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ABSTRACT. We establish Bochner’s theorem and the Levy continuity
theorem in the case that the underlying space is a real F-space with a basis, and
then examine the infinitely divisible probability measures on a class of such
spaces.

1. Introduction. We generalize Bochner’s theorem and the Levy continuity
theorem of Fourier analysis to the case that the underlying space E is a real F-
space with basis and then study the infinitely divisible measures on such spaces.
This extends the results of [2] which handles the situation where E is a Hilbert
space and of [3] where E was an lp space, 0 < p < oo. It is also related to the
work of V. Sazonov ([6], [71), Yu. V. Prokhorov ([5], [6]), and to the study of the
infinitely divisible measures on a separable Hilbert space which is due to S.R.S.
Varadhan in [11].

We first establish some terminology in $2. In $3 we give Bochner’s theorem

(Theorem 3.1) and in Corollary 3.1 we link Theorem 3.1 to the results of [2] and
[31. $4 is devoted to the continuity theorem. These results are of some interest

in themselves but it is their application to Gaussian measures and other infinite -
ly divisible laws which is of most interest to us. In fact, the proofs of Theorem
3.1 and Theorem 4.1 are much the same as those given in [3] when E = IP(Z <P <)
so we do not provide the details here.

In $5 we give some applications to Gaussian measures. In particular, Theorem
5.1 characterizes the Fourier transform of a Gaussian measure, Theorem 5.2 gives
necessary and sufficient conditions in terms of the Fourier transforms for a fami-
ly of Gaussian measures to be conditionally compact, and Theorem 5.3 deals with
the convergence of Gaussian measures on E provided, in each case, E has what
we call Property B. Corollaries 5.2 and 5.3 then relate these results to the case
E = lp, 2 < p <. In fact, Corollary 5.3 was previously known to N. N. Vakhania
([8], [9]). Finally, in §6 we characterize a large class of spaces whose quasi-

norm is accessible in both directions as Orlicz spaces. This result is found in
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Theorem 6.3 and Corollary 6.2 again relates to the lp spaces, 2 < p <oo. In Cor-
ollary 6.3 we also have a similar characterization of those spaces with Property B.
In the last sections of the paper we study the infinitely divisible laws on
these Orlicz spaces. In particular, $7 is devoted to the representation theorem of
the Fourier transform of an infinitely divisible law, $8 centers on the limiting be -

havior of sums of small independent random variables with values in the Orlicz

spaces, and in $9 we apply the results of $8 to obtain a central limit theorem.

2. Terminology and preliminaries, Throughout the paper, E will denote a real
F-space with basis {bn }. Here, as is usual, an F-space is a topological vector
space whose topology is given by an invariant metric, i.e. d(x, y) =d(x -y, 0),
which is also complete in this metric. We will let |x|| = d(x, 0). Then || - | has
all the properties of a norm, except possibly homogeneity, and since E is a topo-
logical vector space it does satisfy the property that lim |a x - ax| =0 when-
ever {an} is a sequence of reals converging to a and {xn} is a sequence in E
converging to x. In this case, we will refer to | - | as a quasi-norm so as to
distinguish it from a norm.

Since E has a basis, for each x € E there is a unique sequence of real num-
bers {ﬁn} such that lim, ||x - Y fﬁlanbn | = 0, and it is easy to see that E is
separable. We will write the expansion of x as 2:=1an (x)bn and this empha-
sizes that the coefficients generate coordinate functionals on E. It is clear that
these coordinate functionals are linear and it is well known that they are continu-
ous as well. Further, it is possible to assume without loss of generality (and we
do) that ||x|| = sup, || 2 :=1[3n (x)b||. We also make the additional assumption
that the basis elements {b | are adjusted so that ||6_|| <1 (this is always possi-
ble). In case || - || is actually a norm and E is then a Banach space we can and
will assume [[6 || =1 for n=1,2,-- .

As usual E* will denote the space of continuous linear functionals on E.
Then E* is a linear space and the E topology on E*, i.e, the weak-star topology,
is the topology obtained by taking as a base all sets of the form N(f, A, ¢) =
{g: |/(x) - g(x)| <e¢, x € A} where f € E*, A is a finite subset of E, and ¢ > 0.

If x € E we will define, for N=1, 2, «--,

N 00
Pyx = 2 Belb,,  Opx = 2 Bt
k=1

k:N +l

and for y € E*, N=1, 2, -+ +, we define

N
Pyy = X Bl )y(b)).
k=1
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Lemma 2.1. The set U°13=1 PN(E*) is dense in E* with respect to the E
topology on E*. In fact, if y € E* .there exists a sequence {yN} in E* such
that {y\} converges to y in the E topology on E*.

Proof. Suppose y € E*. Then for x € E we have by the continuity of y that
y(x) = 2:=13k(x)y(bk). Put y, = EIIZHIBk( . )y(bk). Then y, € PN(E*) for
N=1,2,+++ and {yN} converges to y in the E topology on E*, so the lemma
follows.

The vector space of all sequences of real numbers with the topology of co-
ordinatewise convergence is denoted by /. The subset of / consisting of all
bounded sequences will be denoted by /_ and 1; will symbolize the positive
cone of [, ie. x= {xi§ € I;iffxl.> 0 for each i and x €/ . For 0<p <o we
let I denote the subset of / consisting of all sequences which have |x| =
{ Zj.":l |xi|p}l/p finite where x = {xi}. Thus, for 1 < p <o, we have | - || as
the usual norm for / , and for 0<p <1, | - | b generates an invariant metric un-

der which lp is an F-space. The positive cone of Ip will be denoted by 1;.

3. Bochner’s theorem on E. Let p be a probability measure on the Borel
subsets of E where by Borel sets we mean the minimal sigma-algebra containing
the open sets. Then the Fourier transform of p is a complex-valued function ¢
defined on E* (the topological dual of E) satisfying ¢ (x) = [ expli(x, y Mdu(y)
where (x, y)=x(y).

If we let § denote the algebra of cylinder sets, i.e. sets of the form {y € E:
(x,,¥), ---,(xn, y)1 €A} where x|, ---, x € E* and A is a Borel subset
of R ,and B(F) the minimal sigma-algebra containing ¥, then it is easy to see
that & uniquely determines p on B(F). Now B(F) is contained in the Borel
subsets of E and since E is a complete separable metric space it is known
that they actually coincide. Hence there is a one-to-one correspondence between
probability measures on the Borel subsets of E and their Fourier transforms. To
simplify many subsequent statements in the remainder of the paper we assume
that all measures are defined on the Borel subsets of E.

If A€ 1; and {u,: a €A} is a family of probability measures on E such
that

(3.1) py {x € Er Y, MBI <ot <1
k=1

for each o € A, we say A is sufficient for the family {u L LEA }. In other words,

the map x — (\/):1/31 (x), \/—):2/82(96), -++) is an [,-valued random variable for
each pu .



116 J. KUELBS AND V. MANDREKAR [July

If for each y € E we have sup,_ |83, (y)| <, it then follows that any A €/ ;'
is sufficient for any family of probability measures on E.

A family of probability measures {ya: a € A} on E is a A-family for some
A€ 1; if A is sufficient for {u : a € A} and for every ¢, 8> 0 there is a sequence
{ey } such that

[o2]

pagx € E: Z A LB ()2 <82 >1-¢

k=N +1

implies

E ’Sk(x)bk“ < b(3)2 >1 - (e+ ‘N)

pa;x € E: "
k=N 41

where limN ey=0 and b is a strictly increasing continuous function on [0, )
with »(0) = 0.

It is quite clear that any family of probability measures on a real separable
Hilbert space is a A-family with A=(1, 1, --+) and 5 (d) = 8%,

Lemma 3.1. If {p,: a € A} is a conditionally compact set of probability mea-

sures on E then {y : a € A} is a \-family for every X € l:° which is sufficient
for {ya: a €Al

Proof. Let ¢, 8 > 0 be given and choose A € l; such that A is sufficient
for {u : a € A}. Since {u: a € A} is conditionally compact there exists a com-
pact set K in E such that p (K) > 1 - ¢ for each a € A. Hence there exist
points p , +++, pp € K such that if S(p, y) ={x € E: |x - p|| < y} then K C
UT_sG,, 8/3).

Now select N such that || E‘;:=N+l,8k(pi)bk|| <8/3 for i=1,.+-, T.
Then for x € K we have |x - p,|| <8/3 for some p, and hence

2 B(p )b,

k=N +1

i Br(x)by, - 2 Bl )b,

k= N +1 k=N +1

i B (x)b,

k=N +1

< +

<lx—pl+ +8/3<5

N |
¥ B, () - ﬁk(pi)]bkl
k=1

since [x — p,|| = sup, |l Y gq[ﬂk(x) = B (9,016, ||. Thus there exists an N such that
for each a € A

i B (x)b,

k=N +1
soclearly {u : a €A} is a Afamily.

ua;er: <6§>l—c
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Now let a( - ) be a convex function on [0, =) such that a(0) = 0 and a(s) >
0 if s > 0. Further, assume for every compact set K of E there exists an 7> 0
such that y € K implies A(y) = . _la[ﬁ ()1 < 7, and for every 7> 0 there
exists M > 0 such that A(y) <r implies Y, ‘:"__.la[Bi DN < My(|y|]) where y(-)
is another continuous function on [0, ) such that y(0) = 0. If the quasi-norm
| - || on E admits the existence of functions a( -) and y( - ) having the above
properties we will say that it is accessible. We also note that if a( - ) and
y( +) satisfy the conditions indicated then a( - ) is continuous and strictly fn-
creasing on [0, =), y(s) > 0 for s > 0, and that y( - ) can be taken to be increas-
ing on {0, ). We note that the accessibility of the quasi-norm on E implies
that the map y — (8, (y), B,(y), -++) is continuous from the compact subsets of
E into the (topological) subspace / of / consisting of those sequences x = {x }
for which Z =yolx; %) is finite. Under additional conditions on a this subspace
becomes an Orlicz space (cf. 8 6).

We now provide some examples of spaces which have an accessible norm.
First of all notice that the 1 spaces, 2 < p < o, have an accessible norm with
als) = s?/2 and y(s) = s?. Slmxlarly, 1f E =1, 1<p<2, then E has an acces-
sible norm with a(s) = s and y(s) =s?; if E = Ip 0<p <1, then E has an
accessible quasi-norm with a(s) =s and y(s) = s2/? For an example of a space
with accessible norm which is not an lp space, consider the Banach space E of

real sequences {x} with norm

oo 2’*1 2/(I+,)

32 X | Y Ix i

i=l |-yt
Here B,(x) = x , thus if a(s) =s we have
00 0

Ea[ﬁz(x) -, x]. = i

=1

-
n
—

-
"
—

27-1 25/(1 +))

<O Y k9 = i 312

i:zj_l
Hence E has an accessible norm if a(s) =s and y(s) = s%. Other similar examples
follow immediately. For examples of a different type consider those in $6.

