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THE STRUCTURE OF

72-UNIFORM TRANSLATION HJELMSLEV PLANES

BY

DAVID A. DRAKE

ABSTRACT. Affine or projective Hjelmslev planes are called 1-uniform (also

strongly 1-uniform) if they are finite customary affine or projective planes.  If

n > 1,  an 7¡-uniform affine or projective Hjelmslev plane is a (finite) Hjelmslev

plane  u with the  following property:  for each point  P of XX, the substructure
« — 1

-  P of all neighbor points of P is an (zi — l)-uniform affine Hjelmslev plane.

Associated with each point P  is a sequence of neighborhoods    'P C ?P C • • •

C nP = U.  For i < n, 'P  is an ¿-uniform affine Hjelmslev plane under the in-

duced incidence relation (for some parallel relation).  Hjelmslev planes are

called strongly rt-uniform if they are «-uniform and possess one additional prop-

erty; the additional property is designed to assure that the planes have epi-

morphic images  which are strongly (n — l)-uniform.   Henceforth, assume that  u

is a strongly «-uniform translation (affine) Hjelmslev plane.  Let  (*P)    denote

the incidence structure    P  together with the parallel relation induced therein by

the parallel relation holding in  u.   Then for all positive integers  i < n and all

points  P and  Q of  u,  (lP)    and  (lQ)    are isomorphic strongly  ¿-uniform trans-

lation Hjelmslev planes.  Let lU denote this common ¿-uniform plane; ("u)., de-

note the "quotient" of 'u modulo 7u.  The invariant r = px of ?I is the order

of the ordinary translation plane (nu)     ..   Then the translation group of u is

an abelian group with 2xk  cyclic summands,  k  an integer < 7¡;  one calls  zc  the

width of ?I.  If 0 </ < i < ti, then ('S), is a strongly (¿ - /)-uniform translation

Hjelmslev plane;   if also / > k, (™). and  (       U).   ,   are isomorphic.  Then if

u(¿) denotes  ( «),_ji "(1), ••• , ?I(n)  is a periodic sequence of ordinary transla-

tion planes (all of order  r) whose period is divisible by  k.  It is proved that if

Tj, ••• ,  T,   is an arbitrary sequence of translation planes with  common order

and if n > k,  then there exists a strongly n-uniform translation Hjelmslev plane

?I of width k  such that u(¿) = T. for ¿ < k.  The proof of this result depends

heavily upon a characterization of the class of strongly «-uniform translation

Hjelmslev planes which is given in this paper.  This characterization is given in

terms of the constructibility of the n-uniform planes from the (zi — l)-uniform

planes by means of group congruences.

Introduction.  Hjelmslev planes are generalizations of customary affine and

projective planes in which distinct lines may intersect in more than a single point.

Throughout this paper, we will refer to a Hjelmslev plane as an //-plane.  One

calls a finite //-plane 1-uniform if it is a customary affine or projective //-plane:
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For a finite //-plane (affine or projective) to be called n-uniform,  n > 1,  one de-

mands that all its maximal point neighborhoods be in - l)-uniform affine //-planes.

(There is a second requirement as well; see Definition 1.4.)

Strongly n-uniform  //-planes are defined to be 72-uniform  //-planes which

satisfy a condition called Property S (see  Definition 2.1).  The assumption of

Property S in an 72-uniform projective  //-plane  ?I is equivalent [4, Theorem 4.2] to

assuming that XÍ has a strongly (77 - l)-uniform epimorphic image under a certain

prescribed epimorphism. While we do not investigate the corresponding question

for affine  //-planes, at least we know that strongly 72-uniform translation affine H-

planes do have strongly z-uniform epimorphic images for  1 < i < « — 1 (see Proposi-

tion 2.9 for a somewhat stronger result).

In I954, André [l] proved that all translation planes can be represented by

group congruences.  In 1962, Lüneburg [9] gave two methods for constructing 2-

uniform translation (affine) //-planes from a given finite translation plane, i.e.

from a given  1-uniform translation //-plane.  Both methods involve the use of group

congruences; both may be applied to any finite translation plane to yield 2-uni-

form translation //-planes.  Lüneburg proved [9, Satz 9.1 and Satz 9.2] that the two

constructions yield all 2-uniform (affine) translation //-planes.

Henceforth, "translation //-plane" will be taken to mean translation affine H-

plane.  In §3 of this paper, we describe two generalizations of Lüneburg's construc-

tions.  We prove (Theorem 4.1 (b)) that, if either of these is applied to a strongly

72-uniform translation //-plane, the result is a strongly (72 + l)-uniform translation

//-plane.  One of the two constructions may be applied to any strongly 72-uniform

translation //-plane; the other may be applied precisely to the ones which have

elementary abelian translation groups.  Conversely (Theorem 4.1 (a)), every

strongly (72 + l)-uniform translation //-plane can be constructed by one of the two

methods from some strongly  «-uniform  translation //-plane.  Since  72-uniform implies

strongly  72-uniform when  72 = 1  or  2,   the above results are all generalizations of

the corresponding theorems of Lüneburg.

In [2],  Artmann characterized the projective //-planes of "height 72," tz > 2,

as the class of projective //-planes obtained by applying a particular construction

process to the projective //-planes of height n - I.  Artmann's construction pro-

cedure differs fundamentally from the generalized Lüneburg constructions given in

this paper in the following respect:  in Artmann's construction, the //-plane of

height 72 - 1 is recaptured by taking an epimorphic image of the constructed H-

plane; in the constructions presented in this paper, the (72 - l)-uniform //-plane

appears as a substructure of the constructed 72-uniform //-plane.

In [6], the author proved that if 21 is an 72-uniform translation //-plane whose

associated customary affine plane has order px,  p  a prime, then the (abelian)
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translation group of 21 contains  2xk direct summands where k is an integer < ?2.

We call k the width of SI. If k = 72,  we say SI is horizontal;  if k = 1,  we say SI

is vertical.   As a corollary to Theorem   4.1(b),   we obtain the result that all vertical

72-uniform translation //-planes are strongly 72-uniform.

Associated with each point  P  of an «-uniform //-plane  SI is a sequence of

neighborhoods:    P,    P, • • • , "P = SI.  For each  i < n and each point P,  there

exists a parallel relation on the lines of  lP which makes  'P into an z-uniform

affine //-plane under the incidence relation induced by SI (Proposition 1.3).  If SI

is strongly 72-uniform, then  1P is strongly z-uniform (Proposition 2.2).  If SI is

either an 72-uniform translation //-plane or an affine //-plane belonging to a strongly

n-uniform projective //-plane, then  lP may be given the parallel relation induced

by the parallel relation holding in SI (Propositions 1.4 and 2.3).  Let OP)   denote

1P together with the induced parallel relation.  If SI is a translation //-plane, so

is ('P) ;  and (lP)   and Oß)   are isomorphic for all points  P and g of SI

(Proposition 1.4).

If SI is an ?2-uniform translation //-plane, we define OST). to be the "quotient"

of OP)* modulo ('P)* fot 0 < j < i < n.   We prove (Proposition 1.10) that OSI). =*

C'"*SI).   ,   fot n> i> j> k where  k is the width of SI.  Let SI(z) denote OSI).   ,.
J -k — '   — 7-1

Then the sequence of ordinary translation planes  SI(l), • • • , Sl(n) clearly has

period divisible by k.  If SI is a strongly zz-uniform translation //-plane, then the

OSI). are strongly (z - /)-uniform translation //-planes (Proposition 2.9).

The invariant oí an zz-uniform //-plane is defined to be the order of the as-

sociated customary affine or projective plane.  If SI is a strongly zz-uniform trans-

lation //-plane with invariant r, then every OSI). also has invariant  r,  and every

SI(z') has order r.   The following theorem is the second major result obtained in

this paper.

Theorem 6.3.   Let 8 and S be horizontal translation H-planes with a common

invariant r.   Suppose that £  is strongly i-uniform and that E z's strongly j-uni-

form.   Then there is a horizontal strongly  (i + j)-uniform translation H-plane  SI

with invariant r such that OSI). S B  and 0+7'SI). S* S.
0 7

The proof of Theorem 6.3 is heavily dependent upon the constructive charac-

terization of the class of strongly z2-uniform translation //-planes given in Theorem

4.1.  By an easy induction proof,  Theorem 6.3 is generalized to Corollary 6.4

which states that strings of arbitrarily many //-planes of the specified type can be

"pasted" together as "factors" of one large horizontal //-plane.  Remark 6.5

(taken in conjunction with Remark 6.2) says that one can construct a strongly zz-

uniform translation //-plane  SI of width k and invariant r so that the first k

planes of the sequence SI(l), • • • , W\n) ate any ordinary translation planes of
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order r taken in any order. Here r is any prime power, and k and 72 are any posi-

tive integers satisfying k < n.

Since the definition of n-uniform H-planes includes the assumption of finite-

ness (see Definition 1.4), all results obtained in the paper refer only to finite H-

p lanes.

1.  72-uniform translation //-planes.  Let  ||  denote an equivalence relation de-

fined on the line set of an incidence structure (iß, ®, e). Then Oß, ®, e, ||) is called an in-

cidence structure with parallelism, and || is called a parallelism defined on ($, ®, e).

Let 21 and 8 be incidence structures with parallelism.  Then a homomorphism

from 21 to 8 is an incidence-structure homomorphism rp from 21 to 8 such that

cpig) || <p(A) whenever g \\ h.   An isomorphism is an incidence-structure isomor-

phism which satisfies (pig) || cpih) if and only if g || h.  In an arbitrary incidence

structure, one defines points  P and Q to be neighbor and writes  P ~ Q to mean

that P and Q have at least two common incident lines.  Lines g and A are said

to be iaffinely) neighbor, and one writes g ~ A to mean that each point incident

with either of g or A possesses a neighbor point incident with the other of g or A.

Definition 1.1.  An incidence structure with parallelism, 21 =(?($, @, e, ||) is

said to be an affine H-plane provided that the following four axioms are satisfied:

Axiom 1.  P. Q £ 5ß  implies the existence of g £ $ such that P, Q £ g.

Axiom 2.  // |g n A| > 1,  then  \g n A| > 2 z/ îzW o7j/y z'/ g ~ A.

Axiom 3. There exists an epimorphism <f> from a to an ordinary affine plane

ci satisfying:

(a) <p(P)'=<p(e)« P-v Ö.

(b) <p(g) = <p(A) « g ~ A.

(c) |g n ¿I = 0 =* cpig) || <¿U>).

Axiom 4.   Every point of ty  lies on exactly one line of each  ||-c/zzss.

Definition 1.2.  An incidence structure 77= (!ß, ®, £) is called a projective H-

plane provided that n satisfies Axiom 1, the dual of Axiom 1, and the Axiom 5

stated below.

Axiom 5.  There exists an epimorphism  <p fTom n t0 an ordinary projective

plane ñ satisfying:

(a) rp(P) = cpiQ) « P - Q.

(b) <pig) = <p(A) « g ~ A.
To interpret Axiom 5 (b) correctly one must know that one defines g ~ h in

a projective //-plane if and only if  |g n A| > 1.

The above definition for projective H-planes together with another equivalent

definition appear in Dembowski [3, pp. 291-293]. The above definition for affine

W-planes is due to Lüneburg [9, Satz 2.6] (see also [9, Definition 2.3Í). The

reader is warned that Lüneburg's characterization of affine  //-planes is misquoted

by Dembowski [3, p. 296]. Dembowski's definition fails to include the parallelism
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as part of the structure of the affine //-plane and in addition weakens the axioms

in two distinct ways.   That Dembowski's definition is indeed more general than the

one given above is demonstrated by an example due to Bacon [lO].  While we use

Lüneburg's definition for affine  //-planes, we will often call an incidence struc-

ture SI = OP, @, g) an affine H-plane or will say that "SI is an affine H-plane

under some parallelism"  if there exists a parallelism  ||  otz SI such that

(5$, @, £, ||) is an affine H-plane.

