert space which enables the improved version in [2].

The next corollary is well known and in view of Lemma 3.1 is an immediate

corollary to Theorem 4.1.

Corollary 4.1.  Let  ip, ! be a sequence of probability measures on  E with

Fourier transforms  ¡<p, }.   Then  \p, \ converges weakly to a measure p iff \p   \ is

conditionally compact and i</>, } converges on a subset of E*  which is dense in

E    with respect to weak-star sequential convergence.   Further, the Fourier trans-

form of p  is rp= Emrp¿ on E*.

5.   Application to Gaussian measures.   A probability measure p on  F  is a

Gaussian measure with mean vector a £ F  if the distribution of the function

(y, x) is Gaussian with mean (y, a) for each y £ E*.

For example, if it..) is a positive definite, symmetric matrix satisfying

¿j°?=.t- ■    < oo and F  is a Banach space with basis  \b   !, then there exists a

unique Gaussian measure  p with mean zero on  E  such that

'.•; = LßiMßM)M*)      (z. y=i,2,.-.).'J      JE I

Further, the Fourier transform of  p is tp(x) = exp! - l/2 (Tx, x) \ where  T =

it..) maps  E    onto E  in such a manner that for x £ F*

(5.1) r*=£
! = 1

Y. t. xib : b..
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To see that  Tx £ E  simply observe that

Z Zig<
2=1   7=1

£<,'/
/2

2"

í=l

<oo

and use the fact that  E  is a Banach space with basis.

Suppose E has an accessible quasi-norm. Then, if E* is such that the se-

quence ix } converging to x in the E topology on E implies sup .|x ib .)| <

oo, we will say  E  has Property A.

It is easy to see from the uniform boundedness  principle that if E   is a

Banach space with accessible norm then  E  has property A.   Hence the examples

of §3 all have Property A.

Lemma 5.1.  If E has Property A and \u A £ I    is such that   2j°°_   a(zz.) < oo,

then  U ix, y) = ¿j00 =   u .xib ,)yib .)  is an  a-operator on E*  and Uix, x) = 0iff x = 0.

The proof of Lemma 5.1 is immediate and hence is omitted.

Lemma 5.2. // E  has Property A and p. is a Gaussian measure on  E with

mean  a    then the Fourier transform of p is  exp! i(x, a)— %T(x, x)\ where

T( •, • )  is an a-operator on E     suchthat   Tiß ., ß .) = fFß.(x - a) ß.(x-a)dp(x)

for i, /'= 1, 2, ••• .

Proof.  Let  cpix)  denote the Fourier transform of p.  By Theorem 3.1, 4>i • )

is   t -continuous and also weak-star sequentially continuous (it is a Fourier trans-

form).  Hence

cßix) = lim (f>iPNx) = lim  exp ] i < P^x, a ) - V    s    x(b )xibk)

N N { 2    ,%x   '        '

where  P Nix) =  Z f = , j8y( • )xib.)  and s jk = fE ß.iy - a)ßk (y - a) dpiy).  Thus
N

Six, x) = lim     >     s..xib)xib)
t-1      ''      '        i

N     i, 7=1

exists for all x £ E  .  We define for x, y £ E

N

Six, y) = lim    /,   s . xib )yib.).
*—*        l] 2 7

N   l. 7 = 1

Since it equals  V7[S ix + y, x + y) - Six, x) - S (y, y)], Six, y) now exists for all

x, y £ E  .   Further, as is easily seen from the definition, 5( • , • )  is bilinear on

E   .  We now will show 5( • , • )  is an  a-operator and the proof is then completed

by setting  T = S.  Since  cpix) = exp 1 - l4S(x, x)\ is  ^-continuous there exists

an a-operator  V such that  Vix, x) < 1  implies  Six, x) < r < 1. We can (and do)

assume   Vix, x) > 0 for all x  ^   0 (possible by previous lemma).   If Viy      yQ) =
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c 2 > 0 then  ViyQ/c, yQ /c) =1   so S (y Q /c, y Q /c) < e and S (y Q , y Q) < ec 2 =

fV(y0, y0).  Thus s.. = Sißr ß.) <eVißp ß.) = ev.. < v.. so a(s..) < a(v..)

since a( • ) is increasing.  Thus   2j°° = i a(s •■)<   L¡°? = iaiv ■ ■) < °° as  V is an

a-operator.  The remaining properties of an a-operator are easily seen to hold for

Si • , ■). For example,

</>(%) = expiz'(x, a)  -lA Six, x)\

is ra-continuous on E*  and since  expiz (x, a ) \ is   ^-continuous it follows that

Six, x)  is  t -continuous.   Hence the lemma holds.

Lemma 5.3-   If F  has Property A and \pN \ is a sequence of Gaussian mea-

sures with mean vectors  \a    \ such that \pN \ converges weakly to p, then  p is

Gaussian with mean a = lim,,a., and
N    N

oo

(5-2) limVa(|;N-/..l) = 0

7 = 1

where  Í* =JEßj(*-*N) dpN ix),  t.. = fE ßj ix - a) dpix) for / = 1, 2, • •• .

Proof.   For each measure pN we define the measure  vNiA) = pN( - A)  and

corresponding to p we define the measure  viA) = pi — A).  Here, of course,  A

varies over the Borel subsets of  F.  Then  \vN \ converges weakly to v.  Now  p

has Fourier transform expiz'\x, aN) — ViTNix, x)\ where  TN  is an a-operator

on  F*   suchthat  TN iß ., ß.) = /g ß.ix - a)ßAx - a) dpNix)  fot  i, j = 1, 2, ■ • • ,

and hence  vN    has Fourier transform expiz (x, - ««)- V2TNix, x)\.  Thus the se-

quence   of   convolution   measures   ip^ * vN \    has   Fourier   transforms

exp i - T Nix, x)\ and, furthermore, they converge weakly to  p * v since  \pN I

and  \vN \ converge weakly to  p and  v.  If T^ÍA) = ipN * vN)i\J2A)  for zV =

1, 2, • ••   and  r(A) = ip * v)i-\/2A) fot Borel sets  A   in  F  then  \YN \ converges

weakly to T and the Fourier transform of  YN is  exp i - í^F^íx, x)¡.  If  S     is

the measure which places mass one at a     then pN = SN * YN and since both

u., I and \pN \ converge weakly to  Y and  p this implies  \8N } converges weak-

ly to the measure  S with unit mass at a = lim.,0., .  To see this last assertion

observe that for every e > 0 there exists a compact set  K in  F  such that pNiK) >

1 -e and rN(K) > 1 -e for  N = I, 2, ■■■ .  Thus

1 - e < pNiK) = JE0NiK - x)di>Nix)

<fK8NiK-x)dvNix) + e

and hence there exists an x    e K such that  8N (K - x    ) > 1 - 2e.  If e < Vi this

implies  a     e K — x     and hence we find the sequence  \a    j  lies in the set of
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differences  C = \x - y: x, y £ K\.  Now  C  is compact, thus  \aN } is conditionally

compact and since  {pN \ converges to p we must have only one limit point for

la \.  Thus  lim,,zz    = a exists and   \8N \ converges weakly to  <5, as asserted.

Since  lim ..a,, = a  exists it now follows that p is a Gaussian measure (pos-

sibly   degenerate)   with   mean   a   and   hence   it   has   Fourier   transform

explz(%, a) — V2Tix, x)\ where  T is an a-operator on  E*   suchthat

Tiß., ß.) = t.. = fEß.Uc - a)ß.ix - a)dpix)       U, ; = 1, 2, . . • ).

To complete the proof we need only verify (5.2).  Now  \YN \ converges weakly to

T, thus for every e > 0 there is a compact set  K such that YNiK) > 1 - e/2  for

N = 1, 2, • • •   and hence

(5.3)

1 - expl- V2TNix, x)}= fE[l - cos(x, y)]dYNiy)

<T¡K{x-y}2drN{y)+<-

Let SN(x, x) = lAfK(x, y)2dYNiy) for N = 1, 2, • • • .  Since  t/2 < 1 - e~l,  0<

t < 1,  (5.3) implies lATNix, x) < SNix, x) + e provided TNix, x) < 2.  However,

if TN ix, x) = c 2 > 0 then % TN (x/c, x/c) = ]/4 < SN ix/c, x/c) + e < 2SN (x/c, x/c)

provided e < 1/8.  Thus TN(x, x) < 8SNix, x) for all x £ E*.  Hence

ñ = TNiß., ß.) < 8SN{ß., ß) = 4¿ ß2iy)dYNiy) = ¡Kß2i2y)dYNiy)

for N, j = l, 2, • - •  and we therefore find, since  a is convex and the quasi-norm

is accessible, that

l^'Pll JK*[/3;2(2y)MN(y)
7=1 7=1

OO

= fKZa\ß*(2y)]drN(y)

< JKMy(||2y ||)2zTN(y)

where  M depends only on  K and not  N.  That is, since   K is compact there exists

an  r > 0 such that Z°° = 1 a[/32(2y)l <r for all y £ K, and hence there exists an

M > 0  such that y £ K implies

Z    a[,3;2(2y)]< A.y(||eL(2y)||).
; = L+1

Here  M depends only on  K through our choice of r and not on L.  We then have
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sup  Z     aitp<supfK   £     a[ßH2y)]dYNiy)
;=L+1 ; = L+1

<suPAl/Ky(||eL(2y)||)¿rw(y)

and as  L  approaches infinity  y(||0 , (2y)||)  tends to zero on  K boundedly, i.e.

y(||0L(2y)||)<y(suPyfK2||2y||)<oo, thus

OO

lim sup     T   a(rN.) = 0.

L    N     .   fJ,        "1 = L+1

We then have the conclusion (5-3) because  lim^i .. = /.. for / = 1, 2, • • •     and

hence for every e > 0 and integer  L  there exists  N  sufficiently large such that

oo oo

Va(|íN.-í..|)< í+ Yai\tN.-t..\)
7 = 1 i=L

(5.4)
OO oo

< <+ Z a{tP+ Z a{tt?-
7=L ,=L

Now  limL  ¿J00 _Lait..) = 0 since T is an a-operator and limLsupN L °°=Lail y y) =

0  by previous remarks, so (5.4) implies (5.2).

