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ABSTRACT.   Let S-scheme  A  be a Schlessinger deformation of a curve  AQ

defined over a field  k.   In   §§1   and  2, the dimension of the parameter space S,

the relative differentials of  X  over S, and the fibres with singularity were

studied, in case when  Xn  is locally complete-intersection.  In   §3  we show that

if ¿-scheme  Xn   is a specialization of a smooth /«-scheme, then the punctured

spectrum Spex(0^„     ) has  to be connected for every point x e Xn   such that

dimOxr,      >_ 2.  In turn we construct a rigid singularity on a surface.   In the last

section à few conjectures amplifying those of  P. Deligne are made.

Let X„  be an algebraic variety over a fixed perfect field  k.  A (formal)

deformation(2) of X0   is meant by a pair (R, X)  where  R  is a complete noetherian

local ^-algebra with the residue field  k, and  X a flat (formal) P-scheme together

with an isomorphism  X- ^* k ®oX.   A (formal)   deformation  (R, X)  of X„   is

called a (formal)  versal deformation (3) of X„  if every (formal) deformation of

X„   is induced from  (R, X). A (formal) versal deformation  (R, X)  of X„   such that

dim  Der, (P, k) is minimal will be called a minimally-versal (formal) deformation

or a (formal) Schlessinger deformation of   X„.  If XQ  is proper over k or affine

with isolated nonsmooth points only, we have the formal existence theorem due

to M. Schlessinger, i.e. there exists a minimally-versal formal deformation of

XQ.  If X„  is a projective variety with  H (X„, Ox0) = 0 (for instance  X0  is a

complete curve), then it follows from a theorem of A. Grothendieck that every

formal deformation is   "algebraisable"  and in turn there exists a minimally-

versal deformation of  X„.

Besides these existence theorems we have very little knowledge about the

deformation of singularities at the present stage.  In this paper we study the

deformations of curves which is a relative  complete-intersection over k, as well

as rigid singularities on a surface.   A complete-intersection, having no local obstruc-

tion for deformations, is the simplest case. Our method is based on a study of
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torsions and cotorsions of some modules carried out in §1, which is of interest in

itself but may be of no use in the case of noncomplete intersections.  Nevertheless,

our Theorem 2.7 may give an insight towards likely phenomenon in the general

case.  In a less precise language, we establish the following:   Let  X„  be a re-

duced complete curve which is a relative complete-intersection over  k, and let

(R, X) be a Schlessinger deformation of X„.  Then

(i) dimR = 3g - 3 + dimH°(X0, Ox0) where ë = dimH1(XQ, 0Xq),

(l)'dimP. — dim W  (XQ, Qxç) = tne dimension of the torsion ^-differentials

of X0,

(ii) fiv-ln  has no torsion and  Q'i     is an invertible sheaf on  X,

(iii) codim(SingR(X|P)  in  Spec (R)) = 1 where SingR(X|R) = |z eSpec(R)|

X —► Spec(P)  is not smooth at the point z|.

The properties  (i)  and  (iii)  are expected to be valid for an arbitrary reduced

complete curve.  For instance, a complete curve having ordinary multiple points

with mutually transversal tangents does enjoy (i) and (iii), and considerably more,

even though the parameter scheme Spec (R) is far from being regular in general

[91.
In  §3  we are interested in the rigid isolated singularities. It has been

known that there exists an affine variety (with an isolated singularity) which can-

not be obtained as a specialization of a nonsingular variety.  Indeed, H. Grauert

and H. Kerner have constructed a rigid isolated singularity of dimension  «, pro-

vided  n ~>_ 4 [4].  On the other hand, every complete reduced curve is conjectur-

ally a specialization of a nonsingular curve, and therefore there cannot exist,

conjecturally, a rigid 1-dimensional isolated singularity.   Thus it raises the

question if there exists a surface with a rigid isolated singularity.  We first

establish that every reduced surface with isolated singularities only which is

obtained as a specialization of a nonsingular surface has to be unibranch at

every point.   Motivated by this fact, we construct a rigid isolated singularity on

an irreducible rational surface.   In the last section we have made a few conjec-

tures based on our Theorem 2.7 as well as a number of empirical results.   For in-

stance, it will be shown in the forthcoming paper [9]  that these conjectures are

valid for any curve with ordinary multiple points (with mutually transversal

tangents).

The author wishes to acknowledge his thanks to A. Grothendieck, P. Deligne

as well as H. Hironaka for the beneficial discussions.

1.  Torsions and cotorsions.   Let  A  be a commutative noetherian ring.   For

any generically-free A-module  M  of finite type, i.e. K  ®.  AI  is K-free, where K

is the total ring of fractions of A, we set rg M = the free rank of  K ®A M as

K-module.  Given a generically-free A-module  M  of finite type with  rg M = d,

choose a finite presentation
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0-*/V-*F—>M—»0

where  F  is A-free of rank  722.   Since   N is a generically-free A-module of rank

772 - d, the natural map  f\rn~dN ® /\d F —> i\"F induces the map

Am~"N ® f\dM — /\mF and hence the map ap: /\dM r-t Hom^A7*-^, AmF).

a
p-

Lemma 1.0.   For zz?zy generically-free A-module M  of finite type, the map

AdM —> Horn Al\m~dN, /\mF) does not depend on the choice of presenta-

tions of M.

Proof.  Let
0 N,

0 _, /V,

M

M

0,

0'2 T" '   2

be any two finite presentations of M  where rg F. = 722..  Suppose that there exists

an isomorphism

('m\ — d m\       \ / m2 — d mj

An,.   AfJ—H01W   A n2, A f.r

with the following commutative diagram:

Horn

V^

/rnl-d      ml    \

AV   A  Nt,   AF,/

(*)

Then such r must necessarily be unique since  a    (z = 1, 2) are generically

isomorphisms, and Horn .( , /\f"F) are torsion-free modules.   Therefore it suffices

to show an existence of such isomorphism r. Now, from Schannel's lemma, there

exists an automorphism o £ Aut .(F. © F~) with the commutative diagram:

M

0 N.■ 1 *■ "2

In turn, a induces a commutative diagram

77!,   +77! 2_¿

F1©F2

rf ml+m2

A      (^©f^sAai->     A     iF^Fj

777, +m2~d

f\(°) © id

1 T '" 2

AW

A       (Fj©/v2)®Am-¡     A    (FrQF2)
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from which an existence of r with a commutative diagram (*)  follows.

In view of the intrinsic nature of the map a: AdM —» HomA(/\m~dN,  ft"F),

we shall denote this as a^. /\dM -* M#  by setting M# = HomA(Am~dN,  AmF).  We

note the following simple properties of M    which are trivial to verify.

(1) If we set M'# = Coker(ArfM —» M#), then

0 _» (^M)t -, AM -V/ff# -* M< — 0

is exact, where  (A/M)    stands for the torsion submodule of   A/M.

(2) a   •  A/M —► M    commutes with base change  A —»A' provided

Tor. (M, A') = 0.  In particular, (a) S~  AM —► a   _ j     is an isomorphism for any

multiplicative subset S of A.  (b) If A   is an  R-algebra and  M  is   R-flat, then

a   , ®   M    —> R    ®    aM   is an isomorphism for any  P-algebra  R'.