If the quasi-norm on E is accessible then by the 7,-topology we will mean

the topology on E* generated by taking as a subbase all translates of sets of the



118 J. KUELBS AND V. MANDREKAR (July

form {x € E*: T(x, x) <1} as T(-,-) varies over the symmetric, positive def-
inite, bilinear forms on E* which are jointly weak-star sequentially continuous
on E* and satisfying 2 7:=1a(tkk) <oco where t,, = T(Bk, ,Bk). Bilinear forms
having the above properties will be called a-operators. In view of Lemma 2.1
and the bilinearity it is easy to see that T is uniquely determined by t =

T(,Bl'y BJ)’ i9j= 1, 2, M

Lemma 3.2. The sets {x € E*: T(x, x) <1} and all translates form a basis
for the 7, -topology as T( - ,-) ranges over the a-operators.

The proof of Lemma 3.2 follows in a standard manner and hence is omitted.

The classical version of Bochner’s theorem asserts that a function ¢(x),
x €R_, is the Fourier transform of some probability measure on R, iff ¢ is posi-
tive definite, (0) = 1, and ¢ is continuous at zero. In a real separable Hilbert
space H it is possible to introduce a topology 7 (which is determined by certain
compact operators) such that a function ¢ on H* = H is the Fourier transform of
some probability measure on H iff ¢ is positive definite, ¢(0) = 1, and ¢ is con-
tinuous at zero in the 7-topology. The Hilbert space result is due independently
to L. Gross [2] and to V. Sazonov’s earlier work [G]. In [3] the work of [2] and
[6] is generalized to the Ip spaces. Here we will give a Bochner-type theorem in
case E has an accessible quasi-norm. Its proof is much like that of Theorem 2.3
of [3] and involves analogues of Lemmas 2.3 and 2.4 of [3]. Due to these simi-
larities the proof of Theorem 3.1 will not be included. However, the formulation
of this theorem provided us with some interesting questions and corollaries and

it is these that we begin to examine in the following sections.

Theorem 3.1. If E has an accessible quasi-norm then a function ¢ on E*
is the Fourier transform of a probability measure iff
(i) ¢(0) = 1, ¢ is positive definite,
(i1) ¢ is continuous in the 7, topology,
(iii) the family of measures {p, } corresponding to ¢(Py(-)) bas a sub-
sequence which is a A-family for some A 61 satisfying lim, 2 Nl =
whenever 2 al(t ii) <. Here a( .), of course, is the /unction assoczated

with the accesszbility of the quasi-norm.

If E= lp, 2 < p < oo, then a linear operator T from l* into l isan S p 0P
erator if T can be represented as an infinite symmetric posxuve-deﬁmte matnx
(¢, ) such that 2“’ tf,/z < . Here, by positive definite, we mean that
2".] 14:i%:%; 20 for all x € R and all integers n. The 7, -topology on l
that topology generated by takmg as a subbase all translates of all sets of the
form {x € lp : (Tx, x ) <1} as T varies over the Sp-operators. In view of Lemma

3.2, it is easy to see that such sets actually form a basis. Furthermore, our next
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lemma identifies the 7, -topology in terms of a 7 -topology. Its proof is direct and
hence is omitted.

Lemma 3.3. If E = l,, 2< p <o, then the norm of E is accessible with
al(s) = st/ 2, y(s) = s? and the 7-topology on E* is equivalent to the T -topology.

Corollary 3.1. If E=1,, 2<p <o, and ¢ is defined on l; then ¢ is the
Fourier transform of a probability measure on Ipi//

(1) ¢(0) = 1, ¢ is positive definite,

(2) ¢ is 7 -continuous,

(3) the family of measures iy, } corresponding to {(P, (- N} is a A-family

* +
for some ’\Elp/z'

Proof. The sufficiency of (1), (2), (3) follows immediately from Theorem 3.1
and the previous lemma since A € l;;z implies Z:."H)titii <eo forall {z}
=1tfz{2 < . Conversely, if ¢ is the Fourier transform on [} of a
probability measure on Ip then Theorem 3.1 and the previous lemma imply (1), (2)
easily and (3) will also hold for every A €[5 ,, Since {"N } is conditionally com-
pact and Lemma 3.1 applies.

satisfying 2:"

4. The continuity theorem. Suppose ! is the space of all real sequences with
the topology of coordinatewise convergence and P}‘( - ) is the product probability
on [ such that the ith coordinate is Gaussian with mean zero and variance A, >
0. If p is a measure on E we choose A € 1% sothat A is sufficient for @ (such

a A-always exists if sup |B, (y)| <= forall y € E), and for x €/ we define a
‘‘stochastic linear functional” on E in the following manner:

N
(% y) =lim 2 kak(y)'
N k=1

Throughout this section we assume that sup,, |ﬁn (¥)] <o forall y €E. In case

E is a Banach space this is not an additional assumption.

Lemma 4.1. The stochastic linear functional x, y) = lim quxkﬂk (y) is
Borel measurable on | x E and if F =1{(x, y):{x, y ) exists and is finite} then
(P, x W (F) = 1.

The proof of Lemma 4.1 is similar to that of Lemma 3.1 in [3] and, for that
reason, is omitted.

If p is a measure on the Borel subsets of E we define the extended Fourier
transform ¢( - ) on [ as follows:

g(x)=f5exp;i(x, Wduly) (€ D).
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Then z( - ) is a Borel measurable function on ! which is defined almost every-
where with respect to the measure P, . Furthermore, since each x € E* generates
the unique sequence of real numbers % = {x (6,), x(b,), -+ }, we may consider
E * as a linear subset of /, and hence the terminology extended Fourier transform,

since for x € E*, ¢(x) = z(’;)

Theorem 4.1. Let {y, } be a sequence of probability measures on E with
Fourier transforms {gbk} Then {pk} converges weakly to a measure y with
Fourier transform ¢ iff {p } is a A-family for some A € I+ which is also sufficient
for u, {qSk} converges to ¢ on a subset of E* which is dense in E* with respect

to weak-star sequential convergence, and {q&k} converges in P measure to qS

Here again our proof parallels that of Theorem 5.1 of [3] and can be carried
out in an analogous manner with appropiate changes in this context. Hence it is
omitted. It should be mentioned, however, that the above result generalizes
Theorem 5.1 of [3] where E =/ p» 2 < b < co. However, it is not quite equivalent to the
result of L. Gross (the case E = 12) but, as the results in $4 of [3] indicate, it is
the great symmetry of Hilbert space which enables the improved version in [2].

The next corollary is well known and in view of Lemma 3.1 is an immediate
corollary to Theorem 4.1.

Corollary 4.1. Let {u, ! be a sequence of probability measures on E with
Fourier transforms {¢, }. Then lu, } converges weakly to a measure y iff {/‘k }is
conditionally compact and {q&k } converges on a subset of E* which is dense in
E* with respect to weak-star sequential convergence. Further, the Fourier trans-
form of yu is ¢=limng, on E™.

5. Application to Gaussian measures. A probability measure y on E is a
Gaussian measure with mean vector a € E if the distribution of the function
(7, x) is Gaussian with mean (y, a) for each y € E*.

For example, if (t ) is a positive definite, symmetric matrix satisfying

Ew_ltlli < o and E is a Banach space with basis {bn} then there exists a

unique Gaussian measure p with mean zero on E such that
= fEBi(x)Bj(x)du(x) (G,7=1,2,---).

Further, the Fourier transform of y is ¢(x) = exp{ -3 (Tx, x)} where T =
(tii) maps E* onto E in such a manner that for x € E*

(5.1) Tx = i oiti].x(bj) b
j=1
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To see that Tx € E simply observe that

(=)

00 o0 2
2 2":‘;“5— th!i/z oo

=1 j=1 i=1

and use the fact that E is a Banach space with basis.

Suppose E has an accessible quasi-norm. Then, if E* is such that the se-
quence {x_} converging to x in the E topology on E* implies sup,, ;|x,(6)] <
o, we will say E has Property A.

It is easy to see from the uniform boundedness principle that if E is a
Banach space with accessible norm then E has property A. Hence the examples
of $3 all have Property A.

Lemma 5.1. If E has Property A and {u].} € II is such that 2‘;";1 a(u].) < oo,
then Ul(x, y) = E‘]’?:lu].x(bj)y (b].) is an a-operator on E* and U(x, x) = 0iff x = 0.

The proof of Lemma 5.1 is immediate and hence is omitted.

Lemma 5.2. If E has Property A and u is a Gaussian measure on E with
mean a then the Fourier transform of p is expf i{x, a) - YT (x, x)} where

T(-,-) is an o-operator on E" such that T(Bl., /3].) = fEBi(x—a)Bi(x—a)dy(x)
for i,j=1,2, ..

Proof. Let ¢(x) denote the Fourier transform of y. By Theorem 3.1, ¢( - )

is r -continuous and also weak-star sequentially continuous (it is a Fourier trans-
form). Hence

N
$(x) = lim $(Px) = lim exp {i(Py%, a) - % Z s,.kx(bj)x(bk)
N N i, k=1

where P, (x) = Eﬁ.‘lqlBj( . )x(b].) and Sk = fEﬁj(y -a)B,(y - @) du(y). Thus

N
S(x, x) = lim E sijx(bi)x(b].)
N 4, =1
exists for all x € E*. We define for x, y € E*

N
S(x, y) = h;ln i’gﬂsﬁx(bi)y(bj).
Since it equals Y%[S(x + y, x + y) = S(x, x) = S(y, y)], S(x, y) now exists for all
x, y € E*. Further, as is easily seen from the definition, S( -, - ) is bilinear on
E*. We now will show S(-,.) is an a-operator and the proof is then completed
by setting T =S. Since ¢(x) = exp{ — 145 (x, x)} is 7 -continuous there exists
an a-operator V such that V(x, x) <1 implies S(x, x) <¢< 1. We can (and do)
assume V(x, x) > 0 for all x # 0 (possible by previous lemma). If V(ygs ¥o) =
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c2 >0 then V(yo/c, yo/c) =1 so S(yo/c, Yo/€) <e and S(yo, Yo < ec?=

eV(yy,yy). Thus Sii= S(B,” ,Bj) < EV(B]-, B].) =ev, <v. S0 a(s].].) < a(v].].)
since a( - ) is increasing. Thus 2‘;"___1(1(31.].) < 2‘;."___10.(1/].].) <o as V is an
a-operator. The remaining properties of an . -operator are easily seen to hold for

S(-,+). For example,
&(x) = expli(x, a) - % S(x, x)}

is 7 -continuous on E* and since exp{i{x, a)} is 7,-continuous it follows that

S(x, x) is fa-continuous. Hence the lemma holds.

Lemma 5.3. If E bas Property A and {py} is a sequence of Gaussian mea-

sures with mean vectors {aN } such that {#N} converges weakly to p, then p is

Gaussian with mean a = limNaN and

5.2 . N _ _

G-2) lzlvm zla(lzﬁ t.1)=0
I:

where t?’}.:fE/gjz(x—aN)a’#N(x), tii=fE ﬁjz(x—a)d#(x) for j=1,2, 0.

