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EMBEDDING THEOREMS AND

GENERALIZED DISCRETE ORDERED ABELIAN GROUPS
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PAUL HILL AND JOE L. MOTT

ABSTRACT.   Let  G  be a totally ordered commutative group.   For each non-

zero element  g e G, let  ¿(g)  denote the largest convex subgroup of  G  not

containing g.   Denote by   U(g)  the smallest convex subgroup of  G  that con-

tains  g.   The group  G is said to be generalized discrete if  U(g)/L(g)  is order

isomorphic to the additive group of integers for all  g/0  in  G.   This paper is

principally concerned with the structure of generalized discrete  groups.   In

particular, the problem of embedding a generalized discrete group in the lexico-

graphic product of its components, U(g)/L(g), is studied.   We prove that such

an embedding is not always possible (contrary to statements in the literature).

However, we do establish the validity of this embedding when  G  is countable.

In case  F  is o-separable as well as countable, the structure of  G  is completely

determined.

1.   Notation and terminology.  All groups considered herein are abelian.   Let

G be a totally ordered abelian group.   The set o of all convex subgroups of G

is linearly ordered by containment.   The order rank of G is by definition the

order type of the set  o\{GK   If D  and  C are convex subgroups of  G  such that

DCC  and if there is no convex subgroup between  D  and  C, then we say that

C covers D and that C is a principal convex subgroup of G.   We refer to the

extension DCC, when C covers D, as a jump.   Let P  be a set indexing the

collection o.  of principal convex subgroups   C    oí  G, where  n < p if and only

if  C     3C„.   If  C_ covers   D   , let  R_ = C /D  ; the skeleton of G is the system
77   —       P ZZ ZZ' 77 77       ZZ' '

[P, RJjt £ P)], and we call  P     a component of G.   If  0 / x £ G, let   U(x) denote

the intersection of all convex subgroups of G containing x, and let L(x) denote

the union of all convex subgroups not containing x.   Clearly L(x) C U(x) is a

jump, and all jumps can be obtained in this manner.   Two elements  a  and  b

of an ordered abelian group  G  ate said to be  archimedean equivalent if there

exist positive integers  m  and  zz  suchthat   |cz| < m\b\  and   \b\ < n\a\.   Clearly

a  and  b ate archimedean equivalent if and only if  (7(a) = U(b) and/or L(d) -

L(b).

Suppose that G is abelian, H CG, and that H and G/H ate totally order-

ed.   The positive elements of H  and all the elements of G belonging to positive
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cosets in G/H define a total order on  G so that  H  is a convex subgroup of  G.

Moreover, the skeleton of  G  is completely determined in the obvious way by the

skeletons of H and  G/z7 [17].

When we say that an ordered group  G algebraically has a certain property,

we mean that the group has the property as an unordered group.   For example, the

statement that  G is algebraically free means simply that  G is a direct sum of

infinite cyclic groups; it says nothing about the way that  G  is ordered.

Finally, the symbols   ÏÏ and  X denote the direct product and direct sum,

respectively.   For other definitions the reader should consult Fuch's book [10].

2.   The embedding problem for generalized discrete groups. One would like

to determine conditions under which an ordered group  G can be embedded in the

lexicographic product of its components (or small extensions of the components).

The best known result along this line is Hahn's embedding theorem, proved by

Hahn in 1907 [14].   Since then several generalizations  ([3], [5], [6], [7], [13],

[15])  have appeared.

Following Ribenboim [20], we define a regular group as a totally ordered

abelian group G such that, for each 77 £ P,   R    is a free A-module for some ring

A  such that Z C A C 2-   In [20], Ribenboim erroneously asserts that any regular

group admits an order embedding into the lexicographic product of its components.

The error is retained in [21],   We give in Theorem 3.1 the first of two essentially

diffetent counterexamples.   Although we shall show in §3 that Ribenboim's

theorem is false in the generality for which he states it, the following more re-

stricted version seems plausible.

Define an ordered group  G  to be a generalized discrete group if each com-

ponent in the skeleton of  G  is order isomorphic to the integers.   We suggest that

it is reasonable to conjecture that every generalized discrete group can be em-

bedded in the lexicographic product of its components—that is, in the lexicograph-

ic product of copies of  Z.   Credibility is lent to such a conjecture by the sug-

gestion that the projectivity of the components of a generalized discrete group

ought to produce the desired result in a manner dual to the way that injectivity

is used in the proof of Hahn's embedding theorem.   However, the proposed con-

jecture again is false (Theorem 3.4), but we establish in § 5 its validity in case

G is countable.