(3) If M  is  A-free, then  a„   is an isomorphism.   Therefore  Supp/VL  C

Sing^(M) = \x £ Spec (A)| Mx is not A^-freel.

(4) If hd ./M < 1, then  M#  is an invertible A-module, and Supp/M'# = Sing AM).

Let M be a generically-free A-module of rank d.  Choose a finite presenta-

tion

0 _> N—+ F, -* M -* 0

where  F  is  A-projective module of rank m, and we consider the chain complex

K(M) defined as follows  (see [2]):

sj s2 d-Sl-s2 *j d-sx d

—►Lankan®    A    f-LA«® A f-Af^m,

where  s. > 0 fot all  z (and hence it is a complex of length d + l), and the

boundary operators are given by

ux Cgi zz2 <g> • ■ • ® ur ® v —» ul A u2 ® u   cg>  • • ■ ® u2 (g zv

- ZZj   Cg»   «2   A   ZZj ®   • • •   ®   «r ®   y

+ •••+(- l)2z¿, ®  • ■ • ®z/r_j ® zz   A v.

We note that  /70(K(M)) = M*#  and  r/j(/<(Al)) = Ket(/\dM — M#) = (AdM)r

Furthermore, if M  is A-projective (so that the   inclusion map  N —► F admits a

retract), then K(/M)  is homotopically trivial, and in particular Supp r/,(K(/M)) C

Sing AM).  We state below the basic facts obtained in  [2]  concerning the complex

K(M).  They are Theorem 2.4 and Corollary 4.4 in  [2]  respectively.

Lemma 1.1.   Let M  be a generically-free A-module of finite type of rank d,

with hd . M <  1.   Then we have
A     —

(a) d + 1 — Sing (M) - depth A = the smallest integer q such that   H .(K(M)) = 0

for all i > q.

(b) Let A  be a local ring and assume that M     is A   -free for all nonmaximal

points x  in Spec (A).   // d + 1 > dim A,  then y(H,(K(M)) = 0 where  x(/7,(K(M))) =

£/- 1)' length //.(K(A0).
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As an immediate application, we obtain the following:

Theorem 1.2.   Let A   be a commutative noelherian ring and M  a generically-

free A-module of finite type with hd . M < 1.   We set d = rg .M.   Then

(i) // Sing (M) - depth A > d, then hd^ /\dM < d. If Sing (M) - depth A > d,

then AdM has no torsion so that 0 -» /\dM _ Af# -» M'# -» 0 is exact, and M'#

is a perfect(4) A-module with hd./Vl'# = d + 1.

(ii) AsszzTTze that Sing (M)  is a finite set consisting of Cohen-Macaulay max-

imal points of dimension d.   We then have  length ((A M) ) = length (Ml).

Proof.   Choose a finite presentation of M

0 —» A/ —* F —> M —> 0

and consider the complex  KiM) as defined above.

(i) Suppose, that Sing (M) - depth A > a.   By 1.1 (a), we then have

HJ(K(M)) = 0  for all  i' > 1, and therefore

Zs. s2 d-s.-s2 ^  K, d-sl d

A N ® A n ®    A      f^2j/\n<S)/\f-+Af

is an A-projective resolution of  A M, which shows that hd^ A M <_ d.   If

Sing(M) - depth A > d, then  H{(K(M)) = 0  for all   i> 0  by   1.1(a) again, and in

particular we have 0 = H A.K(M)) = if\dM)r

(ii) Assume that Sing (M)  is a finite set consisting of Cohen-Macaulay maxi-

mal points of dimension  d.  We then have

X(Hi(K(M)))=        Y y(tf.(K(/Wx))) = 0
x e Sing (/M )

by  1.1 (b).  On the other hand, we have  H i,K(M)) = 0 for all  z > 1   by  1.1 (a) and

therefore 0 = y(Ht(K(M))) = length HQ(K(M)) - length H^K(M)) = length (Mp -

length ((AdM)().

Let  P be a noetherian ring and A  a generically smooth  P-algebra of finite

type (i.e. A ®R K is smooth over  K where  K  is the total ring of fractions of  R).

Then the module of relative differentials Q,A i R   is a generically-free A-module of

finite type such that rgi^lß = dimA ®R K, and in turn we may consider

/\d&A\R —*^A\p)tt wnere ^= rz?^A|R = dimA ®R K. We note that in case when

A   is a relative complete-intersection over  R, then hd^fi^i^ < 1   and (OjId).  is

nothing but the module of dualizing differentials hj^u  defined by A. Grothen-

dieck [7],  and the canonical map A   &A\R —♦ (¿A\R is an isomorphism at each

point x £ Spec (A) at which A  is smooth over R, and therefore SuppWA^Ü^ 1 R) )

as well as Suppco^i^  are contained in Sing(A|R) = \x eSpec(A)| A  is not smooth

over  R  at *}.  We note furthermore that Sing(A|R) = Singfi^i^ = Suppo)^|R   since

A   is a relative complete-intersection over R, where a>A\ R = Cdker(AdüA\R -» oA\R).

(4) /1-module  E   of finite type is called perfect if hd .E < °° and  Ext'(£, A) = 0 for

all  i < hdAE  or equivalently Supp(£) - depths > hd .£.
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Corollary 1.3.  Let  R  be Cohen-Macaulay  and A   a generically-smooth relative

complete-intersection over R, of relative dimension  d.

(i) If  dimAx   >   d    for   all    x£   Sing(A|R),   then   hd„    t^^A\R   <   d-

If dimAx > d for all x £ Sing(A|R), then  0 —» A'.flA|R —► ma\r —* <¿a\r ~~* ° is

exact.

(ii)  Let  R  be artinian.  //Sing(A|R)  consists of a finite number of maximal

points, then we have length((/v    Ai R)) = length(eu^i R).

Proof.  Since   R  is Cohen-Macaulay and A   is a relative complete-intersection

overß, A  is also Cohen-Macaulay. Thus our statements follow immediately from

1.2.

Before we consider a further application, we recall Fitting ideals of a module:

Let  F  be an P-module of finite type, and choose a finite presentation

O^N^F^E-0

where   F  is R-free module of rank ».   For each positive integer p, we set

/ 77-fi + l 72-/J + 1

I{p)(E) = Im   det:     A      N ®    A      F — R

These ideals do not depend on the choice of a presentation of F and hence are

the invariants of E. For the sake of simplicity, we set /R(e) = IR '(F). We note

that SuppR/l R(E) = SuppF.

