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THE EXISTENCE OF Irr(X)

BY

M. W. MISLOVE

ABSTRACT.   If X is a compact totally ordered space, we obtain the existence

of an irreducible semigroup with idempotents X, Irr(A"), with the property that any

irreducible semigroup with idempotents X is the idempotent separating surmorphic

image of Irr(X).    Furthermore, it is shown that the Clifford-Miller endomorphisrfl

on  Irr(X) is an injection when restricted to each   H-class of Irr(X).   A construc-

tion technique  for noncompact semigroups is given, and some results about the

structure of such semigroups are obtained.

Introduction.  A semigroup S is irreducible if S is a compact connected semi-

group with identity 1 having no proper compact connected subsemigroup contain-

ing 1 and meeting M(S), the minimal ideal of S.   If X is a compact totally ordered

space, (X, min) will denote the semigroup X under the operation

xy = minimum [x, y i    for each x, y £ X.

A semigroup S has   idempotents  X ii E(S) =^ (X, min),  E(S) being the set of idem-

potents of S.   The main result of this paper obtains the existence of an irreducible

semigroup with idempotents X, denoted  Irr(X), with the ptoperty that a compact

semigroup S is irreducible with idempotents X if and only if S is the idempotent

separating surmorphic image of Irr(X).   Hof mann and Mostert attempted to con-

struct Irr(X) in Chapter B, §5 of [3], but there were errors in their construction.

The first section of this paper is devoted to pointing out those errors.   We next

describe a technique which generalizes the construction of generalized hormoi to

noncompact semigroups, and then establish some properties of the semigroups so

constructed.   In the main section of this work we establish the existence of Irr(X),

and in the last section we give a counterexample to another proposed structure

for  Irr(X).   The notation and terminology will be that of L3]> and the reader is ad-

vised to review the definitions of a chainable collection and of a hormos on pp.

139—143 of that volume.   The duality theory used will be Pontryagin Duality The-

ory for locally compact abelian groups, and standard references are [2] and oL
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helpful hints in the preparation of this manuscript.

Some counterexamples. When Hofmann and Mostert attempted to construct

Irr(X), they proceeded as follows.   First, they constructed a collection  (X, S  ,

m     ) which they thought to be a chainable collection, and they let  Irr(X) =

Horm(X, S , mx ).   It S is an irreducible semigroup with idempotents X, according to re-

sults in [3], S = Horm(X, S     m„) for some chainable collection (X, S     m    ),
x        x y xx y

i.e. S is a hormos.   In order to construct the required idempotent separating sur-

morphism of Irr(X) onto S, they first constructed a surmorphism i/f  : Hx —> Hx,

where  H'x and Hx are the groups of units of Sxand Sx, respectively, for each x £ X.

They then extended \fj    to a surmorphism of Skonto Sx for each x £ X, and, using

these extensions, they induced an idempotent separating surmorphism of Irr(X)

onto S.   The errors in this approach are two-fold.   First, the collection  (X, S ,

777     ) failed to satisfy all the conditions for a chainable collection, and second,

the theorem used to extend each i/r   to Sx is false.   We treat these déficiences in

the above order.

For  (X, Sx, mx  ) to be a chainable collection, it must satisfy the following.

If x £ X is isolated from below in X, then  d>  : H   —»Il H   defined by d> (h) =
' ^x        x y<x      y t   ~xv   '

(m    (h)) is an isomorphism of H   onto limi/V , ttz    , y < xj, where, for each
y X y v X X i y * yZ

w £ X, Hw is the group of units of S . In particular, this condition must be sat-

isfied by the collection (X, Sx, mxy) constructed by Hofmann and Mostert, but the

following shows that it is not. r     .]

For each x £ X, Hofmann and Mostert let H'x= (Rrf ' ) » where  R¿ is the

discrete group of real numbers,    X = \x € X\{l}: x is isolated from above in Xj,

[x. l]/x = Lx, l]  O 'X, and, for a locally compact abelian group '-,   G   denotes the

character group of G.   If x < y £ X, they defined w'   : Rrf X   —' R¿ x by

Lu/y(/)][z] = f(z) tot each z £ [y, l]#x if [y, l], x jL n, while  w'   (f) = 0 if [y, l],x =

D, and they let  m     : H   —> H   be defined by 772      = w     , the adjoint of w '   .   Now,
xy        y x x y ^y %y

since inverse limits and direct limits are dual, the above condition on the groups

is equivalent to the following.   If x £ X  is not isolated from below in X, then

, Ly,l]ix      ( Lx,l],x
<¿>x:¡im\Rd ,wyz,y<z<x\^Rd

111 1 Lyg, lJfX

defined by <f>Sv^   V )) = w    Sf) is an isomorphism, where / £ R , andÄ    y 0 y0

Ly0, Uix Ly, l]ix
Vyy^d ^l^Rd ,"'yX,y<*<*\

is the natural map.   We now give an example due to J. H. Carruth where  c/>    is not

an isomorphism.

