
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 169, July 1972

A NOTE ON THE GEOMETRIC MEANS OF

ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES

BY

P. K. KAMTHAN

ABSTRACT.    Let /(z., • ■ ■ , zn) be an entire function of n Ç>  2) complex

variables.   Recently   Agarwal  [Trans.  Amer.  Math.  Soc.   151   (1970), 651—

657j has obtained certain results involving geometric mean values of /.    In

this paper we have constructed examples to contradict some of the results of

Agarwal and have thereafter given improvements and modifications of his re-

sults.

1.  Introduction.   Let

/U.,zJ=     Y       a      z™z"
' x   1       2 /Li mn     1      2

m. n>_0

be an entire function of two complex variables (we consider the two variables

case for the sake of simplicity). Let

(1.1)

M(rv r2)

G(r1, r2) = exp

*tl<.»V IZ2I—r2

(1.2) >k, x
(fj, r2) = exp

\fbv z2)\;

fu + D(À + i)rrirr2 k x ;
<-:-1 x,x, logGU,, x.)dx, dx.
\ k + l   A + l    J 0   J  0       1    2      B 1        2'       1       2
\ 1      r2

where  0 < k, À < 00, be the geometric means of f(z , z2).  The term g,    Ar., r )

and its various properties were probably first considered as early as in 1962 by

the author [2]  in terms of an entire function of a single variable.  Recently,

Agarwal [l]  has generalised some of the results in  [3] in terms of G(r , r ) and

g,    Âr., r ) when  k = X, and in addition has also proved the following:

(1.3) lim
rrr2-oo

sup

inf

logloggfe, x(rv r2)

log(r,, r )
(* = A)
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where(')

(1.4) lim
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SUp , .
log log M (/j, r2)

log(r„ r  )

inf

[July

Apart from giving certain growth results involving  G{r., r ) and  g,   »(r,, r ),

our chief aim is to present an example which violates  (1.3)—an improvement of

which (i.e. a correct version of (1.3)) is given in  §2  that follows now.

2.  A counterexample for (1.3) and its improvement.   Let /(z , z  ) = e
zxz2

Then  M(rv r.,) = e'1'2.

log|/(r,e      .

Therefore  p = p. = 1.  Now

> 0.=$> G(ry r2)    = 1,     for all  ry ,2

Hence  logg,    Ary r ) = 0  for all  r , r   > 0.  Thus if (1.3)  is true then

p = p. = - tx,  which  is  absurd.  We  may  lead  to  a  similar discussion  if

f(z., z ) = exp(z. + z  )  and the details are left to the reader.  I may point out

that the main fault in establishing (1.3) is the following inequality  (see line 4

from above, p. 653 of [l]) which Agarwal has proved:

loêSktk(drr ar2)> {(a- l)/(a+ l)|2 jl - l/ak + 1\2log Mir/a, r/a),      a> 1,

and which is also incorrect in view of the above example.

To offer an improvement of (1.3), let us define first

G+W-2)-xp L±.;^log+,/(rieifl'.vifl2)|rfôl
t(2n I

where

also let

log + |/|= max (log |/|,0);

lim

sup

inf

log log G{rv r2)

log^,. r2)

We have then the following result:

Theorem 2.1.   // f (z., z  )  is an entire function, then for R    > r., R- > r ,

(2.1)        log G\rv r2) < log+M(rj, r2) <

Rj + Tj    R2 + r2

R2 + r2    R2~r2
logG^Rj, R2),

(*) Agarwal's claim that p and ß are nonintegral is irrelevant as far as the proof of

(1.3) goes.
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and

(2.2)

sup

lim

'l'^— linf

logloggfe,x(rr T2)

log(r1( r2)

for any  k, A such that 0 < k, A < «¡.

Proof.   (2.1) immediately follows from Poisson's inequality in two variables.

For (2.2), we observe

l°S8k. A(V  r2}<

(2.3)

{5nfr^/;7?*K*,Jlog G(r , r )

Moreover

= log G(r2, r2).

(k+ 1)(A + 1) rR2 rR2    t i
loggk  X(RVR2)> jr   Jr    x\x\\ogG(xvx2)dxldx.¿

R,     R.. 1        2

fe + 1 rk + l\( n\+l -A + l(R* + 1   -r* + 1)(P

ßfe+lßX+1
log G(rr r2).

Hence, putting  R¡ = arj, R2 = ßr2;  a, ß > 1,

(a^1 - D^x + i _i)
(2.4) logg,, x(arv ßr2)>_-__- log G^, r,).

The inequalities  (2.3)  and  (2.4) result in  (2.2).

In this section w> offer improvements of Theorem 2, (3.3) and Theorem

3(ii) and (iii)  of Agarwal   [lj.

