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ABSTRACT. A modular theory for permutation representations and their
centralizer rings is presented, analogous in several respects to the classical
work of Brauer on group algebras.

Some principal ingredients of the theory are characters of indecomposable
components of the permutation module over a p-adic ring, modular characters of
the centralizer ring, and the action of normalizers of p-subgroups P on the
fixed points of P. A detailed summary appears in [15].

A main consequence of the theory is simplification of the problem of com-
puting the ordinary character table of a given centralizer ring. Also, some pre-
viously unsuspected properties of permutation characters emerge. Finally, the
theory provides new insight into the relation of Brauer’s theory of blocks to
Green’s work on indecomposable modules.

The purpose of this article is to present proofs of the results announced in
[15]. Statements of these results have been included here, though a number of
explanatory remarks and general background references have not been repeated.

With the exception of $0, the sections of this paper have been named according
to the features of the classical modular theory with which they are most closely
related.

0. The centralizer ring. Throughout this paper G is a finite group acting
on a finite set ) (perhaps not transitively or faithfully) and p is a fixed prime.

If § is any commutative ring with identity, we define the S-centralizer ring
Vs(G) = V((G, Q) to be the collection of all matrices with entries from S that
commute with the permutation matrices determined (with respect to some fixed
ordering of (1) by elements of G. In case § is the ring of rational integers, we
write only V(G) for V((G) and refer to V(G) as the centralizer ring. The
standard basis matrices {A }._| are obtained from the full set {0,}i_, of orbits
of G on Q% by setting the a, B8 entry of A, equalto 1 for (a, B) € 0, and
0 otherwise. These matrices always form an S-basis for VS(G). In particular,

V(G) is isomorphic to the tensor product SV(G).
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The notation SQ refers to the usual S-free SG module obtained from the
action of G on {}; we regard S{} also as a V((G) module in the obvious way. (2)

In this paper S will usually be K, R, or F where K is a p-adic number field,
R is the ring of local integers in K, and F is the residue class field R/7R. 7 is
a generator of the maximal ideal of R. We use the notation ¥ for the image of x

under some (hopefully obvious) map X — X/7X of an R-module X containing x.
(0.1) V,o(G) = Ve (G).

Proof. This is an immediate consequence of the isomorphism mentioned in

the first paragraph.

(0.2) Proposition 1. Let M, N be RG-indecomposable components of R).
Then

(a) }_iomRG(M, N) =~ HomFG(M, N).

(b) M is indecomposable and has the same vertex as M.

Proof. Of course the natural map HomRG(M, N) — HomFG(M, N) is a mono-

morphism. Since the functor Hom is additive and V,(G) =V (G), the map must
be an isomorphism.

Now HomRG(M, M) is a completely primary_ri_rlg, as is well known. Obviously,
the isomorphism of Homp (M, M)with Hom (M, M) is a ring homomorphism;
therefore Hom . G(M, M) contains only one idempotent—that is, M is indecompos-
able.

If P is a subgroup of G, then we deduce easily from the above ring isomor-
phism and D. Higman’s criterion [10, Theorem 1] that M is P-projective if and
only if M is P-projective. So by definition (see Green [7, 1.2]) M has vertex P
if and only if M has vertex P.

Because of Proposition 1, many results we obtain for V(G) contain implicit
analogues for V(G).

1. Decomposition numbers. Let A be an R algebra (finitely generated as
an R module)and M an R-free A module such that KM is completely reducible.
Let B be an R algebra acting faithfully on M and inducing End, (M) by its
action.

We are interested in the case A = RG, M =RQ, B = VR(G, Q). However,
the results in this section are purely formal and are accordingly given a more
general treatment.

The following result is well known. The notation X |Y means X is

isomorphic to a direct summand of Y.

(2) All “modules’’ are, by convention, finitely generated and acted upon on the
right, with the exception that the action of a base ring such as S is written on the left.
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(1.1) Let e, f be idempotents in B. Then the following statements are equiv-
alent:

(a) e =xfy for some x, y € B.

(b) Me|Mf (considered as A modules).

(c) eB | /B (considered as B modules).

Accordingly we say that e and [ are equivalent (e ~ f) if e = xfy and f =
zew for some x, y, z, w € B. When e, [ are primitive then e ~ { whenever one of
the conditions (a), (b), (c) is satisfied.

of course the precedmg discussion is valid also for KA, KM, KB (and A
M, B if B induces Endy (M)).

By using equivalence classes of primitive idempotents as intermediaries we
establish 1-1 correspondences [Mj]H [U].] and [X_] < [Z_] between isomorphism
classes of A-indecomposable components of M and projective indecomposable B
modules, and between isomorphism classes of irreducible KA submodules of KM
and irreducible KB modules.

Also there is a well-known 1-1 correspondence [U e [L]] between isomor -
phism classes of projective indecomposable B modules and irreducible B modules
(L is the unique irreducible quotient module of U])

In view of these correspondences there are three kinds of ‘‘decomposition
numbers’’ we can define:

(1) Let Z0 be an R-free B module w1th KZO ~ ZS. Then we list the com-
position factors of Z° & Writing Z © 2 a’ L

(2) Set KU ‘7 d_ Lo

(3) Set KM ~2 dM)c

(1 2) Theorem 1. Assume K, F are splitting fields for KB, B respectively.
Then d j=ds= dfj forall s,j. Also M~ @2]. (dim, L].)M]..

Note that the last assertion is a modular-theoretic version of the familiar
KM~ X_(dim, Z )X_.

Proof The equallty d ;j=d,; is well known [2, 1X, 8]. Let u € B be a prim-
itive idempotent “(lth Mu = M] Now the following two assertions are easily
verified:

(i) For each nonnegative integer d, dZ _|uKB if and only if there exists a
set of d orthogonal primitive idempotents in «KBu each equivalent to an idempo-
tent [ with /KB X Z.

(ii) For each nonnegative integer d, dX | KMu if and only if there exists a
set of d orthogonal primitive idempotents in KBz each equivalent to an idempo-
tent [ with KM/ = X_. By definition [KB & Z_ if and only if KMf = X . Thus
dg;=dy.
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To finish the proof we make two further observations:

(iii) For each nonnegative integer I, IM].IM if and only if there exists a set
of [ orthogonal primitive idempotents in B each equivalent to .

(iv) The multiplicity of U]. as a component of B is dim g L]. (see the argu-
ment on p. 419 of [4]).

The final assertion of the theorem is an obvious consequence.

The following proposition clarifies the hypothesis of Theorem 1.