Definition 1.3.  Let  P be a point of an //-plane n. We define  P to be the

following incidence structure.  The points of P are the points  Q of n such that

Q ^ P.   The lines of  P  are the nonempty sets  h    = h n P,  h being a line of 77.

Incidence is given by inclusion.

Definition 1.4.  A 1-uniform affine (projective) //-plane is defined to be a finite

ordinary affine (projective) plane.  One calls a finite affine or projective //-plane

Z7 n-uniform (n > 2) provided that:

(a) for each point  P  in  zz, there exists a parallelism on  P  under which  P

becomes an (n - l)-uniform affine  //-plane;
— p

(b) for each P, every line  h     is the restriction of the same number of lines

of   77.

Associated with every affine or projective //-plane are two invariants denoted

by s and t.  We may take  / to be the number of lines through a point P which are

neighbor to the line g where (P, g) is an arbitrary flag of the //-plane; then s + t

will denote the total number of lines incident with P.    It is well known that s/t

is the order of the ordinary affine or projective plane associated with the //-plane

(see [9] and [7]).

The reader should thoroughly acquaint himself with the content of the follow-

ing proposition, as it will be used frequently throughout the paper, occasionally

without reference.   The result is proved in [4, Proposition 2.2].  To state the re-

sult, we need the following notation.  Let 77 be an //-plane with invariants s, t,

and let r denote s/t.   Then we write  "P (^ i)  Q" and read "P is ¿-equivalent to

Q" to mean the point  P  is joined to the point  Q by exactly  rl  lines;  we write

"P (~ i) Q"  and read  "P  is at least ¿-equivalent to Q" to mean  P  is joined to  Q

by  rl or more lines.

Proposition 1.1.   Let n be an n-uniform projective or affine H-plane.   Then n

satisfies the following properties:

(1) // r = s/t,   then s = r".

(2) If P  and Q are distinct points of n, P (e*i)   Q for some nonnegative

integer  i < zz.

(3) The dual of (2) holds in n for lines with nonempty intersection.

(4) If P eh,  |ÍQ £ h: Q (~ i) P\\ = rn'i for i = 1, 2, • • •, «.

(5) The  dual of (4) holds in n.
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(6) (oí i)   is an equivalence relation on the points of n for  i = 0, 1, • • • , n.

(7) The following conditions imply  \h D k\ > 1:  R, Q eh;  R, S £ k;  R  (at ¿) Q;

Q (~ i + l) S;   ¿  ¿s zz nonnegative integer < n.

(8) // P   ¿s czzzy p-oz'zzz; o/ n,  the number of points Q  of n such that Q (~ ¿) P

is r2("-° /or  ¿= 1, 2, •••, zz.

(9) Let  \h n k\ = r¿ zWz/> ¿ < n.   Then if P £ h n k,   h H k = {Q e h:

Q U zz - ¿) Py.

(10) Tzbe czW o/ (9) ¿o/zis ¿zz zz.

(11) For each point P, each line of P   is the restriction of exactly r lines

of   77.

Condition (11) is to be found in the proof but not in the statement of [4, Prop-

Proposition 2.2.]

In light of Proposition 1.1 (1),  an zz-uniform //-plane may be thought of as

having three invariants:  r, s,  and t.  However,  5 and / are determined by r and

n; thus we shall write the invariant oí an zz-uniform //-plane 77 to refer to  r.  Since

r = s/t,   the invariant of 77 is the order of the ordinary affine or projective plane

associated with 77.

In order to state the next several results, we need the following notation. If

P is a point of an zz-uniform (affine or projective) //-plane zz, we write lP to de-

note the incidence structure induced by 77 in \Q: Q (~ ?z — ¿) P\, 0 < i < n. If ¿, ;

are integers such that 0 < i < j < n, we write [lP : j] to denote the incidence

structure induced by 'P into the set of all points Q of 7P which are joined to P

by at least  r'~ '   lines of  7P  (where  r is the invariant of Z7).

Lemma 1.2.  Ler P  be a point of an n-uniform affine or projective H-plane n,

and let 0 < i < j < n.   Then  ['P : j] = 'P.

Proof.   Let  P £ h,   P £ k for lines  h, k of   77.   Then Proposition 1.1 (9)

implies that  h n'P = k  n'P  if and only if   \h n k\ > r1.  Then Proposition 1.1(5)

implies that  h n'P  is induced by r"~'  lines of 77.  Then a point  2  of 77 lies in

[ZP :;'] if and only if Q lies in 7P and is joined to P by at least rJ~l ■ r"~7 =

rn~l lines of 77. Then  Q is a point of ['P : j] if and only if Q is a point of  lP.

Since  7P and 77 induce the same lines on the points of lP,   [*P :/] = lP.

If P  is a point of an affine //-plane  21,  then  P has a ready-made parallel

relation induced from the parallel relation in  21. Namely, one may define   h    |l g

in  P if and only if there exist lines k,  j in  SI such that h    = k   ,  g    = j   ,  and

k || /' in SI.  We call this the induced parallelism in  P.   Similarly,   SI induces an

incidence structure and a parallel relation on any subset of points of  21.   In

particular, if  21  is 72-uniform,  SI induces a parallel relation on   'P fot every point

P,   1 < i < n.
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Proposition 1.3. Let P  be a point of n, an n-uniform affine or projective H-

plane with invariant r.   Then, for 1   < i < n,   'P is an i-uniform affine H-plane with

invariant  r (under some parallelism).

Proof.   By definition of 72-uniformity,  "~   P = P is an  (?2 - 1 )-uniform affine //-

plane. Let  s, t denote invariants for  77; s   , /  ,  the corresponding invariants for P.

Then the number of points on a line of   P  is   s    = t  (see \j] and [ 9], or [3]).  By

Proposition 1.1(1),  / = r"~  , hence   P has the invariant r. Now make the induction

assumption that   !+  P is an  (z + l)-uniform affine //-plane with the invariant  r,

some   i < n — 2 . Then, by what we have just proved,   [ZP : z' + l] is an ¿-uniform

affine //-plane with invariant r. The conclusion now follows by induction with the

help of Lemma 1.2.

The reader is referred to [9] or [3] for the definition of translation //-planes

as well as for most of the results on translation //-planes which we will use below.

For the convenience of the reader we recall the following definitions. An auto-

morphism  r of an affine //-plane  21 is called a translation provided: (1) r is either

the identity map or is fixed-point-free;  (2) the set of fixed lines of  r is the union

of complete parallel classes of  21. A  translation H-plane is an affine //-plane

which possesses a point-ttansitive group of translations.

Proposition 1.4.  Let 21 be an n-uniform translation H-plane.  If P and Q are

any points of 21 and if 1 < i <n,  then  lP and  'Q  are isomorphic i-uniform transla-

tion  H-planes under the induced parallel relations.

Proof.  Let   P    denote the incidence structure   P together with a parallelism

which makes   P an  (72 - 1 )-uniform affine  //-plane;  let  P. denote   P together with

the  induced  parallelism.  To prove that   P. is an affine  //-plane, it suffices to

show that the induced parallelism is an equivalence relation, i.e. is a parallelism,

and further, that   P    satisfies Axiom 4 of Definition 1.1.  It will follow that   P. is

an   (72 - l)-uniform affine //-plane, since   P    is   (tz - l)-uniform and since   in - 1 )-

uniformity depends only upon the incidence structure   P of   P  .

p p ° p n    p
The existence of  h     through  R parallel to g     is clear. Suppose   k    \\ g

and  R £ k   . Then there exist lines   Aj, k2, gj, g2 in 21 such that  h1 \\g.,

&2 II &2' ^1^    = ^   ' ^2^    =^   ' anc*  ^1^    = (#2^    =£   •   Let T   be a translation

of  2Í which maps some point of g     onto R.   Then   >"(gj) = Aj, and   Tig2) = k

Then it is easily seen that h^n k2 contains the set of all points on A,  neighbor

to  R,  i.e. the set  Aj   = k2 . Then  A    = k   ,  and uniqueness is established.

The induced parallel relation in   P  is clearly reflexive and symmetric. Assume

g    || A     and  A    || k   .  Let  R £ k   .  Let g1  and  A} be lines of  21 such that

Si l!^i>  (gj)    =g   > a"d  (At)    = A   . Let  &¡ be the line of 21 through  R which is

parallel to gl and  Aj. Then  Uj)     is the unique line parallel to ig.)     and  (AAP
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through  R. Hence   (k.)    =k   , and g    \\ k   . Then the induced parallel relation is

an equivalence relation, and   P. is an  (n — 1 )-uniform affine //-plane.

Since   P. has the parallel relation induced by  21,  the neighbor translations of

21 induce translations of  P.. A neighbor translation is a translation which maps

one, and hence each point, onto a point neighbor to itself [8, Satz 12]. Clearly the

induced translations are transitive on the points of  P. and by [8, Satz 12], they

form a group.  Consequently   P . is a translation //-plane.  This proves that  "~   P

is an  (zz - 1 )-uniform translation //-plane under the induced parallel relation.

Assume that  n~1P is an  (zz - ¿)-uniform translation //-plane under the parallel

relation induced by  SI. Then  »-i~1p = ["-!_1P: zz - ¿] is an  (n - i - l)-uniform

translation //-plane under the parallel relation induced by the parallel relation of

"~'P.  But if the parallel relation in  n"lP is the one induced by the parallel re-

lation of   SI,  then both   "~'P and   21 will induce the same parallel relation in

77-7-   p^  gy induction,     P is a ¿-uniform translation //-plane under the induced

parallel relation for  1 < k < n.   If r   is the translation of  SI which moves   P to Q,

it is easy to see that the restriction of f to      P is an isomorphism of     P onto     Q.

If  n is a set of subgroups (called components) of a group  T, we write

](T, n) to denote the incidence structure with parallelism defined as follows:  points

are the elements of  T;  lines are the right cosets of the components;  incidence is

given by inclusion; and lines are taken to be parallel if and only if they are cosets

of the same component.  Lüneburg has proved the following three theorems (see [9,

Sätze 4.2, 4.3, 4.4, and 4.5]).

Theorem 1.5 (Lüneburg),  J(T, n)  is an affine H-plane if and only if the follow-

ing conditions are satisfied:

(a) The components cover T.

(b) If A,  B £n and A n B = 1,  then  T = AB.

(c) There exist A, B e rr with A  n B = 1.

(d) The set N = \n £ T: n ^ l\  is a normal subgroup of T.

(e) If A £n, A £/V.

(f) // A n B =1, N = NA n NB.

(g) If A nB ¿1, NA = NB.

Theorem 1.6 (Lüneburg). // 21 ¿s a translation H-plane with translation group

T, then T is abelian; and there exists a collection n of subgroups of T such that

SI = ](T, n). If 21 = ](T, n) is an H-plane and T is abelian, then 21 is a transla-

tion H-plane with translation group T isomorphic to T. The isomorphism from T

onto T can be chosen to map t to the translation t defined by t (x) = x + t for

all x £ T.
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Theorem 1.7 (Lüneburg).  Let 21 = /(T, 77) and 21   = /(T , n ) be translation

H-planes so represented that T and T   are abelian.  Then 21 and 21   are iso-

morphic if and only if there exists a igroup) isomorphism (p from  T onto  T   such

that  cpiP) £ n   for each  P £ n.

Henceforth, we will generally require that  T be abelian, and we will use

additive notation. If 21 = /(T, n), we write   'T to denote the set of elements of  T

which are points of  '0.  The following theorem is proved in [6, Theorem 2.6(A)].

Theorem 1.8.  Let 21 = /(T, 77) be an n-uniform translation H-plane with in-

variant r = px,   T abelian.   Then there exist integers   I, k with 0 < / < k and sub-

groups  C.  of T which satisfy the following conditions:

(a) T = Cj 0  ••■ ®Ck;

(b) for  i < I,   C.  is the direct sum of 2x cyclic subgroups of order p7    ,

;>0;

(c) for  i > I,   C .  is the direct sum of 2x cyclic subgroups of order p1;

id) for i < « = kj + /,

1t = p*+1 . (Cj © • •. © ce) © p«. (ce+1 ©. • • © ck)

where q,  e are given by  n — i = kq + e,  0 < e < k.