Proof. For each measure y, we define the measure vy (4) = py(~A) and
corresponding to y we define the measure v(A) = u( — A). Here, of course, A
varies over the Borel subsets of E. Then {VN} converges weakly to v. Now py
has Fourier transform exp{i{x, aN) - %Ty(x, %)} where T is an a-operator
on E* such that Ty (B;» B]) = [g :31(" —a)ﬁj(x —a)dp,(x) for i,7=1,2, .-,
and hence v has Fourier transform expli(x, - aN)— 1/zTN(:c, x)}. Thus the se-
quence of convolution measures _{,/‘N *uy } has Fourier transforms
exp{ - T (x, x)} and, furthermore, they converge weakly to p + v since LTINS
and {vy | converge weakly to y and v. If T'\(A) = (uy * VN)(ﬁA) for N =
1,2,--+ and ['(4) = (g * v)(\/Z_A) for Borel sets A in E then {FN} converges
weakly to I' and the Fourier transform of 'y is expt - BT N(x x)}. If oy is
the measure which places mass one at a then y, =3, + I'y and since both
{FN} and h‘N* converge weakly to I' and p this implies {8N} converges weak-
ly to the measure § with unit mass at a = limya, . To see this last assertion
observe that for every ¢ > 0 there exists a compact set K in E such that I‘N(K) >
1-¢ and FN(K)> 1—¢for N=1,2,+--. Thus

L e <y (K) = f By (K = V()

< IKSN(K — x)dvy(x) + ¢

and hence there exists an x € K such that §, (K- x,)> 1~ 2. If € <) this

implies a, € K - x and hence we find the sequence {aN} lies in the set of
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differences C ={x —y: x, y € K}. Now C is compact, thus {aN} is conditionally
compact and since {FN } converges to yu we must have only one limit point for
{ay}. Thus limyay, = a exists and {8} converges weakly to §, as asserted.

Since limya, = a exists it now follows that u is a Gaussian measure (pos-
sibly degenerate) with mean a and hence it has Fourier transform

expli{x, a) - % T (x, x)} where T is an a-operator on E* such that
T(By B) = t;;= [ Bix — B lx — dul) G, j=1,2,--)

To complete the proof we need only verify (5.2). Now {FN} converges weakly to
[, thus for every ¢ > 0 there is a compact set K such that 'y (K) > 1 - ¢/2 for
N=1, 2,... and hence

1 — expi-— %TN(x, x)} = fE[l — cos{x, y)l dFN(y)
(5.3) )
<5 Jlx yPar )+ e

Let SN(x, x) = l/sz(x, y )zdl_'N(y) for N=1,2,+--. Since t/2<1-e7% 0<

t <1, (5.3) implies 4T\ (x, x) < SN(x, %) + ¢ provided TN(x, x) < 2. However,

if TN(x, x) =c2> 0 then %TN(x/c, x/c) =Y% < SN(x/c, x/c) + €< ZSN(x/c, x/c)
provided ¢ <1/8. Thus T, (x, x) <85 (x, x) for all x € E*. Hence

N = Ty(B, B) < 8548, B) = 4 [ BN ATW() = [ BH2ydTy(y)

for N, j=1, 2, -+ and we therefore find, since a is convex and the quasi-norm

is accessible, that

ia(tﬁ.) < il fKa[B?(Zy)] dl'y (y)
j=

j=1

= fK Ela[B?(Zy)]dl_‘N()')
1=

< J A2y Ty o)

where M depends only on K and not N. That is, since K is compact there exists
an 7> 0 such that E?ﬂa[ﬁf (2y)1 <r for all y € K, and hence there exists an
M > 0 suchthat y € K implies

[~¢)

Y, alBl@y) < mylig, @yl

j=L.+1

Here M depends only on K through our choice of 7 and not on L. We then have
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sup 2 a(tN)< szf 2 a[,BZ(Zy)]dl_' ()

j=L +1 j=L +1

< suph f 70, @ T )

and as L approaches infinity y(||Q, (2y)|) tends to zero on K boundedly, i.e.
y{lo,. 2nh< y(supy K 2|12y|]) < e, thus

lim sup z a(tN)—
L N j=L+1

We then have the conclusion (5.3) because l1mNt N = L . for j=1, 2, and

hence for every ¢ > 0 and integer L there exists N suff1c1er1tly large such that

Tl -1, e 3 ele] -1,

(5.4)
<e+ 2 alth) + 2 alt,).
j=L j:L

Now lim, 2 :'O=L a(t].].) = 0 since T is an a-operator and lim  sup 2 :.°= alt ;VJ.) =
0 by previous remarks, so (5.4) implies (5.2).

An F-space E has an accessible quasi-norm in both directions if there exist
functions a, y,, y, such that E has an accessible quasi-norm with respect to
o and y, and, for every y € E, yl("y") < 2“ a(,B] ()). Here y,(+) is an in-
creasing continuous function on [0, =) such that yI(O) =0, yl(s) >0 for s> 0,
and y,» @ satisfy the conditions required in the definition of an accessible quasi-
norm. Geometrically, the above inequality implies that the inverse of the map
y— (Bl(y)’ Bz(y), -+ ) is continuous from the Orlicz space related to /_ into
E under additional conditions (cf. (6.3)) on a.

Let E be a real separable F-space having an accessible quasi-norm in both
directions. Then E has Property B provided E has Property A and there is a
constant M > 0 satisfying

Im alu?) dv(u) < Ma[foo u? dv(u)]

for all Gaussian measures v on ( — o, ) with mean zero.

Lemma 5.4. Let E have Property B and suppose T is an a-operator on E*.
Then ¢(x) = expl{ - YT (x, x)} is the Fourier transform of a Gaussian measure ®

on E. Further, T(B;, B) = I ,Bi(y)ﬁj(y)a’#(y) for i,j=1,2,--

Proof. Let py denote the Gaussian measure on E corresponding to the
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Fourier transform exp{ — l/zT(PNac, PNx)} for N=1,2, .-+ . We show {#N} is
conditionally compact and hence, by Corollary 4.1, {F‘N} converges to the measure
p with Fourier transform ¢(x). Let ¢, §> 0. Then

pnly: 10 O > 8 = pyly: v (10, I > y, ()

< uN{w > alBXy)> yl(B)}

j=L 41

M« M R
<— ) a[ B2(y) du (y)] =— Y alh
< N ).
"® & Jeh; Y @) & i
N . N .
However, t)i= fEB]'Z(y)dIl'N(y) =t forj=1,+++., N and L= 0 for j > N, thus
10, G) >8k<e for N=1, 2, -+ provided L is sufficiently large. Pro-
ceeding with standard techniques (see, for example, Lemma 2.4 of [5]) we see {uy} is
conditionally compact. As remarked previously, Corollary 4.1 now implies {’“N }

converges weakly to a measure y with Fourier transform ¢(x), and this completes
the proof.

In view of Lemma 3.1 it is easy to see that Theorem 3.1 also easily applies
to the previous lemma.

Theorem 5.1. If E has Property B then y is a Gaussian measure with mean
aiff the Fourier transform of y is

¢(x) = expli(x, a)- % T(x, x)}

where T is the a-operator on E* satisfying T(B;, Bi) = fEBi(y—a)'Bj(y - a)du(y)
fori,7=1,2,---.

Proof. Combine Lemmas 5.2 and 5.4.

Theorem 5.2. If E has Property B and {u AIAE A} is a family of Gaussian
measures with means a, and Fourier transforms

¢)\(x) = expii (x, a,) = 15T, (x, x)}
then {#)\: A € A} is conditionally compact iff
(1) {axz A € A} is conditionally compact in E;
(2) the family {q&x(PNx): A € A} is equicontinuous on PNE* for N=1, 2,

(3) lim; sup 2;’."=L+la(t;;.) = 0.

Proof. If {i : A € A} is conditionally compact then every sequence in

TN y comp y seq
{pxz A € A} has a weakly convergent subsequence. Consequently, by Lemma 5.3,
(1) holds and (2) follows since {p fN: A € A} is conditionally compact for N =
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1,2, ---. Now if lim sup)‘ Z,] =L 41 ( ) =7> 0 then there exists A,
. such that 2?=L+1 ( ) >r/2 for all L < k. However, the sequence of mea-
sures {y N k} has a convergent subsequence, so assuming {u Ak } itself converges

weakly to a measure p we have by Lemma 5.3 that

(5.5) Lim }_‘, a(k-1.)-0
where t; = fEsz(y - a)du(y) for j=1,2,+++ . Thus
i a(k) < i alt, + |0% 1]
i = i ji i
j=L+l j=L+1
(5.6) - .
Y ala )= Y, a2l ~ 1))
it 2 i i
j=L+1 j=L +1

where the last inequality follows since a( - ) is convex on [0, ). Now since E
has an accessible quasi-norm in both directions we have, given y € E, that there
exists M > 0 such that y (||ly|) < zw_la[ﬁ N1 < Myz(uy“) and also that
yiUvayh < T%-, al2820)) <My2(||\[y||) We now show that 2"?,1 alt;) <o
]._la(2t )<oo Let s 2;’=ltﬁb for n=1, 2, . Then
{s,} is a Cauchy sequence in E That is, if n> k then "S,, -5, 0l =
“ 27 =k+ll;{3b; "

Now yl("sn— skN) < ZT_la(ﬁ (s - Sk)) and since B (s —-sk) =t
for k+1<j<n we have yl("S -sk") < 2 —k+1a(tn) and 2] =la(t”) < o0
along with the properties of y, implies lim \77"571 - 5./l = 0. Thus is_} conver-

2

implies

ges to a vector s and {y/2s_} converges to /2s so

(=] (o]

Y, a2t ) = Y, aBis) < My,(|V2s]) < =

j=1 j=1

for some constant M > 0. We now verify that (5.5) implies

. A
(5.7) lim 21 a@|tk -t ) =0
j=

By the above argument the vectors vy = ) T=1 ItM‘z -t I‘/’b converge to zero
since y, (|l D < Yo a(|t -t |) and (5.5) 1mphes thlS last term goes to
zero as k goes to infinity. Thus the sequence {\/21/ } also converges to zero,

and hence

. k . = _
0< l;em 2 a2lel, ~ 1) < Mlimy (V20| = 0

for some constant M, so (5.7) holds. Applying (5.7) and E°° a(2t].].) <o to
(5.6) we see
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o0
. A
lim sup 2 a(t..k‘) =0.
L E . 17
]:L +1

This contradicts 2;’."=L+la(t;f‘) > /2 for all L <k and hence (3) holds.
For the converse assume (1), (2), (3) hold. Let ¢, 8> 0. Then

0 |
v | Y B > 8% = ly: vyl vl >y, (O
j=L 41 l
(5.8) . L=
<l Y a(,Bf()'))>y1(5)% < Y a(t;‘i).
j=L 41 71(8) j=L+1

Thus by (3) we have for L sufficiently large that p, ty: |Q y| > 8} <e for all
A € A. Now arguing as indicated in Lemma 5.4 we see (5.8) and condition (2)

implies {p)‘: A € A} is conditionally compact, so the theorem is proved.