(1.3) Endgp(Z,), Endg (L].) are anti-isomorphic to Endy , (X ),
End, (M].)/ Rad (End 4 (M].)) respectively,

In particular K is a splitting field for KB if and only if each X _ is absolutely
irreducible, and F is a splitting field for B if and only if each M]. is absolutely

indecomposable.

Proof. Let e € B be a primitive idempotent. Then of course eBe & End ,(Me).
But also the left multiplications by members of eBe form EndB(eB). Hence
End, (Me) is anti-isomorphic to EndB (eB).

Since eB is projective, Endg (eB/e Rad (B)) is a homomorphic image of
Endg (eB). Since the latter is completely primary,

End g(eB)/Rad (End z(eB)) & End z(eB/eRad (B)).
This proves the assertion regarding Endg (L].); the statement regarding
Endg g (Z)) is established by the first paragraph of the same argument.

2. Defect groups. Let A, be a standard basis matrix. We define “‘the’” defect
group D, of A, to be a Sylow p-subgroup of GaB where (a, B) € O.. (Defect groups
are well defined only up to conjugation by elements of G.)

Set AI,A], = Zk aiikAIe (in V(G)). The quantities a, are the “‘intersection
numbers’’ defined by D. Higman [11]. We have

(2.1) ;= |0,(a) NO¥(B)| where (a, B) € O,.

Here O (a) ={B| (a, B) €0} and 0% =0,= {(B, a)| (a, B) € O].}. The proof
of (2.1) is a direct matrix calculation from the definition of the Al.’s.

(2.2) If @k £ 0(p) then D, <. D, and D, <. D].. (The notation **<."
means *‘< a G-conjugate of.’’)

Proof. G, acts on 0{a)N O’]"(,B) and hence so does (a suitable) D,. If
|0(a) N O;“(B)] # 0(p) then D, must fix a letter y €0 (a) N O’]"(B) Thus D,
fixes (a, y) € 0, and (y, B) € 0, The result now follows from Sylow’s theorem.

For any p-subgroup P of G we define IF(P) = IF(P; G, Q) to be the set of

F-linear combinations of A’s satisfying D; <. P.
Lemma 1. For P, Q, p-subgroups of G,
(2.3) ’F(P)IF(Q) < D 2 IF(Di)'
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Proof. Immediate from (2.2).

Now, given a primitive idempotent e € V , there is an index 7 such that e €
l’;(Di) and D, <. P whenever e € I.(P). We set D(e) =¢ D, and call D(e) *‘the
defect group of e. (See Green’s proof [7, 3.3b] for a discussion of how Lemma 1
guarantees the legitimacy of our definition of defect group.)

D(e) is also the defect group of any idempotent equivalent to e. This is easily

verified directly, or may be seen as a consequence of the next result.
Proposition 2. D(e) is the vertex of FQe.

To prove Proposition 2 we need an alternate description of the ideals I.(P).
Define NG,H(")’ for H< G and x € VF(H, ), to be = x& where g ranges over a
set of right coset representatives of H in G (here x& € V(H%, Q) is defined in
the obvious way).(3) Clearly NG,H(x) € V(G, Q).

(2.4) IF(P; G, Q) = NG,P(VF(P’ Q).

Proof. For a, B €Q let e, g denote the |2] x |Q| matrix with 1 in the a, 8
position and 0 everywhere else. Obviously, €. € VF(H, Q) whenever H< G
It is easy to calculate that, for (a, B) €0, and D, < Gopr 4;= NG,D,-(x) where
x = [Ga,B :Di]’leaﬁ. Thus if D; <P we have 4, = NG,P(NP,Di(x)) €
NG,P(VF(P’ Q). Consequently I(P; G, Q) C NG,P(VF(P’ o).

Next let a € VF(P, Q) be a standard basis matrix. As above we calculate a =
NP,d(eaB) where (a, B) belongs to the orbit of P on @ x Q corresponding to «
and d =P 5. Now

Ng, pla) = Ng, d(eaﬁ) =Ng, GaB(NGaﬁ, d(eaﬁ)) =Ng, Gaﬁ([Gaﬁ : d]ea,@)-

Thus N p(a) =0 if d is not a Sylow subgroup of G B’ and NG P(a) is a multiple
of the standard basis matrix in V (G, Q) corresponding to (a, /8) if d is a Sylow
subgroup of G _s. In either case NG,P(a) €I(P; G, Q) and so NG,P(VF(P’ Q) ¢
I1.(P; G, Q).

(2.5) Proof of Proposition 2. This follows from (2.4) and the definition of D(e)
because of D. Higman’s criterion [10, Theorem 1]. See also Green [9, p. 143].

(2.6) Remarks. (a) Note that if e € VR(G, Q) is a primitive idempotent with

e

o = € then D(e) is also a vertex of RQe by Proposition 1.

(b) An alternate proof of Lemma 1 can be given by (2.4) and Green’s formula
[9, 4.11].
If F is a splitting field for V and e € V is a primitive idempotent, then

there is a unique irreducible modular character(%) \ of V satisfying Me) = 1.

(3) We follow Feit’s notation [5] The analogous notation in Green [7] is T H(x), and

TH G(x) in Green [9].
(4) Throughout this paper the term *‘character’’ refers to the trace function obtained

from a module.
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This leads to a second characterization of defect groups.

Proposition 3. Assume F is a splitting field for V. Let e, e' € Vg be primi-
tive idempotents, and let A\, \' be the associated modular characters. Then

(1) )t(xAi) =0 forall x € Vg unless D, >. D(e).

2) )\(Ai) # 0 for some i with D, =. D(e).

(3) e is equivalent to e' if and only if D(e) =; D(e'), and MA)) = A'(A)) for
all i with D, = Dle).

Before giving the proof we establish a general fact which will be used again
in $6.

(2.7) Suppose X is the character afforded by an absolutely irreducible repre-
sentation of a finite dimensional F-algebra A, and e € A is a primitive idempotent
with Me) £ 0. Then the restriction of A to eAe is an algebra homomorphism.

Proof. Let £ be a matrix representation affording A. Then £(e) is still a
primitive idempotent in £(A), as is well known. Thus by suitably choosing £ we
may assume that £(e) has a 1 in the upper left-hand corner and 0’s everywhere
else. Hence for x € eAe, Mx) is the upper left-hand corner entry of g(x), and all
other entries are 0. The result is now obvious.

(2.8) Proof of Proposition 3. (1) If D, iG D(e) then e ¢ I.(D; G, Q) by defi-
tion of D(e). Thus IF(Di; G, Q) NeV e is contained in the kemel of MeVpe'

So MexA,) = MexA,e) = 0 for all x € V.. Clearly the same equation holds if e
is replaced by an equivalent idempotent. But an idempotent not equivalent to e
is in the kernel of any representation affording A. Since AMxA) = A(1xA)) and 1
is a sum of primitive idempotents, the proof of (1) is complete.