Definition 1.5.  Let  21 = /(T, 77) be an 72-uniform translation //-plane with  T

as in Theorem 1.8. Then we call k the  width of  21. If  k = 1, we say that  21 is

a vertical 7z-uniform translation //-plane.  If  k = n or equivalently, if   T is ele-

mentary abelian, we say that  21 is horizontal.

Remark 1.9.  For an 72-uniform translation //-plane  21 = /(T, 77) with transla-

tion group  T , the following are equivalent:

(a) 21 is vertical;

(b) T    is the direct sum of cyclic subgroups of common order  pn,  p prime;

(c) pT    is the group of neighbor translations of  21.

Proof.  A neighbor translation is a translation which maps some point and

hence each point (see [8, Satz 12]) of an affine //-plane onto a point neighbor to

itself. Let  t*:  T-^T,  x — x + t.  Let  ("~ 1T)*= \t*: t £n~lT\. Then  (»-»T)*

is clearly the group of neighbor translations of  21. The equivalence of (a) and (c)

follows from Theorem 1.8. It is well known that the number of points in an affine

//-plane is   s    which by Proposition 1.1(1) is   r ".  Now  21 is vertical if and only

if   o(T) = oiCx), i.e. if and only if r " = ip')   x, i.e. if and only if 72 = 7 which is

equivalent to condition (b).

In light of Proposition 1.4, one can investigate all neighborhoods   lX fot all
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points   X  of an 72-uniform translation //-plane by investigating all neighborhoods

'P oí a single point   P.  Therefore, we introduce the following notation.  If  21 =

JÍT, n),  T abelian, we write   Z2I to denote the incidence structure   '0 together

with the parallel relation induced thetein by 21. Theorem 1.8 implies that   'T is a

subgroup of   T for  0 < i < n.  It is easy to see that   *2I = ]ilT, ln) where   '77 =

[P n 1T:P £n\. We will also write   T.   to denote   T/]T,   n.   to denote

i(P + 'T)/'T : P £ n\, and  21. to denote  /(T., it.).

As in the preceding paragraph, the letters  P,  Q and R will later be used to

denote both points of an H-plane and components of a "generalized congruence"

n. We hope to avoid confusion by indicating the use of the letter at the time of

introduction.  In addition, on those occasions when we are looking at an //-plane

tepresented in the form  JÍT, n), we use lower case Roman letters,  a, b, c, • • • , to

denote points (group elements).

Proposition 1.10.   Let 21 = /(T, 77) be an n-uniform translation H-plane repre-

sented so that  T  is abelian.   Then

(a) *2I  is an i-uniform translation H-plane for I   < i <n.

(b) TAe canonical igroup) homomorphism from  'T onto  1T/,T  induces an epi-

morphism from  !2I to (Z2I). for 0 < ; < i < n.

(c) // 21 has width k,  then  (!2I). and i'~   21).   ,   are isomorphic when k <

/ <   Z  <  7Z.

Proof. Conclusion (a) is just a special case of Proposition 1.4,    so there is

nothing new to prove here. By Lemma 1.2,  'i'T) = 'T.  To prove (b),  let  <p be the

natural (group) homomorphism from   lT onto   lT/'T. Observe that  <p maps each

component in   ln onto a component in   ('77). and that each component in   i/n). is

the image under  rp of some component in    77.  It is clear then that  <pinduces an

epimorphism from   !2I to  (Z2I)..

We prove (c) first in the special case   i = 72.   Let  <p, <p   be the respective nat-

ural homomorphisms from   T onto  T/'T and from  "~   T onto  "~   jp~   7.   gy

Theorem 1.8, we know that  T is a p-group for some prime  p and that the map i/r

defined on   T by  i/f(/) = pi is a group homomorphism onto "~  T. We define  p  from

T/'T to  "~kT/i-kT by the rule  ^ + ;T) m <f,*ifrit). By Theorem 1,8, we know

that  p is a well-defined (gtoup) isomorphism of   T/'T onto  ""   T/'~   T. We sum-

marize the maps defined above in the following commutative diagram.

T _t^"-kT

«A    j J   *•
T/'T_-_- n-kT/j-kT
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Let  R e 77. Then  i/f(R) = pR C R n n~kT. We give a counting argument to

prove that if/(R) = R n n~kj.  There is a component S in  77 such that  R H5 = 0.

By Theorem 1.5(b),  R + S = T. By Lüneburg [9, Korollar 41], R * S.  Then  R has

half as many summands as   T.  Since   o(Ker <//) = r     ,   o(Ker if/ O R) = r  .  Then

o(</r(/<)) = r"-\  By Proposition 1.1(4),   o(R n n~kT) = rn"k also; hence  if/(R) =

R n »~kT. Then p[(R + 'T)/'T] = <£*<//(«) = cp*(R O »"*T). Since  P   n »-*r is

a component in  "~  n, p maps each component in  77. onto a component of

("~  "■)■_>• Since every component in  "~   77 is of the form R n n~   T for some  R

in   77, //. maps the set of components of  77. onto the set of all components of

(n~  n).   ,. Then it is clear that p induces an isomorphism from SI. onto

(n-*2I). Now let   k < j < i <n.  By (a),   '21 is an ¿-uniform translation //-plane.

From Theorem 1.8, we see that  '21 has width  k. Then the full result (c) follows

from the case   i = z2 which we have just proved.

For zz > i > 1, we write  2I(z) to denote  021).   ,. Clearly,  2I(¿) is the ordinary

affine plane which is canonically associated with   *2I. Since   '21 is a translation re-

plane,   SI(¿) is a customary translation plane.  Thus we have associated with each

zz-uniform translation //-plane   21 a sequence   SI(1 ), . . . , SI(tz) of n ordinary affine

translation planes. As a special case of Proposition 1.10(c), we have

Remark 1.11.  Let  21 be an 72-uniform translation //-plane of width k.  Then the

sequence of associated translation planes,   21(1), • • • , SI(t2), is periodic with a

period length dividing  k.  In particular, if SI is vertical,  21(1 ) = 21(2) St  ... ~

21(72).

We shall see in §6 that  21(1), • . . , SI(&) may be arbitrary translation planes

of order r,  r being the invariant of SI.

2.  Strongly zz-uniform translation //-planes. We begin with some notation.  If

P is a point and   i is a line of an zz-uniform //-plane, we write   P (~ ¿) h (and say

P is at least i-related to h) to mean that  P (~ ¿) Q fot some point Q on h; other-

wise we write P (76 ¿) h. We write   P (—¿) h (and say   P is   i-related to  h) if

P (- i) h and   P (fi + 1) h.

Definition 2.1.  Let  zz be an zz-uniform //-plane.  We say  77 has Property   S

(called Property  A  in [4]) provided that  Q ( oí i + ;') k whenever   P, Q, h, k are

points and lines of  77 satisfying the following requirements:   \h n k\ = r',   P £

h n k,  Q £ h - k,  Q (=s /') P, and   i + j < n.

In [4], strongly  zz-uniform projective //-planes are defined and then character-

ized in four additional ways. One characterization (see   [4, Theorem 4.2]) is as

the class of all zz-uniform projective //-planes with Property S. We now define

strongly n-uniform affine H-planes to be the zz-uniform affine H -planes which

satisfy Property S. Some justification of this definition is in order. For if an

affine //-plane   21 is obtained from a projective //-plane 77 by removing a neighbor
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class of lines (see Klingenberg [8, p. 101 ] or Dembowski [3] for particulars), many

pairs of lines  [A, k\ will fail to intersect in 21. Suppose that |A O k O 2I| =0, that A O k

contains a point  P in 77, and that 77 is strongly 72-uniform. Since every affine

point 2   on  A satisfies  Q (?^ 0) P, every such  Q  must satisfy  Q iza i) k where

r1 = |A O k\  in  77. Thus it seems natural to require strongly   72-uniform affine   re-

planes to satisfy both Property S and the Property S    stated below.

Definition 2.2. Let 21 be an 72-uniform affine //-plane. We say 21 has Property

S if |A n k\ = 0 implies the existence of an integer i such that 2 (¡sí i) k for all

points   Q  on  A.

The following result justifies the definition given above for strongly 72-uniform

affine //-planes.

Remark 2.1. Every strongly 72-uniform affine //-plane has Property S .

Proof.  Let  21 be a strongly 72-uniform affine //-plane.  Assume   21 does not

have Property S ; then there exist lines  A, k and points   P, Q £ h such that

P (es: i) k, Q (~ j) k,   \h n k\ = 0, and n > i > j >0. Since  A contains a pair of

nonneighbor points, we may assume without loss of generality that   P •/■Q.  Let  (p

be the canonical epimorphism from  21 onto its associated ordinary affine plane.

Since   \h n k\ = 0,  A    || k     by Axiom 3c of Definition 1.1.  Since   P     is on both

A* and  **,  h* = A*, hence  A -v *.  Then Q (~ 1 ) k, so  7 > 0.

We set

x*= [x: P £x, \x nk\ =r;'},        X*= {X £ k: X (~ i - j) P\.

Let  X £ x n k for some  x £ x*. Then Property S implies   X (¡^ z - 7) P,   i.e.  X £

X . Conversely, if X e X   and if x is a line containing X and   P,   Property S

implies  x £ x*. Let   P    be a point of  k such that   P   (~ i) P. Since   7 > 0,   Prop-

osition 1.1(6) implies     X (~ i - j) P if and only if  X (~ i — 7) P .  Then Propo-

sition 1.1(4) implies   |X*| = rn~i+j - r«~»'+/-». We see that each  X £ X* is joined

to   P by  A~}  lines of x* and that each x e x* joins A   points of  X    to  P.  Then

|x*| = (y-i+i -r»-i + i-l) A'i/r' = rn~' -r"'''1.

By [9, Satz 2.3], we know that there exists a line  b through Q such that

A -/ A,  A </ A. If   \b n k\ = 0,  A*|| **; and since  g* is on both  A* and  k4,,  b* =

ze   . We obtain the contradiction  A ~ k,   hence conclude that     b n k must contain a

point /?. Suppose R (—/) Q. If /< 7, either Property S or Proposition 1.1(7) would imply

A ~ k.  Then  R (~ 7) 2-  Now let x ex*. If  |A n x| = 0,  b* ||x* = ¿*; hence

A^ = £"*; hence  b ~ &,  a contradiction. Then   |A n x| > 1. Since  x ^ /e, x ■/ A;

hence   |A O x| = 1.  There exists   Xexnt such that  X ^ P •/ Q ^ R. Since

R ni X,  Property S implies  R (~ 7) x.  Then R (~ /) (A n x),   / < 7. If / < 7, Property S

would imply  A ~ x,  hence  b ^ k.  By the contradiction,   / = 7 and  R (~ 7) (A Ox).
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Since  (b n x) ~ Q,  (b n x) */L P. Then if  b n x = b n x' fot x' £ x*, x = x'. Then

\b n x: x £ x*\ contains all of the  rn~' - r"~'~    points  S of  b satisfying

S (oí j) R.  In particular,  Q = b n x for some x £x*. Then /? and x both contain

2 and   P; hence  ¿ = x and   |i O ze| > 0. This contradiction completes the proof

that  21 has Property S*.

Proposition 2.2. Let   n be a strongly n-uniform affine or projective H-plane.

If    P  is a point of n and if 1 < i < n,  then  lP  is a strongly i-uniform affine H-

plane for every parallel relation which makes  'P an affine H-plane.