Let X = {l}u{l-l/n}  „     under the natural order.   Then 1 is not isolated
n fa

from below in X, and so
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[x,i],x    t Li,i]<x
<£j:lim{Rrf , w'xy, x < y < 1[ —> Rrf

should be an isomorphism.   But,    X is the set of points  x £ X \[l\ with x isolated

from above in X, whence   'X = X \{lj.   Thus, for x / 1, [jx, l],x is infinite.   If

/ e R¿ x with /(z) = 1 for each z e [0, l]ljf, then w'0x(f) ¿ 0x for any x e (0, l],

where   0    is the identity of R    '       x.   Therefore if
x a

[0,l],x .n^'^'X

Ix.l],

R^ X-lim[R^ ,w.x<y<l\
d '      xy'

is the natural map, i70(/) ■/ r)0(0) and so limiR^ , u>x , x < y < lj is nontriv-

ial.   But    R    '       x = R9 = !0[, and hence we clearly cannot have the required

isomorphism, whence (X, S  , m    ) is not in general a chainable collection.

We now turn our attention to the other error in Hofmann and Mostert's attempt-

ed proof. As remarked above, if S is an irreducible semigroup with idempotents X,

then 5 = Horm(X, S  , m     ) for some chainable collection (X, S  ,  m     ), and to ob-
'      x'       xy' '      x'       xy"

tain the desired surmorphism of Irr(X) onto S, they first constructed a surmorphism

if/x oí Hx onto Hx for each x e X. They then attempted to extend iff to a surmor-

phism of Skonto S , and the result they used to do this is the following.

Statement.  Let r/>: 2 x G —• S be a surmorphism and suppose  y/: M(2) x G—'

M(S) is a given surmorphism with i/f(M(2) x il[) = r/>(M(2) x [l|) and i[/((°°, 0), g) =

<^>((°°j 0), g) for each g £ G.   Then if/ can be extended to a surmorphism of 2 x G

onto S with i/r((0, 0), g) = </>((0, 0), g) for each g e G.

Here  2 = i(r, s(r)):   r £ H[   C H    x  R , is  the  universal  solenoidal semi-

group (see [3, p. 71]), and G is an arbitrary compact group.   The following is a

counterexample to this statement.   Let G = US, 5 = 2, r/>: 2 -» 2 be the identity,

and define if/: M(2) — M(2) by i//((°°, h)) = (~, h~l).   Then <p(M(2)) = <A(M(2)) as

required, but if/ is not extendable to all of 2.   For suppose <A(p, sip)) = (r, s(r))

for r e   H\[0!.   Then

(<*,, S(p)-1)="A(~>, s(p))=^[(oo, 0)(p, s(p))]

= t/r(c», 0) if/ip, sip)) = (00, 0)(r, sir)) = («>, s(r)),

whence s(p)~ = s(r), contradicting the fact that s, being the adjoint of the iden-

tity map of Rd into R, is one to one.   This completes the counterexample.

Later, we shall give a counterexample to another proposed structure for Irr(X),

but this requires information which should properly appear during the proof of the

existence of  Irr(X).

Linkable collections and K-linked semigroups. As noted above, the collection

(X, S   , m    ) constructed by Hofmann and Mostert failed to satisfy all the proper-

ties of a chainable collection.   However, using techniques identical to those for
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generating a hormos from a chainable collection, a semigroup can be constructed

from a collection such as  (X, S     m% ) which shares all the properties of a hor-

mos save compactness.   Moreover, a semigroup so constructed plays a central

role in our proof of the existence of Irr(X).   In this section, we investigate such

semigroups and we begin with the following definition.

Definition 3.1.  (X, S  , m    ) is a linkable collection if

(a) X is a compact totally ordered space with maximal element 1 and minimal

element 0.   X  = [x £ X\j0j: x is isolated from below!, and, if x £ X , x' =

supLO, x).

(b) For each x £ X, Sx is a compact semigroup with identity  1     and minimal

ideal Mx satisfying:

(i)   M    is a group with identity  e

(ii)   If x i X  , then Sx = M% = Hx  is a group, where  Hx is the group of

units of S   ; if x £ X',  H    DM   =□.

(iii)   If x / y, then  Sx n S   = D .

(c) For each pair x, y £ X with x < y, there is a homomorphism m    : S    —»

Sx satisfying:

(i)   m      is the identity.

(ii)   If x < y, then  ??z     (S  ) C H .v    ' -" xyv   y' x

(iii)   If x < y < z, then  m      o m  „ = m     .
— / —    » xy yz xz

(iv) M     \ M    is an injection if y £ X   and x = y  .

(v)   If x i (X' U ¡0j), then </>x: /7x — Uy<x Hy defined by <f>x(b) =

(myx(h))y<x  is an injection of tfx into limi/7y, myz, y < z < x\.

Note that any chainable collection is linkable.