(2) By definition e is an F-linear combination of standard basis matrices Ai
with D, <. D(e). Since Me) # 0, and )\(Al.) = 0 whenever D, </ D(e) by (1), we
must have AM(A)) £ 0 for some i with D, =; D(e).

(3) Suppose D(e) = D(e") and )\(Al.) = )&'(Ai) for all i with D, =, D(e). Since
A and A’ vanish on matrices A; with D, <, D(e), and e is an F-linear combination
of matrices A; with D; <. D(e), we have A'(e) = A(e) = 1. Thus e’ must be equiva-
lent to e. The converse is almost trivial.

The following theorem depends on Theorem 3 in S4.

(2.9) Theorem 2. A necessary condition that D be the vertex of an indecom-
posable component of FQ is that there exists a € and y € NG(D) such that D
is a Sylow p-subgroup of Gaa)"

Proof (assuming Theorem 3 (and Proposition 5)). By Theorem 3 and the
remark following its proof we can assume G = NG(P). Since any indecomposable
component of FQ is a component of FI' for some orbit I' of G on {1, we can
assume G is transitive. By Proposition 2 and the definition of defect group, P is

a Sylow subgroup of Ga,B for some a, 3 €.
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3 The Brauer homomorphism. Suppose P < H < N_(P) where P is a p-group,
and let (1, denote the set of fixed points of P in (. Then there is a natural homo-
morphism [ = f(G,n,P,H) mapping VF(G, Q) into Ve(H, Qp): First define [ in the
special case G = H—if 0,<(, x Q, define f(4)) to be the standard basis matrix
for (H, QP) corresponding to O, and otherwise set /(Ai) = 0; then eftend the
definition of [ to VF(H, Q) by linearity. [ is now defined in the general case as
the composite of the natural inclusion V (G, Q) — V(H, Q) and I, 0.p 1y

We give the verification that /(H,Q,P,H) is a homomorphism: Note that O, C
QpxQp if and only if P <D,. Set | = EPiDi I(D; H, Q) and let B denote the
set of all F-linear combinations of standard basis matrices A, in VF(H, Q)
satisfying O, C Qp x Qp. Then B is an algebra isomorphic to VF(H, QP) in an
obvious way, and ] is an ideal in V(H, Q) by Lemma 1. Trivially, V.(H, Q) =
J+B and ] N B =0. The map f is clearly the composite of the natural projection
VF(H, Q) — B and the obvious isomorphism B —» VF(H, QP). Thus [ is a homo-
morphism.

If Ae VF(G) then the restriction VF(G) — VF(H) carries A into ] if and
only if A = E;=1 CiAi where 0, N QP X QP = P~that is, P th Di—whenever c; #
0. Now the above proof gives

(3.1) The kemnel of fiG g p uyis Zpecp, Ip(P; G, D).

The relationship between [ and the classical Brauer homomorphism is de-
scribed below. (See also [15, footnote 8].)

Proposition 4. Assume CG(P)<— H and let s: Z(FG) — Z(FH) be the standard

Brauer homomorphism. Then the following diagram is commutative:

Z(FG) — V (G, )

|

Z(FH) —— V(H, Qp)

If CC G we write C for the R-sum of all permutation matrices corresponding
to members of C. Thus, if C is a conjugacy class of G, C is the image of the
class sum C € Z(RG) under the map Z(RG) — VR(G). To prove Proposition 4 we
need to calculate C in terms of standard basis matrices. This has essentially
been done by Tamaschke (for the transitive case, in the formalism of S-rings [16)).
We give an alternate approach more suitable to the present formalism by using
the *‘orbital character’’ notation.

For i=1,+++,r we define Oi(g) =|laeQ| (a, a) € O,-” for each g € G (as
in Scott [14]). Of course 6, is identically 0 unless O, C a® x o for some a €.

(3.2) (Scott [13, 2.2 Oi(g) is the trace of g A¥ acting on RQ.

The proof is a direct calculation from the definition of A;!‘.
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(3.3) c=2.(o,| "lzxec 6(x))A; whenever C is a union of G-conjugacy
classes.

Proof. Certainly we can express C =2, c,A. for some coefficients ¢, €R.
A particular coefficient c¢; is computed by multiplying C by A% and taking the trace
(the trace of A].A’l!< on R is easily calculated to be 3,~le,~|; see Wielandt 18, V]).

(3.4) (Scott [13, 2.7.9]) Suppose C is a union of G-conjugacy classes. Fix a,
B €0, Then |07 1S . 0(x)=|lxecC|a” =g}

Proof. Count the number of triples (y, 8, x) with (y, 3) € 0, x € C, and y* =
8. Counting in terms of x gives a total 2__. 6.(x). Counting in terms of (y, o)
gives |OiH{x e C| a* = Bil.

(3.5) Proof of Proposition 4. Fix a conjugacy class C of G and a standard
basis matrix @ € V(H, Q). Let a, B €Q, be such that (a, B corresponds to
a.

Then the a-coefficient of f(C) is |{x € Cla* = B}| by (3.3) and (3.4). Now

= —
s(C) is by definition C N CG(P). The a-coefficient of C N CG(P) is
lix € C n C4(P)|a* = BY|, again by (3.3) and (3.4). Since P fixes a, B and

centralizes no member of C — C N CG(P), we deduce

lix € Cla® = B| = |fx € C N C(P)] a* = B (o).

Thus the two a-coefficients are equal. Since C and @ were arbitrary, the commu-
tativity of the diagram is established.
The following two propositions describe elementary properties of [ .
(G , Q’P ’H)

(3.6) Proposition 5. Let e € VF(G) be a primitive idempotent. Then f(e) #0
if and only if D(e) >, P.

Proof. If f(e) =0 then e € zpicDi IF(Di; G, Q) by (3.1). Hence e €
IF(Di; G, Q)—consequently D(e) <. D ,—for some i with D, iG P by Green [7,
3.3al. Since P §; D; we have P {c D(e).

If f(e)#0 then fU (D(e); G, Q) #0, since e € IF(D(e); G, Q), and so
P <; D; by (3.1).

(3.7) Proposition 6. Let e € V(G) be a primitive idempotent with f(e) £ 0.
If N is an indecomposable component of FQP[(e), then some D(e) contains a
vertex of N. If C(P)<H then N lies ina block b of H such that FQe is in
b9.(%)

Proof. It is easy to check that, for any 7, /(Az.) is a sum of standard basis
matrices with defect group contained in a G-conjugate of D. Thus f(e) €

EQ <cD(e) IF(Q; H, QP).