Proof. Since  77 is 72-uniform,  "~   P is an  (n — 1 )-uniform affine //-plane for

some parallel relation. Then  "~   P is   (72 - 1 )-uniform under every parallel relation

which makes  "~   P an affine  //-plane. Henceforth, let  P denote the incidence

structure  "~   P together with a fixed parallel relation which makes  "~   P an af-

fine   W-plane.  Let  Q, R, h   , k     be points and lines of   P such that   \h    D k   \ =

À,    Q £hP n kP,  R £ hP - kP,   R (~ j) Q in  P, and  0 < j < n - 1 - z. Then

\b n k\ = r1,  Q £ h n k,  R £ h - k,  R (at j + 1 ) Q in  77, and 0 < /' + 1 < n - i.

Then Property S implies   R (ai i + / + 1) k in n. Clearly, any point  T on k such

that  R (~ i + j + 1))T lies in  k   . Then  R (~ i + /') k     in  P. Thus   P satisfies

Property S, hence is strongly  (tz - l)-uniform. The full result now follows by induc-

tion and the use of Lemma 1.2 with 7 = i + 1.

Proposition 2.3. Let 21 be an affine H-plane belonging to a strongly n-uniform

projective H-plane 77. // P is a point of SI and if 1 < i < n, then lP is a strongly

i-uniform affine H-plane under the induced parallelism.

Proof.  By a theorem of Artmann (see [2, Satz 4] and Bacon [10]), all strongly

zz-uniform projective //-planes are of height  zz and satisfy "Axiom N".  The author

has proved [5, Theorem 8.1] that every point  P of every affine  //-plane  SI be-

longing to such a projective   //-plane is "nilpotent of degree n".  By definition

[5, Definition 7.3], this implies that  P  _ . = VP: i + l] is an affine //-plane (see

[5,  Definition 3.4]) under the parallelism induced by   21.  By Lemma 1.2,   'P =

P      .,  and the full conclusion now follows from Proposition 2.2.
77—7' r

Combining Propositions 1.4 and 2.2, we obtain

Proposition 2.4.  Let 21 be a strongly n-uniform translation H-plane.  If P and

Q are points of 21 and if 1 < i < n,  then  lP and lQ are isomorphic strongly i-

uniform translation H-planes under the parallel relations induced by 21.

Lemma 2.5.  Let ](T, 77) be a strongly n-uniform affine H-plane with invariant

r.   Let  P, Q £ n,  o(P n Q) = rl,  b £ P,   b (~_ j) 0 where   i and j are nonnegative

integers satisfying  i + j < n.  Then b £ n~l-'T + Q,  b 4 "-i-j-lj. + g>



262 D. A. DRAKE [January

Proof.  Property S implies the existence of d £ Q such that  b (~ i + j) d.

Then there are exactly  rlJ" cosets  R + d with  R £ n which contain both  b and

d.  Then  b - d lies in exactly  rl+' components   R,  i.e.   (b - d) (~ i + /) 0,  i.e.

(b - d) £ "~'~'T.  Then   b £ n~1~'J + g.  The second conclusion is also easy to

see.

As an immediate consequence of Lemma 2.5, we obtain

Corollary 2.6. Let J(T, n) be a strongly n-uniform affine H-plane with invari-

ant r. Let P, Q £ n, o(P n Q) = A for some nonnegative i < zz. Then P C ""' T +

Q,   P^"-'-1T + (3.

In Proposition 1.10, we examined some incidence structures with parallel-

isms—the   021). associated with an  zz-uniform translation //-plane   21. We will

prove in Proposition 2.9 that if  21 is strongly zz-uniform and if  0 < / < i < n,  then

021). is an affine //-plane. To aid in the proof of this result and also to facilitate

the further study of the   OSI). in §6, we prove two additional corollaries to Lemma

2.5. To state these corollaries, we introduce the following notation. Let  SI =

](T, n) be an 72-uniform translation //-plane with invariant r,   T abelian. Then we

write   (d + 7T) (~ i) (b + 7T) to mean that d+ 'T and  b + 7T are joined by at least

rl  lines of  SI.. We write   (en i) to indicate that two points are joined by exactly

rl  lines of  21..
i

Corollary 2.7. Let J(T, n) be a strongly n-uniform translation H-plane with

invariant r, T abelian. Then for i < n — j, (d + 7T) (~ ¿) (b + 7T) if and only if

d(ati) b.

Proof.  Let a £ Q £ n, a (~ ¿) 0 for some i < n - /.  Then  (a + 'T) £

(P + 'T)/'T fot  Pen if and only if a £ P + 'T,  i.e. (by Lemma 2.5) if and only

if   o(P nQ)> r"-'-'.  By Proposition 1.1(5),  the number of such   P e zz is   r,+7.

Next, we compute the number  m of  R £ n satisfying   (R + 'T)/'T = (P + 'T)/'T

for a fixed   P £ n. Clearly,   zzz is the number of  R C P + 'T.  By Corollary 2.6, m is

the number of  R  satisfying   o(R n P) > r"~'; hence   zzz = r'.  Then  a + 'T and   7T

are joined by  rl+'/m = rl lines of A ., i.e.  (a + 'T) (at i) 'T. We have    (d + 'T)

(~ i) (b + jT) if and only if  (d - b + 'T) (at i) 'T,  i.e. if and only if  (d - b)

(at ¿) 0 which is true if and only if d (at i) b.

Corollary 2.8.   Let ](T, n) be a strongly n-uniform translation H-plane with

invariant  r,   T abelian.   Let  P, Q £ n;   let 0 < / < zz.   Then

(a) P + 'T = Q + 'T « o(P  n Q)> rn~';

(b) o[((P + 'T)/'T) n ((Q + 'T)/'T)] = o(P n Q) if o(P n Q) < r"=7'.

Proof.  The truth of (a) follows immediately from Corollary 2.6.   Now assume
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oiP n Q) = rl,   i < n - j.  The points common to  (P + 'T)/'T and   (2 + 'T)/'T ate

the cosets   b + }T with  b £ P  n (2 + JT). By Lemma 2.5, these are the points

b + !T with   b £ P such that  A (~ 72 - j - i) 0.  By Proposition 1.1(4),  the number

of such  b is    r, + ';   hence the number of such  b + 'T is   rl.

Proposition 2.9.  // 21  is a strongly n-uniform translation H-plane, then

(!2l).  is a strongly (z - j)-uniform translation H-plane for 0 < j < i < n.

Proof.  In view of Proposition 2.4,  it suffices to prove the result for  ("21). =

21., 0 < / < 72. We represent  21 by  JiT, n) with  T abelian. Writing  id + 7T) ~

(A + 7T) to mean that d + 'T and  b + !T ate joined by at least two lines of  21.

and setting   i = 0  in Corollary 2.7,  we obtain

(2.1) id + 7T) ~ (A + 7T) « d ~ A.

It follows easily from (2.1),  Corollary 2.8(b),  and Theorem 1.5 that   21    is an af-

fine  //-plane. Since   T is abelian, so is   T.,  and thus Theorem 1.6 implies that

21. is even a translation //-plane.

Next, we give a proof by induction on « to show that 21. is (72 ~ /^uniform.

If 7 < 72 - 1, the induction assumption and Proposition 2.4 imply that (""* 21) is

an  (72 - 1 - ^-uniform translation //-plane. We let  5ß denote the set of points

A + 'T of 21. which are neighbor in  21. to 7T. We write  (21.)   to denote the in-
7 7 '

cidence structure induced in  ^ß by   21.. We wish to prove that   (21.)   is the inci-

dence structure of  ("~  21).. By (2.1), the points of  (21.)* are the  A + 'T with

b ~ 0,  i.e.  the   b + 'T with  A € "~   T.  The points of   ("~   21). are the elements

of  ■-»7'/'<*-I>T.  By Lemma 1.2,   »<«-»>T . *T.  Thus   (""^.and   (21 .)* have

the same point set. Using (2.1), it is easy to see that  (21.)* and  ("~  21). also

have the same lines, hence ate isomorphic qua incidence structures. Since   21.

is a translation //-plane, the neighborhood of every point of  21. is isomorphic to

(21.) , hence is isomorphic qua incidence structure to  in~  21)., hence is

(72 - 1 - 7')-uniform.

Corollary 2.8(a) and Proposition 1.1(5) imply

(2.2) |{X err: X + 7T= P + 7T!| = A.

For   P £ 77,  let   P* denote   (P + 7T) nn~lT.  Then   P*C 2* if and only if

(P n n~lT) C (2 + 7T). Suppose   oiP n 2) = rl. Since

iP n n~lT) = {b £ P: b (~ z)0, ¿>1},

Lemma 2.5 implies that  iP n "~1T)CQ + 'T if and only if j >n - I -I,  i.e. if

and only if  />«-;'- 1.  By symmetry,  P   = 2    if and only if  P*C Q*. From

Proposition 1.1(5), we obtain
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(2.3) |ÍP en: P*=Q*i| = r7 + 1     fot  Q £ n.

Each line of  (SI.)   which contains the point  'T is of the form

((Q + 'T)/'T) n (»~lT/'T) = Q*/'T

i

with  Q £ zz. From (2.2) and (2.3), we conclude that each such line is the restric-

tion of r distinct lines of  21.. Since  21. is a translation //-plane, every line of

every point neighborhood in  SI. is the restriction of r lines of  21    Then   SI. is

(zz - /)-unif orm if / < « - 1.

By Theorem 1.5 (f), (g), we see that distinct lines of  21  _ j which contain the

point  "~   T have trivial intersections.  Then  21 is an affine //-plane one of

whose points has no neighbors distinct from itself. Thus   21     .  is an ordinary af-

fine plane, i.e. is a 1-uniform affine //-plane. This completes the induction proof

that  21. is  (z2 - z')-uniform.

All that remains is to verify that the  21. possess Property S. Assume

(P + 'T)/'T and  (Q + 'T)/'T meet in r1 points for some   i < n - j and that b + 'T

is a point of  (P + 'T)/'T such that  (b + 7T) (at k) 'T fot some  k < n - j - i.

Then there exists   t £ 'T such that   b   = b + t £ P.  Then  b   (~ zz - /) b,  and by

Corollary 2.7,  b (at k) 0.  By Proposition 1.1(6),  b'(at k) 0.  By Corollary 2.8(b),

o(P n Q) = r1. Since  SI possesses Property S,  b   (at i + k) Q. Since  b   + 'T =

b + 'T,  Corollary 2.7 implies

(b + 7T) (~ i + k) (Q + 7Y)/7T.

This is the desired result.  That the   21. satisfy Property S for points and lines in

general position follows from the fact that the   SI. are translation //-planes.

3.  The constructions.  The constructions of zz-uniform translation //-planes

given in this section make extensive use of group "congruences".  A congruence

of a group  T is a partition  n of   T into proper subgroups such that   T = BC when-

ever  B / C and   B,  C £ n. Andre' has proved [1, pp. 164—167] that if  zz is a con-

gruence of  T,  then  ](T, n) is an ordinary translation plane with translation group

isomorphic to  T; and conversely, that every translation plane  A  is isomorphic to

J(T, n) where  zz is a congruence of T and  T is the translation group of SI. It

follows that a finite group  T has a congruence if and only if  T is an elementary

abelian p-group for some prime  p and the order of  T is a square. If a group T of

order  r    has a congruence, one may obtain a congruence for  T containing any

specified subgroup of order r = px as one of its components. To see this, regard

T as a vector space over  GF(p), and let cS be a linear automorphism of  T map-

ping a component of the first congruence onto the desired subgroup.  Lastly, we

observe that the following conditions imply that  zz is a congruence of   T : T is a

group of order  r  ; zz is a collection of  r + 1   subgroups of  T,  each of order  r; and

A n B = 1  when A, B £ n, A / B.
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Before proceeding to a description of the constructions, we prove the follow-

ing

Lemma 3.1.  Let 21 = /(T, 77) be an n-uniform translation H-plane with invari-

ant r,  T abelian.  Then if P £ n and if 0 < i <n,

(a) oiP n *T) = A

(b) oiP + iT) = rn+i

Proof.  The truth of (a) is a consequence of Proposition 1.1(4).   By Theorem

1.8,   lT is a subgroup of   T.  By Proposition 1.1(8),   oi'T) = r  ' (unless   i = 72, but

it is well known that the number of points in a finite affine //-plane is  s    = r ").