An F-space  E  has an accessible quasi-norm in both directions if there exist

functions  a, y   , y    such that  E  has an accessible quasi-norm with respect to

a and y    and, for every  y £ F, y   (||y||) <   Z'X3=, aiß2iy))-  Here  y2( • )  is an in-

creasing continuous function on  [0, <x>)  such that  y   (0) =  0,  y. (s) > 0   for s > 0,

and  y   , a satisfy the conditions required in the definition of an accessible quasi-

norm.  Geometrically, the above inequality implies that the inverse of the map

y —► iß.iy), ßAy), ••• )  is continuous from the Orlicz space   related to  ¡a into

E  under additional conditions (cf. (6.3)) on a.

Let  E  be a real separable F-space having an accessible quasi-norm in both

directions.   Then  E  has Property B provided E  has Property A and there is a

constant M > 0 satisfying

f"0    aiu2)dviu) <  Ma   f°°   k2czV(h)
J — oo \J — oo J

for all Gaussian measures  jy on  ( — oo, oo)  with mean zero.

Lemma 5.4..LeZ E eaz^e Property B and suppose T is an a-operator on E .

Then </>(x) = exp i — ViTix, x)\ is the Fourier transform of a Gaussian measure p

on  E.  Further, Tißt,   ß.) = fE ß{iy)ß ¡iy) dpiy) for  z, / = 1, 2, • •• .

Proof.  Let pN denote the Gaussian measure on  F  corresponding to the
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Fourier transform    exp { - V2TiP   x, P    x)\ for N = 1, 2, •••   .  We show \p    \ is

conditionally compact and hence, by Corollary 4.1, \pN I converges to the measure

p with Fourier transform  cbix).   Let e, 8 > 0.  Then

p-N\y- \\QL(y)\\ >s\ = pN\y. yi(|!2L(y)!|) > Yli8)\

< %|y:   Z ̂ ß)h))> yM
00    _ -. 00

7 = L+1       L J Yl^l   ; = L+1

However, tN. = fEß2iy)dpNiy) = t.. for / = 1, • • • , N and tN. = 0 for ; > N, thus

(iNly: ||ö,(y)|| >8\<e   foi N = 1, 2, • • *  provided  L  is sufficiently large.   Pro-

ceeding with standard techniques (see, for example, Lemma 2.4 of [5l) we see [pN ! is

conditionally compact.  As remarked previously, Corollary 4.1 now implies  !^„ !

converges weakly to a measure  p with Fourier transform  c6(x), and this completes

the proof.

In view of Lemma 3.1 it is easy to see that Theorem 3.1 also easily applies

to the previous lemma.

Theorem 5.1.   If E  has Property B then p is a Gaussian measure with mean

a iff the Fourier transform of p is

cpix) = expiz'(x, a)- ViTix, x)\

where  T is the a-operator on  E*  satisfying Tiß., ß) = JF ß-iy - «)/3(y - a)dpiy)

for i, j = 1, 2, • • • .

Proof.  Combine Lemmas 5.2 and 5.4.

Theorem 5.2.  If E has Property B and \p     : k £ A\ is a family of Gaussian

measures with means a .   and Fourier transforms

r/>x(x) = explz (x, a¿- Y2Txix, x)\

then \p   : k £ A ! is conditionally compact  iff

(1) \a   : k £ A\  is conditionally compact in E;

(2) the family {<£>APNx): À e Ai  z's equicontinuous on  PNE* for N = 1, 2,

(3) limLsuPxZ7=L + la(^.)=0.

Proof.   If \p   : k £ AS  is conditionally compact then every sequence in

\p ,: k £ A\ has a weakly convergent subsequence.  Consequently, by Lemma 5-3,

(1) holds and (2) follows since  j^t    N: k £ A \ is conditionally compact for N =
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1, 2, • • • .  Now if lim. sup,    ¿j°?-, +, ait • •) = r > 0 then there exists  À      À, ,

• •■ suchthat     Z"";:/ +,a(c.) > r/2  for ail   L <k.  However, the sequence of mea-

sures  {ix .     S  has a convergent subsequence, so assuming  lii ,     i  itself converges

weakly to a measure p we have by Lemma 5.3 that

(5.5) lim 2a(|í;./-í,.7.|) = 0
7=1

where  z*.. = fR ß2iy - a)dpiy) fot j = 1, 2, • • •   .   Thus

Z  a(cfe)<     Z  <*[/..+ |/X*_/..|]
¿-I 77      —        ¿-J 77 '   77 771

7 = L+1 ;=L+1

(5.6)
OO OO    '

4 Z-<2c;)4 z *öi#-g>
; = L + 1 7=L+1

where the last inequality follows since  a( . )  is convex on  [0, oo).  Now since  E

has an accessible quasi-norm in both directions we have, given y £ E, that there

exists   M > 0 suchthat y jíHyll) <   £°° = i a[ß2 iy)] < My 2 i\\y\\)  and also that

yMJïn) <  Z7=1 a[2ß2 iy)] < MyA\\^2y\\).\e now show that  Z%Mt41) < oo

implies     L°°-,ai2t..) < oo.   Let s    =   £"     z -¿è . for n = 1, 2, • • • .   Thenr " ; -1 ;; n       "j -1   77   7 '

|i    1   is   a   Cauchy   sequence   in   E.   That   is,   if   zz > &   then   ||s    — s, || =

«Z^^-ll-
Now  yi(||sn-sJ|)<   Y,°° = laiß2isn-sk)) and since  ß2 is n - sfe) = t..

for *+l</'<» we have y, (||s„ - s J|) < £?=A + ia(*j7), and ¿~=1 a(z\.) < oo

along with the properties of y implies lim , ||s - s,|| = 0. Thus {s } conver-

ges to a vector s  and {y^s    }  converges to y2s  so

oo oo

Z a(2c.) = Z a(2/3;2(s)) < Afy2(||V2s||) < oo

7=1 7=1

for some constant  M > 0.  We now verify that (5.5) implies
oo

(5.7) lim Z «ÖI*«  - '«D = °-
fe   7=1

By the above argument the vectors  v, =     ¿_, !°_   |z .. - t ..\    b . converge to zero

since  y,(||zv||)<   ¿j°° =,ai\t ■■ - t .-\)  and (5.5) implies this last term goes to

zero as  k goes to infinity.   Thus the sequence  \\j2v, 1 also converges to zero,

and hence

i 7, aU|r~. - t..\) < M limy?(||V^t||) = U
k

0< lim Z a(2|r*\ - î..|)< M limy2(||V2f J) = 0
2 = 1

for some constant M, so (5.7) holds.  Applying (5.7) and    ¿j °°     a(2t..) < °° to

(5.6) we see
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lim sup     y   a(r'.*') = 0.
r       L        ^ "

7 = L+1

This contradicts    Cj°°_, .,a(f .*) > r/2   for all  L < k and hence (3) holds.
7   -L +1 77 —

For the converse assume (1), (2), (3) hold.   Let  e, 8 > 0.  Then

(5.8)

Z ß^y)b,
;=l+i

>4 =pAiy:y1(||eLy||)>y1(S)i

H

> = PAiy: y A

(      7 = L+1 ) YA°> 7 = L + 1

Thus by (3) we have for L sufficiently large that p> iy: ||2 i y II > Si < e for all

À £ A. Now arguing as indicated in Lemma 5.4 we see (5.8) and condition (2)

implies   ip,: À £ A!   is conditionally compact, so the theorem is proved.

Theorem 5.3-  // F  has Property B and \p   \  is a sequence of Gaussian mea-

sures with mean vectors  \a, } and Fourier transforms

4>kix) = expiz\x, ak) - V2Tkix, x)\,

then   ip. I converges weakly to a measure p iff

(i) limferpfe(x)  exists on JJ^=1PN(E*),

(ii)lim,„   Z7 = ia(|^.-^.|)=0.
Further, the measure  p is Gaussian with mean a = lima,   and Fourier transform

<p(x) = exp{z'<x, a) - ^T(x, x)¡ where t.. = Tiß{, ß.) = fEß.{y - a)ßi^y - a)dpiy) for

i, /'= 1, 2, ••• .

The proof of Theorem 5.3 follows directly by using Lemma 5.3 and the tech-

niques employed in the proof of Theorem 5.2, so it is omitted.

Corollary 5.1.  // E  has Property B and p is a measure on  E such that every

linear functional on  E has a Gaussian distribution, then there exists a vector a

in E such that a  is the mean of p,  i.e.    fF x(y) dpiy) = x (a) ¡or every x e E*.

Proof.  Since  p   N  is a Gaussian measure on  PNiE) with mean a„  in

P    (F)  for N = 1, 2, •• •,  and  ip   N \ converges to p, it follows from Theorem

5.3 that a = lim ..a,, exists and the corollary follows.

As a result of Corollary 5.1 we find that in our definition of a Gaussian mea-

sure on F we need not assume that a mean vector a exists provided E has Prop-

erty B.

If E = I    and y = (y v y     • • • )  then as is usual ß Ay) = y ■ tot j = 1, 2, •- • .
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Corollary 5-2.   // E = /   ,   2 < p < oo, aW \p, \  is a sequence of Gaussian

probability   measures   on    I      with   mean   vectors     \a,\   and   t. .  =
c J p k l J

¡Eßi^y ~ ak) ßjb ~ ak)cirLk^ for  '* /» *= 1» 2, ••• , then  \pk \ converges weak-

ly to a measure p iff

(1) lim,a,   exists;

(2) lim, r. . exists for i, j  = 1, 2, •• •;

(3) lim,   " 1,°°-, \tk.-tn.\p/2 = 0.w/ k,n    **j -1 I  j)        77 I

Furthermore, p is then the Gaussian measure with mean a = lim, a,   íizj¿ satisfy-

i"g  lij = SEßiiy - ")ß.iy - a)dpiy) for  i, j, = 1, 2, ■ ■ ■ .

Proof.   This follows from Theorem 5.3 since if F = /   , 2 < p < oo, then  E

has Property B.  To see this let   a(s) = sp'2 and y As) = y As) = s*\  Then  /

has an accessible norm in both directions with respect to a, y     y      Further, for

every Gaussian measure  v on  ( — oo, oo)  with mean zero we have

/oo /.oo I  /" oo

a(s2)^(s)=f      \s\p dvis) = Ma j       s2dvis)
— oo J — oo 1^  — oo

where  M = T((p + l)/2)[r(3/2)1_?' 2n ^p~ l '' 2 and since   /    is a Banach space we

see  /    has Property A.  Combining these we find that  /    has Property B and that

conditions (1), (2), and (3) are equivalent to conditions (i) and (ii) of Theorem

5.3-   Thus the corollary is proved.