(5) See Brauer [3, §2] for a definition of b,
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Set f(e) = 2]. €; where the e].’s are primitive orthogonal idempotents. Then
N = FQPe’. for some j by the Krull-Schmidt theorem, and the vertex of N is
D(e].) by Proposition 2. Since /(e)e]. =e, we have € € ZQ <D(e) IF(Q; H, QP)‘
So e € 1:(Q; H, Q) for some Q <. D(e) by Green [7, 3.3a]. Hence D(e].) <y 0
<g Dle).

Now suppose CG(P) < H so that the standard Brauer homomorphism s: Z(FG)
— Z(FH) is defined. Let c¢ € Z(FG) be a primitive idempotent whose image ¢
under the map Z(FG) — VF(G) satisfies ec = e (thus (FQe)c = FQe and so FQe
belongs to the block associated with cj. Then f(e) = f(ec)=f(e)f(c) = [(e)s(c)
by Proposition 4. Hence e = e].f(e) = eJ./(e)ﬁ = e].s(_i); consequently T
(FQPe].)s(c) = FQpe,. By [3, paragraph following 4.16], the proof is complete.

The following fact is also worth noting.

(3.8) Any indecomposable component of FQ is isomorphic to a component
of FQpf(e) for some primitive idempotent e € V (G).

Proof. Since /(1) =1, a decomposition 1 =2, e, into primitive orthogonal

idempotents in V(G) leads to a decomposition 1 =X of (e,) into orthogonal

idempotents in V F(H, Q P). The result now follows frcfxflelil):e Krull-Schmidt theorem.

At this stage of our development we sacrifice a little simplicity for the sake
of obtaining more detailed information.

The 1-1 condition. A p-group Q > P satisfies the 1-1 condition with respect
to (G, Q, P, H) if P <. D, whenever D, <. 0.

The onto condition. A p-group Q > P satisfies the onto condition with respect
to (G, Q, P, H) if o® N Qp x Qp = 0 whenever o is an orbit of H on Qp x Qp
whose associated defect group d satisfies d < Q.

If P contains no proper subgroup conjugate to any D;, then P satisfies the
1-1 condition with respect to (G, Q, P, H).

If H= NG(P), and if P = Q (or more generally, if P is weakly closed in Q
with respect to G), then Q satisfies the onto condition with respect to (G, Q, P, H).

(3.9) Ve insert here a proof that Q satisfies the onto condition with respect
to (G, Q, P, H) when H = NG(P) and P is weakly closed in Q with respect to G.
Let o be an orbit of H on Qp x @, whose associated defect group d is contained
in a conjugate of Q. Then a straightforward argument shows P is weakly closed
in d. In particular N(d) < H, so d is a full Sylow subgroup of G,p for (a, B) €
o. We now easily deduce that any G-conjugate of P contained in Ga/3 is GaB°C°"'
jugate to P. By the Jordan-Frattini argument (see [18, proof of 3.5]) H is transi-
tive on the fixed points of P in o®. Thatis, 0® N Qp xQp =o.

If e is any idempotent in V F(G), we let ‘I‘e denote the character of G afforded
by KQeo where e is an idempotent in V(G) satisfying € = e. In addition we
define ¥_=0 for e =0.
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Proposition 7. Suppose Q satisfies the 1-1 condition with respect to
(G,Q, P, H). Let e, ' be idempotents in V o(G), and assume that e is primitive
with D(e) =G Q. Then

(\Pe’ lpe')G < (‘P,‘(e)’ lp/(e'))l'r
Proposition 8. Suppose Q satisfies the onto condition with respect to
(G, Q, P, H). Let e, e' be idempotents in VF(G), and assume that e is primitive

with D(e) =c Q. Then

The following standard fact is needed for the proofs of Propositions 7 and 8.

(3.10) Suppose e, e' € VF(G), and e?=e, (e')2 = e'. Then (‘I‘e, ‘I’e,) =
dim eVF(G)e'.

Proof. The assertion is trivial in case e or e' is 0; consequently, we may
assume e, e’ are idempotents. Let u' be idempotents in V(G) with # = e,
z'=¢e'. Let K be a splu:tmg field for VK(G) Then obv1ously (‘I’ ‘l’e)
dlmK (Hom?% G(KQu, KQu )), and Hom% . (KQu, RQu' ) guV"'u Smce vy =
K ®, Vp and uVy u' is an R-direct summand of Vp, we have

. 4 ‘ . 1 . [
d1m,k uV?(,u =rankp uVRu =dim uV pu =d1mF eVFe .

(3.11) Proof of Proposition 7. By (3.1) and our hypothesis, the kernel of
intersects the ideal IF(Q; G, Q) trivially. Since e € IF(Q; G, Q) we have eVFe'
CI.(Q; G, Q). Thus eVee' & fleVge') C &)V (H, Qp)f(e"). Application of
(3.10) now finishes the proof.

(3.12) Proof of Proposition 8. Set | = zdch IF(d; H, Qp). Then ] is an
ideal in V(H, Qp)s and J C {(V£(G)) by hypothesis. By Proposition 6 (or direct
calculation) we have f(e) € J. Thus

[ lH, Q) () [ (€ C [N V(@) () S [Vl Qp)f (e,

Therefore /(e)VF(H, Qp)f(e') = /(e)/(VF(G))/(e') = /(eVF(G)e'). ‘Again applica-
tion of (3.10) completes the proof.
The next section is devoted to further consequences of the onto condition.

4. Brauer’s first fundamental theorem. We assume throughout this section
that O satisfies the onto condition with respect to (G, Q, P, H.. P <H <N P
and [ = /(G,Q,P,H) as in $3.

(4.1) Theorem 3. (a) Let e, e' be idempotents in V (G, Q) with e primitive
and D(e) = Q. Then [(e) is przmztzve and FQe|FQe' if and only if FQpf(e)|FQpf (e”).

(b) lrz case H = N (P) and ¢ € V(H, Qp) is a primitive idempotent wztb
D(2) = P, then ¢ is equzvalent to f(e) /or some primitive e € VL(G) with Dle) =¢
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Proof. (a) We shall use the fact established in (3.12) that /(eVF(G)e') =
/(e)VF(H, Qp)f (e'). Of course we also have /(e'VF(G)e) = /(e')VF(H, Qp)f (e).