The truth of (b) is now clear.

We are now ready to describe the constructions.  Let  21 = JiT, n) be an 72-

uniform translation //-plane with invariant  r = px and translation group isomorphic

to  T. We write

(3.1) T = C1©...©Cfe,

where  C .,  j,  k,   I have the same meaning as in Theorem 1.8. We set

(3.2) Tn =Dj ©■•• ®Dk,

where   D . = C . for   2 < k,  D,   is a direct sum of 2x cyclic groups of order  p7+  ,

and   pD, = C,.  it  T is elementary abelian, then   / = 0,  7 = 1,   k = n,  and each C.

is a direct sum of 2x cyclic groups of order  p.  In this case, we set

(3.3) Te = C0©...©Cfe,

where  CQ S C,.

Our goal is to define collections   77  ,  77e of subgroups so that  JiT , n ) and

jiTe, ne) will be   (77 + 1 )-uniform translation  //-planes.  Let  772 be a positive inte-

ger  < 72.   Let  Q, R, S £ 77 be such that   o(2 O R) > rm and   o(R flS)> rm.  By

Proposition 1.1(9),  Q and  S both contain all points  x £ R  such that  x (~ 72 - 722)

0;  hence by Proposition 1.1(4),   o(2 O S) > rm. Thus the property of intersecting

in   rm  or more points induces an equivalence relation on  77.  (if  m = n,  the trivial

equivalence relation occurs.) We now take  p to be a subset of  77 such that, for

each S £ n, there is a unique  R £ p which satisfies  oiS n R) > r" + 1~*>  Proposi-

tion 1.1(5) tells us that each R £ p intersects exactly r  ~    components of 77 in

rn+ or more points. These components, we denote by the labels

Ria1, . . ■ , afe_ j),       0 < a. < r for all  i.

For convenience, we always set   R(0, • • • , 0) = R.  By Proposition 1.1(5), (9),  we

may arrange the labels   /<(&,, • • ■ , °-l_A) so that
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(3.4)     R(al3 ...,ak^l)nR(ß1, .. •, /Sjfe_1) = n~k+iT n R(<Xj, ..., aJk_1),

where   z is the largest integer < k such that   a¡ = /8; for all  / < ¿. Note that if

k = 1, then p = 77, and   R( ) = R fot all R £ p.

LetR* =\t £T*:pt £ R\. By Theorem 1.8(d),  pP" =" + 1^T n P..  Then using

Lemma 3.1, one obtains   o(R») = p2xk • o(PPH) = r2fe . r"+1-* = r *+1+*.  Clearly,

'-'r + Rc'T+RCR*.  By Lemma 3.1,  o(*T + P) = r"+*, and   oO^T + P) =

r"+ ~   . Since  P  /(       T + P) is elementary abelian of order r ,  it has a con-

gruence, one of whose components is

(3.5) (kT + R)/{k-1T + R).

The remaining components, we denote by

(3.6) R[a]/(*-1T+ R),      0< a< r.

If  k = l, we set  77# = \R[a]\.

To construct an //-plane in the elementary abelian group  T  ,  we must begin

somewhat differently. We first observe that  CQ has a congruence   zz   with  r + 1

components.  Since   n - k,   \p\ = the number of classes of neighbor lines through the

point  0.  Then   |p| = r + 1  = |z7 |, and there exists a one-to-one correspondence:

p «-> zz', R «- P'.  We set   Pe = T + R' fot each  Pep.  o(T) = r2", o(Pe) = r2"+1,

and (by Lemma 3.1),  o("~ lT + R) = r2n~ \ Since  "-^ + R C T C Re,

Re/(""   T + R) has a congruence, one of whose components is   T/(n~   T + R) =

( T + P)/(       T + P). The remaining components, we denote as in (3-6).  It k = n

is 1, we set  77e = {R[a]¡.

If k > 1, we must continue.  The construction is now identical for  zz    and  z7e.

/zz order to continue, we are forced to assume that the H-plane  21  is strongly n-

uniform. Suppose the construction has reached the stage in which groups

P[aj, ■ ■ ■, at] have been defined for all (ctj, ■ ■ ■ , a ) with   / < i and  0 < a    < r.

for all 772. We take   i to be a fixed positive integer < k. All groups   P[a}, . . . , a]

are assumed to be contained in   P     or   Re as appropriate.  In the following, inter-

pret  P[ttj, • • ■ , a_ j] to be either R    or  Re as appropriate, when   i = 1. Finally,

suppose that if (o.¡, • • • , c\_1) has   a( = 0 for all  / > i, that then

(3.7) P[ap ..., a.._1]/(R(cr1, •••, afc_1) + fe-,'D

has a congruence whose components are

(3.8) (R(av ..., ak_l) + k*1-iT)/(R{a1, . . . , afe_ j) + fe"¿T)

and

(3.9) R[al,...,a._l,ß]/(R(al,...,ak_l) + k-iT),       0 < ß < r.
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Observe that when   z' = 1,  (3.8) and (3.9) are identical to (3.5) and (3.6) respectively.

Next we examine

(3.10) R[av ..., a.]/iRiav •-., afc_1) + ¿-«'^r)

whete  0 < a < r for  I < i and   <Xj = 0 for  I > i.  First, we give a brief argument to

show that the notation in (3.10) does in fact represent a group. We have

R(£v • • • ' a*-i} + k^i~Xr c R{av • • • ' V i} + *"'T

which, by (3.4) and Corollary 2.6,  is equal to Ria^, ■ ■ - , a._ p 0 , • ■ • , 0) + k"T

which, by (3.9), is contained in   R[a^, • ■ ■ , cl].

It we are working inside   Te,  it is clear that the quotient in (3.10) is ele-

mentary abelian. If not, then we have  p • RÍ^, ■ ■ ■ , a.] C p • R" = n+1~kT n R

which, by (3.4), is contained in  Ria., ■ • • , a,_j). Again the quotient (3.10) is

elementary abelian.  The order of this quotient is   r times the common order of the

groups at (3.8) and (3.9).  By Lemma 3.1, the group in (3.8) has order  r.  Then the

2
groups at (3.10) are all elementary abelian of order  r , hence all have congruences

with one component equal to

iRiav ■■■,ak_l) + k-<T)/iRiav ..., otfe_1) + *-'-»T).

The remaining components, we denote by

R[ar ..., a.,ß]/iRiav ..., afe_I) + *-¿" lT),       0 < ß < r.

We set  77    or  77e,  as appropriate, equal to

(3.11) {R[alt ...,ak]: R £p,Q<a[<r    for all  /|.

Recall that the groups listed in (3.9) all have order r. Setting   i = k in (3-9),

we see that the components of  n    and   27e all have order  r times the common order

r    of the components of  77. For future reference, we state

Lemma 3.2.   TAe components of 77    and ne all have order r"+  .

Definition 3.1.  /(Te, 77e) is called a rype 1 extension of  JiT, n); /(T#, n")

is called a type 2 extension of JiT, n).

The work of §3  yields

Lemma 3.3.  Lez" 21 = JiT, n) be an n-uniform translation H-plane with trans-

lation group isomorphic to  T.   If 21  is either vertical or strongly n-uniform, then

21 has a type 2 extension.  If 21  is both horizontal and strongly n-uniform, then 21

has a type I extension.

In the next two sections, we shall prove (see Theorem 4.1(b) and Corollary

4.2) that all extensions of both types (which arise from //-planes   21 satisfying the
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requirements of Lemma 3.3) are strongly  in + 1 )-uniform translation  /7-planes.

We now summarize the two types of constructions.  Let  21 = JiT, n) be a

given ?2-uniform translation //-plane,   T abelian and represented as in Theorem

1.8. Define   T# by (3.2); and if  T is elementary abelian, define   Te by (3-3). Let

p be a subset of  77 such that, for each S £ n, there is a unique  R £ p satisfying

S nR Dni-1~kTn S. For  R £ p, let

{Ricx^, . ■ . , ctfe_1): 0 < a < r     tot all  a.}

denote the components of 77 which intersect  R  in at least rn     ~    points,

RiO, •• •, 0) = R. Condition (3.4) must be satisfied. Set R* = {/ e T*: pt £ R\.

Let  77   be a congruence for  C„ with  r + 1  components  (CQ defined in 3.3). Take

a one-to-one correspondence:   p <—»77 ,  R <—>R . Set  R    = T + R .  For   2 = 1,

2, ■ ■ • , k,  choose congruences for the groups at (3.7) whose components are

given by (3.8) and (3-9). Note that  a;  = 0 for all  l>i in (3.7), (3.8), and (3.9).

Interpret the numerator R[a.j, . . . , ai_l] in (3.7) to be   R    or  Re, as appropriate,

when   i = 1. Then  77    or  27e, as appropriate, is the set of subgroups (3.11). Then

JiTe, ne) is a type 1 extension of 21; JiT  , n ) is a type 2 extension of  21.

4. The constructibility of all strongly 72-uniform translation //-planes. The

goal of §4 is to prove part (a) of the following theorem.

Theorem 4.1.  (a)  Let  8 = JiT , n*) be a strongly  in + l)-uniform transla-

tion H-plane,  72 > 1,  represented so that  T    is abelian.  Denote  "(t ) Ay  T,

"(77*),  by 77.  Then  8   is a type I  or a type 2 extension of JiT, 77) according as

T    is or is not elementary abelian.

(b)  Conversely, let  21 = JiT, n) be any strongly n-uniform translation H-

plane represented with abelian  T.   Then all type 2 extensions of 21 and (if T  is

elementary abelian) all type 1 extensions of 21 are strongly  (n + l)-uniform trans-

lation H-planes.

Proof of (a).  If   T    is not elementaty abelian, Theorem 1.8 assures the ex-

istence of subgroups  E . such that

T*= Ej © ... ©Efe,       T = pEj© E2© ... ®Ek,

and the  E. satisfy all conditions listed for the  C. in Theorem 1.8.  Then (3.1)

and (3.2) are satisfied if we set  T   = T , C. = D . = E .  ,  tot  1 < k,  D, = E,, and
z z z + l Ze I7

Ck - p ■ Dfe. If  T   is elementary abelian, Theorem 1.8 implies the existence of

subgroups   C., each a direct sum of 2x subgroups of order p,  such that  T* =

C0 © . • . © Ck and   T = Cj © . . . © Cfe. We set  Te = T* so that (3.1) and (3.3)

are satisfied.

At this point, to complete the ptoof of (a), it suffices to demonstrate that
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congruences may be so chosen that one can obtain a  zz    or  zze equal to  zz . We

observe that, by Proposition 2.9,   "S3 = ](T, n) is a strongly zz-uniform translation

//-plane. We pick p and label the components of n as in §3.  In particular, (3.4)

must be satisfied. By Proposition 1.1(11), each  R(a^, ■ ■ ■ , a^_l) e n is contained

in  r components of zz . We denote these  r components by  P(o.j, . . • , CLk_l, ß),

0 < ß < r. Let  i be a positive integer < k, and let  (a^, ■ ■ ■ , a.) be any ordered

¿-tuple whose elements   a   ate nonnegative integers  < r. We set

(4.1) P[ap ..., a.] = R(av ..., aj + k'*T.

taking  a. = 0 for  I > i.

We now obtain an identity which will prove useful later. Since   "8 is

strongly zz-uniform, (3.4) and Corollary 2.6 imply that

R(al,...,ak_l)Ck'iT + R(ßl,..., ßk_J

whenever  a = ß. tot all  l< i.  By symmetry,

(4.2) k~'T + R(al,...,ak_l)= k^T + R(ßv ■■■,ßk_l)

when  al = ßl for all  / < ¿.

