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ABSTRACT.  A modular theory for permutation representations and their

centralizer rings is presented, analogous in several respects to the classical

work of Brauer on group algebras.

Some principal ingredients of the theory are characters of indecomposable

components of the permutation module over a p-adic ring, modular characters of

the centralizer ring, and the action of normalizers of p-subgcoups  P  on the

fixed points of P.   A detailed summary appears in [15].

A main consequence of the theory is simplification of the problem of com-

puting the ordinary character table of a given centralizer ring.   Also, some pre-

viously unsuspected properties of permutation characters emerge.    Finally, the

theory provides new insight into the relation of Brauer's theory of blocks to

Green's work on indecomposable modules.

The purpose of this article is to present proofs of the results announced in

[15]. Statements of these results have been included here, though a number of

explanatory remarks and general background references have not been repeated.

With the exception of §0, the sections of this paper have been named according

to the features of the classical modular theory with which they are most closely

related.

0.   The centralizer ring.   Throughout this paper  G  is a finite group acting

on a finite set fl (perhaps not transitively or faithfully) and p is a fixed prime.

If S is any commutative ring with identity, we define the 5-centralizer ring

VS(G) = VS(G, fi) to be the collection of all matrices with entries from S that

commute with the permutation matrices determined (with respect to some fixed

ordering of fi) by elements of G.   In case 5  is the ring of rational integers, we

write only V(G) fot VS(G) and refer to V(G) as the centralizer ring.   The

standard basis matrices  \A .\T.      ate obtained from the full set  \0 .\r,   of orbits

of G on fi x fi by setting the  a, ß entry of A . equal to 1  for (a, ß) £ 0 . and

0 otherwise.   These matrices always form an 5-basis for VAG).   In particular,

VS(G) is isomorphic to the tensor product SV(G).
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The notation SQ, refers to the usual S-free SG module obtained from the

action of G on f!; we regard SO, also as a VAG) module in the obvious way. (2)

In this paper S will usually be  K, R, or E where  K is a p-adic number field,

R  is the ring of local integers in  K, and  E is the residue class field R/ttR.  n is

a generator of the maximal ideal of  R.   We use the notation x for the image of x

under some (hopefully obvious) map X —> X/ttX oí an R-module X containing x.

(0.1) VRiG) S VEiG).

Proof.   This is an immediate consequence of the isomorphism mentioned in

the first paragraph.

(0.2)   Proposition 1.    Let  M, N be RG-indecomposable components of RÍ2.

Then

(a) HomRG(M, N) S HomFG(M, N).

(b) M  is indecomposable and has the same vertex as M.

Proof.   Of course the natural map   HomRf,(M, N) —> HomFr(/Vl, N) is a mono-

morphism.   Since the functor Horn  is additive and  VRiG)~VAG), the map must

be an isomorphism.

Now HomRG(M, M) is a completely primary ring, as is well known. Obviously,

the isomorphism of Hom„r(<M , M) with HomFr(M, M) is a ring homomorphism;

therefore  HomFG(/Vl, M) contains only one idempotent—that is, M is indecompos-

able.

If P  is a subgroup of G, then we deduce easily from the above ring isomor-

phism and D. Higman's criterion [10, Theorem l] that  M is P-projective if and

only if M  is P-projective.   So by definition (see Green [7, 1.2]) M has vertex  P

if and only if M has vertex P.

Because of   Proposition 1, many results we obtain for VF(G) contain implicit

analogues for V„(G).

1.   Decomposition numbers.   Let A  be an R algebra (finitely generated as

an R module) and M   an R-free A  module such that  KM is completely reducible.

Let B be an R algebra acting faithfully on M and inducing  End. (M) by its

action.

We are interested in the case  A = RG, M = Rû, B = VRiG, Q).   However,

the results in this section are purely formal and are accordingly given a more

general treatment.

The following result is well known.   The notation X | V means  X is

isomorphic to a direct summand of  V.

(2)   All "modules" are, by convention, finitely generated and acted upon on the

right, with the exception that the action of a base ring such as  S  is written on the left.
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(1.1) Let  e, / be idempotents in  B.   Then the following statements are equiv-

alent:

(a) e = xfy fot some x, y £ 8.

(b) Me | Mf (considered as A  modules).

(c) eB | fB  (considered as B  modules).

Accordingly we say that e and / are equivalent (e ~ /) if e = xfy and / =

zew for some x, y, z, w £ B.   When e, / are primitive then e ~ / whenever one of

the conditions (a), (b), (c) is satisfied.

Of course the preceding discussion is valid also for KA, KM, KB (and A,

M, B  if B  induces End^(AÎ)).

By using equivalence classes of primitive idempotents as intermediaries we

establish  1-1  correspondences  [/M.]<-> [U.] and  [X ] *-» [Z ] between isomorphism
11 s s

classes of A-indecomposable components of M and projective indecomposable B

modules, and between isomorphism classes of irreducible KA submodules of KM

and irreducible  KB modules.

Also there is a well-known  1-1 correspondence  [U.] *-* [L .] between isomor-

phism classes of projective indecomposable  B modules and irreducible B  modules

(L . is the unique irreducible quotient module of U.).

In view of these correspondences there are three kinds of "decomposition

numbers" we can define:

(1) Let Z° be an R-free B module with KZ° « Z .   Then we list the com-

position factors of Z  , writing Z    <->2.o?    L ..

(2) Set KU. »S   d   Z .
J S      S]     s

(3) Set KM. « 1   dM.X .
J S      S]     s

(1.2) Theorem 1.   Assume  K, F are splitting fields for KB, B respectively.

Then d   . = d  . = dM. for all s, j.   Also M fíi 02.(dimD L.)M..
sj sj S]   ' ' ' 1 F      j      j

Note that the last assertion is a modular-theoretic version of the familiar

KMK.1   (dim„ Z )X .
s K     s'   s        ^

Proof.    The equality d     = d   . is well known [2, IX, 8].   Let u £ B  be a prim-
SJ S J *

itive idempotent with  Mu K, M ..   Now the following two assertions are easily

verified:

(i)   For each nonnegative integer d, dZ   \ uKB  if and only if there exists a

set of d orthogonal primitive idempotents in uKBu each equivalent to an idempo-

tent / with fKB « Z .

(ii)   For each nonnegative integer d, dX   \ KMu if and only if there exists a

set of d orthogonal primitive idempotents in uKBu each equivalent to an idempo-

tent / with KMf « X      By definition fKB « Z    if and only if KMf « X  .   Thus
M S S

d      .   =   dM..
SJ SJ
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To finish the proof we make two further observations:

(iii) For each nonnegative integer /,  /M.|M if and only if there exists a set

of I orthogonal primitive idempotents in B each equivalent to  a.

(iv) The multiplicity of  U. as a component of B is dimF L. (see the argu-

ment on p. 419 of [4]).

The final assertion  of the theorem is an  obvious consequence.

The following proposition clatifies the hypothesis  of Theorem 1.