Since eV (G)e is completely primary, so is f(eV o(G)e) = f(e)V o(H, Qp)f (e).
Hence f(e) is a primitive idempotent. (f(e) # 0 by Proposition 5.)

If FQf(e)|FQf(e') we have f(e) = zf(e'w where z € f(e)V (H, Qp)f(e’) and
w e f(e")Vg(H, Qp) (e). Choose x € eVp(Gle' and y € e'VF(G)e with f(x) =z
and [(y) =w. Then xe'y € eV (G)e, and no power of xe'y is 0 since f(re'y) =
zf(e')e = f(e). Thus xe'y is a unit in eVF(G)e. Consequently FQe|FQe'.

Conversely if FQe|FQe', then e = ue'v for some u, v € V(G). Hence f(e) =
{@)f(e")f () and so FQf(e)|FQf(e").

(b) By the remark following Proposition 6 we have ¢ = zf(e)w for some z €
'e\'VF(H, Qp), w eV H, QP)QJ and a primitive idempotent e € V .(G). Since e
belongs to the ideal I.(P; H, ;) by hypothesis, we have z, w € [(P; H, Qp).

By Sylow’s theorem P is a Sylow p-subgroup of Ga,@ if and only if P is a
Sylow p-subgroup of Ha,B; when this occurs H is transitive on the nonempty set
(a, B¢ N Qp xQp. Now we easily deduce that [((P; G, D) = I:(P; H, Q).
Hence we can choose x, y € IL(P; G, Q) such that z = {(x) and w = f(y).

Thus eyxe € eV (G)e N I(P; G, Q). Since [(xey) = zf (e)w = ¢ we see that
no power of eyxe is 0. Consequently eyxe is a unit in the completely primary
ring eVF(G)e. Therefore eVF(G)e = eVF(G)e N IF(P; G, (1), and we conclude that
e EIF(P; G, Q).

By part (a), f(e) is a primitive idempotent. Clearly f(e) is equivalent to €.

Since e.€1.(P; G, Q) we have D(e) <g P- But f(e) # 0 so D(e) >c P by
Proposition 5. Thus D(e) =c P and the proof is complete. ’

The previous theorem and Proposition 5 show that [ establishes a 1-1 corre-
spondence between equivalence classes of primitive idempotents in VF(G, Q) and
VF(NG(P), Qp) with defect group P. This correspondence will now be identified

with the help of a lemma in the next section.

Proposition 9. Suppose H = NG(P) and e €V (G) is a primitive idempotent
with D(e) = P. Then FQpf(e) is the Green correspondent() of FQe. In particular

Y. =I[G: H]\p/(e)(l) (pvp([c ;P])H).

The following preliminary result is an easy application of Proposition 1; the
details are left to the reader.

(4.2) Suppose the RG modules X, Y are direct summands of RQ. Then X is
isomorphic to a direct summand of Y if and only if X is isomorphic to a direct

summand of Y.

(6) See [8, Theorem 2].
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Now we use (4.2) to prepare for the proof of Proposition 9.
(4.3) Let X be an N (P)-indecomposable component of RQN@(P)’ and Y a
G-indecomposable component of R{} with vertex P. Then X is the Green corre-

spondent of Y if and only if X is the Green correspondent of Y.

Proof. Of course Y is indecomposable with vertex P by Proposition 1.

If X is the Green correspondent of Y, then X|YN ) and X has vertex P.
Thus X|Y c(P) and X is indecomposable with vertex P by Proposition 1, and so
X is the Green correspondent of Y.

Conversely if X is the Green correspondent of Y, then }l?NG(P) and X has
vertex P. Therefore X has vertex P by Proposition 1, and leNc(P) by (4.2)
applied to N(P). Hence X is the Green correspondent of Y.

(4.4) Proof of Proposition 9 (assuming Lemma 2). Lemma 2 gives
FO/(O)|(FQe),,.

Trivially P < D(/(e)), and D(f(e)) <. P by Proposition 6. Thus D(f(e)) =, P
and so FQpf(e) is the Green correspondent of Fle.

Now choose primitive idempotents z, v in V(G), V(H, Q) respectively,
with Z = e and 7 = [(e). Thus RQu = FQe and RQpv = FQ,/(e). By Proposi-
tion 1, RQu has vertex P, and by (4.3) RQPU is the Green correspondent of RQu.
Thus (RQPv)G is the direct sum of RQu and indecomposable modules with vertex
conjugate to a proper subgroup of P. The stated congruence on character degrees

now follows from Green [7, Theorem 31.

(4.5) Theorem 4. Assume F is a splitting field for V (G, Q) and V H, Qp).
Suppose e € V(G) is a primitive idempotent with D(e) = Q and let A, )\ be the

modular cbracters associated with e, f(e) respectively. Then A = )\0/

~

Proof. Let £ and £ denote matrix representations affording A, X respec-
tively. These representations have the same degree by Theorems 1 and 3. Thus
£ and 2 of are representations of V (G) of the same degree. Since )&(/(e)) =1,
® is a constituent of £ o /. Thus is equivalent to £ of.

5. Brauer's second fundamental theorem. Again, P < H < N_(P) where P is
a p-subgroup of G, and [ denotes [ o p pyy 0 is the permutation character of
G, and if B is a p-block of G, we set g =X xeB(e’ x)x (where the x’s are

absolutely irreducible characters of G).

Lemma 2. Let e € V(G) be an idempotent. Then (FQe), = FQpfle)® T
where T is a summand of {(Q - Qp).

(5.1) Before the proof, we clarify the condition on T. Suppose P < G. Let
M be an indecomposable component of FQ. Then M|FQp if and only if P is con-

tained in the vertex of M.
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Proof. Obviously P is contained in the defect group of every standard basis
matrix of (G, QP) and is contained in the defect group of no standard basis matrix
of (G, @ - Qp). So the result follows from Proposition 2, the Krull-Schmidt
theorem, and the way defect groups for idempotents were defined.

(5.2) Proof of Lemma 2. Obviously we may assume that G = H and e is primi-
tive. By (5.1) and Proposition 5 we have f(e) = 0 if and only if FQe|F(Q - Q).
Thus it remains to show FQpf(e) = FQe in case [(e) £0.

Observe that f(e) is a primitive idempotent since f is onto (f(e)Vp(H, Qp)f(e)
= f(eV R (H, Qe) is completely primary).

To complete the proof we identify VF(H, QP) with the algebra B described
in the first paragraph of §_3. The map [ is now just the projection VH(H) — B.

In particular f(f(e)) = f(e) and so f(ef(e)e) = f(e) # 0. Consequently ef(e)e is a
unit in eVF(H, Q)e. Therefore e is equivalent to f(e) and the proof is complete.