Next, we examine the first set of congruences (components given by (3.5),

(3.6) and (4.1)) needed for the construction of 77e. We define   Re to be

P<0, ... ,0) + T.  By Proposition 1.1(8),  o(T) = r2n; by Lemma 3.1,   o(Re) =

r2n+1. Since   T C Re C CQ 0 T ate all elementary abelian,  Re = R' + T for some

P'C C0 with  o(P') = r. Let 27'= \R': R e p\. Assume   \R' n S'| >1,  R e p, S e p.

Then  Re C\ Se contains a point not in  T.  Then  P(0, • • • , 0)- T contains a point

neighbor to a point of S{0, ■ ■ ■ , 0); hence  P(0, • • •, O) and S(0, • • • , O) are inter-

secting neighbor lines.  Then   P  and  S  ate neighbor lines in  p.  By Proposition

1.1(3),   o(S n R) >r. Since   k = n,  the choice of  p implies that  R = S.  Thus dis-

tinct components of  77   have trivial intersections;  since   |p| = r + 1,   zz   is a con-

gruence for  CQ.

It follows from (4.1) and (4.2) that  fe-1T + P C P[a].  Since  P(a, 0, . . . , 0>

and   P(0, • • • , 0)intersect in more than one point,  they are neighbor lines; hence

by Corollary 2.6,  R<a, 0, ..., 0) C R<0, • • • , 0) + T = Re. Then  P[a] C Re. Since

B and  "8 have the same invariant r,  Lemma 3.1 implies that all the groups at

( 3.5) and (3.6) have order r and that the order of Re/(k~1T + R) is  r2. Since

^T + P = r + R = T,

(kT + R)nR[a] = (R(a, 0, ...,0)+k~lT)

which, by (3.4) and Corollary 2.8(a), is equal to  R + k~1T. We will establish

later in the proof that
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(4.3) R[a] nR[ß] = k~1T + R

when  o./ ß. Then the groups at (3.5) and (3.6) for a given  R constitute a con-

gruence for  Re/ik~lT + R).

Next, we demonstrate that (4.1), (3.5) and (3.6) will also yield congruences

for the groups  R*/ik~lT + R), R# denoting {/ £ Tn:  pt £ R\. By Theorem 1.8,

we have  p • R[a] = p ■ R(a, 0, . . • , O) C R(a, 0, • • • , 0) n "+1 ~^T which, by

(3.4),  is contained in  Rio, 0,  • • • , O)  OR(0, • . • , 0) C R.  Then  R[a] C RH.  It is

easily seen that     T + R C R  , and it was proved in §3 that the order of

R   (        T + R) is  r .  The remainder of the argument needed to prove that the

groups at (3.5) and (3.6) yield congruences for the  R /(  ~   T + R) is identical

with the argument of the preceding paragraph.

Finally, we must show that, if we use (4.1) as a definition of the

R[a.j, . . . , a], then the groups at (3.8) and (3.9) also yield congruences for the

groups at (3.7) when 1 < i < k. Then assume   z > 1. By (4.1) and (4.2), we have

R(ap ..., ak_l) + k-'T C R[ap ..., a.]. By (4.1), (3.4), Proposition 1.1(4),

and Corollary 2.6, we have  R[o.,, • • • , a] C Rto^, ■ • • , a~_.]. The other necessary

inclusions clearly hold.  By Lemma 3.1, the groups at (3.8) and (3.9) all have

order  r,  and the groups at (3.7) have order r .

Next we show that the groups at (3.8) and (3.9) have trivial intersections,

hence that they provide congruences for the groups at (3.7).  In the process, we

will prove (4.3); the proof of Theorem 4.1(a) will then be complete, since (4.1)

and (3 .11) imply that  77* = 77    or  77e as appropriate. Let  i be some integer with

1  < i < k.  Assume that   a¡ = ß; for all   / < i and   a. 4 ß ■•  By (3.4) and Proposition

1.H4),

o(R(ap ■■■,ak)n R(ßv ■■■, ßk)) = r"~k+i.

Then Lemma 2.5 implies that

R[av ..., a.] nR[ßv ■ . ., ß.] C T.

This inclusion, together with (4.1) and (4.2), implies

R[av ..., a] r>R[/317... ,ßt]

= iRiav ..., ak_l) + k~iT) n iRiß1, . •. , ßk_ ^ + k~lT)

= Riav ..., ak_l) + k-iT

where the a¡ ate arbitrary for / > z. Then, for a given group at (3.7), each two

distinct components at (3.9) have a trivial intersection. As a special case, we

have (4.3). Since  Ri^, . . . , afe_ j) + k+l~iT C T,  (4.1 ) and (4.2) imply
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(R(av ..., ofe_1) + k*l~*T) n R[av ..., a]

= (R(av ..., ak_A + k + l'lT)n(R(av . . . , a^ A + k~ 'T)

= R(av ...,ak_l) + k"iT.

TThe proof of Theorem 4.1(a) is complete.

Before proceeding to a proof of Theorem 4.1(b), we first give an alternate

proof of (a) in the special case   T = pT   , replacing the assumption of strong

(72 + 1 )-uniformity for  8 by the weaker assumption of  (72 + 1 )-uniformity. Since 1-

uniform  //-planes are all strongly 1-uniform, We may then apply Remark 1.9, Prop-

osition 1.10(a), and Theorem 4.1(b) to obtain the following corollary.

Corollary 4.2.   Vertical n-uniform translation H-planes are strongly n-uniform.

Proof.  It remains to prove that the conclusion of Theorem 4.1(a) holds when

one replaces the hypothesis of strong (72 + 1 )-uniformity for  8 by the hypothesis

of  (zz + 1 )-uniformity and the additional assumption  k = 1. Since   k = 1,  there is

only one round of congruences to find.  For each  Ren, let  P[a], 0 < a< r, de-

note the   r lines of  n* which contain   R.   The proof will be complete if we can

demonstrate that

K'r + R)/R\ u !R[a]/R:  0 <a<r\

is a congruence for Rti/R. We have lT + R, P[a] C R# for all a. Also, R[a]o

R[ß] = R if a/ ß; and since 1T + R C T, (!T + R) O P[a] = R. Then the r + 1

components, each of order  r, constitute a congruence for  R  /R.

5.  The converse.

Proof of Theorem 4.1(b). Our assumption is that SI = ](T, n) is a strongly zz-

uniform translation //-plane represented with abelian T. We will verify that S =

J(Tn, 77") and (if T is elementary abelian) 5) = ](Te, ne) satisfy conditions (a)-

(g) of Theorem 1.5. Since

pTn = n + l~kTc   y  R>       T«=    (J   R#.

Rep Rep

Since the groups at (3.5) and (3.6) constitute a congruence of  RH/(k"lT + P),

R#-0r + R)C   U    R[a];
0<CL<T

and similarly

R[av...,a._1]-(R(a,,•••, o^_ l)+k+1~iT)C    (J   R[.,...,a.   ,,fi]
0<ß<r X I_1

for 2 < i < k. Then  T   - T C S = U R[a.j, . . . , a, }, the union being taken over

all components of  77 .  But   T C \Jq€7T Q;  then by examining (3.9) with   i = k,  we

see that  T C S; hence   T# C S. Clearly  Te = \JR ep Re, and  Re - T C U0<a<rR[a].
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We may now proceed as before to see that  Te C S.  We have proved that S and 2)

both satisfy Theorem 1.5(a).

it P, Q £ nU or  P, 2 e Te and if  P H 2 = 0,  then Lemma 3.2 implies oiP + Q)

= r " +   = oiT ) or oiTe), respectively.   Then  & and 2) both satisy (b).

In order to verify that S and 5) also satisfy conditions (c)—(g) of Theorem

1.5, it is necessary to determine the intersections of all pairs of components of

77    and  77 .  We proceed to make this determination.   From (3.1), Theorem 1.8, and

the definition of R#,  we have  RH O T = {t £ T: pt £ R\ = {t £ T: pt £ "~kT n R\.

Then Theorem 1.8 and Lemma 3.1 imply that oiR" n T) = r2k • rn'k = r"+h,

oikT + R) = rn+k.  Since  kT + R C Rn nT, one has

(5.1) kT + R = R" O T.

Since we are assuming that 21 is strongly 72-uniform, (3.4) implies (4.2) as before.

Then

(5.2) k-lT+ R = fe"1T + R(a1, •••, afe_1)

for all  a„ •• ■, a       .  Then kT + R = kT + R(a.j, • • • , afe_  ), so (5.1) implies

(5.3) kT + Riav ...,ak_l)=R" n  T.

In the construction of  5),  & = 72 and  Re O T = T.   Then identities (5.1) and (5.3)

are also valid if one replaces  R    by  Re.   Henceforth, we write  Rx whenever we

wish to indicate that a statement is valid both for R    and Re.   Similarly, we will

sometimes write  nx  and T .

Assume  t £ T n R[av ■•• , a^].  Then t £ R[a^ • • • , afe _ J C • •. C R[aA C Rx.

By (5.1),  t £ R[a.j] n iRx nT) = R[a^ n (feT + R). Since  Rta^/^" !T + R) and

(feT + R)/ik~1T + R) ate components of a congruence, we have  t £k~1T + R.   By

(5.2),  / £ h~ lT + Riav ■ ■ • , 0Lk_l). Assume t £ k~lT + Ria^ • ■ ■ , afe_ j) for some

z < k.   Then

í £ R[a , •• • , a.   j] n (R(ax, •• ■ , afe_1) + fe"zT).

By examining the appropriate congruence, we see that / £ Ria^, • • • , afe_ T +

k-i-lf    By ¡nc}uctionj  ¿ g RUj, • • • , afe_ j). Then

T n R[ar • • •, aA C R(aj5 •• •, afe_).

The reverse inclusion follows by setting  i = k  in (3.9).   Then

(5.4) T n R[ax, ..., ak] = Riav ■■ , a%_]).

Let  t £ R[av ■ ■ • , afc] O R[j8j, • • • , /3fe], not all a. = /S..  Let  z' be the

smallest positive integer such that a. 4 ßr  Then by (3.9),
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t £R[av ..., a.lnRtßj, ...,ß] = R(av ..., ak_l) + k~iT.

It follows from (5.4) that

R(a{, ... ,ak_AC (R(av ..., afe_ A + k~'T) n R[av ■ ■ ■, a. J

CTO R[a1? . . . , ak] = R(a{, . . . , afe_ j).

Thus  R(ai; . . .,   afe_1) = (R(ctj, . • •, a^j) + fe~!T) n R[a.j , • • • , afe]; hence

t e R(a}, ..., a,   j ). It follows that

(5.5) R[ax, ■■■,ak\ nR[ßv ■ ■ ■ , ßk] = R(ap ..., afe_1) OP(ßj, •••,/3fc_1)

unless   a. = ß . fot all  ¿.
7 ~!

Next, suppose  R, S e p, R / S.  Then by Proposition 1.1(3), (9),  P O S C

n~kT n R.  Let t e R[ay, ■■-,%] ns[ßv-- -, /3fe]. Then / e Rx n Sx.   If x = #,

we have  pt e R n S C n~kT; hence  t e T. If x = e, we have  t e Re n Se = T.

Then, in both cases, (5.4) implies   that  R[a^, ■ ■ ■ , o^] nS[/3j, • ■ • , /3,] is con-

tained in (hence equal to) R(a.j, • ■ • , ak_l) F\ S(ßx, ■ ■ ■ , ßk_l) when  R / S.  This

result, together with (5.5), yields

(5.6) R[av ...,ak]nS[ßv...,ßk] = R(av ■ ■ ■, ak_A n S(ßv ..., ßk_A

unless  R = S and  a. = ß. fot all  ¿.

Since  21 must satisfy Theorem 1.5(c), (5.6) implies that  £ and  5) do also. By

(5.4) and (5.6), the group T is equal to the set N of Theorem 1.5(d). Hence, both

S and  S satisfy condition (d).   It follows from (5.4) and Lemma 3.2 that (e) is

satisfied.  Let  P,  Q e nx such that  P n Q = i0|. Then, by condition (b),  T* =

P + Q = (T + P) + (T + g). Then

(5.7) r2"+2 = olT") = o(T + P) • o(T + Q)/o((T + P) n  (T + g)).