A remark on the choice of our terminology "generalized discrete group"

(abbreviated "g. d. group") is perhaps in order.   We introduce this terminology

cognizant of the fact that by a discrete totally ordered group  G  some authors

(see [18], [22], [23], [24])  mean that  G  has a least positive element.   Thus a

discrete group, in this sense, need not be a generalized discrete group, accord-

ing to our definition.   However, our point of view is the following.   We think of
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Z, the ordered group of integers, as being the standard model for a discrete group.

A natural generalization is a group whose components are all isomorphic to Z.

Obviously, a discrete group, as defined above, may fail to have this property.

Indeed, precisely all that is required for a totally ordered group to be discrete

(that is, have a least positive element) is for the group to be an extension of Z

by any totally ordered group.   And, of course, there are such groups, even among

the split extensions  X © Z, whose global structure is only remotely similar to

that of Z; whereas our g. d. groups, particularly the countable ones, have a much

closer relationship with  Z.

3.   Counterexamples to Ribenboim's theorem.

Theorem 3.1.   There is a regular group  G with components  Z and Q which

cannot be embedded in  Q © Z.

Proof.  Any extension of Z by Q can be ordered in such a way that the

skeleton of G is   P. = Q and  R2 = Z; in particular,  G can be ordered so that

it is a regular group.   Thus the proof of the theorem is contained in the following

proposition.   Most, if not all, of the proposition is well known; however, we in-

clude the proof for completeness.   The proposition deals with unordered groups.

Proposition 3.2.  Ext (2, Z)  is the direct sum of c copies of Q.   Any sub-

group of Q © Z  of torsion free rank  2  is decomposable into a direct sum of the

form A © Z, where A  has torsion free rank 1.   No nonsplit extension of Z  by  Q

can be embedded in  Q © Z.

Proof.  The exact sequence  0 —* Z —> Q —> Q/Z —» 0 gives rise to the exact

sequence

0 — Horn (Q, Z) —> Horn (Q, Q) -» Horn (Q, Q/Z)

— Ext (Q, Z) -» Ext (Q, Q) -» Ext (Q, Q/Z) — 0.

However, Horn (Q, Z) = 0  since  Q  is divisible and  Z  is reduced, and Ext (Q, Q)

= 0  since  Q  is divisible (hence injective).   Thus we have the exact sequence

0 -^ Horn (2, Q) —» Horn (Q, Q/Z) — Ext (Q, Z) -— 0.

Clearly, Hom(Q, Q) is isomorphic to Q.   Hence to show that Ext (Q, Z) is the

direct sum of c copies of Q, it suffices to show that Horn (Q, Q/Z) is itself

a direct sum of c copies of 0.   Observe that Horn (Q, Q/Z) is a vector space

over Q, so it is enough to show that Hom(Q, Q/Z) has cardinality c.   But any

homomorphism of Q/Z into Q/Z gives rise to one from Q  into Q/Z, so the

result will follow if Horn (Q/Z, Q/Z)  is of cardinality  c.   Since  Q/Z =

1 Z(p°°), we need only observe that Hom(Z(p°°), Z(poc)) has cardinality
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c.   However, it is well known that Horn(Z(p°°), Zip00)) is the additive group of

p-adic integers, a torsion free group having cardinality of the continuum.

Next, we assume that G  is a subgroup of Q © Z of torsion free rank two.

Then Q n G 4 G and G/2 H G  is isomorphic to a subgroup of 2 © Z/Q — Z.

Hence G e¿iQ n G) © Z.

Finally, suppose that  G  is a nonsplit extension of Z  by  2; we have already

shown that a continuum number of such extensions exist.   Let Z = (c).   Then we

have the exact sequence  0 —*  (c) —* G —> Q     '0 which does not split.   If G can

be embedded in Q © Z, then we have shown that  G = A © B where one of the

groups  A or  B  is infinite cyclic, and both A and ß are nonzero.   If c is in A,

then

G/(c) ^ A/(c)®B sag

and thus, since  2 is indecomposable, A = (c) and  G would be a split extension

of  Z = (c) by  2-    This implies that  c = a + b, where   a and   A are nonzero ele-

ments of A and  B, respectively.   Thus  2 —G/(c)   -£-» A/(a) © ß/( A ) —> 0  is

exact where  A has nontrivial kernel.   It follows that  A/(a) and  B/(b)  ate tor-

sion and divisible.   Since one of A  and  B, say  B, is cyclic, it follows that  B =

(A).   Thus under the natural homomorphism from  G to  G/(A) — A  the element  c

is mapped to a.   Hence  Q/(b) — G/(c, b ) —A/(a ), which implies that /4—g

[11].   However, in this case we may assume that  c £ B, and the proof of the

theorem is finished.