(1.3) EndKß(Z ),    Endß(L.)    are anti-isomorphic to End,,^ {X ),

End^ (M.)/Rad(End^ (M.)) respectively.

In particular K  is a splitting field for KB  if and only  if each  X    is absolutely

irreducible, and F is a splitting field for B  if and only if each M. is absolutely

indecomposable.

Proof.   Let e £ B be a primitive idempotent.  Then of course eBe ft* End .(Me).

But also the left multiplications by members of  eBe  form  Endß(eß).  Hence

End . (Me) is anti-isomorphic to End„ (eß).

Since  eB is projective, Endß(eB/e Rad(B)) is a homomorphic image of

End„ (eB).  Since the latter is completely primary,

Endß(eß)/Rad (Endß(eß)) » Endß(eB/eRad (ß)).

This proves the assertion  regarding  End„ (L ■); the statement regarding

End,,,, (Z ) is established by the first paragraph of the same argument.

2. Defect groups. Let A . be a standard basis matrix. We define "the" defect

group D. oí A . to be a Sylow p-subgroup of Go where (a, ß) £ O .. (Defect groups

are well defined only up to  conjugation by  elements   of G.)

Set A.A. = 2, a...A,   (in  V(G)).  The quantities a...   are the "intersection
Z      J ft,        1J ft      ft Z] ft

numbers" defined by D.  Higman [ll].  We have

(2.1) «      = \0.(a) nO*iß)\    where  (a, ß) £ Ofe.

Here O.(a) = \ß\ (a, ß) £ 0 .\ and 0* = 0 = \iß, a)| (a, ß) £ 0.1 The proof

of (2.1) is a direct matrix calculation from the definition of the A .'s.

(2.2) // a..k é Oip) then Dfe <G D. and Dfe <G D..  (The notation  "<c"

means  "< a G-conjugate of.")

Proof. G „ acts on CC(a) O 0*iß) and hence so does (a suitable) Dfe. If

\0.ia) n 0*iß)\ i Oip) then Dfe must fix a letter y e O.(a) O O^iß). Thus Dfe

fixes (a, y) £ 0. and (y, jS) £ 0..  The result now follows from Sylow's theorem.

For any p-subgroup  P of G we define /p(P) = IFiP; G, Q,) to be the set of

E-Iinear combinations of A.'s  satisfying  D¿ <G P.

Lemma 1.   For P, Q, p-subgroups  of G,

(2 3) IP(P)'P<Q)< Z /F(P,.).
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Proof.  Immediate from (2.2).

Now, given a primitive idempotent  e £ V p, there is an index  i such that e £

1F(D.) and D. <G P whenever e £ Ip(P). We set D(e) =G D. and call  D(e)  "the"

defect group  of e.  (See Green's proof [7, 3.3b] for a discussion of how Lemma 1

guarantees the legitimacy of our definition of defect group.)

D(e) is also the defect group of any idempotent equivalent to  e.  This is easily

verified directly, or may be seen as a consequence of the next result.

Proposition 2.  D(e) is the vertex of Ffie.

To prove Proposition 2 we need an alternate description of the ideals  Ip(P).

Define  N G H(*)> for H < G and x £ Vp(H, fi), to be 2 xg where g ranges over a

set of right coset representatives of H in G (here x8 £ VP(He, fi) is defined in

the obvious way).(3) Clearly NG H(x) e Vp(G, fi).

(2.4) ¡F(P; G, fi) = NGtP(VF'(P, fi)).

Proof.   For a, ß £ fi let ea „ denote the   |fi| x |fi|  matrix with   1 in the  a, ß

position and 0 everywhere else.  Obviously, e   „ £ V ÁH, fi) whenever H <G  „.

It is easy to calculate that, for (a, ß) £ 0. and D. < G   R,  A. = ¿V (x) where

x = [Ga/3 ■Di\~1eaß.   Thus if   D. < P  we have   A. = NG p(Np D (x))  £

NGtp(VF(P, fi)).  Consequently Ip(P; G, fi) Ç NG>p(VF(P, fi)).

Next let a £ Vp.(P, fi) be a standard basis matrix. As above we calculate a =

Np   ,(e   „) where (a, ß) belongs to the orbit of P on fi x fi corresponding to  a

and d = P„Ñ.  Now

NG, p(«> = WGf ,(e^) = NG> Ga/3(NCa/3> >a/3)) = NGi GJ[Gaß : d]eaß).

Thus NG p(a) = 0 if <¿ is not a Sylow subgroup of G «, and NG p(a) is a multiple

of the standard basis matrix in Vp(G, fi) corresponding to (cc, ß) if d is a Sylow

subgroup of Gao- In either case NG p(a) £ Ip(P; G, fi) and so NG p(Vp(P, fi)) C

/F(P; G, fi).

(2.5) Proof of Proposition 2.  This follows from (2.4) and the definition of  D(e)

because of D. Higman's criterion [10, Theorem l].  See also Green [9, p. 143].

(2.6) Remarks, (a) Note that if e    £ VR(G, fi) is a primitive idempotent with

e~_ = e, then  D(e) is also a vertex of ßfie„  by Proposition 1.

(b) An alternate proof of Lemma 1 can be given by (2.4) and Green's formula

[9, 4.11].

If F is a splitting field for   VF and  e £ VP is a primitive idempotent, then

there is a unique irreducible modular character(  ) À of  V „  satisfying  X(e) = 1.

(5) We  follow Feit's notation [5].  The analogous notation in Green [7]  is   TV.uix), and

Th gM i" Green [9].
(4) Throughout this paper the term "character" refers to the trace function obtained

from a module.
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This leads to a second characterization of defect groups.

Proposition 3.  Assume  F  is a splitting field for Vp.  Let e, e' e VF  be primi-

tive idempotenls, and let X, X   be the associated modular characters.   Then

(1) A(xA.) = 0 for all x e Vp unless D. >G Die).

(2) A(A .) ^ 0 for some  i with D. =G Die).

(3) e  is equivalent to  e'  if and only if Die) =G Die'), and A(A.) = A'(A.) for

all i with D. =~ Die).

Before giving the proof we establish a general fact which will be used again

in §6.

(2.7) Suppose X is the character afforded by an absolutely irreducible repre-

sentation of a finite dimensional F-algebra A, and e £ A  is a primitive idempotent

with A(e) ^ 0.   Then the restriction of A to  eAe is an algebra homomorphism.

Proof.   Let i_  be a matrix representation  affording A.  Then J-(e)  is still  a

primitive idempotent in M^), as is well known.  Thus by suitably choosing a. we

may assume that =L(e) has a  1  in the upper left-hand corner and 0's everywhere

else. Hence for x e eAe,  A(x) is the upper left-hand corner entry of ¿~(x), and all

other entries  are  0.  The result is now obvious.