By (5.4) and Lemma 3.2,  o(T + P) = r2n ■ rn+1/o(T n P) = r2n+l.  Then (5.7)

implies that   o((T + P ) n (T + Q)) = r2" = o(T). Since  T C (T + P) O (T + g), con-

dition (f) is satisfied.

Clearly,  T + R[cx , • • • , aA C T + R*; we wish to prove

(5.8) T + R[at,...,ak\=T+ Rx.

By (5.1 ),  o(T + Rx) = o(T) . o(Rx)/o(kT + R) = r2" . olRV^T + R)) = r2"*1, By

(5.4),

o(T + R[av ... ,ak]) = o(T) ■ o(R[av ..., ak])/o(R(av • • -, afe_,)).

By Lemma 3.2, this order is also r "+ ; and (5.8) is established.

Assume  o(R[at, . . ., aA n S[/3p • • • , ßk]) > 1.  If we can prove that

(5.9) T + PX = T+S*,
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the validity of condition (g) will follow from (5.8). We handle first the case x = #.

Let / £ RS. By Theorem 1.8, pt £ n + 1~kT n R. Then pt («* /) 0 in 21 for some

integer ; > k - 1. By (5.6), Riav ■ ■ ■ , a ^ and 5(/3 j, • • • , ß, A ate neighbor

lines in 21; hence R and S ate neighbors. By Proposition 1.1(3), oiR n S) = rl

tot some positive integer i. If i + j < n, Lemma 2.5 implies that pt £ n~1~if + s

C n~kT + S. If i +j> zz, Proposition 1.1(9) implies that pt £ S C n~kT + S. Then

pt = x + y for some  x £ S,   some y £ "~kj.   Since x £ "+  ~kJ n S,  there exists an

w
k '

element  u £ S    with pzz = x;  there is also an element v £ T with pv = y.   Let

t — u — v.   Then pt = pu + pv + pw = x + y + pw = pt + pw.   Then pw = 0, so w £ kT.

Then t = u + v + w£S   + T.   Then R    C S   + T.   By symmetry, S    C R    + T, and

(5.9) follows in the case x = #.  Next, let x = e.   Again the assumption and (5.6)

imply   |R n S\ > 1.  But now we have  k = n which forces  R = S,  and (5.9) follows

trivially.  This completes the proof that condition (g) holds.  Then Theorems 1.5

and 1.6 imply that  £  and 5)  are both translation //-planes.

By assumption, 21 = JiT, n) is 72-uniform; and by (5.4) every line of 21 is the

restriction of r lines of £ or 5). Since £ and 3) are translation //-planes, both of

the above properties are satisfied by the neighborhood of each point. Then both £

and  2)  are  (72 + l)-uniform with invariant  r.

To prove strong  (72 + l)-uniformity, we need the following result.

Lemma 5.1.  // o(R[aj, . . . , aA nSt/Sj, • • • , ßk]) = r1,   then

R[av ..., ak]+S[ßv ..., ßk] = » + W(r*) + R[av ..., afe].

Proof.  If  R = S  and   a. = ß.  tot all  i,  then 7 = 72 + 1,  and the lemma's con-

clusion is clear.  Assume  R = S  and that there is a smallest integer  i for which

a. 4 ß •  By examining the appropriate congruence of §3,  we see that   Rx (if z = l)

or  R[a., . . . , a._ .] (in case   i 4 1)  is equal to

(5.10) R[av ..., a.] + R[ßv ..., ß.] = R[av ..., a.J + fe + 1"zT + R(a1, .-., afe_1).

To see that (5.10) holds for  2 = 1,  apply (3.4), Lemma 3.1,  and Corollary 2.6 to

obtain k~1T + R = k~lT + Riav ... , ofc_ j),  hence    *=T + R = ^T +

R(a1T . . . , a     ]).  From (5.10), we obtain

R[av ..-, aJ + Rfjßj, ..., tSj C R[ap ..., a.] + R[ßv ..., ß]

(5.11) -R[a1,...tai] + *+1-íT + R(aj, --., afc_1)

= fe + 1-'T + R[a1, ..., a.].

From (5.5), (3.4), and Lemmas 3-1 and   3.2,  we obtain

oiR[av ..., oA] + R[jßx, ••■, /3j)

= r^ + VoíRÍaj, ....(LjnJKlS!. /3^_ A) = rn+i+2-''.
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By examining the appropriate congruence from §3 and applying (5.10) and Lemma

3.1,  we see that o(Rx) or  o(R[al, ■ ■ ■ , a._ ])  is equal to

o(R[a17 ..., a.] + k*l-'T + R(av ..., ak_A)

(5J3) = r2 • o(R(ap ...,ak_A + k~'T) = rn+k+2~ '.

Then (5.11), (5.12), and (5.13) imply

R[av ..., ak] + R[ßv ..., ßk\ = k*l~1T + R[av ..., a.].

By Lemma 3.1,  o^*1'^ + R[ap . . . , aj) = r"+k+2-\  Then

(5.14) Rkp..., ak] + R[ßv ..., ßk] = k + 1~'T + R[av ..., aj.

Let / be as in the statement of Lemma 5.1.  Using (5.5), (3.4), and Lemma 3.1, we

see that

r> = o(R(ar ...,ak_An R(ßv . . . , ßk_ A) = r»"**1'.

Then j = n - k + i,   hence  n+l—j = k + l-i.   Since each line of 21  is the re-

striction of exactly r lines of £  or S),    (Tx) =   T tot I < n.   Then the conclusion

of Lemma 5.1 follows from (5.14) in the case that R = S.

Henceforth, assume  R ^ S.  We consider first the plane  ®.  In the construction

of 5),  k = n;  so R / S implies that  R(a^, ■ ■ . , a■k_l) and S(ß., ■ . ■, ß,_A have

a trivial intersection.  Then (5.6) implies  j - 0,  hence by Lemma 3.2,

o(R[av ..., ak] + S[ßv..., ßk]) = r2n+2.

Then  R[a{, . . . , aj + S[ßv ■. . , j8j = n + l(Te), and the conclusion of Lemma 5.1

holds.

Finally, we must prove that the lemma holds in ® when  R ■/ S.   It follows from

(5-6) and Corollary 2.6 that

S(ßv ■•-, |Öfe_1)C"-7T + R(a1, ..., a^).

It follows from Lemma 3.1 that

R(av ..., ak_A + S(ßv ..., ßk_l) = "~'T + R{av ■■■, ak_A.

Then

(5.15) R[av ..., ak] + S(ßv ..., ßk_ A = n~'T + R[av ..., aj.

Next we compute  o(Rt> + S") = o(R*)2/o(Rti O 5s). Define  <f> from P" to  7/H by

4>(t) = pt.  Then by Theorem 1.8 and Lemma 3.1(a),

o(R*) = odmage çS n R) . o(Ker c/>) = o(R n " + 1-^T) . r2* = r" + l+*.
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Since R# n 5# = {t £ T#: pt £ R n S\,

oiR" n S") = odmage cf> n R n S) . oiKet rp).

Since R 4 S, j <n - k; and Proposition 1.1(9) implies that o(R H S) = r7. Then by

Proposition 1.1(9), R n 5 C 7T C "+ 1"^T = Image <p, and oiRU O S*) = A+2k. Put-

ting things together, we see that  oiRU + Su) = r2n+2~7.   Then

(5.16) R* + S"-Ä[alf .... aA + S^j, • • • ,/3A.

Now let t £ " + 1-/(T»). Then Theorem 1.8 implies pt £ n+l~'-kT,  and (5.15)

implies

pt £iR[al,...,ak] + S[ßl,...,ßk])n »+1-*T.

Then there exist a, b £ T    such that pt = pa + pb,

pa £R[ax, ..., ak] nn+1~kT CR,       pb £ S[ß v •. • , ß A n n+1-*TCi.

Let c satisfy r = íz + A + c.   Then pc = 0,  so p(A + c) £ S.   Then a £ R#,  and

(A + c) £ SW;  so   t £ Rn + S".  Then (5.16) implies that

n +l-7(T#) c R[ai) . . ., aA + SfzSj, .. . , ßk].

The conclusion of Lemma 5.1 follows by an easy cardinality argument.  This com-

pletes the proof of the lemma.

Proof of Theorem 4.1(b) resumed. It remains to prove that £ and 2) satisfy Axiom S.

Let P.Q £ nx, and let r' denote oiP H Q), i < n. Let c £ Q - P. By Proposition 1.1(9),

c (^ j) 0 for some ; < n + 1 - i. If / / 0, c ( ̂  / - 1) 0 in 21. Since 21 satisfies Axiom S,

c (~ i + j- 1) (P n T) in 21. Then c (^ i + j) P in £ and 5).

Next, we consider the case  / = 0.   By Lemma 5.1,   c £ "+  ~liTx) + P.   Then

c (~ z) P.   By Proposition 1.1(8), the number of points  d £ Tx such that

c U 2A 1) d is  r2"-2'.   Lemma 5.1 implies that if  X £ 77* and  o(X ng)> r¿ + 1,

then  c (~ z + l) X.   By Proposition 1.1(4) and (6), there are exactly r"~' points

d on   X   satisfying  c (~ zA l) c/.   The  rn~l  lines  X £ 77*  satisfying  oiX n Q) >

rl+    thus must contain all r "~  ' points d wi th c (~ z + l) d.   Then c (-/ i + Í)

P,   so c (ä z') P.   Then  £ and 2) both satisfy Axiom S in the special case that

the lines pass through 0.  Since £ and 2) are translation //-planes, they must

satisfy Axiom S without restriction.

6.   Variability of the (!2I)..  In Proposition 1.10(c) and Remark 1.11, we obtained

limits to the variability of the substructures    ('21). of an 72-uniform translation

//-plane  21.  In this section, we obtain results which show that the earlier limits

are, in some sense, best possible-.   In other words, the maximum variability in the

(!2I). permitted by the earlier results does occur and, in fact, occurs within the
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subclass of strongly 72-uniform //-planes. The results are all heavily dependent

upon Theorem 4.1.   We begin by proving

Remark 6.1.   If 8  is a strongly ¿-uniform translation //-plane and if  21 is

obtained from  8 by a finite number of extensions of types 1 and 2,   then   ZSI = 8.

Conversely, let 21 be a strongly (¿ + /)-uniform translation //-plane,  i > 1.  Then

SI can be obtained from  'SI by /' extensions of types 1 and 2.

Proof.   Let  8  be a strongly ¿-uniform translation //-plane.   Let  S,   be obtained

from S, _ .  by a single type 1 or type 2 extension,   1 < k < j;  S   = 8;  ®. = 21. By

(5.4), each line of S, _ ,  is the restriction of exactly r lines of S, : hence each

point of £,   ,   is joined to 0 by  r times as many lines in ®,   as in  @,    ..  By

(5.6), each point of  ®,  - S,     ,   is joined to  0  by exactly 1 line of  ®,.  Then the

points of  8  are precisely the points of SI which are joined to  0 by  r'  or more

lines of 21.  Then S and  'SI have the same point set; and (5.4) implies that they

have the same line set, same incidence, and same parallel relation.

To establish the converse, let  SI be a strongly  (¿ + /)-uniform translation H-

plane with   i > 1.   By Theorem 4.1(a) and Proposition 2.9,   SI can be obtained by j

extensions of some strongly ¿-uniform translation //-plane  8.  By the first con-

clusion,   8 = '21.

Remark 6.2.  If i and ; are any specified positive integers and if 8 is any

strongly ¿-uniform translation //-plane, then there exists a strongly  (¿ + /)-uniform

translation //-plane  21 such that  !SI = 8.  Suppose the width of  8  is  k.   If k < i,

SI must have width  k;  if  k = i,   SI may be required to have any specified width  h

in the range  i < h < i + /'.