It should also be mentioned that (1), (2), (3) are sufficient for  ip, !  to con-

verge weakly if  1 < p < 2.  The necessity in this case is unknown.

Corollary 5.3.   // F = /      2 < p < oo, then

óix) = expiz'(x, a) - VATx, x)\       (x £ E*)

is the Fourier transform of a Gaussian measure on E iff a € E and T  is an S

operator.

Proof.  Combine Corollary 5.2 and the ideas used in the proof of Corollary 5.3-

6.  As pointed out in the proof of Corollary 5.2 the   Ip spaces, 2 < p < oo,

each have Property B.  It is natural to ask if other spaces have it, or, for that

matter, if there are other spaces, which have a quasi-norm which is accessible in

both directions.  In this section we characterize all possible spaces with quasi-

norm accessible in both directions provided the function a( . )  used in the defini-

tion of an accessible quasi-norm satisfies the additional condition

(6-!) a(2s)<Ma(s)

for all s > 0 and some  M < oo.  This result is found in Theorem 6.3-   Furthermore,

if, in addition to (6.1), there is a constant  C   such that
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f°°   aiu2)duiu)< Ca\Ç(6.2) f      aiu2)dviu)<Ca\\       ul dviu)

for all Gaussian measures  v on ( - oo, oo) with mean zero, then our characteriza-

tion applies to spaces with Property B.  Throughout this section  a( • )  will al-

ways have the usual properties required in the definition of accessibility as well

as (6.1).  Condition (6.2) will be used only in connection with Property B.

Since a( • ) is convex we have for a, b > 0 that a(a + b) < %[ai2a) + a{2b)]

and by (6.1) we find

(6.3) aia + b) < iM/2) [aia) + aib)].

Now we define Ea as the space of real sequences satisfying ¿j°? = .aiy2) < oo.

Using (6.3) it follows that E is a vector space over the reals. If x, y £ E we

define
oo

<6-4> Jix. y)=  Yaiix.-y.)2).
i—t I I

2 = 1

Then  / (x, y) is invariant under translations and we denote by ba all subsets

G of Eax Ea such that there exists an r > 0 with the property that  / (x, y) < r

implies  (x, y) £ G.  Then  §a is a uniformity for £    [4, p. 1761 and the topology T

of the uniformity  §a consists of the family of subsets A  of  E    such that for each

x £ A  there is a G £ §a such that {y: (x, y) eGlC/1. Now the subfamily 8   =

{G., G,, •• • } of §a where  Gn = 1 (x, y): / (x, y) < l/M for n = 1, 2, • • •   is a

countable symmetric base  for  §a and since  / (x, y) > 0 for x  / y  it follows that

the topology  r is Hausdorff.  Hence the metrization theorem [4, p. 1851 tell us

that  (E   , r)  is metrizable.

In fact, using the proof and the notation employed in the metrization   theorem

we will show that there exists an invariant metric  ¿( •, • ) on £ ,  i.e.  dix, y) =

dix + z, y + z) for ail z £ E     such that di , ) generates the topology  r, the

quasi-norm  llxll = ^(0, x)  is accessible in both directions, and that E    is an F-
11    " 'a

space with respect to r.

Linking our situation to the metrization theorem we let  (/. = E"   xE   , U. =

Kx, y): ]ix, y)<l\, and  U% = {(*, y):/(x, y) <(9M4)_" + 1! for zz= 1, 2, •••

where  M  is as in (6.1).   Then defining i/( , )   as in [4, p. 185] we have that di , )

is a metric satisfying

<6-5) Un Ç l(x, y): 4%, y) < 2
-721

C   (/
n-\

for zz = 1, 2, • • • and that dix, y) < % for all x, y e Ea.  Moreover,  examining the

definition of di , )  we find ¿( , )   is invariant since our sets   {(/    Î are invariant in
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the sense that  (x, y) € U   Iff (x + z, y + z) e U     for every z £ F   .  In view of (6.5)

ifx£E    then  (x, 0) £ U      ,-U    in = 2, 3, • • • ) iff Y"~ l < J ix, 0) < Yn~2 and

2-"-1 <¿(x, 0) < 2~n + 1 where r=(9M4)~1.   Hence if yj(s), y2(s)  are continu-

ous strictly increasing functions on [0, oo) such that y. (0) = 0 for z = 1, 2, and

satisfying

(6.6) y2(2-"-1)> T""2,      yj(2""+1)< T""1

for z2 = 1, 2, 3, • • • we have

(6-7) yridix, 0)) < /(%, 0) < y2idix, 0))

provided (x, 0) £c/j, i.e.  / ix, 0) < 1.  U ix , 0) e U Q- U l  then  / (x, 0) > 1, ^ >

¿(x, 0) > Va, and since  y2i%) > Y~ 1 = 9/V14,  yj(l)<l  we have

(6.8) y,W(x, 0))< Jix, 0) < Mjy2U(x, 0))

provided J ix, 0) <MxY~l.

Let c>0 be such that y7!(a(c2)) < 1.

Theorem 6.1.   The metric space  (F  , r)  with quasi-norm  ||x|| = dix, 0)  as

above is an F-space with basis  \b   \.   Here  b     is the vector with c as the  nth
r n n

coordinate and all other coordinates zero.   Further, ||&   || < 1  ¡or n = 1, 2, • • •

and the quasi-norm is accessible in both directions with respect to the ¡unctions

a, y     y    where  y     y2   are as in (6.6).

To show (E  , t) is an F-space we first must show that it is complete in the

metric di , )  and that it is also a linear topological space in the topology  t.

Then the assertions about  \b    \ ate immediate in view of (6.8), the definition of
n

E  , and our choice of c > 0.   Finally, the accessibility of the quasi-norm will

follow from (6.7) and (6.8) provided we can show that for any compact set   K of

(E     t)  there is an  r < oo  such that  K Ç ix; /(x, 0) < r\.  These facts will be ob-

tained in the next several lemmas and hence Theorem 6.1 holds.

Lemma 6.1. The metric space (F , t) with the invariant metric di •, • ) as

defined above is a complete metric space.

The proof of Lemma 6.1 follows in exactly the same manner as in the  /

spaces and hence is omitted.

Lemma 6.2.  (F   , r)  is a linear topoloeical space.a.' f       s t

Prool.  Since  (E   , r)  is a complete metric space in the invariant metric
a

di , ) it suffices to show by Theorem 12 of [l, p. 53l that the mapping  if/ib, x) =

bx  from  R x E    into  E    is continuous in b fot each   x  and continuous in x  for
a a

each  b.  First fix x  and choose   \b   |   in R   converging to  b.  Then
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OO

YlidHb - b)x, 0)) < ]iib - bn)x, 0) =  Z  a[(fc - bn)2x2] < oo,

7 = 1

and as  n approaches infinity the last term converges to zero by the dominated

convergence theroerm since ib — b ) x . <x .   for (¿> - b )    < 1   and a( . )  is in-

creasing.  Now fix  b  and choose  \p   j converging to x  in  E   .  Then, if k is an

integer greater than  b    we find

oo

yiidibpn, bx))<]ibpn, bx)= Z a.ib2ixn ;-x.)2)

7 = 1

(6.9)
OO OO

<    Z   »(*(*„, ,■ - *y)2) ± MkYj a^Xn   7 - X?2) <  MkY2WPn ~ *»  °«
7=1 7=1

since \p   } converging to x implies that dip   — x, 0) < % fot n sufficiently large.

Now  lim   yAdip   — x, 0)) = 0 so  lim   dibp   , bx) = 0 and hence the lemma is

proved.

Lemma 6.3-  // ]iy, x)  is defined as in (6.4) and  K  is a compact subset of

(E  , t) then there exists an r > 0 such that  K Ç {y: ] iy, 0) < r\.

Proof.  If no such  r exists there is a sequence  {y   } in  K such that  {y   ] con-

verges to y and / (y   , 0) > n. This contradicts the fact that   sup   / (y   ,0) is

bounded for Cauchy sequences and hence such an r exists so the lemma is proved.

Lemma 6.4.  If \b   \ is defined as in Theorem 6.1 then  \b   \  is a basis for

(Ea, ¡r) and \\bj\ < 1 for n=l,2, ••■  .

Proof.  Combine the definition of E    and  c > 0 along with (6.8).

At this point we have now proved Theorem 6.1.  The impact of Theorem 6.1 is

that any function  a( . )  satisfying (6.1) and the usual conditions we have imposed

can be used to produce an E-space which has an accessible quasi-norm in both

directions.  We now proceed to characterize these spaces as well as those with

Property B.

If a(r) is a convex function on [0, oo) such that a(0) = 0, a(r) > 0 for / > 0,

then, as mentioned previously, a(i)  is also continuous and strictly increasing on

[0, oo).   Further, Yit) = ait )  then has the same properties and it follows that

Yit) = f'pis)ds  where  p(0) = 0 and pis) is nondecreasing on  [0, oo).  We assume,

without loss of generality, that p(s)  is left continuous and define   Ait) = (   >pis) ds

where ipis) is the inverse of pis) on [0, oo) defined with the understanding that

t/f(s)  is left continuous where it is finite and that if pit)   makes a jump at t = a

then  if/is) = a  tot pia -) < s < pia + ), while, if pit) = c  for a <u < b but pit) <

c fot t < a  then  if/ic) = a.   Furthermore, iftiO) = 0 and- if  lim        pit) = y < oo  then
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if/is) = + oo  for s > y.  Then  Y and  A are complementary in the sence of Young

[10, p.77l and by S„ we mean all real sequences  ix .}  such that
oo oo

Zni*.p=£a(*f)<  oo
z

¿=I 1=1

Similarly, §*   is all sequences such that  ^^1, A(|x.|) <

If x = ¡x . Î  is a sequence we define

*Hr=suph;|*^j: ¿ A(|y.|)< 1

NIA   =supj£|x,y;|:  £r(|y2|)<l|.

