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ZERO POINTS OF KILLING VECTOR FIELDS, GEODESIC ORBITS,

CURVATURE, AND CUT LOCUS

BY

WALTER C. LYNGE

ABSTRACT. Let  (A/, g) be a compact, connected, Riemannian manifold.

Let  X be a Killing vectot field on  Ai.   / = g(X, X) is called the length function

of  X.   Let  D denote the minimum of the distances from points to their cut

loci on  M.   We derive an inequality involving  / which enables us to prove

facts relating  D, the zero ponts of X,  orbits of  X which are closed geodesies,

and, applying theorems of Klingenberg, the curvatute of  M.   Then we use these

results together with a further analysis of / to describe the nature of a Killing

vector field in a neighborhood of an isolated zero point.

1.   An inequality.

Theorem 1.   Let X  be a Killing vector field on M.   Let  q be a critical point

of the length function f = g(X, X) of X such that f(q) ^ 0.   Assume the orbit  y

of X through q  is closed.    Let a  be another point of M and suppose the distance

from q to a  is  p.  Then we have

d ) WlW) - v7üj) /7/vTü) < 2p.

Proof.  Denote by  ß the period of the orbit  y.   We note that  y is a geodesic,

since  q  is a critical point of / [2, p. 356].   Let r be the orbit of X through a.

Now assume  iy/fiq) - yj](a))D/\fj[q) > 2p.   Pick an integer m and a real number

r so that

(2) mß - r = D/jfiq) - 8

where  8 > 0 is chosen sufficiently small so that  i\f~fTq) - \ff(a))iD/y/f(q)- 8)

> 2p.   Then we have

(3) V/W) (mß -r)- Jjia) imß - r) > 2p.

Let div, w) denote the distance between two points  v and  w in M.   Let

cbt be the flow of  X.   We have <f>mß_i.q) = (PmA<f>_Ti<l)) = <P_r(q) since  ttz  is an

integer and  ß is the period of y.   The length of the shortest segment of y be-

tween  q and </>_/(?)  is  f™ß~r V'Jl'qAi.qA)dt, which is equal to \fTiq)imß - r)

since / is constant along y.   This is the length of the shortest segment because
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by (2),  yjftqlimß - r) = D - 8y/fÇq) < D and clearly D < Vi (length of y).   This

is also the length of the shortest segment of y between q and  cb iq)-   Since  y is

a geodesic and since the length of the shortest segment of y between  q  and

cb iq)  is less than D, this segment is therefore length minimizing.   Hence we have

(4) diq, cbiq)) = yj7(q)(mß - r).

Since  / is constant along the orbit r of X through a, we have that the length of

a segment of   T  between  cb   Aa) and cb (zz) is  \ß{a)(mß - r).   Thus we have

(5) di<bmßia), cbia)) < y/JÜ)(mß - r).

From (3), (4), and (5) we obtain d(q, cbriq)) > 2p + \ffTa)imß - r) > 2p +

d(4>mßia), cbria)).   Hence

(6) diq, cb iq)) >2p + dich    Aa), cbia)).
r mp r

By the triangle inequality we obtain

diq, cb id)) < diq, cb    Aa)) + dicpmßia), cbia)).
r h r

But d(q, (bmß(a)) = d(cbmßiq), </>m/SU)) = diq, a) = p since  <pmß(q) = q and since

d>   « is an isometry.   Thus

(7) diq, cbia)) <p + dicbmßia), cbia)).

Since   </>   is an isometry, we have

(8) dicbia), <b(q)) = diq, a) = p.

We observe that (7) implies   cb(a)  lies in a closed ball about   cb iq) of radius

p + dicb   Aa), cb ia)).   And (8) implies that   cb id) lies in a closed ball about

<b iq)  of radius p.   But by (6), these two balls have empty intersection.   Hence

we have that (1) is true.

From Theorem 1 we obtain immediately the following

Theorem 2.   Suppose  X  is a Killing vector field on  M  and q  is a critical

point of f = giX, X) such that fiq) 4 0.   Suppose the orbit of X through q  is

closed.   If p  is a zero point of X, then dip, q) > D/2.

In particular, this theorem gives a lower bound for the distances between

zero points of X  and orbits of  X which are nontrivial closed geodesies.   More-

over, the lower bound depends only on the metric and not on the vector field  X.