Lemma 3.2.   Let (X, S  , m     )  be a linkable collection and let S   = U     „ S   .
'    x'    xy xeX    x

¡f s, t £ S' with s £ Sx, t £ S  , and z = x A y, define  st = ™zx(s)mzyU).   With this

multiplication S' is an algebraic semigroup, and S  is commutative if and only if

each S     is commutative.
x

Proof.  This is the same as the proof of 5.2, p. 140 of [3L

Lemma 3.3.   Let (X, S  , m    ) be a linkable collection and let S  = U        S  .
x       xy x €Ji

Let S be the basis of open intervals in X.   If U £ $,  u = inf U, and V ÇS u is

open, define  W(U, V) = {s £ S' : s £ Sx for some x £ U and mux(s) £ Vj.   Then ö =

\W(U, V): U £ % and V C S.   , y is open]  is a basis for a topology on S   relative

to which S   is a topological semigroup when endowed with the multiplication of

Lemma 3.2.

Proof.  Again, the proof is the same as that of 5.3, p. 140 of L3L   We should

note two things, however.   First the inclusion in (J of the basis £>x of SX\Hx tot

each x £ X' in [3] is superfluous.   For, if  V £ $  , then V = W(U, V) where U =

[x, l].   Secondly, although the fact that H~x c* limi/V , m    , y < z < xj for x not
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isolated from below is quoted at certain points in the proof in [3]j condition (c(v))

of Definition 3.1 is easily seen to be sufficient.

Lemma 3.4.  Let (X, S  , m    ) be a linkable collection and let S  = U        S
'    x'     xy' xeX    x

be the topological semigroup constructed in Lemmas 3.2 and 3.3.   If R is the re-

lation on S   whose cosets are \s, m   , (s)\ if s £ M   for some x £ X  , and \s\
xx, i x

otherwise, then R is a congruence on S   and S  /R  is a topological semigroup when

endowed with the quotient topology.

Proof.   The proof that R is a congruence is the same as that for 5.5, p. 142

of [3].   To show S /R is a topological semigroup under the quotient topology, ac-

cording to [l] it suffices to show R forms an upper semicontinuous decomposition

with compact cosets.   As R clearly has compact cosets, we show only that R is

upper semicontinuous.   Moreover, it suffices to show U[R[s]: R[s] C V\ is open

for each  Veö, the basis for S   defined in Lemma 3.3.

Let W(U, V) be a basic open subset of S', and let s e W(U, V).   If RÍs] =

\s\, then RÍs] Ç W(U, V).   Let u = inf U, and suppose   RÍs] = {s, t\ with s £ Hx,

t £ My, y £ X', x = y', and  mxy(t) = s.   Then muy(t) = rnux(mxy(t)) = mux(s) £ V

as s £ W(U, V), and so / e W(U, V) ií y £ U.   If R[s] = \s, m   ,  (s)\ where s £ M
X    x x

and x e X  , then m   ,  (s) £ W(U, V) if x' e Í7, since m     > (m   ,   (s)) = m    (s) £ V
XX ux X   x ux

as s e W(U, V), whence R[s] C W(U, V) ii x' £ U.   Thus, the only possible cases

under which R[s] £ W(U, V) tot s £ W(U, V) ate

(a) s £ M    for x e X',  x = inf U £ U and x /= 0, or

(b) s £ m   ,   (M  ) for x £ X', x' = sup U £ U and x / 1.
XX       '*'

Thus, U ¡Ris]: R[s] Ç W(U, V)\ = WÍU, V)\iA U B), where

A =
Mx    ii x = inf U £ U, x ¿ 0, and

O       otherwise;

X'X(MX)    ii x' = sup u £ U, x V 1,

and, as A and B ate closed, U[R[s]: R[s] C W(U, V)\ is open, whence R is upper

semicontinuous.

Definition 3.5.  Let (X, S     mx  ) be a linkable collection and let S' =

\J       S    be the topological semigroup constructed in Lemmas 3.2 and 3.3.   If R
X £A      X

is the congruence on S described in Lemma 3.4, then S = S /R is called a linked

semigroup and is denoted by S = J~(X, Sx, mx ). If each Sx is cylindrical, then S

is called an si-linked semigroup and is denoted by S = Ju_(X, S  , m    ).

Note that if (X, S     mv) is a linkable collection, then R n (S   x S  ) is the
X X y XX

diagonal of S   fot each x e X, whence we may identify S    with its image in S =

^-(X, Sx, mx  ).   Furthermore, it is easy to see that the topology induced on S
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from x(X,S  , m    ) is the same as the original topology on S  .   We conclude this

section with the following.

Proposition 3.6.   Let S = =L(X, S  , m    ) be a linked semigroup.   If A is any

of Green's relations on S, then A n (S   x S  )= A    for each x £ X, where A     is
1 ' XXX' ' x

the relation A on S .   Moreover, if S = Hx(X, S  , m    ) and 0 = inf X, then S is

connected if and only if SQ  is connected.

Proof. We prove the first part only for A = Â, the other proofs being similar.