The Orlicz space §    (§.)  is the collection of all real sequences such that  ||x||r

(||x||   )  is finite.  Since  ait)  satisfies (6.1) it follows that T(2r) = a(4/2) <

Ma(2/2) < M2a(i2) =   M2r(r-) and hence we know [10, p. 81] that Sr = Sr.  Further,

it is known that S„ =Sr is a real separable Banach space in the norm   ¡x|| „  and

since  r(2r) < M Yit) fot t > 0 we also have that  ip   ! converges to  p in norm

provided

oo oo

(6.10) Hm Z r(K-  n - xi\) = lim Z a((*;   „ - %P2) = °-
"    i = l "    ¿=1

These results follow as in [10, pp. 82—851. Now it is clear that  Ea= St   and since

Sr = Sr  we have  E   =Sr.  Consequently, Ea=Sp is an F-space in the topology  r

and in the topology  rr   generated by the norm  ||x||    .   Further, t„ C t since  ip   !

converging to p with respect to the  r topology implies  lim   dip   , p) = 0, and

hence (6.10) holds so  ip    | converges to p  in the norm   || • ||„, i.e. in the  r r topol-

ogy.   Thus any closed set with respect to  r„ is also closed with respect to  r and

hence  r.Cz as indicated.

Theorem 6.2.   The metric space (E  , r)  is a Banach space in the norm  || • ||    .

Proof.  Since the topologies   r and r    both make   Fa=S„ an F-space and they

are comparable it follows that they are identical [l, p. 58l-  Thus the theorem fol-

lows since   (E  , t  )  is a Banach space.

Corollary 6.1.   The metric space (E   , r) with quasi-norm   || • ||   and basis

[b   | as defined in Theorem 6.1 is such that

(1) // K  is any compact subset of E    and {ß   \ represents the coefficient

functionals relative to the basis  \b   J, then  sup w\ß   Ml ** °°-

(2) The sigma-algebra generated by the weakly open subsets of E    is equal

to the sigma-algebra generated by the r-open subsets of E  .
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(3) (Ea, t) has Property A.

(4) If a( • ) also satisfies (6.2), then (E  , t) has Property B.

Proof.  If  K is compact then there exists an  r > 0  such that y £ K implies

/ (y, 0) < r.  Now, ß   iy) = y   /c  where y    is the 72th coordinate of y  and  c > 0 is

the constant chosen as in Theorem 6.1.   Further, a(y   /c  ) <r and hence   |y   /c\ <

{a-\r)\X  sosupyerK n \ ßniy)\ < \aT 1 (r)}H < - and" (1) holds.

To see that (2) holds combine Theorem 6.2 and the remarks made in the sec-

ond paragraph of §3-

To prove  (E   , r) has Property A we note that Theorem 6.1 implies  di , )  de-

fines an accessible quasi-norm for (£_, t), and by Theorem 6.2 that  (Ea, t) is al-

so a Banach space in the norm  || • ||    .  Hence Ix   | in E*a converging to x in the

£    topology on  E*  implies  sup    . \x   ib .)\ < 00 provided  sup.||i>.||     < 00.  Now

\b. ||    = sup   11 cy I : A(|y|) < lS for z = 1, 2, • • •     and this last quantity is finite,

so sup. ||b. || p < 00 as desired.

Condition (4) now follows from (3) and the definition of Property B,

Theorem 6.3-  // E  has a quasi-norm which is accessible in both directions

with respect to the functions  a, p      p    and a( • ) satisfies condition (6.1), then

E and the Orlicz space  E    are homeomorphic and isomorphic.

Proof. We denote the quasi-norm on E by  || • ||.  If p £ £ we let <t>ip) =

(/3j(p), ß2ip), •••).  Since   I • ||   is accessible, p £E  implies     Z J=^iß]ip)] <

00, thus <f>ip) £Ea.  On the other hand, if (c 1, c 2 , • • • ) £ Ea, then  Z7=,a(Cj2)

< 00   and    if    P„=Z"=ic¿^¿    í°r    8=1, 2, •••    then    \p   \    is a Cauchy

sequence in E.  Let p = ümnpn.   Then  $(p) = (/3,(p), ß2ip), • • • ) = (c v c2, ■.. )

so     $    is   a   one-to-one   map   of     E    onto   £     which   clearly   preserves   the

algebraic relations.  To see that 0 is also a homeomorphism we first note that

since   || • ||   is accessible in both directions it follows that a sequence  \p   S  in £

converges to zero iff lirn^ Yj°° =la[ß2ipn)] = 0.  Then, if <£(;>„) = ißxip„),

ß2ip ),•••)  we see from previous considerations that  \<f?ip   )\ converges to

zero in the norm on  Eaiff lim     Z^° = ia[/32(p )1 = 0.  Consequently, $ is a homeo-

morphism and the theorem is proved.

Corollary 6.2.  // £ has a quasi-norm which is accessible in both directions

with respect to the functions  a, p     p    and ai • )  satisfies condition (6.1), then

E  is isomorphic and homeomorphic to  I    for some p,   2 < p < 00, iff

(6.11) üS     ̂ il   =k<oo,
«lo      tp
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<x(r2)
(6.12) lim   -   = /> 0.

tio      tp

Proof. If (6.11) and (6.12) hold then E is isomorphic to / with respect to

the map $(x) = iß Ax), ß2ix), •• • ). In view of (6.11) a sequence \x n \ conver-

ges to zero in F  if

oo

lim £ ik + e)\ßixn)\p = 0.

"   i-l

Thus  ix   J  converges to zero in   E  if ix   \  converges to zero in  /    for some p

such that (6.11) holds.   On the other hand, if ix   \ converges to zero in  E  then

by (6.12) it follows that  ix    \ converges to zero in  /  .   Thus if (6.11) and (6.12)

hold we also find  E  and  /    are homeomorphic as well as isomorphic.

Conversely, if F  is homeomorphic and isomorphic to /    then

(6.13) lim  ^   a(ß2(xn)) = 0     iff     lim  ¿ |j8AUB)|" = 0

k = l

fot a sequence of points \x   \ in £ = / .  If lim   . .ait )/tp = oo   we choose  0 <
,72 p I  1 U

e    < 1   such that a([e   /n1'p]2) > ep and let k    be such that   1 < k   ie   )p < 2.
n L n ' n n n     n

Then for n = 1, 2, • • •  we define the point x    in  E  such that  /3, (x   ) = 0 if k >

k    and  fl, ix   ) = e   /n^p fot  1 < k < k  .  Thus
n ¡^ k      n n —      —    n

Z  "<*„)) i  Z W > 1. Z UrWI* - ̂  <f -
fe=l fe=l 4=1

so (6.13) is violated.   If  lim( . Qa(z2)/ip = 0   there exists  0 < e    < 1  such that

a(t2) <ep /n for n = 1, 2, • • • .  Let &    be an integer such that  1 < knien)p < 2

and define the point x     in  E  such that ß, ix   ) = 0 if k > kn  and ßki*   ) = e

fot  l<k<kn.  Then   1<   Z~=l\ßkixn)\p=nknep<2but   ¿~= , «(^(x^ )) <"

/s ep /n < 2/n, so (6.13) is again violated.  Combining the abo've we see that the

theorem is proved.

Now Theorem 6.3 points out that  F  is an Orlicz space provided  E  has a

quasi-norm which is accessible in both directions with respect to the functions

a, p., p2   and a( • ) satisfies condition (6.1).   Furthermore, Corollary 6.2 gives

necessary and sufficient conditions for  E  to be  /    for some  p,  2 < p < oo.   For

an example of a space (E   , r) constructed as in Theorem 6.1 which is not an /

space, consider Ea where ait) = 0 for t = 0,  a(r) = t2[ - logt] fot 0 < t < 1/e2,

and a(z) = 2t    for t > 1/e   .  In fact, by the previous corollary, E     / /    for any

p, 2 < p < oo, since  lim( | Qa(z 2)/z4 = + oo  and  lim( , Qa(í2)/¿4_    = 0 for any
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8 > 0.  Now further calculation also shows that E   , in this case, also has Property

B.  Hence we have an example of a space which satisfies our most rigid require-

ments and is something other than an  /    space, 2 < p < oo.

Corollary 6.3-  // £  has Property B and the function ai • )  satisfies (6.1),

then a( • )  also satisfies (6.2) and E  is homeomorphic and isomorphic to the

Orlicz space  E .
" a

The proof of Corollary 6.3 follows immediately by combining the results of

Corollary 6.1 and Theorem 6.3-

7. Infinitely divisible measures on spaces with Property B.   The study of

infinitely divisible measures on a real separable Hilbert space is due to S.R.S.

Varadhan [ll], and here we consider similar questions for F-spaces with Property

B where the function a( ■ )  satisfies (6.1) and (6.2).  In view of Theorem 6.3 and

Corollary 6.3 it follows that we are actually studying infinitely divisible measures

on the Orlicz space  E   .   Furthermore, as pointed out in the proof of Corollary

5.2, the  /    spaces, 2 < p < oo, each have Property B, so our results will extend

those of Varadhan.   It should be mentioned, however, that Varadhan's work is used

at several points throughout this section.

Throughout the section E    will denote the Hilbert space  /. or an E    space

where a( . ) satisfies (6.1), (6.2), and if a  ( . ) is the complementary function of

a( • )  in the sense of Young [10, p. 77], then  a  ( . )  should also satisfy (6.1).

Notice that if £a= /.  then a natural choice for the function a is  a(t) = t.  Hence

acis) = 0 on [0, l] but  ac(s) = oo for s > 1.  Thus a  ( •)   does not satisfy (6.1)

when Ea= ¡2 and this is a special case outside our general setup. Nevertheless,

it is easily handled.

In terms of the results of §6 we have that  E    is equivalent to the Orlicz

space S    where Yit) = a(r ). We will let Sa, Sa    denote the Orlicz spaces given

by <x( • ) and a ( • ), respectively.  Then the dual space of S   can be identified

as Sa   and since  a   ( • )  also satisfies (6.1), except when  Ea= 12, it follows

that the dual of S       is  Sa [10, p. 150].

To simplify our'notation we will use the sequence space representation for

all of the spaces of the remainder of the paper.