To show that it cannot be improved, consider the following example:   Let  M  be

S    with the usual metric.   Let X  be the Killing vector field whose flow is a 1-

parameter group of rotations about an axis through the north and south poles.

Then any point q on the  equator  is a critical point of / = g(X, X)  such that

fiq) 4 0 and the north pole  N is a zero point of  X.   D  in this case is half of the
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circumference of  S2 .   Thus we have diN, q) = D/2.

Under additional assumptions on  M we can give a lower bound in terms of

curvature:

Theorem 3.   Suppose  M  ¿s a compact, connected Riemannian manifold of even

dimension.   Suppose the sectional curvatures   K^ satisfy 0 < Xa< X for all tangent

planes o.   Let  X be a Killing vector field on M.   Then the distance from any

zero point of X  to any orbit of X which is a  nontrivial closed geodesic is always

> tt/4\JX.   If in addition we assume   M  is orientable or simply connected (which

are equivalent assumptions), then this distance is > tt/2\JX.

Proof.   By theorems of Klingenberg [l, pp. 227 and 230],  D > ti/2\[K

(D > Tr/yJX if M is orientable).   The result now follows immediately from Theorem 2.

As a corollary of Theorem 2 we have the following criterion for the zero set

of a Killing vector field to be empty in terms of the distribution throughout M of

orbits which are nontrivial closed geodesies.

Theorem 4.  Suppose   X  is a Killing vector field on M with the property that

for any point a  in M there exists an orbit  y   of X which is a nontrivial closed

geodesic such that the distance from a  to y    is  < D/2.   Then the zero set of X

is empty.

2.   Isolated zero point of X.  Let   X be a Killing vector field on  M with an

isolated zero point at  p.   Then  p  is a critical point of the function / = g(X, X).

We recall that to / there is associated a symmetric bilinear functional f** on

T M called the Hessian of / at  p.   The index of / at  p is the maximal dimension

of a subspace of  T M on which f** is negative definite.   The critical point p

is  nondegenerate   if the nullity of f** on   T M  is zero.

Lemma,  p is a nondegenerate critical point of index zero of the function

f = gix, X).

Proof.  Since  X  is Killing and  p is an isolated zero point, there exists [3,

p. 641 a coordinate neighborhood   U of p with local coordinates ix1, • • • , x"\

such that  (i) x!'(p) = 0, i = 1, ■ ■ ■ , n, (ii) if X = 2?=1 cf7'(¿Y¿V)  on U,  then

cfHp) = 0 and the matrix with  (z, /') entry  (<9<fz/oV)|     is of the form

0       1

<V2J

Al

A2
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where

f>W0,  k= 1, ■■■, tz/2,
Ak

0

0

and

(iii) if g = 2. .a..dxl ® dx',  then a..(t>) = 8...   Thus we have   f =° i,i   ii ii-ii i

2". ,ë&a...i,i = i ^ ^   ii.
Let 77 = 1, .v'id/dx')]^ and tiz = 2 .wl(d/dxl)\^ be two vectors in T M.   Extend

7 'p 7 ' Z7 p

these to vector fields  v = 2 . vl(d/dxl) and  z/z = 2 ,wl(d/dxl) on  U.   Then by defini-

tion f**(v, w) = v (w(f)).   By a direct computation we see that

f**iv,  w) = 2\9\ivXwX + v2w2) + d\(v*w* + viw4) + ... + ö2/2(z7"-'u,"-l + t;»«,«)J.

From this it is obvious that f**  is positive definite on all of  T  M and the

nullity of L,  is zero.   Hence we have the result.

Theorem 5.   There exists a local coordinate neighborhood U of p with local

coordinates  \x   , • ■ ■ , x"\ such that with respect to these coordinates, f = (x  )

+ . . . + ix")2   on U.

Proof.   This is an immediate consequence of the previous lemma and the Morse

lemma [4, p. 6].

We have that the following situation prevails near  p:

Theorem 6.   There exists a connected open neighborhood U of p satisfying

(i)   U - {p\  is a disjoint union of hypersurfaces of M, each of them diffeo-

morphic to Sn~   .   (n (even) is the dimension of M.)   Vie call these hyperspheres.

(ii)   The function f is constant on each hypersphere.

(iii)   X  is tangent to each hypersphere.

(iv)   Restricted to each hypersphere, the length of X  is constant.