Since Sx is a subsemigroup of S, we have Ax C A O (S   x S ).   Conversely, sup-

pose  (s, t) £ A n (S   x S ).   Then there are a, b £ S with s = ta and / = sb.   If

a £ S   and b £ S  , then s = ta = rs     (i)m     (a) where w = x A y.   But, as s £ S  ,

w = x, and so x = x  A y, whence s =tm    (a) with 7?z     (a) £ S  .   Similarly x < z and
' J' xyN xyv x '        —

t = smxz(b) with rnxz(b) £ S , and so (s, t) £ Ax completing the proof.

If S = H°L(X, S  , m    ) is connected, then SQ is connected as 5Q = M(S). Con-

versely, suppose S0 is connected and S = P u Q.   We suppose S« C P and show

Q = a.   If A = \x £ X: Sy Ç P for 0 < y < xj, then A / o as 0 £ A, and we let z =

sup A.

Claim 1. z £ A.

Proof.  Either z £ X' or not.   If z £ X', then  M    C S   ,C P as z' £ A.   Since
z -    z   -

S     is cylindrical, there is a surmorphism /: 2 x H    —» 5     and so, if s £ S  , then

s £ /(2 x [/>!) for some h £ H .   Since /(2 x [h\) is connected and meets  M , we

have f(l x \h\) Ç P.   Thus Sz Ç P.

If z i X  , then  S   = W    and í ttí   _(¿)j     „ —» h for each ¿ £ H.   Moreover since
' z z yz        y<z z

m    (h) £ P fot each y < x, h £ P*= P.   Hence S   C P in this case also, which
yZ Z

establishes the claim.

Claim 2.  z - 1.

Proof.   If z / 1, then we have two possibilities.   Either z = y   for some y £ X

or z/y   for any y £ X  .

If z = y  for some y £ X  , then  M    Ç S   Ç P, and an argument similar to that

in the proof of Claim 1 shows S   C P, whence y £ A, contradicting z = sup A.

Thus, z / y   tot any y £ X  , and so there is a net iyalaeD Ç X with z < ya

and 5     O g 4 □ for each a £ D.   It sa£ S     H g for each a£ D, then there are an

Ä £ 5z and a subnet is^g of \s¿aeD with U.,y (sß)\ßeE ~> ¡> in Sz.   It then

follows that \sß\oeE   —>h in 5, and so è £ g*= Q, contradicting h £ SzÇ P.  This

contradiction proves Claim 2.

Thus S C P, and so Q = D.

The existence of Irr(X).  We now turn our attention to the main result of this

paper.   Our proof consists of three parts:   We first construct a semigroup  with

idempotents X, which we denote   lrr(X)0, with the property that any irreducible

semigroup with idempotents X is the image of Irr(X)0  under an idempotent separat-

ing surmorphism; then, using  Irr(X)0, we construct a compact semigroup T with



1973] THE EXISTENCE OF Irr(X) 129

the property that any irreducible semigroup with idempotents X is the surmorphic

image of T; finally, we map  Irr(X)Q into T in a natural way, and find that any ir-

reducible subsemigroup of the closure of the image of Irr(X)0 in T satisfies the

properties desired for  Irr(X).   In the last part of this section, we refine the con-

struction of Irr(X)0 and point out instances when Irr(X)n is compact, thus giving

an explicit description of Irr(X) in those instances.   We begin by quoting some

results we shall need in our proof.

Theorem 4.1 [Koch [4]]. Let S be a compact connected semigroup with identity

1 and minimal ideal M(S) / S. If each subgroup of S is totally disconnected, then

there is an ¡-semigroup running from 1 to M(S).

Throughout this work we shall refer to Theorem 4.1 as Koch's Theorem.

Theorem 4.2 [3, p. 150].   Let S = Horm(X, S  , m    ) be an abelian hormos.   S

is irreducible if and only if each of the following is satisfied:

(i)   H1 = íl¡.

(ii)   // x 4 y' for any y £ X', then Hx = iUx<y€X V«y>*.

(iii)   ¡f x £ X', then Mx = H x,.

Theorem 4.3 [3, p. 151].   Let S = Horm(X, S  , m    ) be an irreducible semi-

group with idempotents X.   For each y £ X , let f : 2 x H   —> S    be a surmor-

phism with f ((0, 0), h)= h for each h £ H .   Then, for each x £ X with (x, l] O

X'¿n,

w*K*<^x>-(/>(M(2)xív))!)*

Theorem 4.4.   // X is a compact totally ordered space, there is a linkable

collection (X, S', m'   ) with S' = 2 x H' for each x £ X' so that Irr(X)n =
'     x*      xy' xxl U

K£(X, S', m    ) is a connected semigroup.   Moreover, if S is a compact semigroup,   then

S is irreducible with idempotents X if and only if S is the idempotent separating

surmorphic image of Irr(X)Q.

Proof.  We break the proof into three parts:

(a) The construction of Irr(X)0,

(b) the proof of the necessity in the last statement of theorem, and

(c) the proof of the sufficiency in the last statement of the theorem.

For part (a), the construction of Irr(X)0, recall that if X is a compact totally

ordered space, X'= [x £ X\|0j: x is isolated from belowi, where 0= inf X, and if

x e X  , then x  = supiy e X: y < x\.   Also  1 = sup X.

