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ABSTRACT. Sufficient conditions are found for the free product G of two

groups A and B with an amalgamated subgroup U to have the properties (1)

that the intersection of each pair of finitely generated subgroups of G is again

finitely generated, and (2) that every finitely generated subgroup containing a

nontrivial subnormal subgroup of G has finite index in G. The known results

that Fuchsian groups and free products (under the obvious conditions on the

factors) have properties (1) and (2) follow as instances of the main result.

1.  Introduction.   This paper extends the class of groups   G for which the follow-

ing two properties are known to hold:

(1) every pair of finitely generated subgroups of G intersect in a finitely gen-

erated subgroup (briefly, G has the finitely generated intersection property);

(2) no finitely generated subgroup of G of infinite index contains a nontrivial

subnormal subgroup of G.

Our main result (Theorem 2.3) gives sufficient conditions for the generalized

free product  (A*B; U)   of groups   A   and  B  amalgamating the subgroup  U to have

properties (1) and (2). That some restriction is necessary is shown by the group

(x, y\x   = y   ), which has neither property (Karrass and Solitar [8], Moldavanskii

[lO]).  The proof of Theorem 2.3 utilises the algebraic methods developed by Kar-

rass and Solitar [8].   The following result is a particular case of that theorem.  We

call a subgroup   U of a group A   isolated if, whenever an £ U for any nonzero in-

teger  « and any  a £ A, then  a £ U.

1.1. Theorem. If G = (A*B; il) where A is free and U is infinite cyclic and

isolated in A, then

(i) if B  has the finitely generated intersection property, so does  G;

(ii) if  U ^ A, any finitely generated subgroup of G containing a nontrivial

subnormal subgroup of G  has finite index.
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This implies in particular the result of Greenberg [3] that the Fuchsian groups

(i.e. the discrete subgroups of  LF(2, R), the group of all  2x2  matrices over the

reals with determinant   +1)   have properties (1) and (2).   For, as Karrass and Soli-

tar have pointed out, it is not difficult to show that a finite extension G of a

group with property (1) again has property (1), and that certainly if the nontrivial subnormal

subgroups of  G ate infinite, the same is true as regards property (2).   Now the fi-

nitely generated infinite Fuchsian groups are either generalized free products of

the sort described in Theorem 1.1 or finite extensions of such generalized free

products, and their nontrivial subnormal subgroups are infinite:  the first claim was

originally proved by R. Fricke and F. Klein by geometrical methods, and recently

by Hoare, Karrass and Solitar [5] using methods of combinatorial group theory; the

second statement has recently been proved also by Hoare, Karrass and Solitar.0)

Our Theorem 2.3 is however of wider applicability.  Thus it contains as a

special case the result that a free product has property (1) if the factors do (Baum-

slag [l]), and has property (2) if there are at least two nontrivial factors (Karrass

and Solitar [7]).

Property (1) was first considered by Howson [6], who established it for free

groups.   Property (2) originated with Schreier's well-known result that a finitely

generated normal subgroup of a free group necessarily has finite index.

I am indebted to A. Karrass and D. Solitar for introducing me to the problem

and for many helpful comments.

This research was partially supported by a grant from the National Research

Council of Canada.

2.  Statement of results.   For concise statements of the results a few prelimi-

naries are necessary.

For the usual definition, and existence and uniqueness, of a generalized free

product see e.g. [9].  Alternatively one may define it by the following well-known

characterizing property (which will be all that is used directly in the sequel).   Re-

call first that a left transversal fot a subgroup  H oí a group  G is a complete set

of representatives of left cosets  gH (g £ G).

2.1. Lemma (cf.  [9, Theorem 4.4]).   A group  G  is a free product of two sub-

groups A  and B  amalgamating a subgroup   U contained in A  C\ B if and only if,

for each pair TA, T„  of left transversals for  U in A, B  respectively, every ele-

ment g £ G  can be uniquely expressed in the form

(3) g = VV'

where n > 0,   u £ U,  t{ £ (TA U   TB)\u (i = 1, • • • , n) and t., t.   .  do not both

(1) On subgroups of infinite index in Fuchsian groups, Math. Z. (to appear).
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belong to  T.   nor to  T„  (i = 1, ••■,«- l).

We write   G = (A*B; U).   We shall refer to the right-hand side of (3) as the

canonical form for g (relative to the pair  TA, T„).   The element g will be said to

be of length n, to begin with t.  and to end with Z .  The  Z. will be called syllables

(A- or ß-syllables according as they belong to  T.   or  TA), and  u will be termed

the U-syllable of g.   Finally, the elements  t^'-t. (z = 1, • • • , «) will be called

initial segments of g.