Lemma 1.4.  Let  R  be a local ring with the maximal ideal m, and A  a

(noetherian) R-jlat algebra, such that mA  is contained in the Jacobian radical of

A.  Then for any ideal I  in A, we have

I - depth A > (/ nR) - depth R + I - depth R/m ® A.
R

Proof.   If    r     r2, • • • , r,   is an R-regular sequence in  / O R, then  it is an A-

regular sequence since  A  is ß-flat.   Therefore, replacing  R  by  R/(r^, ■ ■ • , r )

where  r,¿ • • • , r    is a maximal R-regular sequence in  / O R, we may assume that

(/  O R) - depth R = 0.   Let  / be an element in  / which is not a zero-divisor in

R/m ®R A.  It suffices to show that / is not a zero-divisor in A  and that A/fA

is  P-flat.   Consider  the exact sequence   0 —> ¡A —» A —, A/fA —► 0, which induces

the exact sequence

R/m   ® /A —» R/m   ® A -+ R/m   ®   A/fA —► 0.
R R R

Since the composite map  R/m ®R A —A®'R/m ®R fA —» R/m®RA  is injection by

hypothesis, and  R/m ®RA  —>l     'R/m ®RfA  is surjection, it follows that

R/m ®R A —*l®lR/m ®RfA  is an isomorphism, and  R/m ®   fA -> R/m ®R A  is

an injection, i.e.Tor t (R/m, A/fA) = 0 which shows that A/fA  is again A-flat.
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Now consider the exact sequence   0 —► Ker / —► A —*'¡A —► 0.  Since  A  and

A/fA  ate R-flat,  we have Tor. (R/722, /A) = 0 and hence we get the exact sequence

1 ® f
0 —► R/m   ®   Ker/ —» R/m   ®   A -'■+ R/m   ®   f A —> 0.

R R R

However, R/m®R A —A® 'R/m ®R fA   is an isomorphism and therefore   R/m   ®R

Ker/= 0.  Since  mA  is contained in the Jacobson  radical of A, it follows that

Ker/= 0 by Nakayama's lemma.

Theorem 1.5.   Let  R  be a complete local ring with the maximal ideal m, and

A  a (noetherian) R-flat algebra.   Let M  be a generically-free R-flat A-module of

finite type with hd^M < 1.  Assume that

(i) Sing (M.)  consists of a finite number of Cohen-Macaulay maximal points

in Spec (AA of dimension > rgzVl, where  MQ - M/mM,

(ii)  K ®R M  is  K ®R A-projective, where  K = the total ring of fractions of R,

(iii) Ml   is of finite type as an R-module.

Then   A/M  has no torsion, M'   is a perfect A-module with hd^M^ = d + 1, and

IRiM')  is an invertible ideal in  R.

Proof.   Set  / = Ann^M'#.   Then (iii) entails that A/1 is of finite type as an

R-module, i.e. A/l is an integral R_algebra of finite type, and hence there are

only a finite number of maximal ideals  m ., m2, •••»«. of A   containing  /, and

all of them  dominate   the maximal ideal  m of  R.   Set A'  = S~  A  where  S = A -

772, U   • • • u mr, and set  M' = A' ®A M.   Then  A'   is an R-flat algebra such that

mA    is contained in the Jacobson radical of A , and M    is a generically-free

R-flat A -module of finite type with hd^/ M' <  1, and the hypotheses (i), (ii), (iii)

are carried over to A -module  M .   Furthermore, A   ®A A/l = A/l entails that

(M')'# ^ A' ®A Mln - M'#  and hence  /R((M')'#) = 'R(M'#).   Consequently, replacing

A  by  A , we may assume that  772A  is contained in the Jacobson radical of A.

The hypothesis (ii) entails that Ass R O Supp R/I C\  R - 0 and hence  (/ O R) -

depth R > 0.   Therefore it follows from 1.4 that Sing (M) - depth A > Sing(M„) -

depth A 0.   Since Sing(AfQ) - depth A Q > d i= ig M) by hypothesis (i), we get Sing(M)

- depth A > d, and therefore it follows from 1.2 (i) that

d
o—» Am —» A4   -♦ Ml -*0

« tt

is exact and M'# is a perfect A-module with hd^M^ = d + 1. Since M as well as

A are R-flat, so are l\d M and M#. Consequently, flat-dim RM'# < 1, and hence

hàRMln < 1  since  MÍ  is an R-module of finite type.  Let

0 — Rm -^- Rn-,Ml -, 0

tt

be a finite presentation of MlM  as an R-module.   Since  M'   is a torsion module by
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the hypothesis (ii), we must have  m = n, and therefore  AR(<M'#) = (det h) and det h

is not a zero-divisor in  R.

Remark.   If A   is complete under the zzz-adic topology, then the hypothesis

(iii) is a consequence of (i).   Indeed, M'#, being an A-module of finite type,   is

complete under the «z-adic  topology and  R/m ®R Ml  is a finite-dimensional vector

space over  R/m by (i), and therefore must  be of finite type as an R-module.

2. Torsion differentials and deformations.   We briefly recall here the notion

of a (formal) Schlessinger deformation:  Let k be a fixed perfect field,  and  X.  a

scheme over k.  A deformation of  X    is meant by a pair  (R, X) where  R  is a

complete noetherian local /e-algebra with the residue field k, and  X a flat An-

scheine together with a Cartesian diagram:

x0c -» x

Spec (k) C_ -» Spec (A?)

A morphism  (R, X) —» (R , X ) of deformations of X    is a pair (h, </>)  where  h:

R —► R    is a local ¿-algebra map and  cf>: X —» X is a morphism of schemes with

a commutative diagram:

é
X'

Spec (A?')

Spec (h)

-» X

Spec (R)

A formal deformation of  XQ  isa pair  (R, X) where   R  is a complete noetherian

local ¿-algebra with the maximal ideal  m, and X a R-flat m-adic formal scheme to-

gether with  a  Cartesian diagram

*oc

Spec(zé)C.

-,9C

Spf(P)

in the category of formal schemes.   Thus if we set by Mx , Mx    the category of

deformations and formal deformations of  XQ respectively, then we  get a canonical

functor ~ M. MY   via (R, X) ■ ' (A?, X) where X denotes the formal 7?2-adic completion

of X.  We note that if XQ is proper over k then the functor  ~is a full-faithful im-

bedding, and that   *■ is an equivalence of categories in case when  X_  is a projec-
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tive variety with H (X., Qx ) = 0 (for instance the case when  XQ is a complete

curve) [5].

For each complete noetherian local Ze-algebra S, we set Mx  (S) = the category

of formal deformations of  X.  over S, the morphisms being the one which is the

identity on S.  We may note that every morphism in  the category  Mx  (S) is neces-

sarily an isomorphism, i.e.   Mx  (S) is a groupoid.  Let  (R, X) be a fixed formal

deformation of X      For any local map R —► R', (R', X®R R1) is a formal defor-

mation of  XQ over  R', and therefore  (R, X) induces a canonical map

(£30: Homlocal k_alg(R, R ') -, [MXq(R ')]

where   [Mx (R1)] denotes the set of isomorphism  classes of objects in  Mx  (R').

Definition 2.1(5).   A (formal) deformation  (R, X) of  XQ  is called a versal

(formal) deformation of  XQ if every (formal) deformation of XQ is induced from

(R, X).  In other words, a versal deformation or a versal formal deformation of X.

is a quasi-initial object in  the category Mx  , M_x    respectively.  A versal (formal)

deformation (R, X) such  that

(R, X): Horn,      .,    . (R, k[e]) ■— [My  (k[e])]
localc-alg —A.

is a bijection is called a minimally versal (formal) deformation or a Schlessinger

(formal) deformation of  XQ.

Any two (formal) Schlessinger deformations of  X.  are easily seen to  be

(noncanonically) isomorphic.  A basic theorem on deformations is the following

existence theorem due to M. Schlessinger [lO] supplemented by a  theorem of A.

Grothendieck [5].