We first construct the maximal subgroups of Irr(X)0.   For each x £ X, let

G'x=- RaX' l  *' . and> if  X < y € X' define    W'xy- G'x - G'y bY Ky^ M = /(*) if

z £ (y, l\x, , while w.'xy(f) = 0 if (y, l]      = □ for each / e G'x.   Clearly G'x is an
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abe lian group for each x £ X and w       is a surmorphism of  G   onto G   if x < y £ X.

Furthermore, that w     o w     = w     if x < z £ X is also clear, and we note that

G   ( — Rrf x G   for each x £ X .

Now, let W  = (G )   for each x £ X, and, if x < y £ X, let 772     : //   —> H  be
je 2C xy y x

defined by 772'    = w     .   Since w      is a surmorphism, m      is an injection.   More-
7      xy xy xy r '      xy '

over, if x < y < z £ X,

m'    ° m'    = w  v o w $ - w v = m     ,
xy yz xy yz xz xz'

and H'l = (Gx>)"^ndxHxiix £ X.

IfVjrfX', let S'x= Hx, while we let S'x=l x H'xif x £ X'.   If x £ X', extend

772' ,    to 5' by noting that M' *//'.  under ((<*=, g), h) —> (g, h), and that 772 is
X   X x x X XX

the core endomorphism of S   followed by that isomorphism.   Then, if y < x, let

772     = 772     »  ° 777   (   .   Clearly the collection (X, 5^, »2    ) satisfies all the prop-

erties of a linkable collection, the last following from the fact that mx    is an in-

jection for each pair x, y £ X with x < y.   If Irr(X)„ = K£(X, S'   m'   ), then S' =
« (Oil

/Vq= (G0) , where  G0= R . '    x  .   Since  GQ is torsion-free and discrete, HQ is

divisible and compact, whence Hn= 50 is connected, and so Irr(X)0 is connected

by Proposition 3.6. Clearly Irr(X)0 has idempotents X. This concludes the proof

of part (a)..

For part (b), the proof of the necessity in the last statement of the theorem,

suppose S = Horm(X, 5     rnx  ) is an irreducible semigroup with idempotents X.

For each y £ X   , S    is cylindrical, and so there is a surmorphism f : 1 x H    —*

Sy with / ((0, 0), h)= h tot each h £ H    [3, p. 88], and let F   = (M(2) x|l   })~ *

Let Xj = inf Cx(l), where  Cx(l) is the component of X containing 1.   Then,

by [3, 5.11, p. I45], S  = (\J{S  : Xj < yj)* is an irreducible subsemigroup of S,

and since [1   : Xj < y| is a compact connected subsemigroup of S  , we have S   =

{1   :x1<y\.   Hence  H   = {l   j for each y £ Cx(l ).

Now if x £ X with (x, l]      = □, Koch's Theorem implies there is an arc in X
A

from 1 to x, whence x £ Cx(l).   Thus, if x £ X and x i Cx(l),  (x, l]   .fa and

so, by Theorem 4.3, we have

(1) H-iy*.M,w»'«v^
Now, if x £ Cx(l), let if/x: Hx = G% —* G'x be the obvious map.   If x £ X with

(*> 'L,^ define <> (g) = (/í(™  f(g))) w   "A*- is clearly a homomorphism
A x y      -^y x<y6A x

and it follows easily from (1) that   if/    is one to one.

Now, if x < z £ X,  (z, l]      ¿ a, and g £ G  , then

eX'
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whence the diagram

commutes.   If z £ Cx(l), the above diagram is clear.

Now dualizing, if ax = \fsx, then a• ¡ H'x~> H% is a surmorphism for each

x £ X, and, if x < z £ X, the diagram

commutes.   In particular, if z £ X   and x = z , then  Gx — R¿ x Gx and i/f

^z ° wxí^x ^zomxi">' and s0 Wx ~ Rrf x Hz and,if (g, 6) e E¿, then

(2) Oxig, h) = mxzifziioc, g), lz))mxziazih))    by duality.

We now define /c: U   ,v $' —' U^v S    as follows:   If x ^ X, then S  = H*.

and we let ¡Ah) = f (A) for each h £ S .   IfxeX,5'=2xE, and we let
^ o X X XX

fs((r> g)> h) = /x^id x CTx)^r' #). ¿^» where we recall that f%\ 2 x Ex —> Sx with

fx((0, 0), h) = h for each h £ H    is the surmorphism guaranteed by the fact that

5x  is cylindrical.   Hence, fs((r, g), h) = fx((id x ax)((r, g), h)) = fx((r, g), ax(h)) =

fxi(r,g),lx)ox(h).