We shall also need the concept of malnormality.  B. Baumslag [2] defined a

subgroup  U of a group  G to be malnormal in  G  if g-   L/g O  1/ is trivial for all

g e G\U.  A nontrivial example relevant to our purposes is that of an isolated

cyclic subgroup of a free group (see § 6).

The following lemma furnishes an equivalent condition more convenient for us.

2.2. Lemma (Solitar).   A subgroup  U is malnormal in G if and only if there

exists a left transversal  T for  U in G, containing the identity e, such that for all

t £ T\\e\ and all u £ U, ut £ T\je!; i.e. such that

(4) U(T\\e\) = T\\e\.

Proof.   Suppose   U is malnormal in  G and let   T    be a complete set of repre-

sentatives of the double cosets  UgU (g £ G), including  e.  Then  T= (7(T.\ie!)

U ie! is a left transversal for   U in  A; for, if t., t2 £ T.\\e\  and  u., u2 £ U ate

such that (z/jZj)-  u2t2 £ U, then (7 «j   s,(, £ U, whence  t. = t,, and thence

u. = u2  by the malnormality of  U.  Thus  T satisfies (4).  The converse is equally

straightforward and we omit the proof.

In addition to malnormality the following condition will be imposed.  We shall

say that a subgroup   U of  G  is finitely involved in a subset  S C G with respect to

a left transversal  T fot  U in G, if there is a finite subset  V C U such that S C

TV(S~  S O il).  We shall then say that   U is finitely involved throughout G  if there

exists a left transversal  T for   U in  G  such that, for every finitely generated sub-

group  H < G and every g £ G,   U is finitely involved in Hg, i.e. there is a finite subset

V  of  U, depending on  Hg, such that

(5) HgCTV(g-1HgnU).

Clearly a finite subgroup of a group  G is finitely involved throughout  G. How-

ever, for us the infinite case is more interesting:  we shall prove in § 6 that any

isolated infinite cycle in a free group  F is finitely involved throughout  F.   In fact

by Theorem 6.1 such an infinite cycle satisfies the more stringent requirements of

our main result, which we can now formulate.

2.3. Theorem.   Let G = (A*B; U)  where  U is malnormal in A  and finitely in-

volved throughout A, and has the additional property that there is a left transversal
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T for  U  in A satisfying simultaneously conditions (4) and (5).   The following con-

clusions are valid:

(i) if every subgroup of U (including  U itself)  is finitely generated, and A,

B   have the finitely generated intersection property, then so does  G;

(ii) if U ^ A, B  and H is a finitely generated subgroup of G containing a

subgroup N,  N k U,  N  subnormal in G, then H bas finite index.

Theorem 1.1 follows at once from this theorem and Theorem 6.1.

3. Lemmas.   The following lemma is crucial to the proof of Theorem 2.3.

Broadly speaking it shows that the restriction given by the hypothesis of Theorem

2.3 on the way   U is embedded as a subgroup of a single factor of  G = (A*B; U)

implies a property similar to finite involvement of  U in certain subsets of the

whole group  G.

3.1. Lemma.   Suppose that  G = (A*B; U) where  U and A   satisfy the hypothe-

sis of Theorem 2.3.   Let  TA   be a left transversal for U  in A  satisfying (4) and

(5), and let  T„   be any left transversal for  U in B, containing  e.   Let  H be any

finitely generated subgroup of G and let g be any element of G.   Then if D de-

notes the set of all elements of H g  ending in an element of T A \\e\ and D    de-

notes the set obtained from D by deleting the U-syllables from the ends of the

elements of D, there exists a finite subset V C U such that

(6) D ÇD^ig-^gnU).

For the proof we need some of the technique developed by Karrass and Solitar

[8].   In order to elicit the structure of the subgroups of ÍA*B; U) they introduced

the concept of a compatible regular extended Schreier system (or cress) for a sub-

group.   This has evolved from the idea of a Schreier transversal for a subgroup of

a free group.   In the case that   U is trivial the cress becomes the regular extended

Schreier system employed in e.g. [9] to prove the Kuros subgroup theorem for free

products.  We give a definition in terms of the canonical forms of elements.   This

gives the definition greater concreteness at considerable cost in generality:  how-

ever it suffices for our purposes.