Theorem 5.3. If E has Property B and {#k} is a sequence of Gaussian mea-

sures with mean vectors {ak} and Fourier transforms
¢;k(x) = expli(x, ak) - %Tk(x, )},

then {pk} converges weakly to a measure y iff

(1) lim’kd’k(x) exists :n U°I\°I=1PN(E*),

.o . 00 n

(i) lim, 2}. =1a(|t].j - t].].I) =0.
Further, the measure y is Gaussian with mean a = lima, and Fourier transform
d(x) = expli(x, a) = 4T (x, x)} where ty= T(B, B].) = fE,Bi()’ —a)ﬁ]-()' —a)duly) for
i j=1,2 0.

The proof of Theorem 5.3 follows directly by using Lemma 5.3 and the tech-

niques employed in the proof of Theorem 5.2, so it is omitted.

Corollary 5.1. If E has Property B and y is a measure on E such that every
linear functional on E has a Gaussian distribution, then there exists a vector a

in E such that a is the mean of y, i.e. [px(y)du(y)=x(a) for every x € E*.

Proof. Since uPN is a Gaussian measure on P, (E) with mean ay in
PN(E) for N=1,2,..., and {p.PNl converges to u, it follows from Theorem
5.3 that a = limya exists and the corollary follows.

As a result of Corollary 5.1 we find that in our definition of a Gaussian mea-
sure on E we need not assume’ that a mean vector a exists provided E has Prop-
erty B.

If E= lp and y =(y,, ¥ +++) then as is usual B,.(y) =Y for j=1,2,---.
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Corollary 5.2. If E = I, 2<p <o, and tn, ) is a sequence of Gaussian
probability measures on IP with mean vectors {ak} and tf]. =
JeB; _ak)Bj(y —ay)du, (y) for i, j, k=1,2,---, then {y, } converges weak-
ly to a measure p iff

(1) limkaz"z exists;

(2) limkt@. exists for i, ] =1,2, «++;

. 1 0o k n p/2

(3) lim, . X% |tk —em P/ 2=,

Furthermore, y is then the Gaussian measure with mean a = lim,a, and satisfy-

ing tl..=fE,Bz.(y—a)lB.(y - a)duly) for i, 7, =1,2, .-

Proof. This follows from Theorem 5.3 since if E = l,,2<p <eo, then E
has Property B. To see this let a(s) = s?/2 and y,(s) = yz(s) = sP. Then l,
has an accessible norm in both directions with respect to a, Y Vo Further, for

every Gaussian measure v on ( - o, ») with mean zero we have

fﬁwa(sz)dv(s) f Isl? du(s) = Mal:fioooszdv(s)]

where M=T"((p + 1)/2)[1—'(3/2)1.""/277 =12 204 since I, is a Banach space we
see lp has Property A. Combining these we find that lp has Property B and that
conditions (1), (2), and (3) are equivalent to conditions (i) and (ii) of Theorem
5.3. Thus the corollary is proved.

It should also be mentioned that (1), (2), (3) are sufficient for {yk} to con-

verge weakly if 1 < p < 2. The necessity in this case is unknown.
Corollary 5.3. If E = [, 2<p <eo, then
6(x) - explile, @) - %(Tx, )1 (x € E*)
is the Fourier transform of a Gaussian measure on E iff a € E and T is an SP
operator.

Proof. Combine Corollary 5.2 and the ideas used in the proof of Corollary 5.3.

6. As pointed out in the proof of Corollary 5.2 the lp spaces, 2 < p <oo,
each have Property B. It is natural to ask if other spaces have it, or, for that
matter, if there are other spaces which have a quasi-norm which is accessible in
both directions. In this section we characterize all possible spaces with quasi-
norm accessible in both directions provided the function a( - ) used in the defini-

tion of an accessible quasi-norm satisfies the additional condition

(6.1) al2s) < Mals)

forall s >0 and some M < . This result is found in Theorem 6.3. Furthemore,

if, in addition to (6.1), there is a constant C such that
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-— 00

6.2) J'w alu?)duu) < Ca[‘m u? dv(u)]

for all Gaussian measures v on ( — o, ) with mean zero, then our characteriza-

tion applies to spaces with Property B. Throughout this section a( - ) will al-
ways have the usual properties required in the definition of accessibility as well

as (6.1). Condition (6.2) will be used only in connection with Property B.
Since a( - ) is convex we have for a, b > 0 that a(a + b) < Y[a(2a) + o(2b)]
and by (6.1) we find

(6.3) ala + b) < (M/2)[ala) + a(b)].

Now we define E , as the space of real sequences satisfying Z:.".__la(y 12) < oo
Using (6.3) it follows that E  is a vector space over the reals. If x, y € E_ we
define

[>%)

(6.4) I 9) = ) allx, = y)2.

i=1
Then ] (x, y) is invariant under translations and we denote by Qa all subsets
G of E, x E  such that there exists an 7 > 0 with the property that J(x, y) <r
implies (x, y) € G. Then §_ is a uniformity for E, [4, p. 176] and the topology 7
of the uniformity Qa consists of the family of subsets A of E , such that for each
x €A there is a G € § such that {y: (x, y) € G} CA. Now the subfamily B.=
{Gl, G,, «oo} of Qawhere G, = {(x, y): J(x, y)<1/n} for n=1,2,-++ isa
countable symmetric base for §_ and since J(x, y) > 0 for x # y it follows that
the topology 7 is Hausdorff. Hence the metrization theorem [4, p. 185] tell us
that (E ,, 1) is metrizable.

In fact, using the proof and the notation employed in the metrization theorem
we will show that there exists an invariant metric d( -, - ) on E, ie. d(x, y) =
d(x +z,y+z) forall z € Ea, such that d(, ) generates the topology 7, the
quasi-norm ||x|| = 4(0, x) is accessible in both directions, and that E_ is an F-
space with respect to 7.

Linking our situation to the metrization theorem we let Upg=ExE_, U, =
{(x, y): J(x, y) <1}, and U’Z ={(x, y): J(x, ¥) <OMH~"*1Y for n = 1,2, -
where M is as in (6.1). Then defining d(,) as in [4, p. 185] we have that d( ,)
is a metric satisfying

(6.5) U’2 C Hx, y): dx, y) < 277} C l/n_1

for n=1, 2, -+ and that d(x, y) <! forall x, y € E,. Moreover, examining the

definition of d(,) we find d(,) is invariant since our sets {Un} are invariant in
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the sense that (x,y) €U _iff (x+z, y+2) €U, for every z € E . In view of (6.5)
if x €E_ then (x,0) €U, _,-U, (n=2,3,...)iff -1<j(x, 00 <™~ 2%and
277" 1<d(x, 0) <27 "*! where I'= (9%~ L. Hence if ¥1(s), y,(s) are continu-
ous strictly increasing functions on [0, =) such that Y; (0)=0 for i =1, 2, and
satisfying

(6.6) yz(z—n—l) > Frz—Z , yl(z—ru-l) < F"_l

for n=1, 2, 3, ... we have

(6.7) y,(d(x, 0)) < J(x, 0) < y,(d(x, 0))

provided (x, 0) €U, i.e. J(x,0)<1. If (x, 0 €Uy- U, then J(x,0)>1,}
d(x, 0) > Y, and since yz(%) >T- 1= om4 yl(l) <1 we have

SN
(A

(6.8) v, (dlx, 0)) < J(x, 0) < M,y,(d(x, 0))

provided J(x, 0) < Mll"“l.
Let ¢ > 0 be such that yi‘l(a(cz)) <1.

Theorem 6.1. The metric space (E_, 1) with quasi-norm ||x| = d(x, 0) as

a’
above is an F-space with basis {bn . Here bn is the vector with c as the nth
coordinate and all other coordinates zero. Further, ||b’z | <1 form=1,2,...
and the quasi-norm is accessible in both directions with respect to the functions

a,y, y, where y,, y, are as in (6.6).

To show (E, 7) is an F-space we first must show that it is complete in the
metric d(,) and that it is also a linear topological space in the topology r.
Then the assertions about fbn } are immediate in view of (6.8), the definition of
E ., and our choice of ¢ > 0. Finally, the accessibility of the quasi-norm will
follow from (6.7) and (6.8) provided we can show that for any compact set K of
(E,, 7 there is an r <o such that K'C{x: J(x, 0) <r}. These facts will be ob-

tained in the next several lemmas and hence Theorem 6.1 holds.

Lemma 6.1. The metric space (E ,, 1) with the invariant metric d( -, - ) as

defined above is a complete metric space.

The proof of Lemma 6.1 follows in exactly the same manner as in the lp

spaces and hence is omitted.
Lemma 6.2. (E_, 7) is a linear topological space.

Proof. Since (Ea, 7) is a complete metric space in the invariant metric
d(,) it suffices to show by Theorem 12 of [1, p. 53] that the mapping (b, x) =
bx from R x E, into E , is continuous in b for each x and continuous in x for

each b. First fix x and choose {bn} in R converging to b. Then
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y @b = b )x, 0) < J((b — b))%, 0) = Y, allb — b )2x2] < w,
j:l
and as n approaches infinity the last term converges to zero by the dominated
convergence theroerm since (b - & ) 2x1.2 < xl? for (b — bn)2 <1 and a(.) is in-
creasing. Now fix & and choose {pn } converging to x in E,. Then, if & is an

integer greater than b2 we find
y1(dbp,, bx) < J(bp,,, bx) = Y, alb?(x, .~ x)?)
=1

(6.9)

a(k(xn' i~ x].)z) < Mkz a((xn". - x].)z) < Mkyz(d(pn - x, 0)
1 j=1

<

e

]

since {p_} converging to x implies that d(p, - x, 0) <4 for n sufficiently large.
Now lim_y,(d(p, —x, 0)) =0 so lim d(bp_, bx) = 0 and hence the lemma is

proved.

Lemma 6.3. If J(y, x) is defined as in (6.4) and K is a compact subset of
(E_, 7) then there exists an r> 0 such that K Cly: J(y, 0) <r}.

Proof. If no such r exists there is a sequence {y_} in K such that {y_} con-
vergesto y and J(y_, 0) > n. This contradicts the fact that sup_ J(y,, 0) is

bounded for Cauchy sequences and hence such an r exists so the lemma is proved.

Lemma 6.4. If {bn} is defined as in Theorem 6.1 then {bn} is a basis for

(E , 7) and ||bn||51 for n=1,2, ...

a?

Proof. Combine the definition of Ea and ¢ > 0 along with (6.8).

At this point we have now proved Theorem 6.1. The impact of Theorem 6.1 is
that any function a( . ) satisfying (6.1) and the usual conditions we have imposed
can be used to produce an F-space which has an accessible quasi-norm in both
directions. We now proceed to characterize these spaces as well as those with
Property B.