Theorem 2.2.   Let XQ be a scheme over k.  //Sing(XQ) = \x £ XQ|X0 is not

smooth over k at x\  is proper over k, then there exists a formal Schlessinger de-

formation (R, X) of X..   //, furthermore, XQ  is projective over k and  H (XQ, Qx  ) =

0, then there exists a Schlessinger deformation of XQ.

Definition 2.3.  Let  (R, X) be a formal Schlessinger deformation of  X      We

set  sv    = dim AC  It is an invariant of  Xn.A0 0

Remark 2.4.  Let XQ be an affine scheme over k, and set lX^o' 2X  ) = A Q.

We then  have a  canonical  isomorphism  [AJX  (¿[e])] r*» D (AAk, A A via

(k[e], Spec (A)) -> (0 -» AQ -i-» A — AQ — 0)

where  D  (A Q\k, AQ) = the isomorphism  classes of commutative ze-algebra exten-

(5) See footnote (3).
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sions of  A.  by  An.  Now assume that  XQ is a complete-intersection   over k  of

dimension  r with isolated nonsmooth points only, and choose a presentation

0 —► / — P—♦ A0 — 0

where  P = k[x , • • -, x ], and  / = (J„ f2, • • •, fn_f) is generated by a P-regular

sequence.  We then have the exact sequence

Der^P, A0) -, Hom^   il/l2, AQ) — DHAQ\k, A„) — 0

and  D (A Ak, A A  is a finite-dimensional vector space over  k since  AQ has iso-

lated nonsmooth points only.   We set  s = dimkD iA0\k, AQ), and choose  </>¿:   ///

—► A.  (i = 1, 2, • • •, s) representing fe-basis elements of  D (AQ\k, AQ), and then

choose M.. in P suchthat <p.(f.)=M.. (mod/).  If we set  R = k[[t,, • • •, ts]]

and  A =R|X1? ••., Xj/(FV F2, -■-, Fn_) where

S

f. = /.+ y /.m..
2 '2 LJ       1       ¡1

7 = 1

R|Xj, • ■ • , X   | = the restricted formal power-series ring over the adic-ring   R

then  A  is R-flat, and indeed  (R, Spf (A))  is a formal Schlessinger deformation of

XQ  (see [8] for its detail).   In particular, we have  sx    = dim,D (AAk, A„).   We

note that  Fp F2, ••■, Fn_r ate all polynomials with  coefficients in  R  and

hence  Spf ( A )   is   "algebraic",   i.e.   Spf (A)   =   Spec (ß)   where   B   =

R[Xj, •••, Xr¡]/(Fl, •••, Fn_r).  Now assume that  AQ  is reduced so that  AQ is,

since   i   is   a   perfect   field,   generically   smooth   over   k.    If we set  N   =

Im (///   —»   AQ  ®p fipj, then  l/l2—*N is an isomorphism at each generic point

of Spec (A 0), and therefore Supp(Ker¿)  contains none of the generic points  of

Spec (A0), and consequently Horn*   (/V, AQ) —» HomA   il/l2, AQ) is an isomorphism.

Then  the exact sequence

0—,V—An    ®   0   ,    -»fl,   i.-»0
0    p       p\k Ao\k

together with the fact that  AQ ®p Qp\k is  AQ-free module entails that

^xtAn'^A oU' ^0   —' ^  ^ol^' ^0^  *s an isomorphism.  We thus conclude that if

XQ = Spec (A0)  is a reduced complete-intersection over  k with isolated nonsmooth

points only, then  sXq = dim^Ext^ Q(QA ̂ , A „).

Remark 2.5.  Let   XQ = Spec (A Q) be a complete-intersection  over k.  Then we

set  A0 = /«[xj, *2, • • • , *„]/(/,, fp • • ■ > /r) where  /j, f2, ■■■ , fT is a

&[*,, • • • , xn]-regular sequence.   Then  XQ admits a generically-smooth deforma-

tion, i.e.   X0 can be "desingularized via deformation".   Indeed,   set  S = k[[t]]

and  A = S[XV ... , Xj/(Fj, • • ■ , Fr) where   F. = (l - t)f. + lX. for ; =  1, 2,

• • • , r.   Since   F. =   f   (mod/A)   and    /,, /2» • • • i fr is an  A/iA-regular sequence,
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it follows that A  is  S-flat, i.e.  (S, Spec (A)) is a deformation of XQ over S.  Now

A = S ®k[t]A', where A' = k[t, Xv ■ ■ ■ , Xj/(FV ■■, F), and A'/(l - l)A' ^

k[Xl,..k.',Xn]/(Xl, ...,Xr)^ k[Xr+v •••,XJ.  Therefore, *(/) ®k[[] A'  is

smooth over k(t) and hence  Ze((z)) ® rr -.-.A  is smooth over k((t)), i.e. (S, Spec (A))

is a generically-smooth deformation of  XQ.

In  this section  we are interested in the deformation of complete curves.   For

this purpose we need the following lemma.

Lemma 2.6.   Let  X.  be a k-scheme of finite type with isolated nonsmooth

points only.  Assume that H2(X., fi*   ) = 0 where

Ü*     = Hom„      (fiv   , Ov   ).
_A0 —Xfj o       Ao

Then

(i) sx    = dim, H HXQ, Q,x  ) + s y    where  £/„  is any affine open subscheme

of Xn  containing Sing (XJZe) = \x £ XJXQ  is not smooth  over k  at  x\.

(ii) Let (R, X) be a formal Schlessinger deformation of X      Then for any

affine open  V0 C X0,  (R, X\V A is a versal formal deformation of V„.

The above lemma is not difficult to prove, the main  reason being that

H (X0, Ql   ) = 0 entails the vanishing of the global obstructions.   In any case, a

detailed argument can be found in [8] and thus we omit its proof here.  Let  XQ be

a complete curve over Ze, and  let  (R, X) be a Schlessinger deformation of X      We

note that the functor   ~: Mx    —> M^     is an equivalence of categories since  XQ  is

projective over  Ze and  H2(XQ, Qx  ) = 0, and therefore a Schlessinger deformation

of X.  does exist.   Assume that  X„  is a relative complete intersection over k.

Then  X, being Av-flat, is a relative complete-intersection over  R  and hence

Sing(X|P) = Supp<y^.|R   where Sing(X|R) = \x e X|X  is not smooth over  R  at  x\,

(úx\R = Coker (^IX|R —> wx|r^' an<^ (úx\r ls tne dualizing sheaf of A. Crothendieck [7].

In view of this, we may provide the closed subset Sing(X|A<) with the closed sub-

scheme  structure defined by the ideal sheaf ix(a>x), where  l_x(E), for any coher-

ent X-module  E, stands for the ideal sheaf of Qx given locally by the 1st Fitting

ideal of F, i.e. for each affine open   U = Spec (A) C X,

/ m m \

Y(U, I_X(E)) = Im (det:   A N   ® A F -» A)

where  0 —» N —♦ F —» VW, F) —. 0 is a finite presentation of A-module Y(U, E)

in which F is A-free, and m is the free rank of A-module  F.  We note that, for

any coherent  X-module   F, the ideal sheaf lx(E) annihilates   F, and in particular

cúx is a coherent Sing (X|ß)-module.  We are also interested in "the image of

Sing(X|P) under /".  Since /: X —» Spec (R)  is proper,   T(X, <úlx\R) is an R-moduIe

of finite type and SuppHX, ux\R) = /(Sing (X|P)).   We thus  note that /(Sing (X| A?))
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= SuppR//RU'(X, (¡>x\r^ wnere  /R(r(X, <zJx|R)) is the 1st Fitting ideal of the R-

module  T(X, wx|R).   The main purpose of this section is to establish the following.