3.2. Definition (cf. Karrass and Solitar [8]). A compatible regular extended

Schreier system (cress) for a subgroup H of G = iA*B; il) relative to left trans-

versals   TA, TB  for   U in  A, B respectively, both containing  e, is a pair

\CA, CB\ of right transversals for  H in  G, with the following properties:

(i) for all  g £ GA  U Cß, where  g = 11 ■ ■ ■ t u in canonical form,

(a) if g £ CA, then gu~    £ CA (and similarly for  Cß);

(b) if  u = e and  t    eT^, then g, gt~    £ CA (and similarly, if  /    £ TB, then
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g'gÇ1 eCß);

(c) if gzz-1 £ CA C\ CB, then  g £ CA O  Cß;

(ii) if SA  is the set consisting of e and all  e ^ g £ C .   which have  u = e

and  Z    e Tß, then  S .   is a complete double coset representative system for  G

modulo  (H, A) (and similarly for  Sß);

(iii) if  fl^   is the set of all g £ CA  which have  zz = e, then RA is a complete

double coset representative system for G modulo  (AY, ¿7) (and similarly for  Rß).

We remark that this fulfills the conditions defining a cress in [8, § 5].   To see

this let all nontrivial elements of  U be, in the terminology of [8], generating sym-

bols of  U, and let the nontrivial elements of  TA U   U, T„  U U be the generating

symbols of A, B  respectively.  Conditions (1) to (4) of [8, §5] are then readily

verified as being equivalent to the above.   The proof of the existence of a cress

as defined above is the same as that of [8, Lemma 6].

We now choose a particular generating set for  H in terms of a given cress

\C A, C„! for  H in  G.   For each g £ G let  gcpA  denote the representative in   C.

of Hg, and define the coset representative function  cpB :G —'C„, analogously.

For each k £ C., x £ A, write

sA(k, x) = kx((kx)cpA)~1,

and define  sß(k, x) for  Ze £ C„, x £ B, analogously.   For each  d £ C„  define

t(d) = d(dcpA)-1.

The Kuros rewriting process toi H in terms of these  s- and  Z-symbols is then de-

fined as follows.  Suppose   h £ H has canonical form  t .• • • t  u, and write

«if = 0,  ■■■t)cpA,     df = (/,  ■■■ti)cpB        (z = l,...,«).

The rewritten expression for  h (cf. [9, p. 230]) is obtained by replacing  t.

(z = 1, •■-,«- l) by

(7) ^df_1).sA(df_vt).t(df)-'    iit.etA;

and by

(8) sB(df_ltt.)    ¿fi. eTB;

and replacing  t u by

and by

t(dB   A ■ s(dA, t  u)    if t    £T

s^dB, tu)    if tn £TB.
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It is not difficult to verify that these replacements leave   h unchanged.  Notice

also that if d £ C„ has the form ru.  where r £ Rß,  zz. £,U, then (cf. [8, p. 243])

tid)=ruliirul)cbA)-'í = riróA)"1  ■ iré^^iru Ach^- M;

that is

(9) tid) = tir) ■ sAiróA,  zz/-

It follows that  H is generated by the  tir) ir £ Rß)  and the s-symbols.   Consider

the element sAik, x), where  x £ A, and  k £ CA  has the form  dqu, where  d £ SA,

q £ TA (and  dq £ RA) and  u £ U.  It follows from (ii) of Definition 3.2 that

idqux)cf>A = dq .u.   where   q . £ TA,  u . £ U. Thus

sAik, x) = diquxu~l qT1) d'1 £ dAd~l O H.

Similarly, when  k £ C„  and x £ B, we have  sR(¿, x) £ d.Bd~   O   H where  d    £

SB  is the representative of the double coset  HkB.  Write

R = \tir)\r £RB\,

QA =\d\d £ SA,   dAd~ 1 O H £ dUd~ l !,

0 B = \d\ d £ SB,  dBd~ 1 r\H i dUd~ 11.

The above facts are summarised and supplemented in the following lemma.

3.3. Lemma.   Let  H < G = iA*B; U) and let \CA, CB\  be a cress for H rela-

tive to  T ., T„.   Then H  is generated by the set  R  together with H O U and all

subgroups dAd~lr^   H id £ QA) and dBd~X  O H  id £ QB).   Furthermore, if every

subgroup of U iincluding   U itself)  is finitely generated, then  H  is finitely gener-

ated if and only if R, Q.   and QB  are finite, and for all g £ G, gAg~     n H is

finitely generated.

The proof of the first part of this lemma is sketched above (see also [8,

Lemma 7]).   The second part is immediate from Lemma 3 and Theorems 4, 5 of [8J.

Write  R j = \r, rcpA \ r £ Rß,  tir) =c e}, and write   P  for the set of all A-syllables

of elements of the set R. U QA  U Qß.

3.4. Corollary.   The subgroup H< (A*ß;  U)  is finitely generated only if P  is

finite.