If a(t) is a convex function on [0, «) such that a(0) = 0, a(z) > 0 for ¢t > 0,
then, as mentioned previously, a(t) is also continuous and strictly increasing on
[0, ). Further,I'(¢) = a(?) then has the same properties and it follows that
'@ = gp(s) ds where p(0) = 0 and p(s) is nondecreasing on [0, «). We assume,
without loss of generality, that p(s) is left continuous and define A(t) = f% U(s) ds
where /(s) is the inverse of p(s) on [0, =) defined with the understanding that
Y (s) is left continuous where it is finite and that if p(f) makes a jump at t=a
then ¢(s) =a for p(a-) <s <pla+), while, if p(t) =c for a <u<b but p(t) <
c for t <a then y(c) = a. Furthermore, y(0) = 0 and if liml_mp(t) =y < oo then
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Y(s) =+ oo for s >y. Then I" and A are complementary in the sence of Young
[10, p.77] and by S; we meano_oall real seq::ences {xi} such that

El"(\xil) = 2 a(xf) < oo,

i=1 i=1
Similarly, §} is all sequences such that ;’.‘_’__1 A(l",‘) < oo.

If x= {xi} is a sequence we define

Il - sup{zu 5, 2 Ay, < 1}

i=1

fll = sup Ylxyl: Y, Ty, < 1}~
i=1 i=1

The Orlicz space 5 ® ) is the collection of all real sequences such that |x||p
("x"A is finite. Smce a(t) satisfies (6.1) it follows that I'(2¢) = a(4¢2) <

Ma(2tD) < M 20(2) = le—‘(t) and hence we know [10, p. 81] that S = 8 Further,
it is known that §, ’SI‘ is a real separable Banach space in the norm ||x|| r and

since T'(2t) < MZF(t) for ¢ > 0 we also have that {p_} converges to p in norm
provided

(6.10) lim Z lﬂ(lxi’ N I) = l1m Z a((x T xi)z) -0

7=l i=1
These results follow as in [10, pp- 82—85]. Now it is clear that E = S;. and since
S;‘. = Sl‘ we have E = Sl‘ . Consequently, E_= 'Sl‘ is an F-space in the topology 7
and in the topology 7. generated by the norm |x|| .. Further, 7. C 7 since {,}
converging to p with respect to the 7 topology implies lim_d(p_, p) =0, and
hence (6.10) holds so {p 1} converges to p in the norm || - ||, i.e. in the 7 topol-
ogy. Thus any closed set with respect to 7 is also closed with respect to 7 and

hence 7 C 7 as indicated.

Theorem 6.2. The metric space (E ,, 1) is a Banach space in the norm || - || ..

Proof. Since the topologies 7 and 7y both make E = 8!‘ an F-space and they
are comparable it follows that they are identical [1, p. 58]. Thus the theorem fol-

lows since (E is a Banach space.

@ )

Corollary 6.1. The metric space (Ea, 7) with quasi-norm | - || and basis
6} as defined in Theorem 6.1 is such that

(1) If K is any compact subset of E  and {3 } represents the coefficient
functionals relative to the basis {b_}, then Sup, . ek 18, )] <.

(2) The sigma-algebra generated by the weakly open subsets of E  is equal
to the sigma-algebra generated by the r-open subsets of E .



1972] HARMONIC ANALYSIS ON F-SPACES WITH A BASIS 133

(3) (E, 7) has Property A.
4) If o +) also satisfies (6.2), then (Ea, 7) has Property B.

Proof. If K is compact then there exists an r > 0 such that y € K implies
J(y, 0) <r. Now, :3,,()') =Y, /c where Y is the nth coordinate of y and ¢ > 0 is
the constant chosen as in Theorem 6.1. Further, a(yi /c?) <r and hence Iy" /el <
{a=iN1”% so SUP,, ey | BN < {a=1(r)}”% < and (1) holds.

To see that (2) holds combine Theorem 6.2 and the remarks made in the sec-
ond paragraph of $3.

To prove (E ,, ) has Property A we note that Theorem 6.1 implies d(, ) de-
7), and by Theorem 6.2 that (E ,

R . .
Hence {xn} in E% converging to x in the

fines an accessible quasi-norm for (E 7) is al-

a?
so a Banach space in the norm || - || r
E , topology on Ey implies sup  |x (b,)| < oo provided sup, |6, [ < eo. Now
"bi"r =sup_{lcy[: A(ly]) <1} for i=1, 2, -+ and this last quantity is finite,
so sup, ||b;|| < as desired.

Condition (4) now follows from (3) and the definition of Property B,

Theorem 6.3. If E has a quasi-norm which is accessible in both directions
with respect to the functions o, pys P, and al + ) satisfies condition (6.1), then

E and the Orlicz space E  are homeomorphic and isomorpbhic.

Proof. We denote the quasi-normon E by | - ||. If p € E we let ®(p) =
(B,(), B,(#), -++). Since || - || is accessible, p € E implies D ;’.°__.la[[3].2(p)] <
oo, thus ®(p) € E . On the other hand, if (c,, c,, -+ ) € E, then },%_ alc)
<e and if p,= 2?=lcibi for n=1,2,.-- then {pn} is a Cauchy
sequence in E. Let p=1lim p . Then @(p) =(8,(p), B,(p), -+ )=(cy c;,--+)
so @ is a one-to-one map of E onto E, which clearly preserves the
algebraic relations. To see that ® is also a homeomorphism we first note that
since | - || is accessible in both directions it follows that a sequence {p } in E
converges to zero iff lim 2:;;: a[ﬁ]?(pn )] = 0. Then, if ®(p ) =(B,(p,),
B,(p,), -+ ) we see from previous considerations that {®(p )} converges to
zero in the norm on E_ iff lim 2‘;°=1a[ﬁ]?(pn)] = 0. Consequently, ® is a homeo-

morphism and the theorem is proved.

Corollary 6.2. If E bhas a quasi-norm which is accessible in both directions
with respect to the functions a, Py Py and a( - ) satisfies condition (6.1), then
E is isomorphic and homeomorphic to Ip for some p, 2 < p <o, iff

(6.11) lim =k < oo,
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2
(6.12) im 2 5o

Tlo P

Proof. If (6.11) and (6.12) hold then E is isomorphic to Ip with respect to
the map ®(x) = (B, (x), B,(x), -+ +). In view of (6.11) a sequence {x} conver-
ges to zero in E if

lim ), (k + |B,(x)|? =

7=l

Thus {x,} converges to zero in E if {x } converges to zero in 1, for some p
such that (6.11) holds. On the other hand, if {xni converges to zero in E then
by (6.12) it follows that {xn} converges to zero in lp. Thus if (6.11) and (6.12)
hold we also find E and lp are homeomorphic as well as isomorphic.

Conversely, if E is homeomorphic and isomorphic to lp then

(6.13) lim 2 a(B2(x ) =0 iff lim Y, |B,(x )P =0
7 k=1

7 k=l

for a sequence of points {x 1} in E=1 . If llmt 10a(t 2)/t? = » we choose 0 <
€, <1 such that a([e /nl/"]z) > e and let /e be such that 1<k, (e )P < 2.
Then for n =1, 2, -+ we define the point x in E such that /Sk(x )_ 0 if k>
k and Bk(x )—e /nl/p for 1<k<k,. Thus

k

=) n 00 k Ie Ip
Y alBiz Nz Yl lf> 1, Y 18,61 - <L,
k=1 k=1 k=1 n

so (6.13) is violated. If lim, 10ct(t 2)/t? = 0 there exists 0 < €, <1 such that
a(ei) <e’pz /n for n=1,2,+++. Let k_ be an integer such that 1< kn(en)p <2
and define the point x_ in E suchthat B,(x ) =0 if >k and B,(x )=¢,
for 1 <k <k, Then 1< 2:___1|Bk(xn)|p= kneﬁ <2 but 2:=1a(ﬁi(xn)) <
ke /n < 2/n, so (6.13) is again violated. Combining the above we see that the
theorem is proved.

Now Theorem 6.3 points out that E is an Orlicz space provided E has a
quasi-norm which is accessible in both directions with respect to the functions
o, pyp p, and a( . ) satisfies condition (6.1). Furthermore, Corollary 6.2 gives
necessary and sufficient conditions for E to be lp for some p, 2 <p <. For
an example of a space (E ,, 7) constructed as in Theorem 6.1 which is not an/
space, consider E , where alt) =0 for t =0, a(f) = %[ - logt] for 0 <t < 1/e?,
and a(z) = 2t2 for t> 1/e2. In fact, by the previous corollary, E, # l for any
p, 2 < p <o, since hmtloa(l }/t% = + o and hmtloa(tz)/t4 5" =0 for any
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8> 0. Now further calculation also shows that E , in this case, also has Property
B. Hence we have an example of a space which satisfies our most rigid require-

ments and is something other than an IP space, 2 < p < oo,

Corollary 6.3. If E has Property B and the function ol .) satisfies (6.1),
then a( ) also satisfies (6.2) and E is homeomorphic and isomorphic to the

Orlicz space Ea.

The proof of Corollary 6.3 follows immediately by combining the results of
Corollary 6.1 and Theorem 6.3.

7. Infinitely divisible measures on spaces with Property B. The study of
infinitely divisible measures on a real separable Hilbert space is due to S.R.S.
Varadhan [11], and here we consider similar questions for F-spaces with Property
B where the function a( - ) satisfies (6.1) and (6.2). In view of Theorem 6.3 and
Corollary 6.3 it follows that we are actually studying infinitely divisible measures
on the Orlicz space E,. Furthermore, as pointed out in the proof of Corollary
5.2, the lp spaces, 2 < p < o, each have Property B, so our results will extend
those of Varadhan. It should be mentioned, however, that Varadhan’s work is used

at several points throughout this section.
Throughout the section E  will denote the Hilbert space [, oran E  space

where a( . ) satisfies (6.1), (6.2), and if ac( - ) is the complementary function of
a( - ) in the sense of Young [10, p. 77], then ac( +) should also satisfy (6.1).
Notice that if E = 12 then a natural choice for the function o is a(t) = t. Hence
ac(s) =0 on [0, 1] but ac(s) = oo for s > 1. Thus a_(-) does not satisfy (6.1)
when E =1/, and this is a special case outside our general setup. Nevertheless,
it is easily handled.

In terms of the results of $6 we have that E, is equivalent to the Orlicz
space S, where I'(¢) = a(t 2). We will let \ Sa denote the Orlicz spaces given
by a( . ) and a_( . ), respectively. Then the dual space of S can be identified
as §, and since a ( ) also satisfies (6.1), except when E,= l , it follows

that the dual of S, is 5,010, p. 150].
To simplify our notation we will use the sequence space representation for

all of the spaces of the remainder of the paper.

The following terminology is used. If F(.) is a finite Borel measure on E,
then e(F) is the probability measure defined by expl - F(E )} - % 5., F*/k!
where F* is F convolved % times and F° = 0, where §_ is the unit mass at x.
A family F of probability measures on E,is sbz/t-compact if for every sequence
{v,} in F there exists a sequence {x_} in E_ such that v, * an} is compact.

For each vector A= (A, Ay, +++) in the positive cone of Sac which is of

norm at most one-half, we define the Hilbert space H, as all sequences x =
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(=, X,y +++) such that (B3l i = E‘;"q)\ixf <. In the special case E_ =1, we
have Sac =1_ and for simplicity we take A=(1, 1, +++). Then H, =1, and we
shall assume without loss of generality that a(¢) = ¢.