(2.8) Proof of Proposition 3.  (1) If D.Í    Die) then  e 4 I   (D.; G, fl) by defi-
l  T (j "I

tion of  Die).  Thus   / ÁD.; G, Ü) neVce  is contained in the kernel of Al   ..
r      i r* ' e V pe

So A(exA.) = A(exA .e) = 0 for all x e VF.  Clearly the same equation holds if e

is replaced by an equivalent idempotent.   But an idempotent not equivalent to   e

is in the kernel of any representation affording A.  Since  A(xA .) = A(lxA .)   and   1

is a sum of primitive idempotents,  the proof of (1) is complete.

(2) By  definition  e is  an E-linear combination of standard basis matrices  A .

with  D. <G Die).  Since  A(e) / 0, and  A(A .) = 0 whenever D. <G Die) by (1), we

must have  A(A .) ^ 0  for some  i with  D. =_ Die),i i    o

(3) Suppose D(e) =G Die') and A(A .) = A'(A.) for all i with D. =G Die). Since

A and A vanish on matrices A. with D. <_ Die), and e is an E-linear combination

of matrices A. with D. <r Die), we have A (e) = A(e) = 1. Thus e' must be equiva-

lent to e.  The converse is almost trivial.

The following theorem depends on Theorem 3 in §4.

(2.9) Theorem 2.  A necessary  condition that D be the vertex of an indecom-

posable component of FQ, is that there exists  a e ÍÍ and y £ N AD) such that D

is a Sylow p-subgroup of G
aa.y

Proof   (assuming Theorem 3 (and Proposition 5)).   By Theorem 3 and the

remark following its proof we can assume G = NGiP).  Since any indecomposable

component of Ffi is a component of  FV for some orbit T of G on ÎÎ, we can

assume  G  is transitive.   By Proposition 2 and the definition of defect group, P  is

a Sylow subgroup of  G   „ for some  a, ß £ Í2.
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3 The Brauer homomorphism.   Suppose  P < H < ¿VG(P) where  P  is a p-group,

and let fip denote the set of fixed points of P in fi.  Then there is a natural homo-

morphism / = f(G  a p  „. mapping   VÁG, fi) into   VF(H, fip):   First define  / in the

special case G - H—it  O. < fi„ x fi„ define f(A.) to be the standard basis matrix

for. (H, fip) corresponding to 0., and otherwise set f(A) = 0; then extend the

definition of / to  Vp(H, fi) by linearity.  / is now defined in the general case as

the composite of the natural inclusion  V p(G, fi) —► Vp(H, fi) and /.„ „ p „..

We give the verification that /.„  „ p „. is a homomorphism: Note that O. C

fip x fip  if and only if P < D..  Set /' =' ¿piD. /p(D¿; H, fi) and let B denote the

set of all F-linear combinations of standard basis  matrices  A. in   VÁH, fi)
l r

satisfying 0. C fip x fip.  Then B is an algebra isomorphic to  Vp(H, fip) in an

obvious way,  and /  is an ideal  in   VP(H, fi)  by Lemma 1.   Trivially, Vp(H, fi) =

] + B and / n B = 0.  The map / is clearly the composite of the natural projection

Vp(H, fi) —> B and the obvious isomorphism B —► VP(H, fip).  Thus / is a homo-

morphism.

If A £ Vp(G) then the restriction  VP(G) —► Vp(H) carries  A into /  if and

only if A = 2^_    cjAj where  0¿ n fip x fip = 0-that is, P 4G D.-whenever c. ^

0.  Now the above proof gives

(3.1) The kernel of f(G^ oP(H) is  Sp¿GD. I p(P; G, fi).

The relationship between / and the classical  Brauer homomorphism is de-

scribed below.  (See also   [15, footnote 8].)

Proposition 4.  Assume CC(P) < H and let s; Z(FG) —> Z(FH) be the standard

Brauer homomorphism.   Then the following diagram is commutative:

Z(FG)-> VF(G, fi)

/

Z(FH).->VF(//,fip)

If  C CG we write  C for the P-sum of all  permutation matrices corresponding

to members of  C.  Thus, if  C is a conjugacy class of  G, C is the image of the

class sum  C £ Z(RG) under the map  Z(RG) —» V„(G).  To prove Proposition 4 we

need to calculate  C in terms of standard basis matrices.  This has essentially

been done by Tamaschke (for the transitive case, in the formalism of S-rings [l6]).

We give an alternate approach more suitable to the present formalism by using

the "orbital character" notation.

For i = 1,- • • ,r we define d .(g) = |[a £ fi| (a, a8) £ 0 .\\  fot each g £ G (as

in Scott [14]).  Of course 6. is identically 0 unless O.Ca    x a    tot some a£fi.

(3.2) (Scott [13, 2.2]) dig) is the trace of g_A* acting on Rfi.

The proof is a direct  calculation from the definition of At.
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(3.3) Ç= 2¿(|0¿|_  2xeG 6^x))A. whenever C is a union of G-conjugacy

classes.

Proof.  Certainly we can express  C = 2. c .A . for some coefficients   c. £ R.—        iii i

A particular coefficient  c. is computed by multiplying C by A* and taking the trace

(the trace of A.A* on Rfi is easily calculated to be  Sr|G\|; see Wielandt [18, V]).

(3.4) (Scott [13, 2.7.9]) Suppose  C is a union of G-conjugacy classes. Fix a,

ß£0..  Then  \Oi\~lZxeCdiix)=\\x £C\ax = ß\\.

Proof.   Count the number of triples (y, 8, x) with  (y, 8) £ O., x e C, and yx =

8.  Counting in terms of x gives a total  2  £C ö.(x).  Counting in terms of (y, 8)

gives   |0.||{* eC\ ax = ß\\.

(3.5) Proof of Proposition 4.   Fix a conjugacy class  C of G and a standard

basis matrix a £ VF(H, 0p).  Let a, (3 e flp be such that (a, ß)     corresponds to

a.

Then the a-coefficient of /(C) is \\x £ C\ax = ß}\  by (3.3) and (3.4). Now

sic) is by definition  C Pi CG(P).  The a-coefficient of C n GGiP) is

|ix e C n CG(P)|ax = j8}|, again by (3.3) and (3.4).  Since P  fixes  a, ß and

centralizes no  member of  C — C O CAP), we deduce

|{x e C\ax = |81| = |jx e C n CG(P)| a* = ß\\    (p).

Thus the two a-coefficients are equal. Since  C and a were arbitrary, the commu-

tativity of the diagram  is established.

The following two propositions describe elementary properties of ffG  fl p Hy

(3.6) Proposition 5.   Let e e V AG) be a primitive idempotent.   Then fie) /- 0

if and only if D(e) >G P.

Proof.  If /(e) = 0 then e £ 2Pj    n   ¡AD.; G, fi) by (3.1).  Hence e e

I AD.; G, Q,)—consequently  D(e) <G D¿—for some  i with D¿ <G P by Green [7,

3.3a].  Since   P |G D. we have   P |G D(e).

If /(e) ¡¿ 0  then /(/F(D(e); G, Q)) ^ 0, since  e e 1 F(D(e); G, fl), and  so

P<GD¿ by (3.1).