(5.3) Theorem 5. Suppose x € G and a power x" = z is a p-element. Let e €
V(G) be an idempotent, and take P = (z), x € H. Then ‘I‘e'(x) = ‘l‘/ (e)(x). In
particular ¥ (z) is a nonnegative rational integer, and |¥ (x)| < ¥ _(2) < 6(z).

If e is primitive, then ‘I’e(z) >0 if and only if z is conjugate in G to an
element of D(e).

Proof. First we show ¥ _(x) = ‘l’/ (e)(x). Again we may assume that G = H
and e is primitive. By Lemma 2 we need only show ¥ _(x) = ‘I’/ (e)(x) =0 when
FQe|F(Q - Qp). Let e, € VR (H) be a primitive idempotent with & =e. Then P
is not contained in the vertex of RQeo by Proposition 1 and (5.1). Therefore, the
p-part of x is not conjugate to an element of the vertex of R{le, and so ‘I’e(x) =
0 by Green [7, Theorem 3]. Of course ‘I'/ (e)(x) =0 since f(e) =0 by Proposition
5.

Since P acts trivially on Qp, ¥, ,(z) = ¥, (1) > | ‘l‘/(e)(x)|.

¥ (2) £ 0 precisely when ‘I’/ () # O—that is, f(e) £ 0. By Proposition 5 this
occurs if and only if P is conjugate in G to a subgroup of D(e). This completes
the proof.

As an immediate consequence of the above theorem (3.8) and Proposition 6,

we have

(5.4) Corollary A. Suppose x € G and a power x" is a p-element. Let g be
the permutation character for the action of CG(x”) on the set of fixed points of
%" in Q. Then

bpt)= T 8,00,

b9 - B

In particular, 05(x") is a nonegative rational integer, and |0(x)| < 65(x™)

< Kx™).
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6. Defect 0 and 1. We state all the main results of this section before at-
tempting any proofs.

Assume K, F are splitting fields for V., V, and let x, lI! denote the
characters of G afforded by X_ KM respectively (see $1 for notanon) Let the
symbol EP xs denote the sum of all dxstmct p-conjugates of X, and write s~ ¢
if x, is p-conjugate to x,.

Set a = vp(|G|), and define v_= vp(xs(l)). Put e = max{vp(loil)};__,l

By a theorem of Wielande (see Keller [12]), we have v_<e forall s. We are

interested here in the cases v =e and v o=e— 1.

Lemma 3. Suppose the number of p-conjugates of x is divisible by p”. Then

(@ y<le-v_.

(b) If y=-e —v_ then x_ has exactly p” p-conjugates, and Zp x7 = ‘I’j for
some j. If x, CY¥, then k= j. The vertex of M. has order p®—¢

Theorem 6. Suppose v_=e.

Then X, =~‘P]. for some j. If x CY¥, then k=j. The vertex of M. has
order p®~¢

Also, x is p-rational.

Theorem 7. Suppose v_=e — 1. Then we have either A or B below:

(A) x4 has exactly p p-conjugates. 2 x‘?: ‘I’j for some j, and if x_ g:‘l’k,
then k = j. The vertex of M, has order 2 e.

(B) The number of p- con]ugates of xg divides p — 1. If x C‘l’ then one of
the following occurs:

(i) ‘P E x The vertex of M bas order p“ —e+1

(ii) ‘I’ Z xs + 2 xt where tqbs, v,=e—1, and the number of p-con-
jugates of x dwzdes p — 1. The vertex of M has order p®~€. If ‘I’ Y., then
k=j.

(iii) ‘P 2 x + T where T # 0 is a character such that, whenever x, C T,

the number o/ p- con]ugates of x, is divisible by p, v,<e -2, and each p-conju-
gate of X, appears in T with tbe same multiplicity as X, The vertex of M bas

order p®~¢. If ‘P ¥, then k =j.
(iv) p =2 ana’ ‘P —2x The vertex of M. has order p*C. If ‘I‘ =¥, then
k=7j.

Corollary B. Suppose the block B has defect 1. Let (x) be a defect group
of B, and let b be the block of N ({x)) satisfying 4G =B. Let 0 be the per-
mutation cbaracter of N((x)) on tbe fixed points of x in Q, and set 0

p3 lka’ where xk is absolutely irreducible and appears in 0 with multzplzczty L.
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Then we may find distinct indices j, such that 6 =%, lk‘l'j + ® where

(1) @ is the sum (with multiplicities) of characters ‘I’j whose affording module
M]. is projective and lies in B.

(2) ‘I".k (x) > 0 for each k, and ‘PJ. is either a nonexceptional character of B

or the sum of all exceptional characters of B.

Now we prepare to give the proofs. Several arithmetic preliminaries are required.
(6.1) There exists a p-adic number field K with the following properties:
(i) K is obtained by adjoining an mth root of unity, where p 4 m, to the p-

adic completion of the rational field.

(ii) K contains a primitive Ith root of unity, where | is the p'-part of the
group order |G|.

(iii) Each character x _ is afforded by a K(x,) representation.

(iv) Each indecomposable component of R} is absolutely indecomposable

(where R denotes the ring of local integers in K).

Proof. By Fong’s result(7) (see [6, 16.5]) a field K, satisfying the first three
conditions is obtained by adjoining an Ith root of unity (or (3/)th root of unity if
p =2 and 311) to the p-adic completion of the rational field. Let F, denote the
residue class field of K, and select a finite field GF(q) which is a splitting
field for VFQ(G’ Q). Now let K be the field otained by adjoining a primitive
(g — I)th root of unity to K. Then the field K satisfies condition (iv) by (1.3).
Obviously K satisfies the other three conditions.

(6.2) Notation. Note that it suffices to prove Lemma 3, Theorems 6 and 7 and
Corollary B for any particular p-adic field satisfying condition (iv) above. Conse-
quently we shall assume throughout the rest of this section that K is a field satisfy-
ing all the conditions of (6.1).