Corollary 3.3.   Not every regular group can be embedded in the lexicographic

product of its components.

The above is perhaps the simplest counterexample of Ribenboim's theorem,

but the next example is much more interesting.   It also defeats our proposed con-

jecture for generalized discrete groups.

Theorem 3.4.   There exists a generalized discrete group  G  that cannot be

embedded in a product of integers, even as an unordered group.

Proof.  One remark is pertinent before we start the actual proof of the theorem.

If H and  K ate g.d. groups, and if G £ Ext (//, K), then as we mentioned, G can

be ordered so that its skeleton is completely determined by the skeletons of H

and K, respectively.   Thus if H and K ate g.d. groups and if G £ Ext(//, K),

then G admits a total order such that it, too, is a g.d. group.   Our plan is to show

that there is a group  G in Ext (P, Z) which cannot be embedded in a product of

integers, where  P   is the cartesian product of countably many copies of the

integers.

The structure of Ext(P, Z)  is completely detetmined by Nunke in [19].
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Here, however, it is enough to know that   Ext (P, Z)  has elements of infinite

order; the proof of this fact follows easily from the fact that Ext(Q, Z) = 1   Q,

which is contained in Proposition 3.2.   For there exists the exact sequence

o - s _ p0 -, x e - o,
c

where  S = 1^   Z and  P. C P, and hence there exists an exact sequence

Horn (S, Z) •xt /£  Q, Z\ Ext(P0, Z)

Pn  is simply the closure of S = 1^.   Z  in  P = Il y   Zin the Z-adic topology.   We

observe that Ext (1 Q, Z) = II   (Ext (Q, Z)) is torsion free and has cardinality

2C, whereas  Horn (5, Z)  has cardinality  c.   Thus  Ext(P0, Z)  must itself contain

2C  copies of Q, and it follows that Ext (P, Z) has elements of infinite order in

view of the epimorphism:   Ext (P, Z) —» Ext(P„, Z).

Now let

(*) 0 (c) G/(c) 0

represent an element of infinite order in Ext (P, Z).   From the above remarks,

G admits a g. d. structure.    We claim that  G cannot be embedded in a product

of integers.   Assume that  GCll^eA(x).   Since   II ^£a(xx)    *s seParable [11,

p. 168], we can write

n<xx>= n <v®(è)'
\ e A ueM

where  nb = c for some positive integer zz.   This means that the sequence

(**) 0 —> (c) — (zzG, c) —, (nG, c)/(c) _* 0

must split, for   (72G,  c) = ((zzG,  c) n Ü   e„(y    )) © (c).    However, the commuta-

tive diagram

(c)> ♦<c, 72G) -» (c, zzG)/(c)

(c))-►G + G/(c) -» G/(c)

(c)y- G -» G/(c)

shows that (**) is the zz-fold of (*); the map   (c, nG) -** G + G/(c) is defined by

mc + ng —> (me + ng, g + (c )) for any integer zzz.   The middle row represents

the pullback construction.   Since  (**) splits, it represents the zero element of

Ext (P, Z).   Thus  (*) represents an element of Ext (P, Z) having finite order
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(a factor of 72), which is a contradiction on the choice of (*).   The theorem is

proved, and we point out that the example   G constructed admits a generalized

discrete order for which the convex subgroups have order type  co + 1.

4.   Some properties of generalized discrete groups.   The lexicographic pro-

duct and the lexicographic sum of copies of the integers are obviously g.d.

groups.   Furthermore, any free abelian group  F can be ordered so that  E  is a

lexicographic sum of copies of  Z.   From this it follows that if  G  is any g.d.

group and if  F    is a free abelian group with  E  a subgroup such that   E /F—G,

then E can be ordered as above and E   can be ordered so that its skeleton is

completely determined by the skeletons of E  and  G, respectively.   Thus any

g.d. group is the order homomorphic image of a g.d. group that is algebraically free.

We observe next, that if G  is a totally ordered abelian group and if H  is a

subgroup of G, then the skeletons of G and H ate closely related.   For if x is

a nonzero element of //, consider the jump in  H  and in  G  determined by  x.   De-

note by  UH(x) and L   ix), respectively, the smallest convex subgroup of H con-

taining  x, and the largest convex subgroup of  H not containing  x.   Let  t/(x)

and L(x) be the corresponding convex subgroups of G.   We want to observe that

UHix)/L   ix) is order isomorphic to a subgroup of  (i(x)/L(x).   If  L Ax) = L(x) O

H and   U'Ax)   = (7(x) n H, then, trivially, L„(x)  and  (7„(x) are convex subgroups

of H  such that x ^ E„(x) and x £ Í7„(x).   Thus we have

L'Hix) Ç LH(x) Ç UHix) Ç U'Hix).