3.5. Lemma.   Let  H <G = iA*B; U) and let \CA, Cß ¡  be a cress ¡or H rela-

tive to TA, TB.  Suppose that g e R .   and h £ H are such that, in canonical form,

kg = t ,• • • t u f. U, where  e ^ t    £ T ..   Then t  u = u,q~  aq^, where  u,  £ U,  q,  £
°1t2 n A 7! l'l        '2 1 '1

P U {e}, either q2 = e or q     is the last syllable of g, and a £ A C\ d~   Hd where

da2 = 8-
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Proof.   Firstly we apply to  hg = t ^ ■ -tnu a rewriting process similar to the

Kuros rewriting process described above.   To be specific, we replace  t.

(i = 1, ••■,«- l) by the appropriate one of the products (7), (8), but Z zz is re-

placed by t(dn_ ¡) • sA(dn_ j, tnu) ■ g.  This process does not alter hg : for example

t(dB   A . s.(dA   ,, t u) . g
72  —  1 A        77-1 77 °

(10)
= rff    AdA   ,)"'/   ,Z  u((dA   .1  „U,)"1  .g = dD       -tu,

72-1        72—1 72-177 72— 1     72        ^A ° 72—! 72

since  (dn_ ltfu)<pA = (hg)cpA = g; and then  dB_ {   cancels with part of the element

(8) replacing t     j» and so on.

Write  dn_^ = dqlu1 where  d £ SA   is the representative of the double coset

Hdn_lA,  ql £ TA  and  ul £ U.  Then by Definition 3.2(ii), g = dq    where   q2 £

TA, since AAgA = HdA_xA.  From (10) we have

V-^-i*"1 ■<-lV*"1-«-"rI*Tlrf"1 •¿<*1v„a*71)^.1-<¿?2-

Write  a = q ,u A  uqZ  .  Then  a £ A  O a7-  A/a" and  Z  u = u~  q~  aq...   It remains to
J 1    1 tz   ' 2 72 1    ' 1       ' 2

show only that if  q   jí e then  q    £ P.

Thus suppose  j.^e.  \i d     x= dAj^v^yt dn_^ = dq^u^, where a^ eSg,

pj £ T B, vx £ U, then by Definition 3.2(iii) (dlpAcpA = dq^w x where  w x £ U and

d.p. ^ dqAv      Then we should have  dq yw : £ R ^, whence  qY £ P.   Thus we may

assume that  dB   , = dA   ,.  We next prove that  « > 2.   If « = 1  then  d      ,   = e,72-172-1 r 77-1

which is impossible since  d  _,  has   q^  as its last syllable.   If n = 2  then  Z.  e

Tß  and ^_j = dqxu~l = dB = t]cpB.  Thus   HdqA3 = Ht A3 ̂  HB, whence, by 3.2,

dq. = e, which is impossible since  qx ^ e.

For all odd /' such that   1 </'<«- 1  write  ¿      . = d.q.u. where  d. £ SA,  q.

£ TA  and  u. £ U; tot j even (l < / < « - l) write dB_. = d.q.u. where  d. £ Sß,

a. £ T„  and  u. £ U.  Note that  Z      . e TR  or  T.   according as  / is odd or even.
"jo j n—] d /i

We shall prove that if /  is odd (l </'<«- 2) and  dB_.= dA_. = a?ya?.zz. where   qj

^ e, then either d .q. is an initial segment of an element of  RjU  QA U   QB, or

dA   .    ,=dB   .    .= d.q.q..,u.+ .  where   e ;* a,+ ] £ T B; and that if  /'  is even
77-;-l        72-7-1        i'i Jj+1   ;+l '7xi D

(1 < / < « - 2) the same statement is true except that  e ?¿ q.+ x £ TA.

Thus suppose  / is odd  (l <;'<«- 2),  e ji q. £ TA,  d.q.  is not an initial

segment of any element of  R^ U QA U   QB, and  dB_. = dA_..   By Definition

3.2 (ii), since  dB_. = dA_j = d.q.u., we must have  zz^_;._ { = ¿yaypy+ ,vy+ r where

P ■ + i  e ^B   ancl  v ■ + 1  6 U-   Tnen

s AdB    . t      .) = d.q (p..,v. . A       .u':l)(d.q )~l
fi      77-7-1'     77-7 7^7      7 + l    JT1   "~7     7 /     7

= d q   b(d.a .)"   ,     sav.
7     / /     z
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Since  /   _ . f. U it follows that  b f. il if  p.+ , = e.  But then  d.q. £ Qß.   We must

therefore have  zi.+ . ^ e.   Next suppose that  d  __1^d  _•_,.   Again by Defini-

tion 3.2 (ii) this implies that d.q.p.+ . =¿ id .q p .+ A(pA  whence  d.q. is an initial

segment of an element of R..  Therefore  d.q.p .+ . = d.+ .q .+ .(i.e.  p.+ . = q.+ .

and  d.q. - d. , A, and  z/ , = d.. ,q ., ,u., ,, where   e =¿ z?. , .  £ T„.  A similar
l'l 7 + 1 72-7—1 ;+l^; + l   ;+l J2 + l Ö

argument disposes of the case  j even.