(3.7) Proposition 6.  Lei e £ VÁG) be a primitive idempotent with fie) ¡¿ 0.

// N  is an indecomposable component of Efip/(e), then some Die) contains a

vertex of N.  If CG(P) < ft then N  lies in a block b of ft sac¿ that Fue  is in

¿G.(5)

Proof.   It is easy to check that, for any  i, f(A?) is a sum of standard basis

matrices with  defect group  contained in  a G-conjugate of D;.   Thus /(e) €

(5) See Brauer [3, §2] for a definition of b   .
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Set /(e) = X. e. where the  e.'s are primitive  orthogonal idempotents.   Then

N  « Ffipe. for some / by the Krull-Schmidt theorem, and the vertex of N is

D(e.) by Proposition 2.  Since f(e)e. = e. we have  e. £ ^Q<rpte) IF(Q> w> ^p)-

So  e. £ lF(Q; H, fip) for some  Q <G  D(e) by Green   Í7, 3.3a].  Hence D(ey) <H Q

<G D(e).

Now suppose  Cr(P) < H so that the standard Brauer homomorphism s: Z(FG)

—» Z(FH) is defined.  Let  c £ Z(FG) be a primitive idempotent whose image c

under the map Z(FG) —» Vp(G) satisfies  ec = e (thus (Ffie)c = Ffle and so  Ffie

belongs to the block associated with  c).   Then f(e) = f (ec_) = f(e)f(c_) = f (e)s(c)

by Proposition 4.  Hence  e. = e.f(e) = e./(e)s(c) = e.s(c);  consequently

(Ffipg.)s(c) = Ffipt?..  By [3, paragraph following 4.16], the proof is complete.

The following fact is also worth noting.

(3.8) A72y indecomposable component of Ffip   is isomorphic to a component

of FQpf(e) for some primitive idempotent  e £ V P(G).

Proof.   Since /(l) = 1, a decomposition  1 = 2,  e,   into primitive orthogonal

idempotents in  Vp(G) leads to a decomposition  1 = 2..    )-¡nf(ek) lnto .orthogonal

idempotents in  V P(H, fip).  The result now follows from the Krull-Schmidt theorem.

At this stage of our development we sacrifice a little simplicity for the sake

of obtaining more detailed information.

The   1=1 condition.  A p-group Q >G P satisfies the  1-1  condition with respect

to (G, fi, P, H) if P <G D. whenever D. <G Q.

The onto condition.  A p-group Q >G P satisfies the onto condition with respect

to (G, fi, P, H) if o    O fip x fip = o whenever o  is an orbit of H on fip x fip

whose associated defect group d satisfies d <r Q.

If  P  contains no proper subgroup conjugate to any  D., then   P  satisfies the

1-1  condition with  respect to  (G, fi, P, H).

If H = NG(P), and it P = Q (or more generally, if P  is weakly closed in  Q

with respect to  G), then  2 satisfies the onto condition with respect to (G, fi, P, H).

(3.9) We insert here a proof that  Q satisfies the  onto condition with respect

to (G, fi, P, H) when H = NG(P) and  P is weakly closed in Q with respect to G.

Let o be an orbit of H on fip x fip  whose associated defect group d is contained

in a conjugate of  Q.   Then a straightforward argument shows  P  is weakly closed

in  d.  In particular  NG(d) < H, so d is a full Sylow subgroup of C  « for  (a, ß) £

o.  We now easily deduce that any G-conjugate of P contained in G  „ is  G ^-côn-

jugate to P.  By the Jordan-Frattini argument (see [18, proof of 3.5]) H is transi-

tive on the fixed points of P in o   .  That is,  o    n fip x fip = o.

If e is any idempotent in  Vp(G), we let W    denote the character of G afforded

by  Kße. where  e    is an idempotent in  VR(G) satisfying F_ = e. In addition we

define ¥   = 0 for e = 0.
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Proposition 7.   Suppose Q  satisfies the  1-1   condition with respect to

(G, ti, P, ft).  Let e, e' be idempotents in  VpiG), and assume that e  is primitive

with Die) =G Q.  Then

(W ,¥ ,)r <0P,. „W,. ,.)„.e       e   <j   —      Key     fie ) H

Proposition 8.  Suppose Q satisfies the onto condition with respect to

(G, ti, P, ft).  Let e, e' be idempotents in  VF(G), and assume that e  is primitive

with Die) =G Q.  Then

The following standard fact is needed for the proofs of Propositions 7 and 8.

(3.10) Suppose e, e' e VpiG), and e2 = e, (e')2 = e'.   Then OPg, *Pgl) =

dimF eVAG)e'.

Proof.   The assertion is trivial  in  case  e  or  e    is  0; consequently, we may

assume  e, e     ate idempotents.  Let  a, a   be idempotents in   V AG) with  u = e,
r\j ti

a' = e'. Let K be a splitting field for V¡<ÍG). Then obviously OP , *P ,) =

dim£(Hom£G(KQa, Kfla')), and Hom£G (Mia, Ktiu') S¿uVf¿u . Since V£ S

K ®R VR and aVCa ' is an R-direct summand of VR, we have

dim«, aV^a   = rankp aV„a   = dimF aV„a   = dimp eV„e .

(3.11) Proof of Proposition 7.   By (3.1) and our hypothesis, the kernel of /

intersects the ideal IpiQ; G, Ù) trivially.  Since  e e /piQ; G, fi) we have  eVFe

C¡pÍQ;G,ü).   Thus   eVFe'  »   fieVpe')cfie)VpÍH,üp)fie').   Application of

(3.10) now finishes the proof.

(3.12) Proof of Proposition 8.  Set / = 2rf<   Q Ipid; ft, Op).  Then / is an

ideal in  VF(ft, iîp), and / C fiV AG)) by hypothesis.  By Proposition 6 (or direct

calculation) we have /(e) e /.  Thus

fieWpiH, fip)/(e') Ç fie)] fie') Ç /(e)/(VF(G))/(e') Ç /(e)Vp(H, Qp)/(e').

Therefore fie)VpÍH, Üp)fie') = /(e)/(Vp(G))/(e ) = fieV piG)e').  Again applica-

tion of (3.10) completes the proof.

The next section is devoted to further consequences of the onto condition.

4.  Brauer's first fundamental theorem.  We assume throughout this section

that Q satisfies the onto condition with respect to (G, fi, P, ft). P < ft < NG(P)

and /= /(GiojPjfi) as in §3.

(4.1) Theorem 3. (a)  Let e, e' be  idempotents in  VpÍG, ti) with  e primitive

and Die) =G Q.   Then /(e) is primitive, and Efie|FQe' if and only if Ftipfie)\Ftipfie').

(b) In case ft = NG(P) and 7 e VF(ft, 0p)  is a primitive idempotent with

ü(e) = P, then "e   is equivalent to fie) for some primitive e £ VpiG) with Die) =G P
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Proof,  (a) We shall use the fact established in (3-12) that f (eVP(G)e') =

f(e)VF(H, üp)f(e').  Of course we also have f(e'Vp(G)e) = f(e')VP(ti, fip)/(e).