Clearly   lA(x)/L„ (x)  is a subgroup of   l/(x)/L(x).   Since   (7(x)/L(x)   is archimed-

ean, it follows that   c/„(x)/L„(x)   is archimedean, and thetefote   i/„(x) = lA(x)

and   L'ix) = LAx).   In particulat, if  (i(x)/L(x)^ Z, it follows that   c/„(x)/L   (x)

r^Z and the following proposition is immediate.

Proposition 4.1.  A subgroup of a generalized discrete group is again a

generalized discrete group.

Remark.  Proposition 4.1 implies that for any exact sequence 0 —»A   ->

G —» B   AL-,0, where A, G and  B  ate ordered abelian groups and  a and  ß are

o-homomorphisms, then G is a g.d. group if and only if A  and  ß are g.d. groups.

A totally ordered abelian group of finite torsion free rank is also of finite

order rank [25, p. 50].   In [25, p. 49] it is observed that a g.d. group of finite

order rank is a lexicographic sum of finitely many copies of  Z.   Thus if H  is of

finite torsion free rank and if H  is a subgroup of a generalized discrete group,

then in particular, H is free.   Applying Pontryagin's theorem [11, p. 51], we

have the following corollary to Proposition 4.1.
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Corollary 4.2.  // G  is a generalized discrete group, then any countable sub-

group of G  is algebraically free.

In general, if  G  is a totally ordered abelian group such that  G = A © ß,

where   S  is a convex subgroup of  G, then an element  g = a + b, where   a £ A  and

b £ B, is positive if and only if a > 0 when a / 0 or b > 0 when a = 0.   In other

words, if G = A © B splits algebraically where the summand B is a convex

subgroup then this decomposition of G is such that  G is the lexicographic sum

of A and B.   This observation leads to the following corollary of Proposition

4.1.

Corollary 4.3.  // G is a generalized discrete group and H is a convex sub-

group of G such that G/H  is countable, then G is the lexicographic sum G =

K © H, where  K is some subgroup of G.   In particular, if G  is countable, then

any convex subgroup is a lexicographic summand of G.

Proof.  The proof follows immediately by applying the well-known result that

if G/H is free then G decomposes as  G = K © H fot some subgroup  K of  G.

If zz is a positive integer and G is a totally ordered abelian group, then

clearly G and nG ate order isomorphic.   Using this fact and Proposition 4.1 we

obtain the following trivial corollary, which will be needed in the next section.

Corollary 4.4.  // G  is a totally ordered abelian group and if H  is a general-

ized discrete subgroup of G  containing nG for some positive integer n,   then

G  is a generalized discrete group.

The following is an immediate consequence of the preceding results and a

recent theorem of Hill [16].

Corollary 4.5. // G  is a generalized discrete group with countable skeleton,

and if each principal convex subgroup of G  is algebraically free, then G  is

algebraically free.

We now construct two examples of g.d. groups.   There are two opposite

situations we would like to illustrate.

Example 1.   Let  Gi  be the direct sum of copies of the integers  Za where

a £ L  and L  is the positive integers ordered under the usual ordering.   Order

Gj   lexicographically.   Then the convex subgroups of  G form a descending

sequence  Hn 3/Í. 3 //, 3... DH    3 . . .  where  H    =1        Z    fot all n > 0.   In
viz n — n n <_a   a —

particular, for each convex subgroup  H there is a convex subgroup  K immediate-

ly below   //, that is, H covers   K.   Note that there is no smallest convex sub-

group properly containing 0.

Example 2. Here let L  be the positive integers inversely ordered, and let
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G2 = 2     i Z    ordered lexicographically.   Then, in this case, the convex sub-

groups of G 2  form an ascending chain  f/. Cf/j C. CH    C..., where  H    =

Z    © ... © Z- © Z,  for all 72 > 0.     In this example, given any convex subgroup  K

there is another convex subgroup H which covers  K.

Example 2 motivates the consideration of totally ordered abelian groups whose

set of convex subgroups is well ordered with respect to containment.   In particu-

lar, the convex subgroups of such groups can be indexed by ordinal numbers

where  K.aÇ Kß it and only if a<ß.   Furthermore, given any proper convex sub-

group  Ka there is a convex subgroup  Ka   j  which covers  Ka.

Proposition 4.5.  // G  is a generalized discrete group such that the convex

subgroups are well ordered with respect to containment, then G  is a lexicographic

sum of copies of Z.