We let §_ denote the Galois group of K(x )/K, and let G2 denote the Sylow
p-subgroup of QS. Set p“5 = l§2| '

(6.3) (i) ¥ ranges over all the distinct p-conjugates of x_ as o ranges over
g,

(ii) 2.0592 y7 =0 (pws) for any local integer y of K(Xs)-

Proof. By (6.1ii) 5 C K, where 5 is the field of Ith roots of unity. Then
K(x,) € K(w) where o is a primitive p“th root of unity. K(w)/K is a fully ramified
abelian extension of degree (p — 1)p?~ ! (see (17, proof of 7-4-1]). The p-conju-
gates of Xs are by iefinif\i’on the characters x:, o ranging over the Galois group
of Q(x )/Q- Since Q(w)/Q = (p - 1)p®~1, it follows from our description of

(7) Quoting this result to prove (6.1) is, in a historical sense, putting the cart before
the horse. The reader familiar with algebras over local fields (see Albert [1, IX, Theorem
23]) can easily prove (6.1) directly.
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K(w)/K that K(x )/K is a fully ramified extension of degree . [Q(x ): Q] and Q
is naturally isomorphic to the Galois group of Q(x )/Q In particular (i) has now
been proved.

wetl

Let w_ be a primitive p th root of unity. K(w_) C K(w) since

“s = |GY|IK(x ) : K]l (K (w): K] =(p — 1)p®~ !

We claim K(x,) C K(w).(8)

Let & denote the Galois group of K(w)/K, and let g é be the subgroups
of & which Galois correspond to K(x ), K(w ) respecuvely Smce 9 is a Sylow
subgroup of Q and Q = 5/& , the power of p in lg | is pa—l— <. Since
g/g is isomorphic to the Galoxs group of Klw )/K and [Klw):Kl=(p - Dp™s,
we have & | =p 4=1"%s Thus &, ¢ gx and so K(w ) 2 K(xs).

Now let Q; denote the group of all automorphisms o of K(cos)/K such that
wZ: w'; for some integer n =1 (p). We claim 9; is isomorphic to 92 by restric-
tion to K(XS).

Let Qz denote the Galois group of K(w )/K. From the definition of 92 we
have [Qi : Q;] =p —1 and so 9:_ is a Sylow p-subgroup of 93 The natural re-
striction map 93 — Qs is an epimorphism and consequently sends Q: onto 92
But IQ | = |§0| and so 9 is isomorphic to 9 by restriction as claimed

Thus to prove (ii) it is enough to show = segl 1y9=0 (p %) for any local in-
teger y of K(w ).

Now the powers of w_ contain an integral basis for K(a)s)/K (17, proof 7-5-
3]. Thus we need only verify the congruence in case y = co’:_ for some integer k.
Then

ws w
-1 b S
z ycr= Z wil +zp )k _ ""i Z (wpk)z
O'Ggi z=0 z=0

The final sum is pws if wzk =1 and (mik)pws - l/a)!;le — 1 =0 otherwise. This
proves (ii).

(6.4) If s~ 1t then d_. =d /orall 7.

Proof. By (6.1 iv) each character ‘P is afforded by an RG representation.
Hence (‘I’] xs) (‘I’ Xs 9) for each o eg and each j. The result now follows
from (6.3 i).

6.5) If ‘PJ. =¥, and Mj, M, both have a vertex of order p®¢, then j=k.

Proof. Let P be a vertex of M.. Then P satisfies both the 1-1 condition
and the onto condition with respect to (G, Q, P, NG(P)). Let € e, € VF(G, Q)

(8) This argument fails if p = 2. But in this case the sum in (ii) is just

[Qw): Q(x N~ e Stwy/ 80
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be primitive idempotents with M, & FQe, M, = FQe,. Then Propositions 7 and
j i :
8 give

@ pie ¥ = ¥, ¥ ) =, 8,

- op,., ¥)  (£0)

= (W/(ej)’ lp/(e].))'

Since the inner product is not zero, we have D(ek) >¢ P by Proposition 5.
By hypothesis |D(ek)| = |P|. Hence D(ek) =; P. By symmetry we now have a

second equality

v U

/(ej)’ /(ek) € /(ek))

It follows that ¥, . = ‘I’/(e y- Since FQP[(e) and FQpf(e,) are projective
indecomposable F(N (IS)/P) modules (Theorem 3), we deduce that FQ /(e)
FQPf(e ) (from Proposition 1 and [4, 7-14 or 8.4.11]). Thus e, is equwalent to
€ by Theorem 3 (or Proposition 9) and so j = k.

(6.6) Proof of Lemma 3.. Select an index j such that X € ‘P]., and choose a
primitive 1dempotent u € Vp with M] X RQu.

Let R denote the ring of local integers m K(x ) = K By (6.1 iii) there exists
a primitive idempotent f € uVyu such thatw KQfs affords ). By a suitable
choice we can insure that [ belongs to an R order of uV¥u containing uVyu.

Let ( denote the absolutely irreducible character of V"' associated with f
(that is, é (/)— 1). Then C (/ x) = é (u/' ux) = ( (f uxu) € R for all x € VY, and
C(/sx) = 0 for any character ( of V¥ which does not contain Cs.

Ve let Qs act on V% in the obvious way. For o € Qs let 4: denote the
character associated with f:. ‘Thus (:(xa) = Cs(x)a for all x € Vy.

Since the characters X:: o € QS, are distinct, the idempotents /:are orthog-
onal. In particular Eaego /U = [ is an idempotent in aVyu.

Now set [ = Et A, We compute the coefficients ¢, as follows: Let 7 denote
the character of V"' afforded by KQ. Then 7= 2, X, (1)( and r(A A¥) =, |O|
(as in the proof of (3.3)). Thus IOZ lt: = T(/A’l") = xs(l)zaego C (fA*)U formch L.

Hence

vl =vgvv, (L € AD7) -y (0,
a'eg
>v +w -v (10 by (6.3ii)

> -
2v +w_—e.
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Since [ is an idempotent, Vp(li) <0 for some i. This proves part (a) of
Lemma 3.

Now suppose w_=e — v _.

Then vp(ti) >0 for all 7 and so [ € uVyu. Hence f = u. In particular ‘I’j =
Zaegg X7 By (6.4) 9:: Qs—that is, X, has exactly p"“° p-conjugates.

If Vp(ti) =0then 0>v_+w_ - Vp(|01. |)>0 and so Vp(|0il) =v_+w_=e.
So by definition |D(&)| = p®~€. D(i) is the vertex of M, by Propositions 1 and 2.

Since the choice of j was arbitrary except for x_C ‘I‘i, we have ‘l']. = ‘I’k =
Ep xJ whenever x_CW¥,. Also the vertex of M, has order p*~%; thus x C¥,
implies k =] because of (6.5). This completes the proof of part (b) and the lemma.

(6.7) Proof of Theorem 6. Immediate from Lemma 3.

The next result is a technical preliminary to the proof of Theorem 7. Its as-
sertions are almost trivial in case Vp is commutative.