Since eVp(G)e is completely primary, so is f(eVp(G)e) = f(e)Vp(H, fip)/(e).

Hence /(e) is a primitive idempotent.   (/(e) /= 0 by Proposition 5.)

If  Ffi/(e)|Ffi/(e') we have  f(e)=zf(e')w where  z £ f(e)Vp(H, fip)/(e')  and

w £ f(e')Vp(H,üp)f(e).  Choose x £ eVp(G)e'   and y £ e'Vp(G)e  with f (x) = z

and /(y) = w.   Then xe'y £ eVp(G)e, and no power of xe'y  is  0  since f(xe'y) =

zf(e')e =f(e).  Thus xe'y is a unit in eVp(G)e.  Consequently Ffie|Ffie'.

Conversely if Ffie|Ffie', then e = ue'v for some u, v £ Vp(G).  Hence /(e) =

f(u)f(e')f(v) and so Ffi/(e)|Ffi/(e').

(b) By the remark following Proposition 6 we have e = zf (e)w fot some z £

eVp(/V,fip), t¿< £ V p(H, fip)<?   anda primitive   idempotent  e £ V p(G).  Since  e

belongs to the ideal /p(P; H, fip) by hypothesis, we have  z, w £ Ip(P; H, fip).

By Sylow's theorem  P  is a Sylow p-subgroup of Go if and only if P  is a

Sylow p-subgroup of Hag', when this occurs  H is transitive on the nonempty set

(a, ß)G n fip x fip.  Now we easily deduce that f(lp(P; G, fi)) = Ip(P; H, fi).

Hence we can choose x, y e /p(P; G, fi) such  that z = f (x) and w = f(y).

Thus eyxe £ eVp(G)e O /p(P; G, fi).  Since f(xey) = zf (e)w = e   we see that

no power of eyxe  is  0.  Consequently  eyxe  is a unit in  the completely  primary

ring eVp(G)e.  Therefore eVp(G)e = eVp(G)e n Ip(P; G, fi), and we conclude that

e £lp(P;G, fi).

By part (a), /(e) is a primitive idempotent.  Clearly /(e) is equivalent to e.

Since e.£ /p(P; G, fi) we  have D(e) <G P.  But /(e) /Oso D(e) >G P by

Proposition 5.  Thus  D(e) =G P and the  proof is complete.

The previous theorem and Proposition 5 show that / establishes a 1-1 corre-

spondence between equivalence classes of primitive idempotents in Vp(G, fi) and

Vp(NG(P), Qp) with defect group  P.  This correspondence will now be  identified

with the  help  of a  lemma in  the next section.

Proposition 9.  Suppose  H = NG(P) and e £ Vp(G) is a primitive idempotent

with D(e) =    P.   Then  Ffip/(e) is the Green correspondent^) of Füe.  In particular

*.<D-fc :***.,<»      (^(tG:P])+1).

The following preliminary result is an easy application of Proposition 1; the

details are left to the reader.

(4.2) Suppose  the RG modules  X, Y are direct summands  of Pfi.  Then X is

isomorphic to a direct summand of Y if and only  if X is isomorphic to a direct

summand of Y.

(6) See [8, Theorem l\.
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Now we use (4.2) to  prepare for the  proof of Proposition 9-

(4.3) Let  X be an  NG (P)-indecomposable component of RtiN    ._., and   Y  a

G-indecomposable component of Rti with vertex  P. Then X is the Green corre-

spondent of  Y if and only if X is the Green correspondent of  V.

Proof.  Of course  Y is indecomposable with vertex P by Proposition 1.

If X is the Green correspondent of  Y, then X| V      .p    and X has vertex  P.

Thus  ^l^/vr(p) and X is indecomposable with vertex P by Proposition 1, and so

X is the Green correspondent of  Y.

Conversely if  X is the Green  correspondent of   V, then  X\Y        p    and  X has

vertex  P.   Therefore  X has vertex  P  by Proposition 1, and  X|Y      (p    by (4.2)

applied to  NG(P).  Hence X is the Green correspondent of  V.

(4.4) Proof of Proposition 9 (assuming Lemma 2).  Lemma 2 gives

Ftifie)\iFtie)H.

Trivially P < Difie)), and Difie)) <G P by Proposition 6.  Thus D(/(e)) =G P,

and so   Ftipfie) is the Green correspondent of Eüe.

Now choose primitive idempotents  u, v in  VAG),  V AH, tip) respectively,

with Ü = e and v = fie).  Thus  Rfh7 B Eue and Riîpv = Ftipfie).  By Proposi-

tion  1, Rfia has vertex P, and by (4.3) Rtipv is the Green correspondent of Rila.

Thus  iRtipv)     is the direct sum of Rf2a and indecomposable modules with vertex

conjugate to a proper  subgroup of  P.   The stated congruence on character degrees

now follows from Green [7, Theorem 3l-

(4.5) Theorem 4.   Assume  F  is a splitting field for V AG, ti) and V   (ft, tip).

Suppose  e £ V AG)  is a primitive idempotent with Die) =G Q and let X, X   be the

modular chracters associated with  e,  ¡(e) respectively.   Then A = A °/.

Proof.   Let £ and £ denote matrix representations affording A, A  respec-

tively.  These representations have the same degree by Theorems 1 and 3.  Thus

£  and £ °f ate representations of V AG) oí the samejiegree.  Since A(/(e)) = 1,

£  is a constituent of £ ° /.   Thus £ is equivalent to £ ° /.

5.  Brauer's second  fundamental theorem.   Again, P < ft < NGiP) where  P is

a p-subgroup of G, and / denotes /(G  ß p Hy  $ is the permutation character of

G, and if B is a p-block of G, we set (9ß = 2 Xeß(ö, y)y (where the x's are

absolutely irreducible characters of G).

Lemma 2.   Let e £ Vp(G) be an idempotent.   Then iFtie)H   « Ftipfie) © T

where  T is a summand of fiti - tip).

(5.1) Before the proof, we clarify the condition on  T.  Suppose  P <3 G.   Let

M be an indecomposable component of Fti.   Then M|Fiîp  if and only if P  is con-

tained in the vertex of M.
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Proof.   Obviously  P  is contained in the defect group of every standard basis

matrix of (G, fip) and is contained in the defect group of no standard basis matrix

of (G, fi — fip).  So the result follows from Proposition 2, the Krull-Schmidt

theorem, and the way defect groups for idempotents were defined.

(5.2) Proof of Lemma 2.  Obviously we may assume that G = H and e  is primi-

tive.  By (5-1) and Proposition 5 we have /(e) = 0 if and only if Ffie|F(fi - fip).

Thus it remains to show  Ffip/(e) «. Ffie in case /(e) ¿ 0.

Observe that /(e) is a primitive idempotent since / is onto (f(e)Vp(H, fip)/(e)

= f(eVp(H, fi)e) is completely primary).

To complete the proof we identify   Vp(H, fip) with the algebra  B  described

in the first paragraph of §3.  The map / is now just the projection  V„(H) —> B.