Suppose now x e X   and let h £ H .   Then,

7S((0, 0), h) = /x((0, 0), ax(i)) = ax(h),

whence Js\H'x= ay.   ii  ((°o, g), h) £ M'x, then

Wx'x[/S((°°' S}' ¿)] = mx'xL/x{(°°' ^' ff*(¿))]

= Tnx,ífxiii<*>, g), lx) ((0, 0), ax(h)))] = mx,xUß~* g). U/x«°> 0), a>))]

= ™   ,  (/x((~. g), lx))m   ,  ifx(0, 0), ax(h)) = ax,im',  ((«., g), h)),

the last equality following from equation (2).   We note that / ç | Sx is a surmor-

phism of S   onto 5    for each x e X,   Using these facts it is tedious but not hard

to show f s  is a homomorphism.
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To show fs  is continuous, let s' £ Sxwith fs(s   )= s £ W(U, V).   Then

s £ Sx and if a = inf U, then x £ U and ttz^Cs) £ V, and so, if  V'= /^(VO^-S^,

then  V   is an open subset of S   since /„ | Su = f   ° (id x a ) is continuous.  Now,

s £ W(U, V') and it is easily shown that fs(W(U, V'))C W(U, V), whence Js is

indeed continuous.

We wish to induce fs: Irr(X)0—>S from f s:   U  ex$'—'^rfX ^i-   Todo

this, we show p   , C p  Q_ ,where, for a function f: A —* B, p, =\(a, b)£ A x A:
/ ç

/(a) = /(Z>)j, and 7/'  and 77 are the natural maps from Uxex ^x t0 ^(X^ and from

U   eX S    to 5, respectively.   If tj'(s) = 77 (t) and s 4 t, then we may assume

s £ M   tot some x £ X   and t = m   ,   (s) by the symmetry of Pr¡'.   Then f s(s) £ M ,

js(t) £ H'x, and m.Jfs(s)) = fg^.Js)) = /s(i), whence  r?(/"s(s)) = i,f/s(s)),

and so /^   is indeed induced.   Furthermore, in the proof of Lemma 3.4, it was

shown that if (Y, T , m     ) is a linkable collection, the congruence defined in

that lemma is upper continuous, whence the natural map is closed.   Thus 77'   is

closed, and since f s and r¡ ate continuous, fs is continuous.   fs is clearly idem-

potent separating, and since  f <. and rj ate surmorphisms, f<~ is a surmorphism,

thus completing the proof of part (b).

For part (c), the proof of the sufficiency in the last statement of the theorem,

suppose S is a compact semigroup and /: Irr(X)0 —» S is an idempotent separating

surmorphism.   Then f(X) « X and f(X) C E(S).   Since / is a surmorphism, if

e £ E(S), there is  x £ X with e £ f(S  ), and since Sx is compact, there is  e ' £

E(S'J with f(e') = e.   Thus, e £ /(X), and so £(S) = /(X) <* X.

Since  Irr(X)0 is a connected abelian K-chain, /(Irr(X)0)= S is a connected

abelian K-chain, and so K is a congruence on S and 5/K is an arc.   Hence, by

[3, p. 122, 11(b)], S/K is an /-semigroup, and therefore by [3, p. 143, 5.7], S =

Horm(X, S     m     ), where  S x = 77 ~ !(x) if x / X ', while  5x = 77" J (x', x]* if x £ X',

r]: S —> S/SX being the natural map, and, of course, we assume the S  's are pair-

wise disjoint.   We now show f(S  ) = S   for each x £ X.

If x 4 X  , then  Sx = H    and clearly f(S'x) Ç Sx.   Moreover, if s £ Sx, then there

is / £ Irr(X)Q with f(t) = s.   There is 2 £ X with \(lxt) a!ae£> ~* ^z ror some sub-

net of iOxt)n\neM, and so f(lz) = lim f(lxt)"a = lim f(lx)"af(t)"a = lim s"a = 1^.

Hence we have  lj £ S'% and/(lxO = s, whence SxÇ f(S'x).   Thus 5x= j(S'x) if

xyx'.

If x £ X , then 77 ° /| S   is a surmorphism of S   onto Lx', x], and recalling

that S'x= 1 x H'x, there is  p > 0 with (77 o /)((r, s(r)), h) £ (x ', x] if r < p.   More-

over, p > 0 as / is idempotent separating, and so, if A = j((r, s(r)), h): r < p,

h£H'x\,then f(A) Ç 77 " l(x', x], whence /(A)C5x.   Furthermore, <A>* = 5x, and

so /(5x) = /((A)*) Ç f((A))*=(f(A))*ÇSx, the last inequality following from the

facts that /(A)C Sx and Sx  is compact, whence f(S') C 5  .   Conversely, if s £ S  ,

then  x'< 7j(s) < x, and so  ' £ Irr(X)0 with /(/) = s implies /(l   z) = s and 1   / £ 5'
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by an argument similar to that for x 4 X .  Thus Sx C f(S ), and we have ^ = f(S ) for each

x eX.
Now to show S is irreducible, by Theorem 4.2 it suffices to show that  H{ =

{11, Ex=(UilxEy:x<y!)*if x^y'forany y eX'.and Mx = H ̂   ii x £ X'.   The

first is clear as  H[ = \\\ and f(H\) = Ej.   If x ^ y' for any y £ X , then Hx =

f(H'x), and since Hx = <Ux<yeXlx • Ey )*,clearly, we have   Hx = /(Ex) =

/((Ux<ylx-E;)*)Ç(Ux<ylx-/(W;))* = (Ux<ylx-Hy)*.   Since the reverse contain-

ment is obvious, Hv = (U      1   • H}*.   Finally, if x e X ', then M   = /(M') =

f(H'   ) = H ,, the middle equality following from the structure of Irr(X)n.   Hence 5
XX

is indeed irreducible, thus concluding the proof of the theorem.