Lemma 7.1. E  is a Borel subset of H, for each M\ in the positive cone of

S%' Furthermore, every Borel subset of E  is a Borel subset of H,.

Proof. If E, = 12 and A=(1, 1, --+) the result is obvious. In general to see
E,CH, we need only notice that by Young’s inequality [10, p. 77} /\l.xf <

ac()\i) + a(x?). Hence for x = (xl, X, e+ ) in E,and XA as indicated, we have

2,
% € Hy. To show that the Borel subsets of E, also are Borel subsets of H,, we

need only show that the norm || « ||, is a Borel function on H, . Now

Il = sup { Y lxyle Y Ay D <1
=1 =1

where A is the function complementary to I" in the sense of Young. Since I'(¢) =
a(t?) it follows that T"'(£) = 2ta’(£?) almost everywhere on [0, =) and hence
I''(0) can be defined as zero. Further, since a'(¢2) is bounded on [0, €] for any
€> 0 it follows that T"'(¢) is continuous at ¢ = 0. Now a( - ) is assumed strict-
ly increasing and convex on [0, =), so we see a'(¢?) is positive almost every-
where there, and furthermore, I''(¢) = 2:ta’(¢?) is strictly increasing on [0, ).
Let y(s) denote a left continuous inverse of I"'(t) = 2ta'(t?). Then Y(0)=0
and since I''(#) is continuous at zero and strictly positive for all ¢ > 0 it follows
that s (s) is strictly positive for s > 0. Thus A(¢) = fg:,/;(s) ds > 0 for any >
0, and hence if y =(y,, y,, -++) is such that 2?=11\(|yi|) < oo it follows that
limy, = 0. If W denotes all sequences with rational coordinates and with only
finitely many nonzero coordinates satisfying the condition E ':.°=1A(|yi <1, i
follows that W is countable and ||x||,. = supy, 2T=1 |x,v;1}. Hence | x| is mea-
surable on H, since for each y € W the function 2‘:."=1 |%;¥ ;| is measurable on H, .

Ve will use the symbol || - ||, || - "l“” - ||>‘, el I -l o, for the norm

on E,, E, H,.,§,,and Sac, respectively.

Lemma 7.2. Let F_ be a sequence of finite Borel measures on E , such that
e(F)) is shift-compact. Then

(7.1) s:pfu“x”i an(x) < o0

where U = {x: 2?:10‘("3) <1l

Proof. If E = L, a(t)=t, A=(1, 1, -+ ) this follows directly from [11, p.
223]. Otherwise, if x ={x } € U then by [10, p. 82]
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<12 = LA < Ml ||x2l|
(7.2) i=l
2
<M, {1+ X ateDb <1
i=1
since 2°° L alx 2) <1 and j|A], <%. Thus U is a measurable subset of the
unit ball of H where the measurabxhty of U follows since Z a(xz?) is a mea-

surable functwn in H,. Now using the arguments employed in the proof of Theorems
6.1 and 6.2 we can show that a sequence of points {pN Jin E_= S converges

to a point p in the norm || - || [iff
(7.3) Hmzfﬂmi~xﬁ=ﬁy2ammi—%m=°
i=1

where py ={x, ;}, p = {x;}. Further, the right-hand limit in (7.3) equals zero
iff the sequence {qN} converges to zero in S where g has ith coordinate
(x; y = *%;)% Hence by (7.2), lim||p, ~ pll =0 implies limy [[py - pll, = 0, so f

continuous on H, implies [ is continuous with respect to the norm | - when

I
restricted to E . Thus e(Fn) shift-compact on E  implies it is shift-compact
on H), and since the unit ball of H, contains Ul it follows from [11, p. 223] that

(7.1) holds.

Lemma 7.3. Suppose F, is an increasing sequence of finite measures on E |
such that e(Fn) is shift-compact. Then F, increases to a measure F which is

[inite on the complement of every neighborbood of zero and such that

(7.4) ] = i a[fuxfdp(x)] < oo,
=1

and

(7.5) J = lim 2 a[ﬁu"f an(x)]
7 izl
where U = {x: 2?:10’-(",-2) <1l

Proof. Since F is increasing we let F = lim F_. Now e(F_) shift-com-
pact implies by[11, p. 214 Jand Remark 2.3 of [11] that F is finite on the com-
plement of every neighborhood of zero in E  and by Lemma 7.2 that

2 fzﬁukw

fE=l,rA=(,1,-..), a(t) =t the lemma now follows. In general, since A =

{)\i} is an arbitrary vector in the positive cone of §_  of norm less than or equal
c
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to one-hair and S is the dual of S, we find that the sequence U‘ll x2dF (x)} is
in §,. This 1mphes (7.4), and (7.5) then follows from the dominated convergence

theorem since F_ increases to F, a(.) is continuous, and
. 2 2
llnm f‘ll xl.an(x) = fuxi dF(x)

for i=1,2,--

Lemma 7.4. Let By = e(Fn) where F_ is an increasing sequence of mea-
sures on E  and suppose the sequence p_ + an converges weakly to u for
some sequence of points {xn} in E . Then F  increases to a measure F as in
Lemma 7.3 such that (7.4) and (7.5) hold. Furthermore, the Fourier transform of

Wis

' . i(x, y)
) = exp ilx, y) iGy) _p - DY) gp(x)
&y expg Xor Y +fEa—'ll [e 1+ ||x||12~]

eiteyy _p _ Hm ) dF(x)i
J ‘"[ I+ uxu:]

. el 2
where U ={x € E 2i=la(xi)§1}.

(7.6)

Proof. Let p_ be the shift of u by
7. - _ x _ _x dF _(x)
7.7 z, fEa_‘ulJer”idF"(x) f“l+\|x||i ”
where the integrals are Bochner integrals. Now the function in the first integral
in (7.6) is uniformly bounded for any y in a bounded sphere in the dual of E ,
and by (6.5) U contains an open neighborhood of zero. Thus {F’n } converges
weakly to F on E - U 11, p.214], and if S is a bounded sphere in the dual of

E , then
f [ei(x, ¥)_q - ._.ZL’.CL_Z)_{I d(F-—Fn) x)| =
E_ -U I+ ”x"r

(7.8) lim sup
n ye§

We now consider the second integral in (7.6). Now ]ei(x’y)-l—

i (e, )/ + = DI <%0 72+ | G D)) and |(x, y)] < Il il e <
2||y||rc since x € U which implies l*llp <2. Let K, =F ~F . Then, for §

any bounded sphere in the dual of E , we have
(7.9) lim su , 2 -
i s1p [, 0 et -0
since F_ increases to F and (7.1) holds in the present setting. Thus to show

the second integral in (7.6) is the limit of the corresponding integrals when F
replaces F uniformly for y in a bounded sphere § of the dual of E , we need
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only verify that
(7.10) lim supf (x, )sz x)=0

7 yes
Let s(")—fx x; dK (x) for i,j,n=1,2,++-. Then IS(")| <
fulx X ldK (x) < [s(")]’é[s (")] % and since S(n)<f‘lj x2dF (x) it follows from
(7.4) that

(7.11) i a(s;".)g i a([uxl?dl-’(xﬁ < oo

7=k i=k
for k=1, 2,.--. Now for each y in the dual of E, we have (x, y)? =
El =1 %%y andsmce

I‘U |xlx,yly |dK (x) = quhixl.yiyil dKn(x)
i,

{2 [sn)]l/Zly |} < oo

it follows that

o0

(7.12) [u (x, 2K () = 3, sy y

i, j=1

0 2
713 Jye y)sz,,(x)s<E [S§-§‘)]”2|y,-!> < Mg
i=1

Thus (7.10) holds if
. 1/2
(7.14) Lim |[{s0 /2],

Using (7.3), we see (7.14) holds iff
: (n)y _
(7.15) l;m; a(sm) = 0

and by (7.11) we have (7.15) if
(7.16) lims{™) - 0.

n

Now (7.16) holds since lim uszdF (x) = f xzdF(x) for j=1, 2,
IfF ,and F , denote F, restncted to U and E_ - U, respecuvely, we
have that

(7.17; e(Fn) *8::" = e(Fn,l)*e(Fn,Z)*Sz *ax -z

n n n

where z  is defined as in (7.7). Now the sequence {e(F ) + 8 | converges
n
weakly to p thus (7.17) implies
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z
n

(7.18) v,=elF, )xelF ,)*d

is shift-compact. Using (7.8), (7.9), and (7.10) it follows that the Fourier trans-
forms of the sequence of measures {vn } converge uniformly on bounded spheres
of the dual of E _ to the right-hand side of (7.6) witlout the term exp z'(x0 , M.
Thus {v,} actually converges to a measure v, and hence by (7.17) and the fact
that e(Fn) * §, converges to p the sequence of points {xn - zn} converges to
a point x, € E_. Furthermore, we have the Fourier transform of pu is
expii(x 0’ y)} multiplied by the Fourier transform of v so the lemma is proved.
In §5 we said a measure on E  was Gaussian with mean a € E, if the dis-
tribution of every linear functional % in the dual of E  is Gaussian with mean
x(a). Varadhan [11, p.215] defines a Gaussian measure as any measure p which
is infinitely divisible and such that if u=e(F) + y where y is infinitely divisible
then F is degenerate at zero. The definition of infinite divisibility is the usual
one. The purpose of our next result is to show that these definitions coincide on

E

@
Theorem 7.1. If p is a measure on E , the following are equivalent:

(1) u has Fourier transform of the form
d(x) = expli(x, a) - Y% T(x, x)}

where T is an a-operator on the dual of E  satisfying

(BB = o Bl — @By = a)du(y)

/07' i, j: ly 2, 0~‘a7ld a €Ea.

(ii) For each vector f in the dual of E | the linear functional f(-) on E
has a Gaussian distribution with mean [(a) for some a in E ,.

(iii) p is infinitely divisible and if y = e(F) » y where y is infinitely divis-

ible then F is degenerate at zero.

Proof. By Theorem 5.1, Corollary 5.1, Theorem 6.3 and Corollary 6.1 it
follows that (i) and (ii) are equivalent. Now assume (ii) holds and let f be any
linear functional on E,. Now pu is infinitely divisible since (ii) implies (i) and
the class of a-operators is closed under multiplication by constants. Thus if
p= e(F) * y where y is infinitely divisible we must show F is degenerate at
zero. Now an easy computation shows that the measure p/(A) = p(/~1(A)) de-
fined on the real line satisfies

p,/ = e(F/)*}//

where F/ and y/ are defined in the same manner as ,/. Similarly, y being
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infinitely divisible implies that y/ is infinitely divisible, and since p/ is Gauss-
ian on the real line we then have F/ degenerate at zero. Thus for each continu-
ous linear functional f on E , the measure F/ is degenerate at zero and this im-
plies F itself is concentrated at the origin in E  which proves that (ii) implies
(iii).