We now apply this to complete the proof.  We have by assumption that  d  _    =

d^q^u    where  e ft q   ¡e T..  By what we have just proved, if d.q.  were not an

initial segment of any element of  R.  U QA U Qß, we should have  d = z/  _2 =

d.q q2u2 where  e^ j2 £ Tß; and then since  d^qlq2 cannot be such an initial

segment, it would follow that  d  _ , = z/  _ , = d .q xq 2q m ,, where  e j± z/,  e T A, and

so on.  We should finally arrive at the situation where  dl  = d.  = d q  • • • z/n_1"n_1-

This is impossible since if t .cpA = t.cpB, then by 3- 2 (ii), this element can have

length at most 1, whereas  d q   • • • q   _ .u   _ .   has length at least 2.  This completes

the proof of the lemma.

Proof of Lemma 3.1.  Suppose that g. £ Hg\U has the canonical form g. =

t, • • • t  u, where  /    £ T . , and that we have a cress for  H in  G, relative to   T, ,
1 72     ' 72 A ' A'

T„.   Let g? £ RA  be the representative of the double coset  HgU.   Then g =

hg2u.  where  h £ H and zz,  £ U.  By Lemma 3.5,

(11) '„" = u21^1aq2ul = u2q71aql(q-lq2ul),

where  u    £ U,  q    £ P U {e!, either  q2 = e or  q2 is the final syllable of g2, and

a £ A H zs?-  Hz/ where  g? - dq

The element q~ aqA~q~ q2uA lies in the coset iAnidq^)~ Hdq^)iq~ q2u^>. Since

H is finitely generated, by Lemma 3.3 so is AC\ idq.)~ Hdq     Therefore since the trans-

versal  TA satisfies condition (5) of the definition of finite involvement, there exists a

finite subset  V CU such that

(12) (AO(z/£/l)-1r/z/i?1)(i7-1z72zz1)Ç TAVig-XHgr\U).

(We have used here that iq~ lq2u])~ liA D idq )~ lHdqAiq~ lq  u A Pi  U =

ig2u1)~1Hig2u]) n U = g_1Hg n U.) It is clear from (12) that  V depends only on

8 2' a v I2 anc^ UV H°wever (§2 an<^ u\ are determined uniquely by g (and if q jé e,

then it also is determined by g). It follows from (11) that for each g . = t .• • • t u £

Hg \U, with  t    £ T.\jeS, we have

tnu £u2TAVig-1HgrMj),

where   V C U is finite and depends only on   q., q2  and g.  Now  P  is finite by Cor-

ollary 3.4; hence since   q. £ P U \e\ and since there are only two possibilities

for  q2, there are only finitely many pairs   z?., q      For each such pair let   Viq ., qA

C U be a finite subset satisfying (12).   Let   V.  be the union of the   Viq  , qA,
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taken over all pairs  q.,q2.   Then for all g .- t . ••• tnu as above, we have

lnu eUT^^g-^Hgnu).

However, since  TA  satisfies condition (4), and since  t    £ TA \\e\, it follows that

u £ V Ag~  Hg  O U), from which the desired inclusion (6) follows.

We require one final result.   Let  G = iA*B; U) and let  TA, Tß  be left trans-

versals for  U in  A, B respectively.  A subset  X C G is called double ended ii it

contains at least one element with its ending in   T.   and at least one element with

its ending in  Tß.

3.6. Lemma [8, Lemma 8].   Let H < G = ÍA*B; U) and suppose QA, QB  and

R.   are defined as above in terms of a cress for H in G.   Then  QA U QB U  R.

is finite if and only if the number of double ended ÍH, il) cosets in  G  is finite.

4. The finitely generated intersection property.   Theorem 2.3 (i) is an immedi-

ate consequence of Lemmas 3.3, 3.6 and the following result.

4.1. Lemma.   Let  G = iA*B;  U) where   U and A  satisfy the hypothesis of

Theorem 2.3, let  T .   be a left transversal ¡or  U  in A  satisfying (4) and (5) and

let  T„  be any left transversal for  U  in B, containing  e.   If H and K are finitely

generated subgroups of G, then each intersection of an (H, U) coset with a (K, U)

coset contains only finitely many (H n  K, U) cosets containing elements ending

in elements of T.  \Se¡ (and therefore contains only finitely many double ended

(H O K, U) cosets).