Theorem 2.7(6). Let X_ be a reduced complete curve defined over k, and let

(R, X) be a Schlessinger deformation of X.. Assume that X» is a relative complete

intersection over k.   We then have

(i)sX0 = 3g-3 + dim^°(X0,a^o)  where g = dimkH1iXQ,0Xo).

(ii) Sing(X|R) —► Spec(R) is a finite morphism, and Sing(X|R) = Singx (X|R)

U • • • USing (X|R) is a disjoint union, where \x,, x2, • • • , x \ = Sing(XQ|/s), and

Sing (X|R) stands for the connected component of Sing(X|R) containing the point x.

(iii) ^v|r has no torsion, the canonical map &>X|R —' ^xli? '* an isomorphism,

and 7R(r(X, a>x| „)) is an invertible ideal in R. In particular, &x\r zs an inver~

tibie sheaf and codim (/(Sing (X|r)) z'?2 Spec (R)) = 1.

Proof,   (i) Let   l/„ = Spec(A„) be an affine open  subscheme of  X„  containing

Sing(XQ|/e).   Since  XQ  is a relative complete-intersection over  k, we may assume

that  A0 = k[xv x2, ■ ■ • , xn+ AJ(fv f2, ■ ■ ■ , fn) where fv f2, ■ ■ ■ , fn is a

k[x  , ■ • ■ , x      .]-regular sequence.   Since  A Q  is reduced by hypothesis, we have

SU0 = dim*E"Í0^0|t. V = dim,H°(t/0, Ext^(nXo,,, 0X))

by 2.4.  However, Sing(XQ|/i) C UQ and hence Supp Extx  (Q^x   It'-Px  ^ c ^o and

therefore

H°(X0, Ext^o(ñXo|,, 0Xq)) = H°(U0, ExtXo(0Xolie, 0Xq)).

It follows from 2.6 that

SX0 - dim.W^X^ 0Xq|,) + dim,/V°(X0, Ext ^(fj^ |fe, 0^)).

Thus it suffices to show that

dim IIHX0, 0Xq|,) + dimf/°(X0, fet^iS*^*. %» = 3g - 3 + dimf/°(X0. S^j*)

i.e. X(0x0|t) = 3 - 3g + dimf/°(X0, ExtXo(f2Xo^, 0Xq))   where   X(F) =

2j,-(— u' dim rF(X  , F) for any  coherent  X .-module  E.  Now  consider the exact

sequence

0-*(fiv   .)   _QV   r¿ ~¿« *>*   u-»<y' -n
Xn|/e'z —Xn|/e X0|fe Xfjl*

Since

(6) P. Deligne has proven recently a stronger version of 2.7(i).   He has communicated

to me that the formula 2.7(i) is valid for any curve which is a specialization of a nonsingu-

lar curve.
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Hom„     ((fl     |   )    Ov ) = 0,

we   get   an   isomorphism   i(Q_x  \k)* ~ —X •    Since     X      is   a   Gorenstein

scheme,    cox   i,    is    an   invertible    XQ-module    and    it    follows    immediately

Exty (z'(ft.v-   \l), Qx  ) = 0 for all  i > 0.   Consequently we get

{**] ° -* »Xjk "* Qx0\k ~> Extx0K0|,' °x0> - 0.

The exact sequence (**) entails

X©io|4) = VK0|,) r dim//°(X0, ExîioKo|,, 0Xq))

= 3 - 3g + dimAA°(Xn, Ext'   (coi.   i, , Ov  )).U A0       A0|*    —Aq

On the other hand, the local duality over Gorenstein  scheme together with the

isomorphic  (*) entails

dimA/°(X0, Ext^(^o|,,0Xo)) = dimfA0(X0,4o|,),

dimH0(X0,ExtXo(.üXo]k,Ox))

= dimA/°(X0, E^XQmXolk)r 0Xo» = dimf/°(X0, (QXJ*)£)-

However, X.  is a relative complete-intersection over k and hence it follows from

1.3(ii) that dim H (XQ, (Q_x   It),) = dim H (X Q, ço'x   It)-   Consequently  we obtain

that

dimA/°(Xn, Ext},  (Ov   \,,Ov  )) = dimr/°(X„, Extl  (tu'    i,,Ov  ))
0 X0  —X0|*    —X0 U Aq       AQ|fe    —Aq

and hence  )Mx0\¿ = 3 - 3g + dim AA°(X0, Ex^CO^, 0xQ)).

(ii) Sing (X|R) being a closed subscheme  of  X,  Sing(X|A?)—» Spec (R) is

proper.  Since Sing(X|P) O XQ = Sing(XQ|/e) is a finite set, i.e. k ®R Sing(X|R)

consists of a finite number of points,   it follows  that Sing(X|P) —► Spec (R) is  a

finite morphism,  and in particular Sing (X|ß) is affine.  Set Sing(X|R) = Spec (R1).

Since  R  is  a complete local ring and  R    is integral over  R  of finite type, we

conclude that  R    is a finite  direct product of local rings, i.e. R' = R. x • • • x R ,

and therefore Sing(X|P) = VjU- • • U Vf (disjoint union) where  V. = Spec (R ■) and

A<\  is a local ring.  Since the underlying space of  k ®R Sing(X|P) is Sing (X   \k) =

{*!» x2, ■ ■ - , xm\, we conclude that  r = m and   V. = Sing   (X|At).

(iii) Since  XQ is a relative complete-intersection over k and  X is A?-flat, it



270 D. S. RIM [July

follows that  X is a relative complete-intersection over  R.   Since   XQ is 1-dimen-

sional, we have  H (XQ, Q^  ) = 0 and therefore,   for each affine open   c/Q C XQ,

X\UQ is a versal formal deformation of  U„.   On the other hand, since   c/Q is a re-

lative complete-intersection over k,  U„  admits a generically smooth deformation

by 2.5, and consequently we conclude that a Schlessinger deformation  X  is gener-

ically smooth over  R  since   Risa formal power-series ring so  that Spec (R) is

irreducible.  Since Sing(XQ|¿) is a finite set, we may choose an affine open  Ii C

X containing Sing(XQ|¿).   Let y £ Sing(X|R).   Since  Sy! n Sing(XQ|¿) / 0 so that

lyl n l/j=0, we find that  y 6 I/.   Therefore Sing(X|R) C U, i.e. Suppcox|R C U.

Consequently we have that T(X, &>X|R) = YÍU, <¿>X|R) and therefore  we may

replace  X by an  affine open   U = Spec (A) containing Sing (XJ¿).   Then A-module

fi^|R  has the following properties:

(a) Sing(¿ ®R QA\R) = Singííí*   i.) = Sing(XQ|¿) consists of a finite number

of Cohen-Macaulay maximal points in Spec (k ®R A) = Spec(AQ) of dimension > 1

(b) fi^ijj  is R-flat  (since  X is R-flat and is a relative complete-intersection

over  R), and   K ®R 0>AlR is  K ®R A-projective (since X is generically smooth over R).