(6.8) Suppose x_+ X, C ‘I’] where either s =t or s 4 t. Let u€ Vp bea
primitive idempotent with RQu = M, and let K be z’p-ad’if field containing
K(Xs), K(X[)' Denote the ring of local integers in K by R. -

Zben there exist primitive idempotents [, f, € Vi such that KQf_ affords
X KQf affords x,, and

(1) /s € uVK(xs)u and /t € uVK(xt)u;

(i1) [SU is ortbggonal to f: /or’sacb o € QS and 1 € @t;

(iii) é's(/sw) € R and §t(/'zw) € R forall we V, where (_, {, are the abso-
lutely irreducible characters of Vi satisfying { ([) = (l(/t) = 1. Furthermore,

¢ fw) = ¢ (fw) i)t(u—u;z) where X is the absolutely irreducible character of ﬁ
(with values in ’I\f) satisfying Mu) = 1.

Proof. From (the proof of) Theorem 1 we know that uVK(x N has an abso-

S
lutely irreducible representation module Y _ of degree ds]. such that K(Xs)Qf
affords x for any primitive idempotent /€ ”VK(xS)” with Ys/;é 0. If és is the
character of VK(X ) associated with [ then Z_,'S(fw) is easily seen to be the trace
s

of the action of fuwu on Y _ (w € VK(xs))' Moreover, if f, fz, «++ are a full set
of dS]. orthogonal primitive idempotents in ”VK(XS)" which do not annihilate Y,
then we may view the quantities és(/lw), és(fzw), -+« as diagonal coefficients
for wwu in a matrix representation associated with Y .

Let R_ denote the ring of local integers in K(Xs\). Now the algebra uVRsu
has a unique irreducible representation, which is linear and may be realized as
the restriction to #V, u of the irreducible character A of VRs associated with #

s
(see (2.7)). Thus we may choose a matrix representation associated with Ys so
that any x € uVg _u is represented integrally with all diagonal coefficients having
residue class A(x). Let fipfyreee € uVK(xs)u be primitive idempotents which

give rise to such a matrix representation.



1973] MODULAR PERMUTATION REPRESENTATIONS 119

In case s =1t wetake [ =/, /l =f, and it is clear from the preceding dis-
cussion that (i) and (iii) are satisfied. (ii) is a consequence of the mutual orthog-
onality of the idempotents (f, +f,)% o € §_.

In case s+ t we take [ =/, and repeat the whole procedure (with Y, in-
stead of x_) to obtain fz Here (ii) is automatic, while (i) and (iii) are satisfied
as before.

(6.9) Proof of Theorem 7. If the number of p-conjugates of x_ is divisible by
p, then we have (A) by Lemma 3. Hence we may assume the number of p-conju-
gates of X is prime to p—that is, divides p — 1.

Suppose X C ‘l” and let u € V,, be a primitive idempotent with RQu = M
We distinguish two main cases.

Case 1. ‘P 2 Xe-

Then ‘I’(l) £0 (pe) Hence by Green [7, Theorem 3] (or Theorem 3) the ver-
tex of M does not have order p?~°. We calculate u = 2 tA where lO lt
X1 zaeg ¢ (uA¥)?. Hence v, (&) >0 if |[D]>p*” "’*1 So by definition |D(x)|
<p®€+! Thus D(u) (= vertex of M ) has order exactly p®~€+1!,

Case 2. ‘I’, £ Zp xs

Here we must show that we get one of the types B (ii), (iii), or (iv). Note
that 2 x7 C ¥. by hypothesis and (6.4). Let 2, Xe+X, C ¥. where s =t or
s At

Set x_= Xs(l), x, = X,(I)-

Let K be a p-adic field containing K(x_), K(x,), and choose [, [, as in
(6.8). Then we calculate

(0o/x = L (/10X ([ ADA, € uVru
and

(/2 ), = 2 @/10D(,APA; € uVou.

Thus

@%/xf, = 0°/% ), = X (°/10,MuATwA, € wVea

We show (p/x )f #0: If not, then (pe_l/x )E vegs [ €uVpu and so
2 g f € uV pu. Therefore 2, veQ, / = u. But this implies ¥, =2px a contradiction.
In partncular )\(uA*u) # 0 for some i with |D,| =p*~ e By Proposition 3 the
vertex of M, has order pa €. Note also that this gives k = j whenever l]l] ¥,
because of (6.5).
Suppose now that the number of p-conjugates of x, divides p — 1. We will
show that this leads to type (ii) or (iv).
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Here we may assume that K is obtained from K by the adjunction of a primi-
tive pth root of unity (this may be seen directly or from the proof of (6.3)). Set g
= Q(’lz/K) and let 7_ = |QS|, 7, = @t‘ Write [ for Zaegs /: and /, for

e, /;7. Then
(p-1/r )@/ )~ -1/ )(p/x ), = 2 e/ ) - /= )f)7 = 0 (p).
ce§
Hence /:_+ c/:; € uVpu where ¢ = — rsxs/rl x,. Now vp(xt) =y, <e—1by

Theorem 6, and so ¢ € R.

Set v=/:_+c/:. Then )\(17)=€S(_/;v)={,-'s(_/s)= 1; also )\(17)=W=4TC/I)=
. Therefore ¢ = 1. In particular, v, = v (x)=e—1,and c=1+ (»¢/x )k for
some k € R. Now /; + /:: v — k(pe/xt)f; € uVpu. By (6.8) /: +[: is an idempotent,
and so ;; + /:= u. Consequently ¥, = Zp Xo+ Ep X; - If s # t we have type (ii).
If s=t¢ then p =2, since ¢ =1 and ¢ =- 1; so we have type (iv).

Finally, we are reduced to the case where the number of p-conjugates of X,
is divisible by p whenever Zp Xe+X, V. By Lemma 3, v, <e — 2. By (6.4)
all p-conjugates of X, appear in ‘I’]. with the same multiplicity. Thus we have
type (iii), and the proof is complete.

(6.10) Proof of Corollary B. Suppose M, is a nonprojective indecomposable
component of RQ which lies in B. Thus the vertex of M]. is {(x) by Green [7,
Corollary to Lemma 4.1a). In particular ‘I’j(x) > 0 by Theorem 5.

Let x  C ‘I’].. Then v_=a—1>e— 1 If v_=e then x = ‘I’j is p-rational
by Theorem 6. If v_=e — 1, then a —e =0 and so we have type B(ii), since
M. is not projective. Hence ‘Pj = Zp Xo-

Note that the latter case does not occur when (x) acts trivially on Q, be-
cause e is obviously less than a. So by Theorem 6 the [, ’s are the multiplicities
of the various indecomposable components of RQX which lie in & (R suitably

large). Application of Theorem 3 now finishes the proof.
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