Proof.   Suppose on the contrary  that   g .,  g 2   £   G   ate   such   that

Hg U r\Kg2U contains infinitely many (/7 n K, U) cosets containing elements with

endings in  T..   Let   Y= \y,, y2, • • • \ be a set of representatives of a countably

infinite set of distinct ÍH O K, U) cosets such that, for all  z, y. ends in an ele-

ment of  TA \\e\.  We may also assume that, for all  i, y. has (/-syllable  e  since

y. and y .zz represent the same  (/Y O K, II) coset for all  u £ U.  Write

y. = h.glu. = k!g2vi        (z= 1, 2,..-),

where  h. £ H, k. £ K,  u., v. £ U.  Let  Wu  and  W„  be left transversals in   U for
Z ' 2 2 2 H K

g7XHg    n U and g~lHg   C\   U respectively. Then we may assume that u~   £WH and

v7l £ WK, lot all  2.   For, suppose for instance that  u~    = wm! where  u! £

g~ lHg1 n U and w. £ W R. Then  u. = iu".)~ lw7 \ and

hi8lui=h.gliu'i)-lg-x - gxw~l = h'.glw-1,

where   h '.    £ H.i

Thus  h .p, = y .zz-     and  k .p. = y .v~   , where  zzT    £ W„  and  vT    £ W„.   By
2öl/22 !62 'l     ! 2 H 2 K '
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virtue of Lemma 3.1 all but finitely many of the  zz. are equal, and the same is true

for the  v..  Hence there exists a pair  /',  /,   ;' ^ I, of positive integers, such that

u.= u, and  v . = v,.  But then
;       I j       I

y.yT1 = h.hf1 = k.kT1 eHHK7 jJ 1 j   I j   I

which contradicts our choice of y., y, as representatives of distinct (AA O K, il)

cosets.  This completes the proof.

Remark.   An entirely similar proof shows that finite involvement of a subgroup

U throughout a group A   implies that for every pair of finitely generated subgroups

AA, K of A,  Ha   U  C\ Ka  U contains only finitely many (AA n AC, U) cosets, for all

a., a    £ A.   I have been unable to decide whether or not, conversely, the latter

condition implies that   U is finitely involved throughout  A.

5.  Subnormal subgroups.   In this section we shall prove Theorem 2.3 (ii).   For

this we require the following lemma (cf. [8, Theorem 10]).

5.1. Lemma.   Let G = (A*B; U) where  U ^ A,  U ^ B, and let  H  be a finite-

ly generated subgroup containing a subnormal subgroup  N of G, N k. U.   Then H

has finite index in G  if and only if the intersection of each conjugate of H with

U has finite index in  U.

The idea of the proof is the same as that of [8, Theorem lO] and [l, p. 679].

For convenience we formulate and prove as a separate lemma a result used in the

proof.

5.2. Lemma.   Let G = (A*B; U) and let  T., TR  be left transversals, contain-

ing  e, for  U  in A, B.  Suppose that  U has index > 2  in A  and U t^B.   Then every

subnormal subgroup N  of G, N ]£ U, contains two elements whose initial and termi-

nal syllables lie in  T . \ie¡, with distinct initial syllables, and a third element

which begins and ends in elements of TR \\e\.

Proof.   It clearly suffices to show that whenever ZV A K < G where  AC contains

such a triple of elements and  ZV £ U, then  N also contains such a triple.   This is

proved as follows.   Suppose that  g ., g2 £ K have distinct initial syllables and

both begin and end with elements of  T*\jei, and that g, £ AC begins and ends in

lements of   Tß\jeS,  Let  x £N \U.

Suppose first that x begins and ends in elements of  Tß \!e¡.  Then g,*g7

and g2xg~     both belong to  N, end and begin in elements of  TA \{e\, and have

distinct initial syllables since these are the same as those of g,  and g. respec-

tively.   Then the three elements  g,xg~   , g-yxg\   ■> and x have the required

properties.

Second, suppose that  x begins in an element of  T A\\e\ and ends in an ele-

ment of  TB \\e\.  Since g,   and g, have distinct initial syllables, at least one of
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these syllables is different from the initial syllable of x:  suppose without loss of

generality that g.  has this property; then   g 7  xg.   belongs to  N and both begins

and ends in elements of  T. \{e!.  Hence the element g7  g~  xg g    belongs to  N

and begins and ends in elements of  Tß\ie!.   This is the case first dealt with.

If  x begins and ends in elements of  T, \|e¡  then g7  xg    begins and ends in

elements of  Tß\iej  and again we are in the first case.   Finally, if x begins with

an element of   T„\[e!  and ends with an element of  T A\\e\, consider instead

x       which falls into the second case above.