Now assume (iii) holds and let H, be defined as in Lemma 7.1. Then y is
infinitely divisible on H, and if p = e(F) * y where y is infinitely divisible on
Hy and F is some finite measure on H, it follows that F is degenerate at zero.
That is, if p is a probability measure on H, with u(E )=1 and p=e(F) sy
where F is some finite measure on H, and y is a probability measure on H,
then F and y are concentrated on E ;. Hence (iii) holds when p is viewed as a
measure on Hy and by [11, p. 226] every linear functional f on H, has a Gaussian
distribution. Now /[ restricted to E  is continuous and since E , is dense in H,
the restriction maps H, into the dual of E , in one-to-one fashion. By Lemma 2.1

it then follows that each [ in the dual of E _ is the weak-star limit of restrictions
to E, of elements in the dual of H,, and since limits of Gaussian distributions

are Gaussian (possibly degenerate) it follows that each linear functional on E,
has a Gaussian distribution. In view of Corollary 5.1 it follows that (iii) implies
(ii).

Theorem 7.2. Let y be a measure on E, Then y is infinitely divisible on
E  iff the Fourier transform of y is of the form

Py, p) = exp z’(xo, y) - % T(y, y) +fEa—‘u l}i(x. _1_ ﬁ)}{l dF(x)
r

+f“[6i(x, y)_1_ i(x, y) ]dF(x)z

L+ |2

(7.19)

. R 2 .
where x( € E , T is an a-operator, U=ix€eE_: ) T )< 1Y, and F isa
o-finite measure on E  with finite mass outside every neighborbood of zero and

no mass at zero satisfying

(7.20) i a [fn"zz- dF(x)] < eo.
i=1

For each fixed A the representation is unique.

Proof. First we assume p has Fourier transform (7.19) and F satisfies
(7.20). We now observe that y =g » v where g and v are measures on E  with

Fourier transforms
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(7.21) §6) = expgi(xo, Y) -3 Ty, ) + Lo [ei("' -1 _J("Ty“)z] dF(x)i,
a” 1+ ||
r

wy) = ex i, y) ___i(x, y)
(7.22) dy)=-e p%fu [e o1 - 2]a’F(x)%.

1+ ]2

That the measure g exists follows immediately from Theorem 5.2 and that F re-
stricted to E - U is finite. Furthermore, it is obvious that g is infinitely divis-

ible. The existence of v proceeds as follows. From (7.20) it follows that

fu"x” 2JF (x) < o, and hence if F restricted to ‘lj is viewed as a measure on H,
we have the existence of the measure v on Hx [11, p. 225] with Fourier transform
as in (7.22). Furthermore, v is infinitely divisible on H, and since p=g * v
where y and g assign mass one to E it follows that v(E ) =1 and that v is
infinitely divisible on E . Thus both g and v exist on E and they are infinitely
divisible so p is infinitely divisible.

Now we assume p is infinitely divisible on E ,. To prove u has a Fourier
transform of the form (7.19) where F satisfies (7.20) we can proceed exactly as
in [11]. That is, we choose a sequence of probability measures e (F ) where
F, increases to, say, F, e(F )+ 8,  convergesto a measure A, and p= A=+ g
where g is Gaussian. Then by Lemma 7.4 and Theorem 7.1 the Fourier transform
of p is of the form (7.19) and, by Lemma 7.3, F satisfies (7.20) along with the
other conditions of the theorem. The uniqueness follows exactly as indicated in
[111.

The following corollary relates to the results found in [11].

Corollary 7.1. A function ¢(y) is the Fourier transform of an infinitely divis-
ible probability measure p on 1, iff

(7.23) é(y) = exp {i(xo, y) - % (Ty, y) + flzK(x. y)a'F(x)}

where %y € 12, K(x, y) = el Y) 1 _i(x, y)/(1 + ||x||2), T is an S-operator on
l,. and F is a g-finite measure on l, with finite mass outside every neighbor-

bood of zero and satisfying [p |x||dF (x) < o where B ={x € [: ||x|| <1}.

Proof. In view of Theorems 7.1, 7.2, Corollary 5.3, and Corollary 3.1 it
suffices to prove that y(y) = exp{fl K(x, y)dF (x)} is continuous in the 7,-topol-
ogy since it follows easily that y(O) =1, y is positive definite, and that any
family of measures on /, is a A-family with A= (1, 1, ---). Further, since F is
finite on /, - B it follows that exp{flz_B K(x, y)dF (x) } is the Fourier transform
of a probability measure on /, and hence it is 7,-continuous. Thus we need only
show
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(7.24) exp{fB K(x,,y) dF(x)}

is 7,-continuous. Now proceeding as in Lemma 7.4,

‘IB K(x, y)dF(x)

# %
< 3 [ple 97 aF@ + [fB(x’ y)zdﬂx;_' : ; fB||x||4dF(x)%

and, since fB (x, y)za’F (x) is an S-operator on 12, (7.25) implies (7.24) is 7,

(7.29)

continuous. This proves y(y) is 7,-continuous and completes the proof.

8. Infinitely divisible distributions as limiting distributions. We now con-
sider the derivation of the limiting distribution of the sum of independent random
variables taking values in the Orlicz space E_ as defined in $7. For each inte-

ger n, we are given k _random variables which are mutually independent. We
k

Lt %y,

purpose is to derive the limiting distribution of Y and Y  suitably shifted. We

shall denote these by Xni where j=1, .-+, k andletting Y = our
need the following definition.

Let {Xn].} be a sequence of random variables taking values in E_ and.let
the sequence of probability measures induced on E , be denoted by {Fn]. §. Then
{Xm. }, or equivalently {Fn]. }, is said to be uniformly infinitesimal if for every €> 0

linm 15?&" Fm.({x €E Hx"r > ¢l) = 0.

The following theorem on Poisson sums of random variables in a separable

Banach space is due to Lucien LeCam [13].

Theorem 8.1. Let X i (G=1,+-c,k,5m i=1,2,...) be independent
random variables with values in a separable Banach space with the distribution
of Xpji
dependent among themselves as well as independent of all the X i and each

being Fni fori=1,2,.--. Let {Nn].§ be Poisson random variables in-

with parameter one. Let G denote the distribution of
N_.

nj
X ..
nji
j=1 i=1

Gy

T =
n

"

If G, is conditionally compact then I‘[;‘:nl Fnj is shift-compact where Hf’_lem.
denotes the convolution of the indicated measures.

We now fix some notation to be used throughout the remainder of the paper.
We let B=1{x €E : ||x||r <p} where 0<p<1and BCU-={x: z?zl O»(xl?) <1i
The existence of such a p follows from the arguments of Theorems 6.1 and 6.3
and the definition of the quasi-norm of Theorem 6.1. Additional notation we will

use is
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k
n

K, = HFM., X, = fodFm.(x), B,j=Fpni* 6 )
j=1

nj —-x_ .
nj
(8.1)
k k
n n
xn = anj’ Fn= Ean’ An = e(Fn) * an
j=1 j=1

Lemma 8.1. Let F. G=1,---, k sn=1,2, ) be auniformly infinites-
imal sequence of probability.-measures on E , and assume the notation in (8.1).
Then

(i) lim  max 1< i< ky ||xn]. I =0
(ii) there exists an N such that forall 1 <j<k, and n>-N-

f g% 4Bai¥)

r < ZB,,j{x: "x"r > P/Z}-
Proof. Take ¢> 0 and let V = {x: ||x[| .<e}. Then

%, s < f FI R dF () + F tx: e <|lxl| < pl< e+ F, (E, = V)
and {F nil being uniformly infinitesimal implies

lim max x .. <
» IS’Skn" n,”r €

so (i) holds. To prove (ii) we first take N such that max 1< i< k ||xm. "I‘< p/4
—_—lan
for all n > N. Then for n >N and 1<j<k,,

feone, |

x — xm.) an’.(x) v

(
f""_"nj“ rse

= xdF_(x)-x .F_{x:|x—x .| <p}
f"""‘nillriﬁ n nyonj I ,,,Il__p

xdF, (x) - J;Bxani(x) + xm.Fnj{x: |l — xm.“ > pl

- f x—x,

,“ e

r

< x| dF_ (x) + (p/4) B_ {x: |xl|~ > p}
< s elspra P 2@+ @/ Byl Il

< /OBF, fx: lixly > 30743 + Bt Il > ol

< 2B, txi Il > p/2)

so (ii) holds since p < 1.
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Theorem 8.2. Let iFm.} (j=1,-e.k ;n=1,2,...) be a uniformly infini-
tesimal sequence of probability measures on E , and assume the notation in (8.1).
Then, if {A,} is conditionally compact we bave {yu_} shift-compact, and for each
uniformly bounded set S in the dual of E

(8.2) lim sup &y, A) - &5, K, ) =

n» y€eS

Proof. If {)\ } is conditionally compact then Theorem 8.1 implies H""l B =

quF’” * 8 is shift-compact and hence by, = l'[’e m'

complete our proof we now need to establish (8. 2) Fu'st we observe that since

is shift-compact. To

{Fm.¥ is uniformly infinitesimal there exists an N such that » > N implies

(8.3) swp, ma, 1900 B,) - 1] <4

Then, since |log(l + 2) — z| < 2|z|2 for |z| < !4 we have

|log #(y, A,) — log (v, )l

k k,
= 2 oy, B, - 1+ iy, x ) - 2 log ply, B,) - ily, * 2
=1 i=1
(8.4) .
- |3 160, B,) - 1 - log gly, B, )]
j=1

k
n

2 ), I¢ly, B,) - 117

j=1

IA

<2, pax, 1908, - 112 |60y, B,,) - 1.
Thus, by (8.4),

(8.5) lim supllog #(y, A,) - logply, p ) =0
n Y€

since {Fm.i uniformly infinitesimal implies

lim su max y )-1
n yeg 1<j |¢( ’Bn] l

and we also have hm Sup, 2 * ey, B, )- 1| < . To see this last asser-

tion notice that
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k,
f [eitx. y)—I]dB )

k’l
Y lely, B,) - 1| =
j=1

j=1

J et 1 it 1B ) 4 i S »dg, )

kﬂ
3
j=1

(8.6) +f Gl 114 ()
kﬂ
< 2 ]‘B(x’ )’)zdﬁnj(x)+ Iyl g J;x dB,, (x) ot 28, (E, - B)
i=1 *

< [ (5 92 dF o) + 20yl ge + 11F 2 |1l > p/23.

Since e(F ) is conditionally compact this implies e ( zk 7|8, |2) is conditionally

compact where |/3m|2 B.; * B_,,J and ,8 (4)=8,.(-4) for all Borel sets A.
Therefore we obtain from the symmetry of l'Bni |2 that

lim supixilrizp(x, y)2|’3nj'2(dx) < oo,

nyESl

Hence from conditional compactness of e (F ») We obtain by an argument similar
to [11, p. 235] and Lemma 8.1 (ii) that

hmsupf (x, y)zF (dx) < oo;
n yeS

and further, by [11 p- 214] that sup_F {x| ||x|| > p/2} < o0, so that (8.6) implies
lim 2SYP,es |¢(y, B )-1| is fuute Thus (8.5) holds and this implies
(8. 2), so the theorem is proved.

Corollary 8.1. Let {Fm.} be uniformly infinitesimal. Then, if {u } converges

weakly to y and {xn} is a compact set in E we have y infinitely divisible.