The following terminology is used.  If F ( • )  is a finite Borel measure on  E

then e (F)  is the probability measure defined by  exp{-F(Ea)i   •   ^°¡° -f,Fk/kl

where F    is F convolved k times and  F   = 8Q where Sx is the unit mass at x.

A family  J of probability measures on  £a is shift-compact if for every sequence

izv   !  in  3"  there exists a sequence  \x   \ in  E„ such that  \v    * 8      !  is compact.
n n o. n x„ r

For each vector À = (Àj, À2, • • • ) in the positive cone of Sa    which is of

norm at most one-half, we define the Hilbert space  H     as all sequences x =
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(xp x     ...)  suchthat  ||x|| 2 =   £ °°_1A¿x2 < oo.  In the special case Ea = l2 we

have S      -I     and for simplicity we take  À = (l, 1, • • • ).   Then  tí. = I. and we

shall assume without loss of generality that  a(r) = /.

Lemma 7.1.  E    is a Borel subset of H, for each  X in the positive cone of

S     .  Furthermore, every Borel subset of E    is a Borel subset of tí..

Proof.  If E   = I? and  X = (l, 1, • • • )  the result is obvious.  In general to see

E    CH^ we need only notice that by Young's inequality [10, p. 77] X.x . <

a  iX.) + a(xr).  Hence for x = (x     x 2, • ■ • )  in  E    and X as indicated, we have

x e H. .  To show that the Borel subsets of  E    also are Borel subsets of  f/,, we
A a A '

need only show that the norm  || • |L is a Borel function on  tí. .  Now

!oo oo \

ZK>/!: Z^iy.-i^1?
¿=1 tal )

where  A is the function complementary to Y in the sense of Young.  Since  Yit) =

ait )  it follows that  Y'it) = 2taAt   ) almost everywhere on [0, oo)  and hence

r'(0)  can be defined as zero.   Further, since  a'it )  is bounded on  [0, e]  fot any

e > 0 it follows that Y it)  is continuous at t = 0. Now a( • ) is assumed strict-

ly increasing and convex on   [0, oo), so we see  a (t ) is positive almost every-

where there, and furthermore,  Y it) = 2ia {t )  is strictly increasing on  [0, oo).

Let if/is) denote a left continuous inverse of Y'it) = 2ta\t ).  Then t/>(0) = 0

and since  Y U)  is continuous at zero and strictly positive for all  / > 0 it follows

that if/is)  is strictly positive for s > 0.  Thus  A(z) = fl ipis)ds > 0  for any  t >

0, and hence if y = (y ,, y 2, • • • )  is such that    ¿j °° = i A(|y . |) < oo  it follows that

limy. = 0.  If W denotes all sequences with rational coordinates and with only

finitely many nonzero coordinates satisfying the condition    ¿, °?-. A(|y . |) < 1, it

follows that W is countable and   ||x||   = sup„, i 2^ = , |* y • | K  Hence   ||x||r is mea-

surable on  tí. since for each y eW the function T!00-, |x.y . I is measurable on H, .

We will use the symbol   || . |r> || . \\^, || .   \\^ || . || a, || . || ^  for the norm

on Ea, Ea, r/x,5a,and Sa  , respectively.

Lemma 7.2.  Lez F     be a sequence of finite Borel measures on  E    such that
n 1 '   ' a.

e (F )  is shift-compact.   Then

(7.1) supjJx\\2xdFn(x)< oo

where ll = jx: ^„^(xf) < 1 |.

Proof.  If Ea= I , ait) = t, X = (l, 1, ■ • • ) this follows directly from [ll, p.

223]-  Otherwise, if x = \x . \ £ U then by [10, p. 82]
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OO

Z v,2 <Ml=   ZV'<NLKUa
(7.2)

< llA||acji + ZaK2)f< i

since    Z°° = 1 a(x?) < 1   and  ¡|À||      < V2.  Thus  11  is a measurable subset of the

unit ball of  H. where the measurability of 11 follows since   Y °°     aix2)  is a mea-

surable function in  H ..  Now using the arguments employed in the proof of Theorems

6.1 and 6.2 we can show that a sequence of points   \pN \ in E    = S„ converges

to a point p  in the norm  || • ||    iff

oo oo

(7.3) lim Z r(|xN   . - x.|) - lim Z *{\xN   ,. - *,|2) = 0
N   , = 1 ' N :'=1

where  p., = \xN  A,  p = \x .]■  Further, the right-hand limit in (7.3) equals zero

iff the sequence  \qN \ converges to zero in S    where q N has  zth  coordinate

(X2',N-X2)2-  Hence by (7"2)> Iimll/'N-/5lr='0 implies  limw \\pN - p\\x = 0, so /

continuous on £. implies  / is continuous with respect to the norm  || • ||      when

restricted to  E  .   Thus  e(F   )  shift-compact on  E a implies it is shift-compact

on //A and since the unit ball of H A contains 1.1  it follows from [11, p. 223] that

(7.1) holds.

Lemma 7.3- Suppose F is an increasing sequence of finite measures on E

such that e ÍF ) is shift-compact. Then F increases to a measure F which is

finite on the complement of every neighborhood of zero and such that

< oo,
(7.4) /= Za/11Xz2¿FW

and

(7.5) ^ÍÍW^H

where 11 = Sx: Z7 = 1 «■(*■) < 1 I-

Proof.  Since  F     is increasing we let  F = lim   F   .  Now  e(F   ) shift-com-
n ° n     n n

pact implies by[ll,  p. 214 land Remark 2.3 of [ll] that  F  is finite on the com-

plement of every neighborhood of zero in  E    and by Lemma 7.2 that

oo

Y À. f x2dF ix) < oo.
¿J     2 Jl)    i        n
¿ = 1

If £a= 12' A = (l> I»-*-),  ait) = t the lemma now follows.   In general, since  k =

\k{ ! is an arbitrary vector in the positive cone of S       of norm less than or equal
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to one-hati and Sa is the dual of S       we find that the sequence    j Lx   dFix)\  is

in  S   .  This implies (7.4), and (7.5) then follows from the dominated convergence

theorem since  F     increases to  F,   a( • )  is continuous, and

lim  [,x2dF (x) =  Cx2dFix)

fot z = 1, 2,

Lemma 7.4.   Let  a   = e (F   )  where  F     is an increasing sequence of mea-

sures on  E    and suppose the sequence p    * 8      converges weakly to p for

some sequence of points  \x   \  in E  .   Then  F     increases to a measure  F as in
" '   " n a. n

Lemma 7.3 such that (7.4) and (7.5) hold.   Furthermore, the Fourier transform of

p is

Ax, y)
rp(y) = exp \iixQ, y)

(7.6)
JEa-1l|_

♦/.[■

uhere 1\ = \x e Ea:   £°° = 1 a(x2) < 1 |.

Proof.  Let p    be the shift of p    by

i(x, y)

1 +
T-j

i(x, y) Ax, y)

1 +
\->

dFix)

dFix)

(7.7) /,
dF ix)

^-■"l + llxll2""^"       J * 1 + llxll 2J* 1 + II:
dF ix)

r " ' "  "x
where the integrals are Bochner integrals.  Now the function in the first integral

in (7.6) is uniformly   bounded for any y  in a bounded sphere in the dual of  E  ,

and by (6.5)  U  contains an open neighborhood of zero.  Thus  JF   I  converges

weakly to  F  on  E   — il [11,   p. 214],   and if S  is a bounded sphere in the dual of

Eathen

(7.8) lim sup
"   yes

c     U«.-v> _ i _ i{x'y)]djF-F)ix) o.

i(x,y)
We   now   consider   the   second   integral   in   (7.6).   Now   |e'v"   '   — 1 —

i í*. y)/(i + H2X)I <H(*. y)2 + K*. y)IH2x and |(x, y)| < ||*|r&||rC <

2||y||       since x £ Tl which implies   ||x||    < 2.   Let  K    = F - F  .  Then, for S

any bounded sphere in the dual of  E   , we have

(7.9) lium sup  f   \ix, y)\
n   yeS  JÎ1

0

since  F    increases to  F  and (7.1) holds in the present setting.   Thus to show

the second integral in (7.6) is the limit of the corresponding integrals when  F

replaces  F uniformly for y  in a bounded sphere  S of the dual of E    we need
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only verify that

(7.10) lim sup   f   ix, y)2dK ix) = 0.
n      „ir  ■» llyes

Let   sW = fj*i.*/rf«n(«)    for   z, ;, zz = 1, 2, • • - .    Then   |*g>-| <

rx"

II
Jiíl*í*íl'*l,'(*)3<f',S)li<[*gl)] *   and since     sj?>< X* ? ¿F (x) "it follows from

(7.4) that

OO OO / \

(7.11) Za(sn^   ZaL^FW   <0°
/=* 7=fe       \ /

for k = 1, 2, • •■ .  Now for each y  in the dual of E    we have  ix, y)2 =

Z°f ._, x .x .y .y . and since
2  ,;-l    2    J    zy j

oo

/„Z Kw/I¿k„w= Z/uK-Wzl'^
2. 7

oo

(7.12) l(*.y)2^„W=     Z     S!;V,'

¡. ;

f'=l
it follows that

"U
l, 7=1

(oo \   2

Thus (7.10) holds if

(7.14) lim||[s<«>]>/2|l        0.

Using (7.3), we see (7.14) holds  iff
oo

(7.15) lim Z a{s(n] = °'
"     7 = 1

and by (7.11) we have (7.15) if

(7.16) lims(n) = 0.
72        77

Now (7.16) holds since  lim    fx2dF   ix) = f x2dF(x), for  / = 1, 2, ■ • • ." ' « -"(J    7 72 J1j     7 ' '

If F     ,   and  F    ., denote   F    restricted to 11 and  £   - 11, respectively, we
n, 1 72, 2 ,2 a ' r ' '

have that

(717' e(F  ) * (3      = e(F    ,)*e(F    A)* 8     * S
'-'•'■'. n x n,l 72,2 2 x   —z

22 72 72 77 •

where z     is defined as in (7.7).  Now the sequence  \e(F   ) * 8     S  converges

weakly to p thus (7.17) implies
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(7.18) v    = eiF    , )*e(F     J * <5
72 72,  1 72,   I Z

is shift-compact.  Using (7.8), (7.9), and (7.10) it follows that the Fourier trans-

forms of the sequence of measures  \v   ! converge uniformly on bounded spheres

of the dual of E    to the right-hand side of (7.6) without the term exp{ z'(xQ, y)S.