Proof of Lemma 5.1.  Assume that   U has index > 2  in  A:  The contrary case

is, with minor modification, treated as in [8, Theorem 10].

Let

N = NQ A N   A ... A ZV, = G       (I > 0)

be a shortest subnormal chain connecting  N and  G.  We first show that for all

g £ G \U there exists an element  x £ G \U such that (i) x begins and ends in syl-

lables of type different from that of the final syllable of g  (i.e. if g  ends in an

A-syllable then  x begins and ends in B-syllables, and if g  ends in a ß-syllable

then  x begins and ends in A-syllables)  and (ii) gxg~    £ N.

This is trivially so if  / = 0 (i.e. if N = G).  Suppose  / > 0 and, as inductive

hypothesis, that for each g £ G \U and each subnormal subgroup possessing a

shorter subnormal chain  (and not contained in   U) there exists an element  x sat-

isfying (i)and (ii) above.   Let x be such an element for g and N..  Then

gxg~    £ N..  By Lemma 5.2 there is an element g.  £ N which begins and ends in

syllables of type different from that of the initial syllable of g.  Then

gx~  g~  g.gxg~    £ N, and  x   = x~  g~ g .gx begins and ends in syllables differ-

ent in type from the final syllable of g; also gx g~    £ N.   This completes the in-

ductive step.

Suppose g e G\U and let x £ G\U be an element satisfying (i) and (ii)

above.  Then the double coset HgU can be written Hgxg~  gU = HgxU, since

H> N.  Hence every (H, U)   coset (including AAÍ7, by Lemma 5.2) is double ended.

Since  AA is finitely generated we infer from Lemma 3.6 that there are only finitely

many (AA, U) cosets in AA.  However since (U : g~  Hg O ¿7) is finite for all g £ G

by hypothesis, this implies that  AA has finite index in  G.   The remark that the

"only if" part of 5.1 is trivial completes the proof.

Theorem 2.3(ii) follows immediately from Lemma 5.1 and the following result.

5.3. Lemma.   Let G = (A*B; U) where  U (^  A, B) and A  satisfy the

hypothesis of Theorem 2.3, let  T.   be a left transversal for U in A  satisfying

(4) and (5), and let  TR   be any left transversal for  U  in B, containing  e.   Let  H

be a finitely generated subgroup containing a subnormal subgroup  N of G,  ZV ¿ 17.

Then the intersection of U with each conjugate of H  has finite index in  U.
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Proof. Suppose that for some g £ G, g~ Hg<~^ U has infinite index in U. We

may suppose g = e by replacing H by g~ Hg and N by g~ Ng. Let W be a left

transversal for H C\ U in  (/.

We shall show that every subnormal subgroup  N,  N t U, has the property that

every element of  W occurs as the representative of the (/-syllable of some element

of  N \U, beginning and ending in A-syllables.

This is trivially true for  G itself.  Suppose that

N = N0 A/Vj A ••• A Nl= G       (/> 0)

is a shortest subnormal chain  beginning with  N and, as inductive hypothesis,

that the aforementioned property is possessed by  subnormal subgroups with short-

er subnormal chains.   Thus  N.   is assumed to have the property.  Suppose g. £

Nj\U begins and ends in A-syllables, and has (/-syllable  u.  By Lemma 5.2 there

is an element g2 £ N\U that ends and begins with ß-syllables.   Then g~  g2g, £

N has (/-syllable  u since   TA   satisfies condition (4), and both ends and begins

with A-syllables.   Thus  N (and hence   H) has the property that every element of

W occurs as the representative of the (/-syllable of some element of  N ending in

an A-syllable.   This contradicts (6) of Lemma 3.1, and the proof is complete.

6.  Isolated cyclic subgroups of free groups.   Theorem 1.1 is a special case of

Theorem 2.3, established above.  We have only to show that an isolated infinite

cyclic subgroup of a free group satisfies the hypothesis of Theorem 2.3.

6.1. Theorem.   Let  F be a free group freely generated by a set X and let   U

be an isolated nontrivial cyclic subgroup of F.   Then  U  is malnormal in  F.   Fur-

ther there is a left transversal T ¡or  U  in  F satisfying (4), such that for any ele-

ment g of F  there exists a finite subset  V C U such that

(13) HgCTV (g-lHg O (/);

i. e.   U is finitely involved throughout  F with respect to  T.

Proof.   It is a simple exercise to show that   U is malnormal in   F  and we omit

its proof.

We may assume that a generator u of U is cyclically reduced; for if not then

some conjugate  /"   uf is, and then we may consider fXf~     in place of  X.