(c) <u^iR  (= Y(U, <uxlR) = r(X, wx|R)) is an R-module of finite type.

It follows from 1.5 that  ^iR  has no torsion, <y^|R  is a perfect A-module

with hd^w^|R = 2, and  /R(r(X, <¿>X|R)) = 'R(w^lR) is an invertible ideal in  R.

Since Sing(X|R) C U and &A\R = Y(U, ftx|R) has no torsion, it follows that ßx|R

has no torsion, i.e.

°-*nx|R ^wx|r -""xIp^0

is exact.  Since depth cü^ir = 2, we have Extx(&>x|R, 0 x) = 0 for  i = 0,  1, and

therefore  <±>X\R —* ̂ xIr   *s an  isomorphism.   This completes our proof.

Remark.   For any reduced complete curve   X„, we define  lx    = sx    -

dim H (XQ, Q_x   i.)  which measures the local contribution to the deformations of

X..   We note,   as a consequence of 2.7(i), that if XQ is a relative complete-inter-

section over  k, then  lx    = dimH°iXQ, (fix   u)t) = dimH°(X0, cúx   u).

3. Local connection and rigid singularities.   Let k be a fixed perfect field as

before, and  X    a reduced ¿-scheme.

Definition 3.1.   X_  is said to be a "limit of smooth ¿-schemes" or  X„  is a

specialization of a smooth ¿-scheme if there exists a deformation  (R, X) of  X

such that  X ®R K is smooth over  K, where   K is the total ring of fractions of  R.

We say that X. is rigid if every deformation of XQ over k[e] is trivial, i.e. for

any deformation  ik[e], X) of  XQ we have  X -  X_ ®.  k[e\.  We note  that if  XQ =

Spec(AQ) is a reduced affine ¿-scheme, XQ is  rigid if and only  if Ext^  (0.   i,, AA
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= 0 (see 2.4).  We also note that a rigid Ze-scheme  X.  can never be a specialization

of a smooth Zè-scheme unless   X.  itself is smooth over  k.

Every reduced curve is conjecturally a specialization of a smooth curve [3l.

We have also seen in 2.5 that every affine ze-scheme which is a complete-intersec-

tion is a specialization of a smooth ^-scheme.   On the other hand, there exists a

4-dimensional affine variety which can never be a specialization of a smooth

variety ([4], [ll]).   The main purpose of this section is to provide an example of

rigid 2-dimensional singularity.   To clarify our motivation, we consider the phenom-

ena of local  connection under specialization, for which the author is indebted to

A. Grothendieck.

For any local ring A, we denote by Spex (A) the open subscheme of Spec (A)

deleting the maximal point.  A variance of the following lemma is contained in [6].

However, we give a complete proof for the convenience of the readers.

Lemma 3.2.   Let A  be a noetherian local ring with the maximal ideal m.   If

depth A > 2  and H   (A)  is coherent, then for any A-regular element  t £ m,

Spex (A/tA) is connected.

Proof.  Since depth A > 2, we have H1 (A) = 0 for z = 0, 1, and hence A —»

H  (Spex (A), A) is an isomorphism.   The exact commutative diagram

tm
*A/tmA-

♦ A/tnA-

0

(ZTZ >  «)

entails the exact commutative diagram

0  —  A/tmA->IIo(Spex (A), A/tmA)->   H1 (Spex (A), A)  -»  0

0   -> A/t"A-.A/°(Spex (A), A/tnA)-> Hi(Spex (A), A)   — 0

where for any A-module  F we set ^E = \x e E\tnx = OS = HornA(A/1"A, E).  Send-

ing to limit we get the exact sequence

0 — limA/zM -» lim/A°(Spex(A), A/tvA) -» lim   Hl(Spex(A), A).

Now Hm(A) = HHSpex (A), A) is coherent by hypothesis and hence there exists an

integer «  suchthat  nH HSpex (A), A) = ^H HSpex (A), A) for all  m > «.  Conse-

quently,
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H KSpex(A), A) -A—, H KSpexU), A)
77! r 772 —72 r

is a zçro-map for ail m > n, and hence

lim^f/KSpexU), A) = 0,

V

and therefore   lim A/tvA   —» limt//7°(Spex(A), A/tvA) is an isomorphism.   In other

words, A —> T(Spex (A)) is an isomorphism, where Spex(A)  is the formal comple-

tion of Spex (A) along the closed subscheme Spex (A//A).  Consequently,

r(Spex(A)) and therefore YiSpexiA/tA)) has no nontrivial idempotent elements

and hence Spex (A/iA) is connected.

Proposition 3.3.  Let AQ be a reduced noetherian local ring with dim A. > 2.

// there exists a noetherian local ring A  which is a homomorphic image of a regular

local ring, and an A-regular element t in the maximal ideal of A  such that A/tA

— A.  fl?2<3? A    is regular, then A     is equidimensional and Spex iA A  is connected,

where AQ stands for the completion of AQ with respect to the maximal ideal of A

Proof.   Assume that A  is normal.  Then tA  is an unmixed ideal in A and

hence A. - A/tA  is equidimensional.  Let us denote by A the completion of A

with respect to the maximal ideal  m of A, so that  /  is A-regular and A/tA -

A 0.  We note that depth A = depth A > 2 since A  is normal and dim A > 2.  If

HmAiA) is coherent, it follows from the above lemma that Spex (A Q) = Spex (A/tA)

is connected.   We note that, for every  i > 0,

H{ î(Â) = lim Ext! (Â/mvÂ, Â)
mA *-        A       -

= limExtiAA/mv, A) ® Â = limExti.(A/mv, A) = H' (A),
4- ft *"' a *- /i — 77Ï
t/ ". V

and thus it suffices to show that  H2(A) is coherent.  Now let  x be a point of
772

Spec (A) such that dim[x| < 1. Since dim A > 3 we must have dimAx > 2 and

hence depth A    > 2 since  A  is normal.   It follows from Grothendieck's criteria

[6] that H2(A) is coherent.  Thus it suffices to show that A  is normal.  We use
m

Serre's criteria.  Let x be a point in Spec (A) such that dirnA^. = 1.  If x f. V(t),

then A    is regular by hypothesis.  If x e V(r), then dim(A0)x = dim Ax/tAx = 0

so that  (AQ)x  is a field since  (AQ)X is  reduced, which entails that Ax is regular.

Now let x be a point in Spec (A) such that dim A^ > 2.  If x ¿ V(z), then  Ax is

regular and hence depth A    = dim A    > 2.  Let x £ V(t).  Then  t £ mx and it is an

A^-regular element such that depth A^/iA    = depth (A A   > 0 since  A.  is reduced,

and therefore depth A    > 2.   This completes our proof.