Thus  \v   \ actually converges to a measure  v, and hence by (7.17) and the fact

that e (F   ) * 8    converges to p the sequence of points  \x    — z   \ converges to

a   point    x   £ £   .   Furthermore,   we have   the Fourier   transform   of   p    is

explz (x     y)\ multiplied by the Fourier transform of v so the lemma is proved.

In §5 we said a measure on  E    was Gaussian with mean a £ E    if the dis-

tribution of every linear functional x  in the dual of E    is Gaussian with mean

xia). Varadhan [11, p.215] defines a Gaussian measure as any measure p which

is infinitely divisible and such that if p - e (F) * y where  y is infinitely divisible

then  F  is degenerate at zero.   The definition of infinite divisibility is the usual

one.   The purpose of our next result is to show that these definitions coincide on

Theorem 7.1.   // p  is a measure on  E    the following are equivalent:

(i) p has Fourier transform of the form

<f>ix) = explz'(x, a)- V2Tix, x)\

where  T  is an a-operator on the dual of £    satisfying

Tißi,ß,)=   L   ßliy-a)ßiy-a)dpiy)

for i, j = 1, 2, • • • and a £ E .

(ii) For each vector f in the dual of E    the linear functional f( •)  on  E

has a Gaussian distribution with mean f(a) for some  a  in E   .

(iii) p is infinitely divisible and if p = e(F) * y where  y is infinitely divis-

ible then  F  is degenerate at zero.

Proof.   By Theorem 5.1, Corollary 5.1, Theorem 6.3 and Corollary 6.1 it

follows that (i) and (ii) are equivalent.   Now assume (ii) holds and let / be any

linear functional on  E   .  Now p is infinitely divisible since (ii) implies (i) and

the class of a-operators is closed under multiplication by constants.   Thus if

p = e (F) * y where   y is infinitely divisible we must show  F  is degenerate at

zero.  Now an easy computation shows that the measure p'(A) = pif~   (A))  de-

fined on the real line satisfies

pi = eiF') * yf

where  F'  and y   ate defined in the same manner as  p.  Similarly,  y being
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infinitely divisible implies that  y   is infinitely divisible, and since p' is Gauss-

ian on the real line we then have  F'  degenerate at zero.  Thus for each continu-

ous linear functional / on  E    the measure  Ff is degenerate at zero and this im-

plies  F  itself is concentrated at the origin in E    which proves that (ii) implies

(iii).

Now assume (iii) holds and let  EA be defined as in Lemma 7.1.   Then p is

infinitely divisible on  H^ and if p = e (F) * y where  y is infinitely divisible on

HA and  F is some finite measure on  r/A it follows that F  is degenerate at zero.

That is, if p is a probability measure on H, with p(E  ) = 1  and  p= e(F) * y

where  F is some finite measure on  H, and  y is a probability measure on H.

then  F  and y are concentrated on  E  .  Hence (iii) holds when  p is viewed as a

measure on  FA and by [ll, p. 226] every linear functional / on H, has a Gaussian

distribution.  Now / restricted to E„ is continuous and since  E    is dense in tí.
'a a A

the restriction maps  WA into the dual of E    in one-to-one fashion. By Lemma 2.1

it then follows that each / in the dual of £    is the weak-star limit of restrictions

to  Ea oí elements in the dual of H^, and since limits of Gaussian distributions

are Gaussian (possibly degenerate) it follows that each linear functional on  E

has a Gaussian distribution.   In view of Corollary 5.1 it follows that (iii) implies

(Ü).

Theorem 7.2.  Let p be a measure on E .   Then p is infinitely divisible on

E   iff the Fourier transform of p is of the form

\iix0, y) - I Tiy, y

(7.19)

fLHX,y)_1_Ji±jlldFix)]"H i + NI2J        I

where x„ £ E ,   T is an a-operator, 11 = \x £ E  :  ) °°   , a(x ) < 1 !. and F is a
0 a r a    *— i -1 i' —      ''

a-finite measure on E    with finite mass outside every neighborhood of zero and

no mass at zero satisfying

(7.20) ¿aj/^rfFw]

For each fixed X the representation is unique.

Proof.  First we assume p has Fourier transform (7.19) and  F  satisfies

(7.20). We now observe that p = g * v where g and v are measures on Ea with

Fourier transforms
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(7.21) g(y) m exp   z(x     y)-± Tiy, y) +    f       ,  \e«x- * - I-iifUL]dF{x)l,
I JEa-*l l +  ||x||r2J (

(7.22) 7%) = exp) f [*«<*■ V) _ l _    ^'^lrfFMÍ.

rL i + ii-iix2J    [

That the measure  g  exists follows immediately from Theorem 5.2 and that  F re-

stricted to  E   — 11 is finite.   Furthermore, it is obvious that g  is infinitely divis-

ible.  The existence of v proceeds as follows.   From (7.20) it follows that

f ||x|| 2dFix) < oo, and hence if F restricted to 11 is viewed as a measure on  H.

we have the existence of the measure v on  H     [il, p. 225] with  Fourier transform

as in (7.22).  Furthermore, v is infinitely divisible on  H    and since p = g * v

where p and g assign mass one to  E    it follows that v(Ea) = 1   and that  v is

infinitely divisible on  £   .   Thus both g  and  v exist on  Ea and they are infinitely

divisible so p is infinitely divisible.

Now we assume  p is infinitely divisible on  E a.  To prove p has a Fourier

transform of the form (7.19) where  F  satisfies (7.20) we can proceed exactly as

in [ill.  That is, we choose a sequence of probability measures  e (F   )  where

F    increases to, say, F,   e (F   ) * S      converges to a measure  k, and  ^ = À * g

where g  is Gaussian.  Then by Lemma 7.4 and Theorem 7.1 the Fourier transform

of p is of the form (7.19) and, by Lemma 7.3, E  satisfies (7.20) along with the

other conditions of the theorem.   The uniqueness follows exactly as indicated in

[111.

The following corollary relates to the results found in [111.

Corollary 7.1.  A function  ci>(y)  is the Fourier transform of an infinitely divis-

ible probability measure p on  I    iff

(7.23) <f>iy) = exp |z(x0, y) - i (Ty, y) + ^  K{x, y)dFix)\

where x    £ I   ,   K ix, y) = e%'*,y^ - 1 - z'(x, y)/(l + ||x|| 2), 7"  z's an S-operalor on

lj, and F  is a a-finite measure on  /_, with finite mass outside every neighbor-

Proof.  In view of Theorems 7.1, 7.2, Corollary 5.3, and Corollary 3-1 it

hood of zero and satisfying J   \\x\\   dFix) < oo where B = \x £ I  ; ||x|| < 1

suffices to prove that yiy) = explj",   fv(x, y) dF ix)\  is continuous in the r2-topol-

ogy since  it follows easily that  y(0) = 1,  y is positive definite, and that any

family of measures on  /,  is a A-family with  À = (l, 1, • • •).   Further, since  F  is

finite on /? - B  it follows that explj",  _RK(x, y)dFix) \ is the Fourier transform

of a probability measure on  I ?  and hence it is r_,-continuous.   Thus we need only

show
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(7-24) expij"Bfí(x,.y)¿F(x)i

is ^-continuous. Now proceeding as in Lemma 7.4,

f Kix, y)dFix)\
J B I

(7-25) I" -|M    Í )y2
< j)B(x. y)2dFix)+ |JB(x, y)2dFix)\    • jJBIM|4rfF(r)|

and, since   f   (x, y)2iz"F(x)  is an S-operator on  /      (7.25) implies (7.24) is r -

continuous.  This proves  yiy) is  ^-continuous and completes the proof.

8.  Infinitely divisible distributions as limiting distributions.  We now con-

sider the derivation of the limiting distribution of the sum of independent random

variables taking values in the Orlicz space  E    as defined in §7.   For each inte-

ger n, we are given  k    random variables which are mutually independent.  We

shall denote these by  X   . where  / = 1, • • • , k    and letting   Y   =   ¿, .1, X   . our
'        nj ' '     n b       n        *-* j -1     nj

purpose is to derive the limiting distribution of  Y    and  Y    suitably shifted.  We

need the following definition.

Let  ÍX   . I be a sequence of random variables taking values in E    and let

the sequence of probability measures induced on  E    be denoted by  ÍF   . |.  Then

ÍX   . S, or equivalently ÍF   . |, is said to be uniformly infinitesimal if for every  e > 0

lim    sup      F    (ix £ E   : ||x||'    > f|) = 0.
n   Kj<k       "' l

—   —   n

The following theorem on Poisson sums of random variables in a   separable

Banach space is due to Lucien LeCam [13]-

Theorem 8.1.   Let  X   .. (/ = 1, ■ • ■ , k   ; n, i = 1, 2, — ) be independent

random variables with values in a separable Banach space with the distribution

of X   .. beine  F   ■ for i = 1, 2, • • • .   Let \N   A be Poisson random variables in-
'       nil °       nj  ' '     ' n¡

dependent among themselves as well as independent of all the  X   .. and each

with parameter one.   Let  G    denote the distribution of

k     N   .
n      nj

r=yyx...
n       ¿—¡Lj       nji

7=1   z=l

// G     is conditionally compact then IT   n   F      is shift-compact where  II • "   F   .
i      n st i=l     nj ' r i -1    a;

denotes the convolution of the indicated measures.

We now fix some notation to be used throughout the remainder of the paper.

We let B = ix £ Ea: \\x\\    < p\ where 0 <p < 1  and B Ç U = ix: T.°°=l a(x2) < l[.

The existence of such a p follows from the arguments of Theorems 6.1 and 6.3

and the definition of the quasi-norm of Theorem 6.1.  Additional notation we will

use is
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71

p   = V\f   .,       x   . =  f xdF   ix),       ß   . = F   . * i8        ),
fn      -LA    72;' 72;      Jß 72; 'n; "j -x.

(8.1)
7=1

k
n

k    = eiF ) * 8    .
n n x

x = y x      e = y s
72        ¿j     7!;' 7!       Lu "n;'

;=1 7=1

Lemma 8.1.   Let  F   . (;' = 1, •• •, k   ; n = l, 2, • • • )  be a uniformly infinites-
72; 72 ' 1 J i

imal sequence of probability-measures on E    and assume the notation in (8.1).