We now state and prove a lemma which we will later use to show that the

Clifford-Milier endomorphism on  Irr(X) is an injection when restricted to each .ri-

elas s of Irr(X).

Lemma 4.5. Suppose  s £ H  C Irr(X)0 with s ^ 1   for some r £ X, and suppose

there are an irreducible semigroup S with idempotents X and an idempotent sep-

arating surmorphism f: Irr(X)Q —> S with f(s) ^ /(l ).   Then there are an irreducible

semigroup S   with idempotents X and an idempotent separating surmorphism

/': Irr(X)0— S'with f'(m' r(s))/ f'(l   ) for each y £ X with y<r.

Proof. Since S is irreducible with idempotents X, S = Horm(X, S  , m    ) for

some chainable collection (X, S  , m%  ).   From this collection we construct an-

other chainable collection (X, T     m    ) with S  = Horm(X, T , mx  ) an irreducible

semigroup with idempotents X.

If r < y e X, let  Ty = S , while it y < r, y 4 X', let  Ty = Hf.   Finally, if

y < r and y £ X', let T    = H   x  H .   ii r < x < y, we let mx   = m    , while if

x < y < r, mx   is the identity if y 4 X  , and mx    is the identity map composed

with the core endomorphism of  T   if y £ X  , where for z £ X   with z < r, we iden-

tify  H   with [Oj x H„ C   11    x   E  .   Lastly, if x < r < y, let  m      =m     o m    .   It is
¿. z — z * *™*     *■• * xy xt        Ty

a simple task to show that  (X, T^, ra     ) is a chainable collection, and we let 5 =

Horm(X, T , m     ).
'      X'      xy'

We now construct an idempotent separating surmorphism /' : Irr(X)0 —> 5.   It

clearly suffices to construct a surmorphism /: U   eX $' ~~*U   eX T   with f(S') =

Tx fot each x £ X.   If r < x £ X, define T\s'x= Tx = f\s'x-   K x < r, then H'x =

K 8 «¿,0*,') since Gx * R/'^xC,'.   If x ¿X', then Sx=Ex, and we let

/",(*, h)=mxj(f(m'-l(h))).   If x e X, then Sx = 2 x Ex, and we let /x((r, g), (k, h))

= ^'^^xr^K'1^'   Clearly   fx   is continuous  and   /   iS'J =  Tx   for

each x e X.   If r < x, then /x is a homomorphism as /is.   If x < r and x 4 X',

then f x = mxT0 f o m^-l o ^ where ?72x: Ex~> m'xr(H'r) is the natural map, and

so /x  is a homomorphism.   If x < r with x e X  , then
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where Z7lx: 2 x H' —> H   and  7T2x: 1 x Hx—> mxr(Hr ) ate the natural maps.

Hence, since  T'    is abelian, /    is a homomorphism.   We define /: U  ex ^' —'

Ux£X Tx by / | S'x= f    for each x £ X.   It is now tedious but not difficult to show

that /is a homomorphism, and an argument similar to that in the proof of part (b)

of Theorem 4.4 yields / is continuous.

It now follows from Theorem 4.4 that S is irreducible with idempotents X

since / : Irr(X)0 —> S  is clearly idempotent separating.   Finally, if y <r, then

](m'yr(s)) = ](ly • s)= J(ly)J(s) = myr(f(s)) / ly as myf is the identity and f(s) ¿

1 .   This completes the proof of the lemma.

We now state and prove our main result.

Main Theorem.  Let X be a compact totally ordered space.   There is a irre-

ducible semigroup with idempotents X, denoted by  Irr(X), such that, for any com-

pact semigroup S,  S is irreducible with idempotents X if and only if S is the idem-

potent separating surmorphic image of Irr(X).   Moreover, the Clifford-Miller endo-

morphism on  Irr(X) is an injection when restricted to each ji-class of Irr(X).

Proof.  As remarked at the beginning of this section, to obtain this result we

first construct a compact semigroup T which maps onto any irreducible semigroup

with idempotents X.   We then map Irr(X)0 into T under a natural map, $, and find

that <5(Irr(X)0)* is a compact connected semigroup with idempotents X which maps

onto any irreducible semigroup with idempotents X under an idempotent separating surmor-

phism.   Finally we find that any irreducible subsemigroup of <ï>(Irr(X)0)   running from its

identity to its minimal ideal satisfies the properties desired for Trr(X).   In the course of

the proof we shall also obtain results which show that the Clifford-Miller endomorphism on

Lt(X) is an injection when restricted to each K-class of Irr(X).