Proof.  We use transfinite induction on the ordinal number associated with

the set of convex subgroups of G.   If K   is a convex subgroup of G properly

contained in G, then there is a convex subgroup  Ka   ,   that covers  Ka.   Also,

Ka  . = C,a®Ka, where   Ca—Z  and the decomposition is a lexicographic sum.

In the indexing of convex subgroups of G, if G = Kß and ß - 1  exists then G =

Cg_ , © r\o_.   and the inductive hypothesis implies  G is a lexicographic sum

of copies of Z.   If ß is a limit ordinal, then we apply the standard argument to

conclude that G is the algebraic direct sum of Ca for a < ß.   By the inductive

hypothesis any proper convex subgroup  K^ is the lexicographic sum of Cafor

a < A.

Any nonzero element  x  of  G can be written as  x = x      + ■ • ■ + x     ,  where
ak 1

x      is a nonzero element of  Ca   tot each  i and  a, < a2 < . . . < a  .   Thus, it

follows that x £ K^ where À > a  .   Since  K^ is the lexicographic sum of the

C's,  x  is positive if and only if x„     is positive in  C     .   Thus   G  is the lexi-
k ak

cographic sum of the   C's.

We define a totally ordered abelian group  G to be  w-discrete it every order

homomorphic image of  G has a least positive element.

If  G  is a ^-discrete totally ordered abelian group, then obviously the convex

subgroups of  G are also well ordered with respect to containment.   Thus we

have the following result from Proposition 4.5.

Proposition 4.6.  // G  is a w-discrete totally ordered abelian group, then G

is the lexicographic sum of copies of the integers, where the summands are in-

dexed by an initial segment of ordinal numbers inversely ordered.    Conversely,

any such lexicographic sum is a w-discrete group.

Obviously, a w-discrete group is a g.d. group.   Further, a totally ordered
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abelian group  G  of finite order rank is w-discrete if and only if   G  is a g.d. group.

That a g.d. group need not be «/-discrete is seen from Example 1 above.

Note that any subgroup of a z^-discrete group is again z^-discrete.   Thus if

G  is a lexicographic sum of copies of  Z  indexed by a suitable choice of index-

ing set then any subgroup is also a lexicographic sum of copies of Z.

5.   An embedding theorem for generalized discrete groups.   We have seen in

§3 that there are regular groups and generalized discrete groups which cannot

be embedded in the lexicographic product of their components.   Nevertheless,

this embedding is possible for countable g.d. groups.

Theorem 5.1.  Any countable generalized discrete group can be embedded in

the lexicographic sum of its components.

We shall need the following lemma for the proof.

Lemma. Let G be any countable generalized discrete group and let g be an

element of G.   Then there exists a countable extension E of G by a   (bounded)

torsion group such that E has a lexicographic decomposition E = E. © E7 © E

where E2 = (x) is cyclic and some multiple of the generator x is the given

element g.   Either or both of E. and E,  may be zero.

Proof.  Let   U(g) = (c) ©L(g), where   U(g)  is the smallest convex subgroup

of G  containing g  and where  L(g) is the largest convex subgroup of  G not

containing g.   Since G is a countable generalized discrete group, every convex

subgroup of G is a direct summand of G according to Corollary 4.3, so let

G = £| © U(g).   Write  g = ne + h, where  Z2 is an integer and h £ L(g); we may

choose the generator c such that the integer 72 is positive.   Now embed L(g) into an

isomorphic copy E,  of itself such that nE,= L(g).   Choose g, £ E,   such that

zzg3 = h and set x = c + g  .   Define  E = E^ © (x) © E,, and observe that this

is a lexicographic decomposition.

Proof of Theorem 5.1.  We shall use the above lemma repeatedly to obtain

a sequence  C = G« C G. C • ■ ■ C G   C...  such that G     ,   is a torsion extension
1 (J—      1— —      n— n + i

of G     and such that  G* = [A      ,,G    is a lexicographic sum of integers.   First,

we enumerate the elements of  G0 = G; let

G0 = 'c?0, 1' &o, 2'  ' " " ' ë0,n' '"*'

By the lemma, there exists a G, that admits a lexicographic decomposition G, =

£? j © E2 © E,  where E-.  is cyclic and contains g0 ,.   Now enumerate the

elements of Gp let

Gi-|*i.r 1,2' '61,77'
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We can write gx  x = ex+e2 + e?  where e . £ E..   Applying the lemma again to

Ej and   E,   using the elements   e^  and   e,, we have lexicographic decompositions

E1 = En©E12©E1,  and  E,=E,j©E,2©E33, where  E j 2 and  E, 2  are

cyclic containing  e.   and  e,, respectively.   Observe that gn ,   and  g.   .   ate

both   contained in E l2(3 E2 © E,2.   Now we proceed to the induction step.