(3.1) lim
r-,. rn~>°

1-2- (r^)  ^(rv r2)

(0 < q < p < <*>},

sup

(3.2) lim
logG(rj, r2)

(0 < ¿ <  c < oc),

lafW G&rvr2)

where  cf>(r., r.)  is as mentioned by Agarwal.  Then we have

Theorem 3.1.  // f{z\, z.)  is an entire junction having finite nonzero value

pc, i.e.  0 < pr < oo, then

d{k + 1)(A+ l)/\(k + pG + l)ÍK + pG + i)\<q<p

<  c{k+ 1)(A+ l)/\(k + pG + l)(A + pG + 1)1.
(3.3)
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Proof.   The proof is sketched as follows:  Let 0 < a, j8 < 1, 0 < fj < r,,

0<r~<rr  Then

A

rfe+lrX+l
1        2

(a-

ß
.0 \   A + 1

1 -  l-t) \ log C(r». r2)

.A+l
¡(1 +j8)        - lilog G(r\, r2 + ßr2)

r2   U+l
o\ fe+i ]

log G(rr r°)

+ [(1 + a)k + l - lilog G(r, + ar,, r,

(c + f)(k+l)(k+l)    rr     r2   p4kPG*\

:]

1       2

/f    x,       x.       ó(x,, x.)dx,dx.
oj   0   » 2 i     2      12

(fe + l)CCl +y3)A+1 - 1) /i A
±f^-HfyiyogG(xvr2 + ßr2)dxl
rl rl

H-I     x., log G(r, + ar,, x )dx
r*+l J,0   ! I 12      2

2 2

+ ((1 + a)k+1 - 1} |1 + ß)*+1 - lilog G(rj + arv r2 + ^

Next, observe that the seventh, eighth, and ninth lines of the foregoing inequal-

ity are respectively equal at most to the following estimates:

(i)
(c + f)(*+l)(À + l) pg

0(r¡, r2)0y2)      ,
(1 + a)fe + 1(l + ßr+1ipc + k + l)(pc+\+l)

(ii)

(iii)

U + l)(l+jB) G((l+^)x+1-l)

d + ap*Hi+ß)x*lific + k+n

(A+l)(l+a)Pc((l + a)fe + 1 -1)

(l + a)fe + 1(l+)8)X+1(pG+A+l)

<¿(r,. r2 + ^r2)(rjr2)

<£(rj + art, r2) (f^iy
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Making use of these estimates in the corresponding terms of the above inequality,

then dividing the complete expression by

(fj + clt-j)  u{r2 + ßr2)     <p{rx + ary r2 + ßr2)

and finally proceeding to the limit as  r , r   —► co, one gets the following: namely,

_c Í   (* + 1)(1 + ß)PG({l + ß)X + 1 - 1)
P<

(l + a)k+1(l+ß)x*1) PG + k+1

(A+ 1)(1 + a/G((l +a)fe + 1 - 1)

pG + A+ 1

(k+ 1)(A+ 1)

+ (pG + k+ l)(pG + A+ 1U'

But, a, ß ate arbitrary and so making  a, ß —► 0, we find that the right-hand in-

equality in  (3.3) is established.

Next, we have from (1.2) for all sufficiently large values of r    and  r,,

lo8Sfc,^I +arV r2 + ßr2>

(¿-f)(A+l)(A+l) r'l   rr2 xpc+kPG^,( w     .
> - n    I    .   x x Mx,, x.)dx, dx.

r\+*r?Hl + a)*+*(l+ ß)K+*    j'ï   J'2 l      2        '      2

-7^7- J      *?logC(xlf r2)dxi
(1 + a)* + 1(l +ß)X + 1

U+lXÜ + a)**1 -1) fr2   x

rA + l
2

{(l + a)* + 1 - 1ÎK1 + /8)A + I - 11 log G(r|. "2>J •
Observe that

logG(*j, r2) > (¿- f)(xj7-2) C,<^)(x1, r2), for Xj > r^,

\ogG{rl, x2)y{d-t)(rxx2) Gó{ryx2), for x2 > r°,

logG(rv r2) >(d-(){rlr2)Pccb{rv r2),     for r,   > r°, r., > r
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Hence

fi        \pC+fc + 1il      «/g+*+1    ^ (*+l)U+lV_      (* + !)((! +ß)X + l-Dd
(1 + a) (1 + j8) ? > -,-7-7w-\-T\ + -1- —i-— (pG + & + D(pG + A+1) k + pG + I

: (A+l)((l + a)fe + 1 - IV

A + pG + 1

+ J(l + a)fe + 1 -l!Kl + ß)X + 1  - 1U,

and making now  a, jS —► 0, the left-hand inequality in  (3.3)  is obtained.

Invoking Theorem 2 and the technique of its proof as envisaged in [3] to-

gether with the method adopted in the proof of the above theorem, one may now

easily prove the following:

Theorem 3.2.  // f(z., z )  is an entire function, such that   c = d, then

p = q = (k+ 1)(X+ \)c/\k + pc + 1ÜA + pG + li, and

l°gSk. X{rv T2) (A+1KÀ+1)
hm

log G{rv r2) (1 + pc + 1)(A + pG+ 1)'

Remark.  The author is of the view that the results (3-4) and  (3-5)  of

Agarwal may not be generalised in terms of  logg,    A.r., r ) when  k ¿ A and are

arbitrary.  Attempts towards these generalisations involve enormous calculations

without yielding any solid solution.
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