In particular /(/(e)) = /(e) and so /(e/(e)e) = /(e) / 0.   Consequently  e/(e)e  is a

unit in eVp(H, fi)e.  Therefore e is equivalent to /(e) and the proof is complete.

(5.3) Theorem 5.  Suppose x £ G and a power x" = z is a p-element.  Let e £

VP(G) be an idempotent, and take P = (z), x £ H.   Then W (x) = W.. .(x).  In

particular ¥ (z) is a nonnegative rational integer, and |W (x)| < ¥ (z) < 6(z).

If e  is primitive, then ¥ (z) > 0  if and only if z is conjugate in G to an

elemen t of D(e).

Proof. First we show W (x) = ¥ . .(x). Again we may assume that G = H

and e is primitive. By Lemma 2 we need only show ¥ (x) = ¥.. ,(x) = 0 when

Ffie|F(fi - fip). Let e. £ VR(H) be a primitive idempotent with ë~. = e. Then P

is not contained in the vertex of Rfie by Proposition 1 and (5-1). Therefore, the

p-part of x is not conjugate to an element of the vertex of PfieQ, and so *P (x) =

0 by Green [7, Theorem 3l- Of course W .(x) = 0 since /(e) = 0 by Proposition

5.

Since  P acts trivially on fip,   Vf{e)(z) = ^^(l)^ I ^/(e)^l

"P (z) ?¿ 0 precisely when "P.,  . / 0—that is, /(e) / 0.   By Proposition 5 this
& J   \K )

occurs if and only if P is conjugate in G to a subgroup of D(e).  This completes

the proof.

As an immediate consequence of the above theorem (3-8) and Proposition 6,

we have

(5.4) Corollary A. Suppose x £ G and a power xn is a p-element. Let 0 be

the permutation character for the action of CAx") on the set of fixed points of

x"  in fi.   Then

Vx)=  £   ^b{x)-

bG\   B

In particular, d„(x")  is a nonegative rational integer, and |ö„(x)| < öß(x")

< 0U").
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6.  Defect 0 and   1.  We state all the main results of this section before at-

tempting any proofs.

Assume K, F ate splitting fields for VK, Vp, and let x > ̂    denote the

characters of G afforded by X     KM. respectively (see §1 for notation).  Let the

symbol 2   y    denote the sum of all distinct p-conjugates of x    and write s ~ t

if X    ls p-conjugate to  v .

Set a = vpi\G\), and define vg = vpixjd)).  Put e = max \v i\0¿|)!¿_r

By a theorem of Wielandt (see Keller [12]), we have v   < e for all s.  We are

interested here  in the cases  v    = e and  v   = e — 1.

Lemma 3.  Suppose the number of p-conjugates of x    zs divisible by py.   Then

(a) y < e - vg.

(b) If y - e — v    then x     has exactly py p-conjugates, and 2    y0' = ^ ■ for

some j.  If X   £^t  t^)en ^ ~ Î'   ^e veTtex °f M. has order pa~e.

Theorem 6.  Suppose v   = e.

Then x   = *P-   for some    j.   If X   -^t  ¡hen k - /•   The vertex of M. has

order pa~e.

Also, x    's p-rational.

Theorem 7.  Suppose v   = e — 1.   Then we have either A  or B  below:

(A) xs has exactly  p p-conjugates.  2    v^ = *P   for some j, and if xs Q.^fe»

then k = /.   The vertex of M. has order pa~e.

(B) The number of p-conjugates of x    divides p — 1.   If x   £^-  then one of

the following occurs:

(i) *P. = 2    Xa-   The vertex of M. has  order 6a~e + 1.

(ii) W. = 2    y^ +2    Ver where t r^ s,   v   = e — 1, and the number of p-con-
jp^-sp^t I

jugates of x   divides p — 1.   T¿e vertex of M. has order pa~e.   If *P. = *Pfe, then

A-/.
(iii) *P. = 2    Ver + T  where  T ¿ 0 is a character such that, whenever xt Ç T,

the number of p-conjugates of y_    z's divisible by p,  v( < e — 2, anû? eac¿ p-conju-

gate of x   appears in  T  with the same multiplicity as xt-   The vertex of M    has

order pa~e.  If ¥. = Wfe, ¿¿e« k = /'.

(iv) p = 2 and W. = 2y .   T¿e t^eríex o/ M. ¿as oraer pa_e.  If V.= Wfe, t¿ew

Corollary B.  Suppose the block B  has defect   1.  Let   (x)  be a defect group

of B, and let b be the block of NG((x))  satisfying bC = B.  Let d   be the per-

mutation character of NGi(x))  on the fixed points of x  in ti, and set 6 b =

2,  /, xhi where  y.   is absolutely irreducible and appears in 0, with multiplicity /fe.
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Then we may find distinct indices j,   such that öß = 2,  /, *P.    + í> where

(1) $  is the sum (with multiplicities) of characters ¥. whose affording module

M.  is projective and lies in B.

(2) W.   (x) > 0  for each k. and W.     is either a nonexcebtional character of B
Ik Jk r

or the sum of all exceptional characters of B.

Now we prepare to give the proofs.  Several arithmetic preliminaries are required.

(6.1) There exists a p-adic number field K with the following properties:

(i)  K  is obtained by adjoining an mth root of unity, where p\m, to the p-

adic completion of the rational field.

(ii)  K contains a primitive  Ith root of unity, where  I is the p -part of the

group order \G\.

(iii)  Each character y    is afforded by a  K(~y ) representation.

(iv) Each indecomposable component of Rfi is absolutely indecomposable

(where  R denotes the ring of local integers in  K).

Proof.   By Fong's result(7) (see [6, 16.51) a field K    satisfying the first three

conditions is obtained by adjoining an /th root of unity (or (3/)th root of unity if

p = 2 and  3^1) to the p-adic completion of the rational field.  Let  F. denote the

residue class field of KQ, and select a finite field GF(q) which is a splitting

field for Vp   (G, fi).  Now let  K be the field otained by adjoining a primitive

(q — l)th root of unity to  KQ.  Then the field  K satisfies condition (iv) by (1.3).

Obviously  K satisfies the other three conditions.

(6.2) Notation.  Note that it suffices to prove Lemma 3, Theorems 6 and 7 and

Corollary B for any particular p-adic field satisfying condition (iv) above.   Conse-

quently we shall assume throughout the rest of this section that  K is a field satisfy-

ing all the conditions of (6.1).

We  let §    denote the Galois group of  K(y )/K, and let  §    denote the Sylow

p-subgroup of \.  Set pw' = |g»|.

(6.3) (i) ^*a ranges over all the distinct p-conjugates of y    as a ranges over

(ii) 2lcre(a0 ya =0(p   s)  for any local integer y of K(ys).