Suppose that we have a finite chain  Gfi C G, C • ■ ■ C G    of torsion extensions

of  G„  such that for certain elements  g., g2, ..., g    belonging to  G   _,, we

have a lexicographic decomposition

g = y e .,
zz *—* n, i

ief(n)

indexed by some finite subset  ¡in), such that  (p,, p,, • • • , p  > CS..„   ,£
' N°l    ° 2 °n'  —     ¡ejKn) ■ n,j

for some subset 7(72) of /(?2) with E    . cyclic for each 7 £ Jin).   Now let

p     ,   £ G     and write   p     , = Z....   . e ., where  e . £ E     ..   For each  z £ /(«) -
°« + l zz °7Z + 1 iel(n)    z' z 7Z,z

/(zz), let   E. be a torsion extension of  E     . such that  F. = F. . © (x.)©E. ,
z rz,z zz,lvz'z,3

where the sum is lexicographic and   e. £ (x.).   It j £ Jin), set  F .= E     ..   Define

G     , = 2...,,  NF., and observe that we have lexicographic sums
n + 1 i£l(n)     1' 6    r

g , = y F=   y   e . .,
rz+l ^- z *—i n + l,z

ze/(zz) z£/(zz+l)

where the latter decomposition is the refinement of the first obtained from

Fl. = F.1©<x.)©F.f3.

In view of our construction, there exists a subset   /(t2 + 1)  of /(?2 + 1)  such that

En + \,,   ÍS CyCliC if   J € ](" + ^   atld SUCh that   (Si-  g2> •" ' S„>  g„ + l)   Ç

S.,,.     ,,E     ,   ..   Moreover, we can choose the index set such that   /(t2) C
i€J(n + i)    72 + 1,7 '       -

/(?2 + 1)  and such that  E     . = E     ,   .  if  / £ Jin).
J n.j n + l,j       '     J

Obviously, we can choose the sequence   {g., g2, • • • , g  , • • •! such that

the set  U        G  , a countable set, is exhausted.   The proof is finished with
n«¿   n'

the observation that the group   G* = U     UG     is a lexicographic sum of integers

since it is equal to  U (S.,„  ,E     .); the latter is a lexicographic sum
t ^-,n<oi        ]£j\n)     72,7

since   Jin) C ]in + l) and since  E     . = E     .   . if 7 £ 7(72) for each 72.
1        — J s     '     ' n,j rz + l ,1 '      J

6.   Order separability.   In this section we introduce the concept of an o-

separable group.   In the previous section we showed that a countable generalized

discrete group is embeddable in the lexicographic sum of its components.   In

this section our main result is that such a group G is, in fact, equal to the

lexicographic sum of its components under the additional assumption that  G is

order separable.

A totally ordered abelian group  G  is said to be orz^ez- separable (o-separable)

if for every finite subset 5  of  G there exists a lexicographic sum decomposition
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of G, G = l.eJA ., where  / is a finite indexing set containing a subset /  such

that  A . is order isomorphic to a subgroup of  Q fot each j £ J, and  S Cl.   . A ..

Clearly if G decomposes as above, for z. £ I,   1. <.A. is a convex sub-

group of G, and if /  is chosen to be minimal such that S Cl.   . A . and if /'    is

the smallest element of /, then 1.      .A. is a principal convex subgroup of G

(determined by some element s £ S).   In particular, note that any principal convex

subgroup of an o-separable group  G  is lexicographically a direct summand of  G.

Observe that our definition of G  being o-separable generalizes the definition

of Baer [2] of G  being separable for an unordered torsion free abelian group  G.

Proposition 6.1.  Let G  be an o-separable group and H a convex subgroup

of G.   If H is a direct summand of G, then H is also o-separable.

Proof.  Let  5 be a finite subset of H and suppose   G = 1 e,A . where  S C

l£j A . with A .CQ if ; £ J.   Let /  be minimal with respect to this property

and let  z'    be the minimal index in   /.   Then  C = 1.      .A . is the minimal convex
u ' ;osz    l

subgroup of G containing S.   Thus C CH and H = (1 .£/ A .) n H = (H n 1.    .A)

©C, that is, // = //.© 1.      .A. where S Cl.^.A..

Proposition 6.2.   The lexicographic sum of o-separable groups is o-separable.