Corollary 3.4.  Let X. be a reduced algebraic k-scheme which is a speciali-

zation of a smooth k-scheme, where k  is an algebraically closed field.  Then for
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x £ XQ  with dimOx    x > 2,  Spex (Qx    x)  is connected.   In particular, every point

x £ X.  szzcA) Z/Jiaz dimOv       > 2  area? Spex(Ov      )  is normal is unibranch.0 — AQ,* — r — A g,«

Proof.   We may and shall assume that  XQ is not smooth over  k.  Let (R, X)

be a deformation of  X    such that  K ®R X is smooth over  K where   K is the total

ring of fractions of R. We may assume that  R = k[[t]].  Indeed,   D = \s £ Spec (R)\

k(s) ®„ X is smooth over k(s)\ is nonempty open in Spec (R) and does not contain

the maximal point of Spec(P), and therefore there exists  s £ D  such that dim is! =

1.   Thus if we set  p to be the prime ideal in  R  corresponding to  s, then dim R/p

= 1 and k(s) ®r X is smooth over k(s).  Let  R' be the normalization of   R/p.

Since  R/p is complete with dim R/p = 1  and  k is algebraically closed, we con-

clude that  R' = k[[t]].   Then  (Ac', R' ®R X) is a deformation of  XQ  such that

k[[t]] ®R< (R'®R X) is smooth over  k((t)).  We thus assume that  R = Ze[[z]].  Now

let  x £ XQ C X be a point such that dim Ox    x > 2.  Since  Z is 0X x-regular such

that 0X x/tOx x - Qx    x and (QXx)t - k((t)) ® fe[[f]] 0Xx is smooth over /è((z))

and hence is regular, it follows from 3.3 that Spex (Ox      )  is connected.   As for

the second statement, let dimOv       > 2  and assume that Spex(Ov      ) is normal.

It suffices to show that Spex(Ov      ) is connected if and only if  0V        is uni-
r       ~A0>X '        -Ao,x

branch.  We set  A = 0V        and  A     the normalization of A.   Since  A /A  as an A-
-A o,x

module is annihilated by some power of the maximal ideal of  A, we get the exact

sequence

0 -> Â -> Â'->A'/A -> 0

and hence  (A)f —> (A')^ is an isomorphism for every / in the maximal ideal of A.

Consequently the morphism  rr: Spec (A') —> Spec (Â) induces the isomorphism

Spex (A') -^i Spex (A) where Spex (Â') = Spec (A) - n~ l\m\, m = the maximal ideal

of A.  However, A'  is semilocal and hence  A' = A' x ■ ■ ■ x A ' , where  A '   is a

complete local normal domain, and hence Spex (A1) = Spex (A' ) U ■ • • U Spex (A ' )

(disjoint union).  We note that depth A ! > 2 since it is normal with dimension > 2,

and therefore Spex (A '.) is connected by Hartshorne's lemma.   It follows that

Spex (A) - Spex (A J ) (j ... uSpex (Aj ) is connected if and only if « = 1.   This

completes our proof.

It is now clear how to construct an algebraic variety of dimension > 2 which

can never be a limit of smooth varieties: Let  X be a normal variety.   Given a 0-

dimensional closed subscheme   y C X, there exists an algebraic variety  Xi   ¡ to-

gether with the birational morphism  n: X —> Xi    j  such that

(i) tt(Y) consists of one point z, and X - Y-*nXjyj - \z\ is an isomorphism,

(ii) The ideal sheaf  I_y  of   Y in  Ox  is equal to the conductor ideal sheaf of 77.

If dimX> 2  and   Y consists of more than  one point, then dimOv(    ,     > 2  and
- XJyj.z -

z is of multiple branches, and consequently  Xjyj cannot be a specialization of a
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smooth variety.  Motivated by this fact, we can now construct, for any  integer 72 >

2, a rigid 72-dimensional affine variety with an isolated singularity.

Lemma 3.5. Set

A = K[[X,,-..,Xj]   X  k[{Yv... , Yj]

=T KlTXj, • ■ • , Xn, Yx, ■ ■ - , YjViX.Y.l 1 < i, j < 72).

// E is an A-module of finite type such that depth F > 0 and depth E/ix., y.)E>0

for all i, j, then Ext^(Ü. 1, , F) = 0, where «^ It   stands for the A-module of

continuous k~differentials of A.   In particular, Exti(iî,,|, , A) = 0 provided 72 > 2.

Proof.   We have the exact sequence

0 —> N -* A dX, © • • • © A dX   © A dY, © • • • © A dY
1 77 1 r

Q
A\k

where  zV as A-module is generated by the set  \co.. (= diX Y.)) = y dX. + x.dY \ 1 <" * i¡ 1   1 Ji       1        1      ; '      -

i, j < 72¡.  Let A.: N —* E be any A-linear map.  Since we have the relations

(*)

we must have that

x, CO ■ ■ = x a), .
k   77        1   kj

l y^a = y^ik

for all  i, j, k,

(x., ■ ■ ■ , xn)k(co..) C x.E

\(yv ■■■ ,yn)\(coij)Cy.E,

i.e. 722A((U¿y) C Up y.)E where  m = ixv ■ ■ ■ , xn, y., ■ ■ ■ , yj.  Since depthF/(xz., y.)F

> 0 by hypothesis, we have  m f. Ass E/ix., y.)E and therefore  A(w¿.) e (x., y.)E.

Hence we set

(**) A(<y ..) = y .a.. + x.B..

where  a.., ß.. ate the elements in  E.  Then  (*) entails again that

xAy .a .. + x ß.) = x .(y .a, . + x.ß, .)

yk(y!*l! + *lßl,) = y,(yk«,k + xlßlk),

'xkxßi, - xixkßk,

yjykai, -y,ykaik'

i.e.
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'Mrß.kj)mß
tot all  i, j, Ze.

{y,yk{ai,-aik)

If (xj, •■•, xn)E / 0, then depth (x v • ■ ■ , x^E > 0 since depth F > 0 by hypothe-

sis, and therefore there exists an  (x .,■■•, x  )F-regular   element in  m, say let it

be x v  Then XjX¿(/3¿. - /3¿.) = 0 for all  i entails that xiß.. - ß- ) = 0 for all  i,

i.e. x.ß.. = xfi{. and therefore we may assume that ß{- = 0 for all   i, j.   Therefore,

in either situation,   we may assume in the expression  (**) that ß .    depends only

on /.  Likewise we may assume that  a., depends only on  z.  We thus conclude

that there exist a .,-■■, a  , ß ,,-■■, ß    in F such that A.(cu. ) = y .a . + x ß..
1 72'   '   1' ' "« 2; Jj    2 2*/

This simply means that

Ext^Ô^, E) = CokertHom^F, A) — HomA(N, A)) = 0

where  F = A dX .<$ ■ ■. ® A dX   0 A dY, © • • ■ ® A dY .  The second statement is
1 72 1 72

immediate since depth A  > 0 provided  « > 1  and depth A/(x., y .) > 0 provided

« > 2.

Corollary 3.6.   Let  X = A" (= the affine n-space over ze) where  « > 2, and let

Y = \z  , zA  be a reduced closed subscheme of X  consisting of two distinct k-

rational points z  , z      Then  Xjyj = Spec (ze + m      C\ m     ) is a rigid irreducible n-

dimensional affine variety with the isolated nonsmooth point.