Proof.  Given 8,  Lemma 3.3 and Theorem 4.1(b) permit one to make ; exten-

sions to obtain  21.   By Remark 6.1,   *SI = 8.   It also follows from Remark 6.1 that

every  SI with the desired properties can be obtained from 8 by 7 extensions.  If

k < i,   Theorems 4.1(a) and 1.8 imply that every extension must be of type 2;

hence   21 must have width  k.   It  k = i,   one may make   (h - i) type-1   extensions,

followed  by  (¿ + / - h) type-2 extensions.

Theorem 6.3. Let 8 azzci £ be horizontal translation H-planes, both with in-

variant r, 8 being strongly i-uniform and £ being strongly j-uniform. Then there

exists a horizontal strongly (i + j)-uniform translation H-plane  21 with invariant

r such that  '21 =*8 and 21. ^ £.
7

Proof.  We prove the corollary by induction on j.  The induction hypothesis is

that under the hypotheses stated in the theorem, one can obtain an //-plane  21 by

j type-1 extensions of  8  so that  SI. S £.   Once the induction proof is complete,

the truth of the theorem will follow from Remark 6.1.

Assume first that   / = 1.  Let 8 = ](T, n),  T abelian.  Let  Te = CQ © T,   CQ



278 D. A. DRAKE [j anuary

being the elementary abelian group of order  r .  André has proved [l, Satz 9]  that

the ordinary translation plane  £ ^ /^n' n    ^or some congruence 77' of C      We

use this 77   to obtain a type-1 extension of 8 to  21 = jiTe, ne),  Te = C. © T.

Since  21 is  (2 + l)-uniform,   liTe)  is the set of all points of  Te which are neighbor

(in 21)  to 0.  It is clear from (5.6) that  \Te) = T.  Then iTe). = (CQ © T)/T.   Let

a be the canonical (group) isomorphism from (CQ© T)/T onto  C     We consider

the image under a of a typical element of (77e)..   By (5.8), we have

oiiR[av .. ■ , a.] + T)/T) = oiiRe + T)/T) = a((R' + T)/T) = R' £ 77'.  It follows

from Theorem 1.7, that  21. = /((CQ © T)/T, (77e).)  is isomorphic to  JÍCQ, n') ^ £.

Then the induction hypothesis is satisfied for 7 = 1.

Now let  S  and  2) be given horizontal translation //-planes,   8  strongly i-

uniform, and  2) sttongly  (7 + l)-uniform,   j > 1.   Then   2) can be created by a single

type-1 extension from a horizontal  strongly /-uniform translation //-plane  £.   By

the induction assumption, one can obtain an //-plane   21 by j type-1 extensions of

8 so that  21. = £.   The induction proof will be complete if we prove the existence

of a type-1 extension   S  of 21 such that  £. = 2.   Let  21 be represented by JiT, n),

£ by  JiU, p), both  T and  U abelian.  Since £ « 8L = JÍT., n), Theorem 1.7

implies the existence of a (group) isomorphism  a from  T/lT onto  U such that

a((R + 1T)/1T) = R    £ p for each  R £ n.  Let  ß be the canonical homomorphism of

T onto  T/'T,   and set  y = aß. We summarize in the following diagram:

B          .         a
T—^.T/lT-» U,       y=aß.

We have  2) = JÍC    © U,   pe)  where  pe   is a collection of subgroups of  C    © U.

The members of pe ate denoted by  R  [a  , • • • , a],  R   £ v C p, 0 < afe < r for

1 < k < /'•

If  ® = jiC-n © T,   ne) is any type-1 extension of  21,  then Lemma  1.2 implies

that  '(C   + T) = ZT.   Let ß   be the canonical homomorphism of C   © T onto

(C. © T)/'T.   Let y' be the homomorphism from  CQ(& T onto  CQ© (7 induced by

y and the identity map on   C      Then there is a unique isomorphism  a   such that

a'ß' = y'.  We summarize in the diagram

C0(BT^   (C0 © T)AT — C0 © I/,       y' = a'j8 '.

We intend to prove the existence of a type-1 extension  £ of  21  such that for all

R[av •••, a.+j] £ ne,

(6.1)    a!(iR[av ■•-, a.+.] + lT)/lT) = R*[aj, • • • , a.] where  R* = a((R + iT)/iT).

It will then follow from Theorem 1.7 that  £. = 2).   As a convenience to the reader,
z '

all incidence structures under  consideration are  displayed in Figure 1.
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21 =/or, zz) —

epimorphism

induced by  jS

21,. = J(T/'T, 77.)

isomorphism

induced by  a

S = /(i/,it) -

type-1
extension

type-1

extension

- s- = /(c0eT,77e)

epimorphism

induced by ß

g^/OC^D/'T^zz^p

isomorphism?

2> = /(C0© u,pe)

Figure 1

In the extension of  £ to  5),  one must first form a subset  v of p consisting

of one line from each neighbor class of lines in  p. (Note that this  v corresponds

to the  p of §3.)  For each   R    e v, arbitrarily select a single element  Ren such

that y(P) = R .  Denote the set of all such  R  by  p.  Corollary 2.8 implies that  p

consists of exactly one line from each neighbor class of lines in zz.  Then p is an

admissible subset of zz with which to begin a type-1 extension of 21.  Corollary 2.8

also assures the possibility of labeling the lines of zz so that

(6.2) A(R(av !+/-l)+ ÍJ)/IT) = R*(V • ,)

for all lines of  zz.

The next step in making the extension of 21 is to select a congruence for C

We take the same congruence  zz   which produces the extension of £ to  S).  We use

the one-to-one correspondence  v «-> zz ,  R   *-* R    to establish the one-to-one corre-

spondence   p <-> 77 ,  R <—» R .  For each Rep, we set  P   = T + R    and  R   =

U + R'.

From the extension of £ to  a,  we have  (for each P )    a congruence of

R€/('~~   U + R  ),  one of whose components is   U/('~   U + R  );  the remaining com-

ponents are denoted by  R   [a]/('~   U + R  ),  0 < a< r.   Using Corollary 2.7,  we

see that

(y')-H'~lU + R*) = y~l('-lU + R*) = z3-1(0'+7'-1T + R)/{T) = ^'~lT + R.

Since  y'(Re) = R   ,  we see  that  y   induces an isomorphism  yR: Re/(I+'~  T + R)

^-pVO'-^ + R*).

Since  (y')"1(Ri) = Re,  (y')~ X(R*[a\) C Re  fot 0 < a < r.  Wedenote

(y')_1(R*[a]) by  R[a].  Then the isomorphism  y'R  assures that  R70+y-1T+R)

has a congruence with components   r/0+,'"1T + R) and  R[a]/0+7_IT + R), 0 <

a<r.   Since y   is onto, the definition of R[a] assures that  a'((R[a] + 'T)/T) =

R*[a).



280 D. A. DRAKE [jan uary

Let   I < I < j.    Assume we have obtained subgroups  R[a , ■ • • , a ] of

CQ © T for all  R £ p, 0 < afe < r,   1 < k < m,   m < I.   Assume also that

(6.3) R[av • • •, aj = (/)" liR*[av ■■■, aj).

Here the  R  [a., ■ ■ - , a  ] are the subgroups of C. © U chosen in the process of

extending £ to 2!.  In particular, if a, = 0 for k > I,

R*[av .. ■ , a,]/iR*iav •••, a._ A + '~l~ 1//)

has a congruence whose components are

iR*iav ..., a._ ) + 7'-/(7)/(R*(a1, ..., a._ A + >'-'- '(7)

and

R*[ar ..., aj, j8]/(R*(a1, •   -, a._ j) + 7'-'- '(j),       0 < ß < r.

We denote iy')~lÍR  [a^ ■ • • , a{   A) by  R^, • • • , a;   A. We have

(yr1(RV1,-..,a._1)A-,-IiJ) = y-1(fi*(a1,...,a._1)A'-'-1f/).

Since  a is an isomorphism, (6.2) implies the above group is

ß~ HiRiav ..., a.+ ._ ,) + ¡T)/^) + y' V"1"1!/).

By Corollary 2.7,  y-lii~l~lU) = I'+/-/-1T.   Then

(/)" liR*iav ■ ■ - , a._ A + '-1- lU) = R(aj; • • • , a.+._A + !+7'-/- !T.

By (6.3),   y'(R[a., • • • , a.]) = R   [a , - • • , a.].  Then  y    induces an isomorphism

y": R[ar ..., al\/iRial, ..., a.+ ._ ¿ + <+7-'- »T)

-^* R*[a]7 • - . , a/]/(R*(a1, ..., a._ t) + >~l~ lU).

Wedenote  (y')_ l(R*[alf .. •, a/+1]) by  Rt^, •■•, a/+1]. Since (yT'tRAaj, •-., crA.)

= R[a , .. • , a,],  R[aj, . • . , a/7 /3] C R[a^, ■ • ■ , a;] for 0 < ß < r.   Let // denote

R(a., • • • , a.   .    .) + l+,~       T.  The isomorphism y" assures the existence of a

congruence for  R[a., • • • , a.]//7 whose components are

iRiav...,a.+._A + l+i-lT)/H    and    R[ar • • • , a/+A///,       0<a/ + 1<r.

To see that the first component above is correct, one must again rely on (6.2) and

Corollary 2.7.  Proceeding in this fashion for /' — 1 steps, we obtain  subgroups

R[a , • • • , a.] of CQ<& T such that

a ((R[al5 • • •, a] + {T)/lT) = R*[av ■■, a.].

One may now continue (making any choices  for congruences permitted by the
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type-1 construction) until groups   Ptû^, • • • , a    .] are obtained.  Then

a'((R[a., • • •, a. J + T)/'» C a'((R[a., • • • , a.] + lT)rT)
(6.4) l 1+1 ' 7

= R [a-j, • ■ •, a.].

By Lemma 3.2,  o(R[a.j, • • • , a¿   .]) = r ■ o(R).  By (5.4) and Proposition 1.1(4),

o(R[al5 • • •, a.+.] n ¿T) = o(R n 'T). Then o((R[ax, • • • , a.+y] + ^V^) =

r-o((R + ïf)/^) = r ■ o(R*) which, by Lemma 3.2, is equal to o(R*[av • • • , a.]).

The truth of (6.1) now follows  from (6.4).   Then  S. = S.   This completes the in-

duction and hence, the proof of the theorem.

Corollary 6.4.   For  1 < / < ¿,   let  S7  be a horizontal strongly (b .)-uniform

translation H-plane.   Assume every  87  has the same invariant  r.   Let   n(j) denote

1)_, b.,   and set zzz(z') = zz(/) - b.,   b = n(i).  There exists a horizontal strongly b-

uniform translation H-plane  SI with invariant  r   such that S7 at (*»'?I) for
1 r m(j)  '

every j < i.

Proof.  We give a proof by induction on  ¿.  By the induction assumption, there

exists a strongly c-uniform translation //-plane  £ with invariant r and width

c = b - b. such that for every j < i,   87 Si ("()''£)   {■ y  By Theorem 6.3, there

exists a horizontal strongly cz-uniform translation //-plane  21 with invariant  r such

that

Then if / < i,

8«'s 21  =0<'''2I)   ...   and   £ s CH = "<''-"SI.
c m[i)

VsiCVXS) r  « 0<7'7OS{))  ,., = (»«)?D f.v
m(;) 777(7) mfz)

The equality of  "(7)OSI) and  "(77SI follows from Lemma 1.2 together with the

observation that SI  and  CSI both induce the same parallel relation into  ""70.

As a special case of Corollary 6.4, we have

Remark 6.5.   For   1 < ;' < b,   let  87  be a customary translation plane of order

r.   Then there exists a horizontal strongly /z-uniform translation //-plane  SI with

invariant  r such that  2I(/) a¿ 87  for   1 < ; < b.
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