Proof.  Suppose G = 2AeA H ^ where the order ou  G is the lexicographic

order and each H\ is o-separable.   If 5 is a finite subset of G, then for each

x £ S we project onto H y   Clearly there are only finitely many A's, say  |A.,

• • • , \k\, such that the projection of x,  n,(x), is nonzero in HK.   Furthermore,

assume Aj < A2 < • • • < A,.   For A   e ,Aj, • • • , A, S, let S  = \xx   e Hx |

x^   / 0  and x^  = z7^ (x) for some  x e S\.   Using the fact that each //.    is o-

separable and that  S    is a finite set, we decompose  //> ,   H.   =2.,,  A.  where
t x A¿ A¿ 7€'Z       7

St Ç l-e, A . and A . is a subgroup of Q fot j € J   C I .   Then H can be de-

composed as

Z «x  e    I a,U (    £    //A\ ©-..©/ Z aWz h'X
\x<Xj       / \fSfj       / \Xj<A<X2       / \idk      / \Kk<\

« / = Uf.j /,. then clearly S Ç lje] A..

We do not know if the lexicographic product of o-separable groups is again

o-separable.

We are now ready to prove the main result of this section.

Theorem 6.3.  // G is a countable o-separable generalized discrete group,

then  G is the lexicographic sum of its components.

Proof.  Let G = |gj, g2, • • • , g , ■ • ■ \.   For each positive integer 72, let
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S    be a finite subset of G containing  g x, g2, • ■ • , g  .   There exists a lexico-

graphic decomposition G = 2.£.,  ,//     , where ¡in) is a finite set, with the fol-

lowing properties: for some subset Jin) of  lin),

s„t     Z     H\n)    and    Wín)=   <*/"}>    for each  7 £ 7(72).

We shall always assume that  7(")  is minimal with respect to having the above

properties.   Moreover, we shall assume that the finite subsets S    oí  G ate

chosen inductively in such a way that h    ' £ S     x for each 7 £ Jin).

Now, we proceed to show that such decompositions exist with H.' = //., +  '

for each 7 £ Jin); j' represents some element of Jin + I).   This is done by in-

duction on 72.   Suppose that H(k) = Hik+1) for 7 £ jik) if k < n.

Let / be the largest element of Jin), and write A,     = 2.^,,     ..i.A.  +   ,

where  i.  is an integer.   Let s  be the smallest element of Jin + 1) such that  t

/O.   Then h(.n) = 2     ..„     ,./.A(" + 1).   Note that
r I s<;£/(rz + l)   ;   ;

d) z «!n)= z   "!n+i)
l<iel(n) s<i£Hn + D

because each is the smallest convex subgroup of G containing A,    .   Moreover,

w(rz)~z~wU + D> so

7(72) __ ^ u(rz + l)(2) z »r-   z    «\
l<iei(n) s<f«/(n+l)

because each is the largest convex subgroup of G  not containing  h."'.

Obviously (1) and (2) imply that

£ //|n+1) = /7<") © Z H(.n + 1\

s<j«/(b+1) s<z'e/(rz + l)

Z //<"+1)=W(,n)©        Z /7(n+1).
" ; / '—'7

s<je](n + l) s<jej(„ + l)

Now, let  /(l) = /,  s(l) = s and let /(2) be the largest element of Jin) less than

Hi).   Write

M?,\ =       y      CA(" + 1), where   t. is an integer.
/(2)       .     f-- ..17 '

;e/(rz+l)

Let  s(2)  be the smallest element of 7(72 + 1)  such that  ¡*s(2) / 0.   Then  s(2) <

sil) since  Z(2).</(!).   From b\f2) = X,(2)i/</(fl+l)*^\ we have

Z    w!n)=      Z     tf(n+1),
/(2)<fei(„) s(2)<i«/(fi+l)

£ f/<«> = £ //Ç"+1>;
l(2)<iei(„) s{2)<ien„ + i)
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the latter equality holds because H\"l)— Z~ Hi"(2)) •   Now> we have

s(2)<z«i(n+l) s(2)<i«/(n+l)

s(2)<ye/(n+l) s(2)<ye/(n+l)

= «$)©       z      //5"+i)©f/|»1))®   z    //¡"+i).
s(2)<7<s(l);;€/(n+l) s(l)</«/(n+l)

Continuing in this way we show we can choose the decomposition  S.£.,    ..//. +

such that  H.     = /P* +  '  for each  j e J(n).   Therefore, we conclude that  G =
il

Kb.).   Furthermore, if we rename the b.      as  c   where  a< ß if c    > Co,
; ' ; a. ' a p

then G = £(ca).   It follows that this is a lexicographic sum.   For suppose g

e G and  x   e (c  ) is the first nonzero coordinate of  e  .   Now  p    e S   C
a.      \   a' o,? °77 77 —

2.,,,   ,(/!>.)   and  c   = />        for some   i e /(zz).   This last decomposition is a
l^KnV   j     ' a.        j I       >K r

lexicographic sum.   This fact implies that   g    is positive if and only if x   is

positive.