Proof.  By (6.Iii)   Q C K, where Q is the field of /th roots of unity.  Then

K(y ) C K(oj) where  Co is a primitive path root of unity.   K((o)/K is a fully ramified

abelian extension of degree (p — l)p"~    (see [17, proof of 7-4-1]).  The p-conju-

gates of Xs  are by definition the characters y , a ranging over the Galois group

of Q(y )/Q.  Since  Q(to)/Q = (p — l)pa~  , it follows from our description of

0) Quoting this result to prove (6.1) is, in a historical sense, putting the cart before

the horse. The reader familiar with algebras over local fields (see Albert [l, IX, Theorem

23]) can easily prove (6.1) directly.
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K((ú)/K that  Kix )/K is a fully ramified extension of degree  [<2(y ) : Q], and  y

is naturally   isomorphic to the Galois group of <2(y )/Q.  In particular (i) has now

been proved.

Let  co    be a primitive  p   s     th root of unity.   Kico ) C Kico) since

|§?||[K(Xs):K]|[K((»):  K] = (p - Dp
fl-l

We claim  K(y^) Ç K(<u).(8)

Let ë denote the Galois group of  Kico)/K, and let ë   , ë     be the subgroups

of ë which Galois correspond to  Kix )>  K(<u ^ respectively. Since  y    is a Sylow

subgroup of y    and y    = fe/fe   , the power of p in  |ë   |  is p s.  Since

ë/ë    is isomorphic to the Galois group of Kico )/K and [Kico ) : K] = (p — l)p   s,

we have  le  I = p"'1'™3.  Thus  ë   C ë     and so  Kico ) D K(y ).

Now let y    denote the group of all automorphisms a oí Kico )/K such that

coa= cj" for some integer n s 1 (p).  We claim y    is isomorphic to y    by restric-

tion to  Kix )•

Let y denote the Galois group of Kico )/K. From the definition of y we

have [y : y^] = p — 1 and so y is a Sylow p-subgroup of y . The natural re-

striction map y —► y is an epimorphism and consequently sends y onto y .

But  |y  | = p   5 = |y  |  and so y    is isomorphic to y    by restriction as claimed

Thus to prove (ii) it is enough to show  2     „1 yCT = 0 (p   s) for any local in-

teger y of K(co  ).

Now the powers of co contain an integral basis for Kico )/K [17, proof 7-5-

3]. Thus we need only verify the congruence in case y = co for some integer k.

Then
W ç Ul

P      -1 p    s-l

Z ya=   Z   oj[l+z^k = coks £   («f)z-

cxeg1 z = 0 z=0

The final sum is  pW s  ii coPsk = 1  and icoPsk)pWs - l/c/* -1 = 0 otherwise.   This

proves (ii).

(6.4) If s ~ t then d__. = d    for all j.

Proof. By (6.1 iv) each character *P. is afforded by an RG representation.

Hence OP., y ) = OP., y'7) for each a £ y and each 7. The result now follows

from (6.3 i).

(6.5) // *P. = W    and M.,  M    both have a vertex of order pa~e, then j = k.

Proof.   Let P be a vertex of M..  Then P  satisfies both the   1-1 condition
;

and the onto condition with respect to (G, ti, P, NGiP)).  Let e.,  efe e   VF(G, ti)

(8) This argument fails if p = 2.   But in this case the sum in (ii) is just

[ÇU):^)]-1«^^).
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be primitive idempotents with M. « Ffie .,   M,   Ä Ffie, .   Then  Propositions 7 and

8 give

»/(.,>• ¥/f.à)>-«./V"(^,,,*î
= (?., f.)       (/ 0)

= OP        W      )
VKey */(«,)'"

Since the inner product is not zero, we have D(e.) >r P by Proposition 5-

By hypothesis   |D(e, )| = \P\.  Hence  ß(e.) =G P.   By symmetry we  now have a

second equality

It follows that ^//g.)  = ^//e  y  Since  Ffip/(e.) and  Ffip/(e.) are projective

indecomposable  F(NG(P)/P) modules (Theorem 3), we deduce that Ffip/(e.) **

Ffip/(e,) (from Proposition 1 and [4, 7-14 or 8.4.11]).  Thus  e. is equivalent to

e,   by Theorem 3 (or Proposition 9) and so / = k.

(6.6) Proof of Lemma 3. Select an index / such that y   C *P., and choose a

primitive idempotent  u £  VR  with  M.   ÄPfizz.

Let P denote the ring of local integers in  K(y ) = K.  By (6.1 iii) there exists

a primitive idempotent /   £ uV^u  such that    Kfi/   affords   ^ .   By a suitable

choice we can insure that /   belongs to an R  order of uV^u containing  uVXu.

Let C    denote the absolutely irreducible character of  V£ associated with /

(that is, C (/ ) = !)•  Then £ (/x) = £ (uf ux) = £ (/ zzxa) £ P  for all x £ V~, and
OO OO OO oo IS.

C(f x) = 0 for any character £ of  V^  which does not contain C ■

We let y    act on   V7y in the obvious way.   For a £  Lf    let  £CT denote the

character associated with / a.   Thus  Ç^(xa) = £ (x)°" for all  x £  V~.

Since the characters  y   ,  o"  e  Lf  , are distinct,  the  idempotents  /   are orthog-

onal.   In particular l0-€J:i f a = f is an idempotent in  zzV^zz.

Now set /= 2 t.A..  We compute the coefficients  t. as follows:  Let  r denote

the character of V£  afforded by Kfi.  Then r= 2( y.(l)Cr and r(A. A*) = 8..\0.\

(as in the proof of (3.3)).   Thus   \0.\t. = r(f A*) = y (1)1 „  „0 £ (/At)a for each i.
Z X Z S C/t L ç ¿ Z

Hence

^-w. + ̂ (S0C.(MJ)'J-^(|oi|)

> ^^ -f- ̂̂  - ^(lOj)    by (6.3Ü)

> v    + w    — e.
—    s s
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Since / is an idempotent, v it.) < 0 for some  i.  This proves part (a) of

Lemma 3.

Now suppose w   = e — v .

Then v it) > 0 for ail  i and so / e aV^a.  Hence / = a.  In particular *P. =

Scr£gO yJ.   By (6.4) §s°= §s-that is, Y^  has exactly p"'5 p-conjugates.

If vit.) = 0 then  0> v   +w   - j/(|0.1) > 0  and so vT|0.1) = v   + w   = e.

So by definition  |ß(ä)| = pa~e.  D(ü) is the vertex of M. by Propositions 1 and 2.

Since the choice of / was arbitrary except for x   Ç. ̂ -> we have *P. = *P    =

2   x° whenever xs £ ^i-  Also the vertex of M,   has order pa~e; thus  v   Cf

implies  A = ; because of (6.5).  This completes the proof of part (b) and the lemma.

(6.7) Proof of Theorem 6.  Immediate from Lemma 3.

The next result is a technical preliminary to the proof of Theorem 7.  Its as-

sertions are almost trivial in case  V„  is commutative.