Proof.   The morphism  tt: X —► Xc   >  induces by definition an isomorphism  X -

Y —> Xjyi - {zI  where  z = 7r(Y), and therefore   ^jy!  is smooth over  Ze  except at

the point z.  Set  Xjyj = Spec (A).   Since  A  is smooth over k except at the point

z, ÎÎ4I1  is locally-free everywhere except at the point  z and therefore

ExtACàA\,, A) is an A-module  of finite type annihilated by some power of t?zz.

Consequently the canonical maps

ExtA(ilA]k, A)^Ext\   {ÇlA   u, A2)-,Ext'   (Q.      .%)
z' A AT\k

ate all isomorphisms, where  fi~   ,fe  stands for the module of continuous ^-differen-

tials of Az.  However, we have by definition the exact sequence

A   —» Ovz —X, z

where QXz = limrJ-^yl\U, Qx) is the semilocal ring with two distinct maximal

ideals corresponding to the points  z p z r   Passing to the completion we get the

exact sequence

Sx.M-^ox.    -. *-o
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and therefore Az 2? QXz   xk QXz   - k[[X y, ■■■ , Xj\ xk k[[Y v ■■■ , Yjl  It

follows from 3.5 that Extj^fi^w, A) - Ext^   (0^   u, A z) = 0 provided « > 2,

which completes our proof.

4.   Comments.   In this paper we have studied the deformations of projective

curves which is locally a complete-intersection.   Admittedly it is the simplest

situation since the local obstructions for the prolongations of deformation do van-

ish by virtue of a property of complete-intersection [l].   However, we have examined

the deformation problems of several curves which is not a complete-intersection

including the ordinary multiple point with mutually transversal tangents.   Based on

2.7 and a few empirical results, we make the following conjectures.

Let  Ze be a fixed perfect field (or an algebraically closed field if necessary)

of any  characteristic, and let  XQ be an irreducible reduced complete curve over

k, and let (R, X) be a Schlessinger deformation of X      The complete local Ze-al-

gebra   R  is in general not a formal power-series ring even when  X    has ordinary

multiple points (with mutually transversal tangents) only (see [9]).

(I) sx   =3g-3+dim/eA/°(X0, nx  )    where  g = dimkHX(XQ, Qx  ).

One notes that the above formula  coincides with the original conjecture of P.

Deligne [3] in the case when the base field  ze  is of characteristic zero.   In view of

2.6, the conjecture  (i)  is entirely  of local nature.   Indeed,  we set, for each point

*eX0,

Sx      SSpec(.0y      „.)■
Aq,  X

Then  sx = 0 at every smooth point x, and 2.6 entails that sx    = dim,Hl(XQ, QA. )

+ ¿lx sx.  Therefore,

sy    = 3g - 3 + dim,AA°(X0,n*    )
Aq k U Aq

<£>3g - 3 + dim^A/0(X0, üXn) = dim^A/UXQ, 0^) +    £  sx

<^y(Q* ) = 3-3g+  Z

0

X6Xq

If we denote by zr: XQ —► XQ  the normalization of  XQ, it follows from the Riemann-

Roch theorem that x(ñ_x' )   = 3 - 3(g - 8X  ) where

8      =dim^°(X0,77,Ox,/O     ),       Qx, =Hom0     (0^,0,).
u ou o-xq00

Now let „
Lv    = Horn        (77.0V,,0Y   )

xo i?x0        x0   _xo

be the conductor ideal sheaf of  XQ. We then have canonical inclusion maps
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(*)

Horn        (tt fiv, , £     ) —» 77 (il* , )
-X0 0 0 A0

O^Hom        (fr «„,,£„   ) -» O*
--x0    *-Xo     Xo       ~xo

For each point x £ X  , we set

d   = diiri   [Coker(Homn      (77 ílw , Çv   ) -» ñ*,  )]   ,
-i^x0    *~Ao      "o       --o

c* = dim,KOx^x0V

We note that, for each point  x e XQ,

dim, [Coker(Hom        (77 Ov, , £v  ) —» 77 (Q*,))]   = dim, (77 Ov,/CY  )   =c   .
* —^x0 Xo   _X0 _Xo 0 °

and that  zt"   = 0 = c    at every smooth point x.  Now the inclusion maps  (*) entails

that X^Ü.X¿}= xQxJ + Zxcx * Exdx' and therefore we get 3 - 3(g - SXq) =

*(0-X0> + L(cx - V' Le- x(Rx0) = 3 - 3g + 3oXq + z2'Xo - cXq  where  ¿X(j =

Zxrfx' CX0 = Ixcx = deg^X0-   Therefore, X«1X()) = 3 - 3g + £x *x <£> £x *x =

3(5X    + dx    - cx   , i.e. the conjecture  (i) holds if and only if  YiXsx ~

Y(3z5x + dx - cx).  Taking complete curves with a  single singular point, we con-

clude that the conjecture  (i) holds if and only if s    = 30    + d   — c    for every

(singular) point x.  Therefore one can give the local reformulation of the above

conjecture as follows.

(I) Let A     be any   1-dimensional  geometric local domain over  ¿.   Set  AQ   to

be the normalization of An, and C the conductor ideal of A.   Then  sc    ,.   . =
0 Spec(/10)

3(5 + d — c where

<5=dimA'/An,        c = dim  A'/£,

d = dim Cokertoer (A ¿ , £ ) -. Der (A Q, A Q)).

Remark.   It follows from a well-known inequality  8 < c < 2(5 that o + d < 3f3 +

d - c < 28 + d, and in particular  38 + d - c = 0 if and only if 8 = 0, i.e. A     is

smooth over  ¿.  We also note that if A     is Gorenstein then  38 + d — c = z5 +

dimüA./mAo).

(II) Let  X    be Gorenstein.   Then for each integer  0 < p < dimiBy   1, ,

/R(A p<ux|R) is an unmixed ideal of codimension  p, where the exterior power is

taken over  R.

Needless to say, (II) is equally a local problem.   (II) implies in particular that

for every integer 0 < ttz < dimd)x  1,, \z £ Spec (R)\ dim wx(z)l/<(z)= m^ ís a nonemPty

locally closed subset of Spec(R). In case when (II) is correct, one can make the following

conjecture:  We set, for each complete curve   Y, ly = sy - dimHïiY, fly).   One may

note that if   Y is Gorenstein and the conjecture (I) is valid, then  ly = dimza'
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(III) /: Spec (R) —► N given by z —» ^x(z) Ls an uPPer semicontinuous function,

and for each integer 0 < p < lx , 2(p) = \z £ Spec(A?)| lX( , > p\ is an equidimen-

sional closed subset of codimension  p, where  X(z) = k(z) ®„ X.

One may note that (III) certainly would imply  that every complete curve is a

specialization of a nonsingular curve.   The above conjecture  (III) has been veri-

fied for curves with ordinary multiple points with mutually  transversal tangents

(see [9]).

(IV) Assume that  XQ  is affine.   Given a point   z £ Spec (R),  (Rzi Rz ®r^0

is a versal deformation of the curve  X(z) = k(z) ®r X.

This conjecture is also correct for curves with ordinary multiple points with

mutually transversal tangents.   We remark that  (R  , R    ®R X) is not in general a

Schlessinger deformation of X(z) and that (IV) is false for complete curves.   The

conjecture (IV) will have the following significant consequence:

(IV)    If X   —► Xq  is a nontrivial deformation of complete curves, then  lx    <
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