Proof,   (i) and (ii) follow from Theorem 5.   (iii) follows from the fact that /

is constant along each integral curve of X,  and hence any integral curve of X

which meets   U — \p\ lies in one of the hyperspheres.   (iv) comes from (ii) and

(iii).

Next we consider the question:   How far can the neighborhood  U be extended

so that the conditions of Theorem 6 continue to hold?

Theorem 7.   There exists a connected open neighborhood  V of p which

contains the neighborhood  U of Theorem 6 and which also satisfies conditions

(i)—(iv).   Moreover,   V meets an orbit of X which is a nontrivial geodesic.

Proof.   Let   Y be the vector field grad //||grad /||     defined on the open sub-

manifold M - B  of M, where  B  denotes the set of critical points of /.    Y  is of
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course nowhere zero on  M — B.   We remark that the orbits (as point sets) of   Y are

the same as the orbits of  grad f\M_&.   These orbits are perpendicular to the

level surfaces of /.   Let  r > 0 be sufficiently small so that the level surface

/= r has a nonempty intersection  S with the neighborhood   U of Theorem 5.    Then

S  is a hypersphere.   Let  t —> a (v) be the integral curve of   V through an arbi-

trary point  v of S with  a,  (v) = v.   Then da.iv)/dt = grad //¡grad /||   .   Hence we

have

dfiativ)) I grad f
= g   grad /.

dt \ II grad/1|

Thus we have that

(1) fiativ))= f(aQ(v))+ r= r+ t

and  a. iv) is defined for  t in an interval  (- r, e ).   Let e = inf v£Se .   Then there

exists a family of local diffeomorphisms  [ cb \ each defined on a neighbor-

hood of S. For v in S, cb iv) = a. iv). Thus fii3 iv)) = r + t for any v in S by

(1). Hence / has the constant value r + t on </> is) and, since <p is a diffeo-

morphism,   cb (S) is a hypersphere.   Now let  V = \p\<J U e,      ,« 0 (5).   Then

V 2 F and   V  satisfies conditions (i)—(iv).

Now we show that  V - \p\ <~\ B /= 0¡   For suppose the contrary.   Let A  be

the open ball about p whose boundary is  S,   Let v be an arbitrary point of S.

Consider the curve   [0, e) —»M: t —» a iv).   This curve is contained in the compact

set  V - A C M - B.   We have that   |V||   is bounded from above on this compact

set.   This means that the length of the curve   [0, e) —'M: t —> a. iv) is finite,

where the length of this curve is defined by  lim J"'||y(cx  (v))|| ds.   It then

follows easily that  lim,    , a. (v) exists.   Call this limit p  .   Then p     is in
_ J t —> £      Z L v *■ v

V - A.

Let p be the distance from  B  to   V - A.   It is clear that the integral curve

of   Y  starting at p    goes on for a distance (measured along the integral curve) of

at least p/2.   Now let  C = [q £ M\ diq, V - A) < p/2\.   Then  C  is compact and

C C M - B.   Thus   ||y||   is bounded from above on  C.   This implies there exists

rj > 0  such that the curve  [0, <r) —>M: t —> ct((v) may be extended to  [0, e + r/) —*

M: t —> a (v) and  rj is independent of v  in S.   This contradicts the definition

of t.   Thus   V - \p\nB j¿ 0.   From the construction of  V it is obvious that if q

is a point in  V - \p\(~)B, then f(q) / 0.   Thus the orbit of X through q  is a non-

trivial geodesic meeting  V.   This concludes the proof.

To show that in general the neighborhood  V cannot be further extended in

such a way that conditions (i)—(iv) still hold, we need only consider the projec-

tive plane with the Killing vector field induced by the vector field  X on S2

given in the example after Theorem 2.
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According to Theorem 7, it is reasonable to regard the distance  d from p to

the nearest orbit of X which is a nontrivial geodesic as a measure of the "size"

of the neighborhood   V.   In case all the orbits of X are closed, we have by

Theorem 2 a lower bound for d which is independent of X:   namely,  d > D/2.

Moreover, a manifold having a Killing vector field with an isolated zero point is

even dimensional [3, p. 63].   Thus if the sectional curvatures   Ka of  M satisfy

0 < K   < À, we have by Theorem 3 that d > n/4\JX,  again assuming all orbits of

X are closed.
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