(6.8) Suppose x   + X, £ ^- where either s = t or s + t.  Let u £ VR  be a

primitive idempotent with  Rtiu & M., and let  K be a p-adic field containing

K(x ^'  ^ixX  Denote the ring of local integers in K by R.
St ^

Then there exist primitive idempotents f , j   £ V~  sac¿ that  Ktif   affords

X >  K-tif   affords v , and

0) 4 £ uVK(Xsf  and h 6 uVK(Xtf>
(ii) / a is orthogonal to fT, for each a £  y    and r e § ;

(Hi) C (fsw} e R and C iftw} £ R for all w £ V~, where £ , C, are the abso-

lutely irreducible characters of V~ satisfying C (f ) = CAO = L   Furthermore,

C if w) = C if w) = A(ativa)  where X is the absolutely irreducible character of V~

(mv¿/¿ values in  R) satisfying A(ä") = 1.

Proof.   From (the proof of) Theorem 1 we know that aV„.     .a has an abso-

lutely irreducible representation module   y    of degree d   . such that  K(x )tif

affords  x    f°r anv primitive idempotent / e aVK-x   .a with  V / / 0.  If C    is the

character of  VWIY   ., associated with / then  C ifw' is easily seen to be the trace

of the action of /aa>a on   Y    iw  £ VK(X  y-  Moreover, if /j, /2, • • •   are a full set

of d  . orthogonal primitive idempotents in aVK(x   yu which do not annihilate   Y

then we may view the quantities  C (/\w\ C (/'-^> ' ' '   as diagonal coefficients

for uwu in a matrix representation associated with  Y

Let R    denote the ring of local integers in  Kix ^  Now tne algebra aV„  a

has a unique irreducible  representation, which is linear and may be realized as

the restriction to  uVR  a of the irreducible character A of  VR    associated with û

(see (2.7)).   Thus we  may  choose a matrix  representation associated with   Y    so

that any  x £ uVr a is represented integrally  with all diagonal coefficients having

residue class  A(x).   Let /,, /,,-••   £ aVK(x   .a be primitive idempotents which

give rise to such a matrix representation.



1973] MODULAR PERMUTATION REPRESENTATIONS 119

In case s = t we take /  = /., / = f 2 and it is clear from the preceding dis-

cussion that (i) and (iii) are satisfied,   (ii) is a consequence of the mutual orthog-

onality of the idempotents  (/. + f-)'T, o £  y  .

In case  s ^ t we take  /  = /    and repeat the whole procedure  (with  y   in-

stead of y ) to obtain /.  Here (ii) is automatic, while (i) and (iii) are satisfied

as before.

(6.9) Proof of Theorem 7.  If the number of p-conjugates of y    is divisible by

p, then  we have  (A) by Lemma 3-  Hence we may  assume the  number of p-conju-

gates of y    is prime to p—that is, divides p — 1.

Suppose y    C W. and let u £ VR be a primitive idempotent with  Rfizz ** M..

We distinguish two main cases.

Case 1.  *P. = 2, Ver.

Then *.(1) ¿ 0 (pe).  Hence by Green [7, Theorem 3l (or Theorem 3) the ver-

tex of M. does not have order p       .  We calculate  u = l.t.A.   where  lO.lf. =J r 7     17 '      7   '   7

Xs(l) 2 ^(zzA*)0'.  Hence vp(t.) > 0 if  \D.\ > pa~e+ l.  So by definition  \D(ü~)\

<pa~e+l.  Thus  D(u~) (= vertex of M.) has order exactly pa_e+1.

Case 2.  V. ¿ 1   y.
j p  As

Here we must show that we get one of the types B (ii), (iii), or (iv).   Note

that 2   xj Ç ̂    by hypothesis and (6.4).  Let 2   y° + yt C *P. where s = t ot

s rf, t.

Set  Xs = Xs(l), xt = Xt(l).

Let  K be a p-adic field containing  rC(ys),  K(y(), and choose fs, f( as in

(6.8).  Then we calculate

and

Thus

7 R

(pV*fVt =    E  (pVIO.DC^AI^,. £ zzV   «.
I K

(pe/xs)f\ = (f'/xV =   £ (p*VhÔT)A(«A*«)A. £ zTv^.
7 K

We show (pe/xs)fs 4 0: If not, then (pe-1/*,.) 2      __ /^ £ hKrh   and   so

2cre„  /a £ uVRu. Therefore 2^^   /^= zz. But this implies *P. ■ Sv, a contradiction.

In particular X(uA*u) ¿ 0 for some  i with  |D . | = pa~e.  By Proposition 3 the

vertex of M. has order pa~e.  Note also that this gives k = /' whenever *P. = *P^

because  of (6.5).

Suppose now that the number of p-conjugates of y{ divides p - 1.  We will

show that this leads to type (ii) or (iv).
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Here we may assume that K is obtained from K by the adjunction of a primi-

tive pth root of unity (this may be seen directly or from the proof of (6.3)). Set §

= §(k/K) and let r^ = |§J,  r( = \§(\.  Write  J for  2 /J and f for

(p - 1 /rs)ipe/xs)fs - (P -l/rt){p*/xt)fi=   Z «Pe/*X - (pVx )/ r = 0 (p).
ere g

Hence / + cj  £ uVQu where  c = — r x ¡r x     Now vAx ) = v < e — 1 by

Theorem 6, and so  c £ R.

Set v « fs + c/f  Then A(z7) = Cs(/^) = ^(/s) = 1; also A(<7) = ¿f(/f„) = ^ty) =

c.   Therefore c = 1.  In particular, v = vAx^i = e — 1, and c = 1 + ipe/x()k for

some k £ R.  Now /  + / = t> — kipe/x)ft e uVRu.  By (6.8) /  + /  is an idempotent,

and so /   + / = a.   Consequently  *P. = 2    XCT+ ^D X, •   If  s 't'- ' we have type (ii).

If s = t then  p = 2, since   c = 1  and  c = - 1; so we have type (iv).

Finally, we are reduced to the case where the number  of p-conjugates of  v

is divisible  by p  whenever 2    y_a+ v    C *P..   By Lemma 3, w   < e — 2.  By (6.4)

all p-conjugates  of Xt aPPear in *P. with the same  multiplicity.   Thus we have

type (iii), and the  proof is complete.

(6.10) Proof of Corollary B.  Suppose M. is a nonprojective indecomposable

component of Rti which lies in B.   Thus the vertex of M. is   (x)   by Green [7,

Corollary to Lemma 4.1a].  In particular *P.(x) > 0 by Theorem 5.

Let x    í ^-  Then v   =a— l>e— I.  Uv   - e then  Y   = W. is p-rational

by Theorem 6.   If v    = e — I, then  a — e = 0  and so we  have type B(ii), since

M. is not projective.  Hence *P. = 2„ yct.
7 v    ' ;        P     s

Note that the  latter case does not occur when  (x)  acts trivially on ÎÎ, be-

cause  e is obviously less than  a.  So by Theorem 6 the  /,'s are the multiplicities

of the various indecomposable  components of Rti    which lie in  b  (R  suitably

large).  Application of Theorem 3 now finishes the proof.
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