Then

(i) limn max ,< y< ̂ Jl*„y II r = 0,
(ii) there exists an N such that for all I < j < k    and n >-N-

f xdß   .ix)
\Jb       H">

<2ßjx: ||x||r >p/2|

Proof.  Take e > 0 and let  V = Sx: ||x||    < e \.  Then

\\xJr <   |vWr dFjx) + Fn\x: e < ||x||r < p\ < t + F, .(Ea _ V)

and  ¡F     S being uniformly infinitesimal implies
nj

lim   max      l|x   .|L < c
n   Kj<k        "'"r

-    -     72

so (i) holds.   To prove (ii) we first take  N  suchthat max   ....    ||x   . ||    < p/4

for all n > N.  Then for 72 > N  and   1 < /' <. kß,

f xdß  ix)    =   f (x - x Vf .
Jb     p"r      r        J|lx_x     »   <« ",        n,

:ix)

72;llr —A

/»
x-xnj\\r<P

dF   {x) - x    F   \x: \\x - x   .11 < p!
ni n 7     n i ni"   —  ~72; 72;    72;

=    f xî/F   (x)- fxz/F  .(x) + x   F  .{x:||x-x  .||>pj

■*n¡lT<P

h \\x\\TdF   ix) + ip/4)ß   \x:\\x\\T>p\
»3p/4<||x||r<5ro/4 r       "; «7 1

< (p/4)[5Fn;ix: ||x||r > 3p/4i + ßjx: ||*||r > p|]

< 2/8n/l*: ||x||r >p/2!

so (ii) holds since p < 1.
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Theorem 8.2. Let \F . \ (/' = 1, • • • . k ; n = 1, 2, • • • ) be a uniformly infini-

tesimal sequence of probability measures on E and assume the notation in (8.1).

Then, if \X i is conditionally compact we have \p \ shift-compact, and for each

uniformly bounded set  S  in the dual of E

(8.2) lim sup |<p(y, X ) - éiy, p)\ = 0.
n -»oo y eS " "

Proof.   If !a   !  is conditionally compact then Theorem 8.1 implies  JT*",   fl     =

k •" h ;'
Il  "  F   . * 8      is shift-compact and hence  a   = Ti~n   F   . is shift-compact.  To

J -1   «7        xn r rn        j -i    „j r

complete our proof we now need to establish (8.2).  First we observe that since

i F   . Î is uniformly infinitesimal there exists an N  such that n > N implies

(8.3) sup    max      ¡cp(y, fl   .) - 1\ < Y2.
yes Kj<k

—   —   n

Then, since   |log(l + z) — z\ < 2|z|     for  |z| < l{ we have

|logrp(y, Xj - log<p(y, pn)|

kn kn

Z [0(y, ßj - n + ¿(y. *,) - Z k*^* ßn? - i{y- *„)

(8.4)

7 = 1

k
n

7=1

Z[rp(y,flj2.)-l-log(p(y, ßn.)]
í=l

<2¿|<p(y,flr2;)-l|2

n

<2    max     |^(y,/3   )-l|ZWy.r3„y)-l|
—'—  n 7=1

Thus, by (8.4),

(8.5) lim sup|logfp(y, Xn) - logrp(y, flj\ = 0
n    y eS

since   i F   .¡   uniformly infinitesimal implies

lim sup    max      \(p\y, fl   .) - 11 = 0
n   yeS 1< j <k "!

and we also have  lim   sup   , ç S.-íi I <P ̂ ' i8«,^ ~ ¡1 < °°-  To see this last

tion notice that
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2>(y,fl„,)-l|=£
7 = 1 J=l

f   [e«x-y)-i]dß Ax)
Je„ ■«;

(8.6)

k
n

-I
7=1

<z

fB[e«*.y) - i _ ;(*, y)]dßjx) + tfBix, y)dßn.ix)

+ ÍE    _B^(X-y)~^ßnA

z=lL
/B(x,y)2^n;(x)+||y||^/ßxrißn;(x) ,+ 2^/£a-ß)

•]

<¡Bix, y)2</Ffi(*) + 2[||y||E.+ l]Fjx: ||x||r > p/2¡.

Since e(F ) is conditionally compact this implies e(¿\,"|fl | ) is conditionally

compact where |/3 . |2 = fl . * fl . and fl .(A) = fl .( - A) for all Borel sets A.

Therefore we obtain from the symmetry of  |fl   . |     that

lims"?Z£H„„u'>)2t^i2^<~-
«   yeS l*llr<2P

Hence from conditional compactness of e(F   )  we obtain by an argument similar

to [11, p. 235] and Lemma 8.1 (ii) that

lim sup I   (x, y)  F   (ox) < oo;
. r-    R n

n   yeS

and further, by [ll, p. 2141 that  sup   F   jx| ||x||   > p/2| < oo, so that (8.6) implies

lim   sup     s ¿i,| </>(y, ß   ■) - 1|   is finite.   Thus (8.5) holds and this implies

(8.2), so the theorem is proved.

Corollary 8-1.   Let  \F   A be uniformly infinitesimal.   Then, if \p   \ converges

weakly to p and \x   \  is a compact set in E    we have p infinitely divisible.

Proof.  By Theorem 8.2 we have lim   cp(y, X  ) = lim   </>(y, p   ) = <p(y, p) for

each y e E* , and by  [ll, Theorem 7.61 ÍA   ! converges weakly to a measure v on

tí,.  Since  cpiy, v) = <p(y, p) on f/A it follows that p = v on  H  , and since piE J =

1  we have ^(Ea) = 1.  Further,i^is infinitely divisible on H.  by [ll, Theorem

5.1] since each  À    is infinitely divisible there, and hence  p = v is infinitely

divisible on E„.



19721 HARMONIC ANALYSIS ON F-SPACES WITH A BASIS 147

9.  Convergence of certain infinitely divisible laws and a central limit

theorem.  We first prove a theorem regarding the convergence of certain infinitely

divisible laws on the Orlicz space  E    as defined in §7.  The notation p =

[x Q, T, F] is used to denote the fact that p is infinitely divisible with Fourier

transform as in (7.19) having parameters xQ, T, F with respect to some fixed k.

Theorem   9.1.  Let a   = [x   , T   , F   1 with respect to some fixed k and
7« L    72 72 72 J r '

assume   \x   j  is conditionally compact with  F    an increasing sequence of finite

measures on E .   Then \p   \ is conditionally compact  iff

(i) F    restricted to the complement of a neighborhood of zero is weakly

conditionally compact,

(ii) the sequence of bilinear forms

(9-1) Rn(y, y) = fv(x, y)2dFnix) + Tniy, y)

satisfies

(9.2) sup Z a(r<?>)<   oo ,

2 = 1

(9.3) lim sup f  a(r(">) = 0
TV 7 - *-J 11N     n

z=N

where  r..   = R   (e ., e .),  e . is the sequence with one in the  ith  position and11 72 v    2 2   '       2 J r

zero elsewhere, and 11 = ¡x £ £   :    Y, °°   , a(x 7 ) < 1 !,
a      "2=12—

(iii) \p   \ is a k-family with respect to the fixed k yielding the representa-

tions pn m[xn, Tn, Fn].

Proof.   First assume  \p   \ is conditionally compact.  Then  ix    !  conditionally

compact implies  !e(F   )| shift-compact, so (i) follows from [ll, p. 2141 and Re-

mark 2.3 of [ll].  Since  e . represents the coefficient functional ß. scaled by a

fixed positive constant for  i = 1, 2, ••• , we have by Theorem 5-2(3), that

(9.2) and (9.3) hold with r{n) replaced by  /("' = F   (e ., e .).   That is, we know the

measures  [x   , T   , Ó]  ate shift-compact, thus   [0, T   , Ol  is compact, so Theorem

5.2 applies, and the scale factor can be ignored since  a( • )  satisfies (6.1).

Furthermore, if

(9.4) »J«)» jTOc, e^dFj,*)       in, 1=1,2,...)

then

and letting  F = lim F     as in Lemma 7.3 we have by (7.5) that (9.2) and (9-3) hold
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with r("' replaced by s'?'.  Now r.?' = s:?' + /("' and since  a( •)   satisfies
22 r J ll 22 22 22

(6.1) we have by (6.3) that (9.2) and (9.3) hold as stated.  Finally, (iii) holds by

Lemma 3.1-  Now we assume (i), (ii), and (iii) hold.  Now   U  contains an open

neighborhood   V oí zero and we can assume  F    vanishes on the complement of

V.  The last remark follows from (i) since on E   — V we have £    converging to

some finite measure, call it  F, and hence if  G    is  F    restricted to £   — V we
72 72 a

have  e(G   )  converging to  eiF).  Since the unit ball, call it  W, of H. contains

ll  and each  F    is concentrated on  V C 11 C W   it follows from (ii) that  R     is an72 — — v      ' 72

a-operator.  Hence Lemma 5.4 implies that  exp 1 — l/2R   (y, y) S  is the Fourier

transform of a Gaussian measure, say À   , on  £aÇ H. .  It follows from (ii) that

\k   } is conditionally compact on £    and hence on H    , and hence that the opera-

tors A      induced by R    through k    on H*^   satisfy the conditions of Theorem

6.3 (see [ll, p. 230l) so \p   } is conditionally compact on H^.  Then using (iii)

we have  \p   \ conditionally compact on  E a so the theorem is proved.

We now proceed to a central limit theorem.