Proof. By Theorem 8.2 we have lim_¢(y, A ) =1lim_¢(y, p,) = ¢y, p) for
each y €E}, and by [11, Theorem 7.6] f)\ni converges weakly to a measure v on
H,. Since ¢y, v) = ¢y, p) on H, it follows that p =y on HA’ and since /‘(Ea) =
1 we have v(E ) = 1. Further,v is infinitely divisible on H, by [11, Theorem
5.1] since each A, is infinitely divisible there, and hence y =v is infinitely
divisible on E ;.
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9. Convergence of certain infinitely divisible laws and a central limit
theorem. We first prove a theorem regarding the convergence of certain infinitely
divisible laws on the Orlicz space E  as defined in §7. The notation L=
[x o» T> F1 is used to denote the fact that y is infinitely divisible with Fourier
transform as in (7.19) having parameters x,, T, F with respect to some fixed A.

Theorem 9.1. Let K, = [xn, T,, F,] with respect to some fixed \ and
assume {xn} is conditionally compact with F, an increasing sequence of finite
measures on E . Then {u 1} is conditionally compact iff

(i) F, restricted to the complement of a neighborbood of zero is weakly
conditionally compact,

(ii) the sequence of bilinear forms

0.1 R (y,y)= fu(x, Y)?dF () + T (y, y)
satisfies
9.2 (m)) ¢ o,
9.2) sup ; a(ri?) <
(9.3) lim sup Z a(r™) <o
N n .=N 11

where rf.;.’)= Rn(ei, el.), e, is the sequence with one in the ith position and
zero elsewbere, and U = {x € E,: 2‘:."=la(xi2) <1},

(i1i) {”n} is a \-family with respect to the fixed \ yielding the representa-
tions p = [xn, T, Fn].

Proof. First assume {y } is conditionally compact. Then {x_} conditionally
compact implies {e(F")} shift-compact, so (i) follows from [11, p. 214] and Re-
mark 2.3 of [11]. Since e, represents the coefficient functional B, scaled by a
fixed positive constant for i =1, 2, -+, we have by Theorem 5.2(3), that
(9.2) and (9.3) hold with rf.;’) replaced by tg.') = Tn(el., ei). That is, we know the
measures [x_, T _, 0] are shift-compact, thus [0, T,, 0] is compact, so Theorem
5.2 applies, and the scale factor can be ignored since a( - ) satisfies (6.1).

Furthermore, if
(9.4) s [, G ePdE ) (mi=1,2,000)
then

(n) 2

s [y xFdF (x)

and letting F = lim F_ as in Lemma 7.3 we have by (7.5) that (9.2) and (9.3) hold
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with rf.;.’) replaced by sg.’). Now rl(.:.')= sf.:.’)+ tf.:.') and since a( -) satisfies
(6.1) we have by (6.3) that (9.2) and (9.3) hold as stated. Finally, (iii) holds by
Lemma 3.1. Now we assume (i), (ii), and (iii) hold. Now U contains an open
neighborhood V of zero and we can assume F_ vanishes on the complement of
V. The last remark follows from (i) since on E ,— V we have F, converging to
some finite measure, call it F, and hence if G, is F_ restricted to E_ -V we

have e(G ) converging to e(F). Since the unit ball, call it W, of H, contains
U and each F is concentratedon V C U CW it follows from (ii) that R is an

a-operator. Hence Lemma 5.4 implies that exp{ — 1/R"(y, y)} is the Founer
transform of a Gaussian measure, say )\n ,on E_C Hy,. It follows from (ii) that
{)\n } is conditionally compact on E , and hence on H ) » and hence that the opera-
tors A~ induced by R, through A on H) satisfy the conditions of Theorem
6.3 (see [11, p. 230]) so {u_} is conditionally compact on H,. Then using (iii)
we have {u_} conditionally compact on E , so the theorem is proved.

We now proceed to a central limit theorem.

Theorem 9.2. Let {Fm.} (G=1,++,k,5n=1,2,--) be a uniformly in-
finitesimal sequence of probability measures on E , and assume the notation in

(8.1). Further, assume limn x, =x, and that

9.5) sup 2 (f den(x)> < oo,

n =1

(9.6) lim sup 2 a fﬂ xden(x) =0.
N n =N
Then Hf‘glFﬂ’. =, converges weakly to the Gaussian measure p = [x,, T, 0]
where T, is an a-operator if for every ¢ >0
(a) lim Zkﬂ F_ {x |x - =, || >el=0
b) hm 2._1 "x" (x —x j y) dF (x) =T (y, y) for each y €E
(c) e(F J) isa )\/amzly

Proof. Now (a) implies lim F_ (E - V) = 0 for every open neighborhood V of
zero, and hence if G is F restricted to E — V we have e(G,) converging to
the unit mass at zero. Now let H be F  restricted to V where V = {x € E:
Il ;< ¥} CB. Then e(H,)=[z , 0, H,] for any X where

X X
(9.7) Zn = J:u Tlx"i dHn(x) = fVI_:ﬁ;WE an(x)o

Now let ¢ > 0 be given. Then
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and since

! fB_deFn(x) < pF (B -V},
(9.8)

x||x|| 2

[ — X ar )| <e i Ix|2dF () + yF {x: € < |x].. <y}
+ T € ’

iz " e Jlelge 2 Y

we have —l_ir_nn"zn - xn||r_<_ ¢ by applying (a) and (9.5). Thus lim z =limx =x,
and by (9.5), (9.6), and (a) we have by the reasoning used in Theorem 9.1 that
e(F,) is conditionally compact on H,. Then by (c) it follows that e(F)) is
conditionally compact on E . Further, in view of (a), (b) each linear functional
has a limiting Gaussian distribution with mean zero and variance T 0(y, y) with
respect to all limits of e(Fn). Hence e(Fn) converges to y = [0, T, 0] and by
Theorem 8.2 we then have H;‘gl F
proved.

nj Converging weakly to y so the theorem is

Corollary 9.1. Let {Fm.} be a uniformly infinitesimal sequence of probability
measures on E  and assume the notation of (8.3). Further, assume limx =x,

and that there exists a measure p on Ea such that
(9.9) 2 a(fE xfdp(x)) < o0,
i=1 a

(9.10) fuxf dF (x) < fE x2dplx)  (i=1,2,--)
a

Then conditions (a), (b), (c) of Theorem 9.2 imply that ﬂ?'}__lFm. converge weak-
ly to p, =[x0, Ty ol.

Proof. We need only show (9.5) and (9.6) hold and that is obvious by (9.9)
and (9.10).

Corollary 9.2. Let p be a probability measure on E  such that (9.9) holds
for u, [ a"x"ﬁdl;(x) is finite, and fEaxdp(x) =0. Let Z,, Z, --- be independent
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random variables such that g(Zk) =p for k=1,2, ... and define S, =Z +
-+ Z,. Then S‘?(Sn /\/1—1) converges weakly to the Gaussian measure p, =
[o, T, 0], where

Ton M= f G )2 duto)

provided the measures y, = f,(Sn/\/;) or the measures e(Fn) form a \-family.
Here F_ isas in (8.3) with F .=£(Z./\/77) for j=1,c,m n=1,2,¢¢

Proof. Since (9.9) holds and fE "x" du(x) is finite it follows that
T, (y, y) is an a-operator and hence ‘the Gaussian measure po=1[0, T 0] ex-
istson E CH,. Further, since the H, topology on E , is weaker than the E

topology there exists a constant ¢ > 0 such that c||x||, < || for each x € E

and hence
1
fy Jeizaneer < f, 11z <[] f, 1ol < o

Thus y, converges weakly to p, on H, [9, p. 1561] and in the case y _ is a A-

Il <

family we then have y converging to p, on E,. In the case e(F ) isa A-
family we apply Corollary 9.1. To verify the hypothesis of Corollary 9.1 we first
observe that lim _x = 0. To see this notice that

x = "fB xanj(x) = VZﬁQBxdy(x)

and since [gxdp(x) = 0 we have

ol = |- V2 S )

1 2
< = du(x).
<z fﬁanxnr me
Further, for every ¢ > 0,

‘n
lim Z Fnj{x: |x — x r

> ¢} = limnpfx: ||x - xn]." >\/nel
. n
n =1

il

- lx = % |2 du(x) = 0
llm f{x "x—x } nj r
since fEa"x"lz‘dp(x) is finite and lim_||x .|| = 0. Similarly,
n
li —x_, y)?dF_(x) = lim (x — x_, y)?du(x)
i B L < & I

= fEa(x. Y dp(x) = Tyly, y).
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Finally (9.10) holds since sup, f‘ljxl?dF" (x) = fEaxl?du (x).
We now derive some recent results on the central limit theorem due to A.D.de
Acosta [12]. A Banach space X with a Schauder basis {6} and coordinate

functionals {B.} is said to be of type p with respect to {b.} if
7 P 1

m 14 m
(9.11) P Y Bb | < ¥ 1B )P
j=1 j=n+l

for all x € X and integers m, n (1 <n < m) where, for each n, x € X,
P"(x) =infi||lx — z||: z € Sn}

with §_ being the subspace generated by {b,, -+, b } for n>1 and §,=0.

Lemma 9.1. Let X be of the type p > 2. Then there exists a linear isomorph
U on a subset X of X onto 1, such that ||Ux||122 l*l -

Proof. Since X is of type p > 2 it is of type 2 [12]. Let us consider X ;=
{x: x € X, 2?=1|f3,~(x)|2 < }. Define U on X, to I, by Ux = (,BI(X), Bz(x)’
+++). Then U is an isomorph of X, onto l2 and taking n = 0 we have by (9.11)
thae |Usl],, > ] x -

Now let T be a bilinear form defined on X*. Then T is said to be of trace
class p relative to {lBji if Z;°=1|T(/3j, Bj)|P<oo.

We now state a lemma which strengthens the assertion of Theorem 4.1(b) of

[12].

Lemma 9.2. Let X be a Banach space with Schauder basis of type p > 2.
Let {p,: o € A} be a set of probability measures on X. Suppose for every ¢> 0,
there exists a family {Ta e} of nonnegative bilinear forms of trace class one

satisfying

wén 2‘\‘1 To,dBp B) <
li =
s X T dB ) =0,

1 —Redly, u )< T, ¥ +e (v ex®.
Then {p,: a € A} is supported on X and it is conditionally compact on X
where the norm ||x||x0 = || Ux|| I

Proof. Apply Theorem 2.2 of [3].



152 J. KUELBS AND V. MANDREKAR

In view of Lemma 9.2 we can prove the central limit theorem of [12] with
p > 2. That is, under the hypothesis of the theorem and by Lemma 9.2 the mea-

sures Hf’_ilFm. are conditionally compact on X ;. Further, the classical central

limit theorem says the limiting measure must be Gaussian with Fourier transform
as indicated. We also point out, but we will not provide the computations, that
the hypotheses on the central limit theorem of [12] with p > 2 actually imply the
hypotheses of Theorem.9.2 in case the measures sit on 12. This, however, in

view of Lemma 9.2, is always the case under such conditions.
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