7.   A useful example. We present now an example of a subgroup H oí the

lexicographic sum of countably many copies of  Z  such that  H  is not a lexi-

cographic  sum of copies  of   Z.   This example also shows that o-separability

is not a hereditary property.   Another use of the example is to show that the

conclusion of our embedding theorem (Theorem 5.1) cannot be strengthened to

conclude that a countable g.d. group is a lexicographic sum of copies of Z.

Let  G = 21-c .<6j(x )   where  Z£^(x.)  and  G is ordered lexicographically.

Let  H =    2x,   ©  1,    .       (x. + x.   A   with the induced order on H.   Clearly  H

is a subgroup of  G  of index  2.   Thus there is a one-to-one correspondence

between convex subgroups of G  and convex subgroups of H.   If  C  is a convex

subgroup of G, then  C n H  is a convex subgroup of H.   Furthermore, if C    is

a convex subgroup of H, then  C = \x e G\ 2x e C \ is the convex subgroup of

G  such that  C n H = C'.

Suppose that H is the lexicographic sum 2, .^^(y.) where each y . is

positive. Under the above correspondence of convex subgroups of G and H,

we see that the chain of convex subgroups of H is

H = U H(2x j) D U H(2x 2) D-.O V H(2x ) D-...

Thus we may assume that  y ■> y ■ for  i < j, in the lexicographic sum H =

2lsi<ü)(y¿>, and that  [/<-(?) = fJG(x.).

If y j = íjjXj + ... +nk xk , we see that /j j ¡¿ 0 since  Í7(yj) = Í/Uj).

Similarly, y2 = f2i*i + t22x2 + ' ' ' + l2k xk    an<^ we conclu^e '2 1 = ^ an<^ '22

^ 0.   Continuing, we have
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yi = tllxl+tl2x2 + ... + tXkxk

y 2- t22X2 + --- + t2kAXk

1 ~1

2 R2

t       x     +...+/    ,    x,
mm    m mk      k

m     m

where  C./O for each z.   In fact, t..>0 it x. is chosen positive.

We observe   ijj = 1.   For

x l+x2 = slyl + --- + skyk = s1tnx1 + is2t22 + sltl2)x2 +

and, by the uniqueness of representation, s.t.. = 1.   In the representation x? +

x3 = sAl + s2y2 + • • • + s¿yi we see tnat  si = 0  since, otherwise,   (7(x2 + x,)

= (7(x2) = (/(yi).   Thus

x2 + x    = s2y9 + • ■ •  = •s2'22;c2 + terms involving  x. for  / > 2.

From this it follows z22 = 1.   By induction we see that t.. = 1  for each  i.   How-

ever, 2x,   £ H  and

2xx=Sxyx   +   ...+Smym    =SxtxxXl+is2t22+SxtX2)x2

(k \ m

Zsitik]xk + --+ T. situxt+'--

where  k < m,   I > m.    But  t x , = 1   implies  s x = 2.   Then s 2t2? + s ,Z. 2 = 0  and

/22 = 1   imply  s2  is even.   Assuming  s,_,   is even for  2 </e < ttz, then

2 ._j s .i., = 0  and  /      = 1   imply  s     is even.   Hence  s j, ■ • • , s     are all even,

and  2x, = 2(y. + s'y2 + . . • + s' y   ).   But this implies xx  £ H.   This contradic-

tion shows  H  is not a lexicographic sum.

Proposition 6.2 implies that  G  is  o-separable.   But because of Theorem 6.3,

H  is not o-separable.

8.   Application of generalized discrete groups to valuation rings.   Butts

and Gilmer [4] defined a valuation ring  V to be discrete if the only primary

ideals of V are prime powers, and they proved:   A valuation ring is discrete if

and only if its value group is generalized discrete.   Using the result of §4, we

can obtain easy group theoretic proofs of the following two results, which were

proved by R. Gilmer in [12] using ideal theory.

Corollary 8.1. Let  V be a valuation ring with quotient field K,  L  is a

finite field extension of K, and V   a valuation ring of L  such that  V    n   K = V.

Then if V  is a discrete valuation ring so is  V .

Corollary 8.2.  Let V be a valuation ring of K and F a subfield of K.   If V

is a discrete valuation ring of K, then  V  O   F  is a discrete valuation ring of F.
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