Theorem 9-2.   Let \F   A ij = I, • • • , k   ; n = 1, 2, • • • )  be a uniformly in-

finitesimal sequence of probability measures on E    and assume the notation in

(8.1).  Further,    assume  lim   x    = x. and thaty ' 72     72 0

(9.5) sup £ 4f *(*>)) < ~-
"      2=1 \ /

(9.6) limsup y   aif  x2dF ix)\ =0.
N 72

2=N

Then  II."   E     =p    converges weakly to the Gaussian measure p   =   [xn, Tn,  0]

where  T n z's an a-operator if for every e > 0

(a)limnI^1Fn.{x:||x-xn.||r>f} = 0,

(b) um. EhiJjiHIr <f<* - v y)2dFnj<*> - To^ y) f°r each yeEl>

Proof.  Now (a) implies  lim   F   (E   - V) = 0 for every open neighborhood V of

zero, and hence if G    is   £    restricted to £   - V we have  e (G   )  converging to
7272 a x    n &&

the unit mass at zero.  Now let H    be  F    restricted to  V where  V = \x £ E   :
72 72

||x|| _< y\ CB.  Then e(H   ) = [z   , 0, H ] fot any À where
a

(9.7) z    =   f   —Î- z/tf  (x) =   f-  dF  ix).
"   JíJi+¡|x||2    ■      J^i + IH|2    ■

Now let e > 0 be given.  Then
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C        , x    C   *HA:„= J„xdFM- I    -~ dF (*)
"      JV        " Jvl+Hx||2        "

**"    fB-VXdFn^-  L
Vl + llxll2

¿F (x)

and since

(9.8)

fB-vxdF»M\   i-PFJB-v^

/,
^l + Hxll2

¿F (x) -e/n ii    WxKdFnM+yFn{x:(<\\xh<yl
II <(
T~

we have  lim   ||z
n "   r

-*JL<« by applying (a) and (9.5).   Thus  lirr^z^ = limxn= xQ

and by (9.5), (9.6), and (a) we have by the reasoning used in Theorem 9.1 that

e(F   )  is conditionally compact on H. .  Then by (c) it follows that e(F   )   is

conditionally  compact on  E   .   Further, in view of (a), (b) each linear functional

has a limiting Gaussian distribution with mean zero and variance   T Ay, y)  with

respect to all limits of e(F   ).  Hence e(F   ) converges to y = [0, T., 0] and by

Theorem 8.2 we then have  II. 1. F   . converging weakly to y  so the   theorem is

proved.

Corollary 9.1.   Let \F   A be a uniformly infinitesimal sequence of probability

measures on E    and assume the notation of (8.3)-   Further, assume  limx    = x.
a i   v     -" n 0

and that there exists a measure  p on  E    such that

(9.9) £a(/£   *\dpix)   <-,

¿=i

(9.10) fax] dFnix)   <   f     x2dpix)       (z = l,2, -..).

Then conditions (a), (b), (c) of Theorem 9.2 imply that II.™   F   . converge weak-

h to p0 = [x0, t0, 01.

Proof.  We need only show (9.5) and (9.6) hold and that is obvious by (9.9)

and (9.10).

Corollary 9.2.   Let p be a probability measure on E    such that (9.9) holds

for p,fE   ¡|x||   dp(x)  is finite, and   C  xdpix) = 0.   Let Z   , Z?, •••  be independent
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random variables such that <L(Z,) = p for k = 1, 2, • • ■ and define S = Z. +

•• • + Z . Then Jl (5 /y«) converges weakly to the Gaussian measure p =

[0, r0, 0], z^iere

ro^' y) = Jf £*» y)2dpix)
a

provided the measures  y   = £(S   A/n)   or ^e measures  e (F   ) /oztzz fl X-family.

Here  Fn is as in (8.3) wiiè  F  . = S.(Z./y/n)   for j = 1, ..., «; zz = 1, 2, • ••   .

Proof.  Since (9.9) holds and   fc   ||x|| 2dnix)  is finite it follows that

^0^' ^  *s an a"°Perator an£i hence the Gaussian measure p. = [0, T.,  01   ex-

ists on EaÇ tí   .  Further, since the H. topology on E    is weaker than the   E

topology there exists a constant c > 0 such that  c ||x||    < ||x||    for each x £ E

and hence

X, J|x||2fl-p(x) =   Jb J|x||2flp(x)  <   [I]2 Je J|x||2«?p(x) < oo.

Thus  y    converges weakly to p. on H. [9, p. 156ll and in the case  y    is a À-

family we then have  y    converging to p. on E  .  In the case  e (F   )  is a À-

family we apply Corollary 9.1.  To verify the hypothesis of Corollary 9.1 we first

observe that  lim   x    = 0.  To see this notice that
n    n

<n = "JB xdF„jM = V/"Jv^BXfl'p(x)

and since fßxdpix) = 0 we have

-*L
-J~nB

x flp(x)

Further, for every e > 0,

rt

lim Z F«7ÍX:   "* - XnA  >e^ = l™n^X:   HX - **,-Ur > V"«
"     7 = 1

<  lim — f
*:B*-*«/ltr>VSi'

**iUtípW«0vny«r

since  /E   ||x|| 2dpix)  is finite and  Iim^ ||^„y IIr = °-  Similarly,

n

lim y   f (x - x   ., y)2 dF    (x) = lim f (x - x    , y)2 flp(x)

«   ,tiJIWIr<f "' "' " JH*Hr^f

=   f     (x, y)2dpix)= T0iy, y).
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Finally (9.10) holds since  sup   J' x2dF   (x) = J"    x2dpix).

We now derive some recent results on the central limit theorem due to A.D.de

Acosta [l2l.  A Banach space  X with a Schauder basis  \b . \ and coordinate

functionals  \ß.\ is said to be of type p with respect to  \b . \ if

lí
(9.11) Z 0yW*y

7 = 1

Z   1/3,-WI'
;'=72 + l

for all  x £ X   and integers  ttz,   n  (I < n < m) where, for each  n, x £ X,

Pix)= inf{||x-z||: z £S   \

fot 72 > 1  and S 0 = 0.with S    being the subspace generated by  \b .,•••, b

Lemma 9-1-  Let X be of the type p > 2.  Then there exists a linear isomorph

U on a subset X „ of X onto  /, such that   ||(7x|| ,   > ||xl| „ .
u     ' z " * 2 —

Proof. Since X is of type p > 2 it is of type  2   [12].  Let us consider X. =

Sx:xex,   Z~ = i|/y.(x)|2 <oo!. Define  U on XQ to  ¡2 by Ux - (ßl{x\ ß (*),

• • • ).  Then   U is an isomorph of X. onto  12 and taking tz = 0 we have by (9.11)

that   \\Ux\\¡2>\\x\\x.

Now let  T be a bilinear form defined on X   .   Then  T is said to be of trace

class  p relative to \ß.\ if    Z~ = 1|T(/3y, i3y)|p<oo.

We now state a lemma which strengthens the assertion of   Theorem 4.1 (b) of

[121.

Lemma 9.2.   Let  X  be a Banach space with Schauder basis of type  p > 2.

Let \p  : a £ A\ be a set of probability measures on X.   Suppose for every e > 0,

there exists a family \T      \ of nonnegative bilinear forms of trace class one

satisfying

^-iZ   TaJßj,ßj) = 0,
;=N

|1 - Reçi(y, pa)\ < Tat(iy, y) + e       (ye X*).

Then \p  : a £ A \  is supported on X. and it is conditionally compact on X0

where the norm  ||x||v    = ||(/x|| .   .

Proof.  Apply Theorem 2.2 of [3l.
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In view of Lemma 9-2 we can prove the central limit theorem of [l2l with

p > 2.  That is, under the hypothesis of the theorem and by Lemma 9.2 the mea-

sures  n.ï.F   • are conditionally compact on  X„.   Further, the classical central

limit theorem says the limiting measure must be Gaussian with Fourier transform

as indicated.  We also point out, but we will not provide the computations, that

the hypotheses on the central limit theorem of [121 with p > 2  actually imply the

hypotheses of Theorem.9.2 in case the measures sit on /   .   This, however, in

view of Lemma 9.2, is always the case under such conditions.

BIBLIOGRAPHY

1. N. Dunford and J.T. Schwartz, Linear operators. I: General theory, Pure and Appl.

Math., vol. 7, Interscience, New York, 1958.    MR 22 #8302.

2. L. Gross, Harmonic analysis on Hilbert space, Mem. Amer. Math. Soc. No. 46

(1963).    MR 28 #4304.

3- J. Kuelbs and V. Mandrekar, Harmonic analysis on certain vector spaces, Trans.

Amer. Math. Soc. 149 (1970), 213—231-

4- J.L. Kelley, General topology, Van Nostrand, Princeton, N.J.,  1955-     MR 16,  1136-

5. Ju. V. Prohorov, Convergence of random processes and limit theorems in probabil-

ity theory, Teor. Verojatnost. i Primenen. 1 (1956), 177-238= Theor. Probability Appl.

1 (1956), 157-214.     MR 18, 943-

6. Ju. V- Prohorov and V-V- Sazonov, Some results related to Bochner's theorem,

Teor. Verojatnost. i Primenen. 6 (1961), 87-93 = Theor. Probability Appl. 6 (1961), 82-

86.    MR 26 #6729-

7. V.V. Sazonov, On characteristic functionals, Teor. Verojatnost. i Primenen. 3

(1958), 201-205= Theor. Probability Appl. 3 (1958), 201-205-     MR 20 #4882-

8. N.N. Vakhania, Sur une propriété des repartitions normales de probabilités dans

les espaces  l     (1 <p <oo) et H, C.R. Acad. Sei. Paris 260 (1965), 1334-1336-     MR 30

#4282.

9- -, Sur les repartitions de probabilités   dans les espaces de suites numériques,

C.R. Acad. Sei. Paris 260(1965), 1560-1562.     MR 30 #4283-

10. A.C. Zaanen, Linear analysis, measure and integral, Banach and Hilbert space,

linear integral equations, Interscience, New York; North-Holland, Amsterdam; Noordhoff,

Groningen, 1953-    MR 15, 878.

11. S.R.S. Varadhan, Limit theorems for sums of independent random variables with

values in a Hilbert space, Sankhyä Ser. A 24 (1962), 213-238.     MR 30 #1536.

12. A.D. de Acosta, Existence and convergence of probability measures  in Banach

spaces, Trans. Amer. Math. Soc. 152 (1970), 273-298.    MR 42 #2516.

13-  L. LeCam, Remarques sur le théorème limite central dans les espaces localement

convexes, Les Problèmes sur les Structures Algébriques, Colloq. de la Recherche Scienti-

fique, Paris, 1970, pp. 233-249.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN,  MADISON, WISCONSIN 53706

DEPARTMENT OF STATISTICS AND PROBABILITY, MICHIGAN STATE UNIVERSITY, EAST

LANSING, MICHIGAN 48823