Choose  T as follows.  Let  Tj be a complete set of representatives for cosets

UfU (f £ F) such that each representative is an element of smallest (reduced)

length in its double coset.   Then set   T = (/(TjMei) [j \e\.  By the proof of Lemma

2.2, T is a left transversal for  U in F.

If g— Hg n U^ \e\, then it has finite index in U and (13) follows trivially.

Assume therefore that g~ lHg D  U = \e\.

Let  I be any element of  T,\ie!.   Then the meets (i.e. largest common initial



1972] AMALGAMATED PRODUCT OF TWO GROUPS 305

segments) of  u with  t and  t~    have lengths at most half the length of  u, by the

choice of t as a shortest element of   UtU.  It follows that, if   /, k ate nonzero in-

tegers of signs  e, 8 (= ± l) respectively and  v is the reduced form of  uetu  , then

w = u ~ vu is reduced as written, i.e. no cancellation occurs.

Now suppose that (13) does not hold.  By the choice of T this means that

there is an infinite set  \w  , w2, • • • } Ç Hg  such that,   in reduced form,

w . = u ' v .u     !       (i = 1, 2, • • •)
2 ! '

where (by replacing  zz by  u~     if necessary) k. is a positive integer, k.-» oo, and

/. is an integer.  Since w. £ Hg, we have gw~    £ H (i = 1, 2, ■ • • ).  Hence there
1 ' 1 . k ■

exists a positive integer 72  such that, for all  i > n, gu  '  is an initial segment of
k ■ 72 •_

an element of  H.  For  z > 72 write  gu  l = g, u  *   "  in reduced form, where  72. > 0° ° 1 ; —

(/ = 1, 2, • • • ) and 72.-» oo as  /-» 00.

Let 5 be a right Schreier transversal for H in  F (i.e. a complete set of right

coset representatives, containing  e, and closed under taking initial segments).

Let  a  , ■ • • , a   be Schreier free generators of  H constructed from  S and  X (i.e.

the nontrivial elements of the form  sx((sx)d>)~   , where  s £ S,  x £ X and  (sx)(f> is

the representative in  S of  Hsx).  For each ; = 1, 2, • • • , let  h. £ H be a shortest

element of H in the generators  a  , • • • , a , such that g.zz  J  is an initial segment

of h..  Suppose  h. ends in  a   y.' where  8(j) = + 1, and write

h ' a *(/> = b ..       a «/> . S . x «<'■> «s .x ?<' >)<£)" ».
7      zn(;) 7 772(7) 7     7 7     7^

(Note that if  sx((sx)0)_1 =é e, then it is reduced as written [4, Lemma 7.23].   We

shall also use the fact that in the product

sxf((sxe)cf>)-1 ■ s'ix')His'ix')S)ch)-1        is, s' £S;x, x' £ X)

where neither factor is   e and the factors are not inverse to each other, neither

xe nor (x1)    (i, 8 = + l) is cancelled in reducing [4, Lemma 7.2.4].) We now dis-

tinguish two cases.   Firstly suppose  g  zz ;  is an initial  segment of  h.s .;   say

g.zz ; = h '.p., where  p. is an initial segment of s ..   Then  ig .u A<ß = p..

Secondly suppose  g.zz ;  is not an initial segment of  h's..   Thus  g .u ' =

h'.s .x A]'q~   , where  q . is a terminal segment of  is .x A'')d>.   Hence

iglun')<f, = (s^q-1)^ = ((s.x^)tp)q-1,

which is an initial segment of  is .x.  ' ')<ß.

In either case  ig ^u }) <p occurs as an initial segment of some free generator

from  \a .,•••, a \ or its inverse.   However, the elements  g .u !  ij = I, 2, • • •) be-

long to different cosets, since, if j ?¿ i, then

e*gxu   'u     'gx     £gUg    \
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which intersects  AA trivially.   This is impossible since  r is finite, i.e. since  AA

is finitely generated.

Remark.   It seems likely that (13) can be established for noncyclic malnormal

subgroups of  F.

Note added in proof.   The author has found the following more general version

of Theorem 2.3, which includes all previous results in the same direction.   Its

proof requires only slight changes in the above.

Theorem.   Let  G = (A *B; II) where there exists a left transversal T for  U

in A, containing  e, and satisfying

UiT\M)-(T\ie])V,
for some finite subset  V    of  U; and, for every coset  Hg  of every finitely generated

subgroup  AA < A,

HgÇTV2(g-lHgn U),

where  V     is a finite subset of U depending on Hg.   Then conclusions (i) and (ii)

of Theorem 2.3 hold.
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