According to Theorem 4.4, if S is an irreducible semigroup with idempotents

X, then there is an idempotent separating surmorphism /: Irr(X)0 —' S, and so there

is a congruence p on  Irr(X)0 so that the diagram

Irr(X)0-1—»S

w\,P

commutes (algebraically only), 77 being the natural map and \b being the induced

algebraic isomorphism.   But if  U C S is open, then r¡~l(if/~1(U)) = /_1(C), which

is open in Irr(X)Q as / is continuous.   Hence if/~  (U) is an open subset of

Irr(X)0 .    under the quotient topology.   Said another way, if J  is the topology in-

duced on  Irr(X)0/   from S by iff, then 77: Irr(X)Q —> (lrt(X)0/p, J) is continuous.

Let 3" be the collection of all pairs  (p, j) such that

(a)   p is a congruence on  Irr(X)n,
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(b) 3" is a topology on Irr(X)0/   so that (Irr(X)Q/     j ) is an irreducible semi-

group with idempotents X, and

(c) rj: Irr(X)0 —»(Irr(X)0 ,     3) is continuous and idempotent separating.

Then, by Theorem 4.4, if S is any irreducible semigroup with idempotents X,

there is  (p, 7) £ $ with (Irr(X)0/     3") et S.

If T = II,    «rvy  (IfMn/p' 3") under the Tychonoff topology and endowed

with coordinatewise multiplication, then T is a compact connected semigroup

which maps onto any irreducible semigroup with idempotents X.   Now define

0: Irr(X)n —> T by 3>(s) =(77(5))     y, where we identify the pair (p, J) and the natu-

ral map 77: Irr(X)0 —> (Irr(X)n ,  , 3).   0 is clearly a continuous homomorphism and

$ I X is one to one as  77 \ X is one to one for each r¡ £ 3.   Thus O (Irr(X)n)  is a

connected abelian subsemigroup of T containing  (<,(!)).„£y = 1 7 and (77(0))     y 6

M(T), and an argument similar to that in the proof of part (c) of Theorem 4.4 shows

E(O(Irr(X)0))=$(X).

Sublemma 1.  The Clifford-Miller endomorphism on O(Irr(X)0) is an injection

when restricted to each ¡i-class of O(Irr(X)0).

Proof.  Let  1Q £ E(O(Irr(X)0)) n M(<J>(Irr(X)n)), and suppose s e O(Irr(X)0).

If H(S), the K-class of s in O(Irr(X)0), is a group, then  H(s) = <I>(E') for some

y £ X as $ is idempotent separating.   It t £ H   = H(s) with t 4 1   , then there is

u £ H'y, u4 ly with 0(a) =t.   As  t4ly, there is  (p, J) £ 5F with ^(p>y)(í) ^

77(P 3")^y^ where "'(p yy "F ~* (lrr(^)o/p' ^) *s tne natural projection.   Hence, if

77: Irr(X)0 —> (Irr(X)0//O, 3") is the natural map, then 71(a) = "'(/0)<r)(0^ ^(p.g-)^)"

7/(1   ), and so by Lemma 4.5, there is  (p',7  ) e 3* with -q'(Ixu) 4= i?'(lx) for x e X

with x < y, where 77 ' : Irr(X)0 —< (Irr(X)       ,, J  ) is the natural map.   As  0 < y,

r¡ (1 0 • u) 4 t? (1 q), whence 1Q • (/ 1 Q, and so the core endomorphism is an injec-

tion in this case.

Suppose now that H(s) is not a group, and let t £ H(s) with s 4 t.   Then,

there are u, v £ Irr(X)0 with s = ¿0(a) and t = s$(v), whence s = s$(vu), and so

s = s<b(vu)n for each n £ co.   Now, there is  y £ X and \<b(vu)"a \aeD —> 1     for some

subnet of \^>(vuT\n€cù, and so we have s = s • I   .   Moreover, since  uv = vu, we

also have  / = t ■ 1      and since   1    • u, 1    ' v € H', 0(1  a), $(1   v) £ H  , and  s =

íO(lya) and t = sO(lyv).   As s 4 t, $(1   a) ^ 0(1  k), and, by the first part of the

sublemma, ln. 0(lya)¿ ln. 0(lyV) .   Thus, 1„ . 5= I Q(t • 0(lya))=/ . lQ<S>(lyll)4

t • 10, the inequality following from the fact that we are in the group HQ.   This

establishes the sublemma.

We now turn our attention to O(Irr(X)0)*.   Suppose s e O(Irr(X)0)*, and let

'5JaeD £ Irr(X)0 with \$(sa)\aeD -» s.   For each a e D, pick xae X with sa£Sx ,

and let x e X with fxa!aeD —» x by possibly picking a subnet.   Again, by possibly

picking a subnet, we may assume one of the following holds:
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(a) xa= x for each a £ D.   Then sa£ Sx for each a £ D, and, as S   is com-

pact, ®(S'x) is closed, and so s = lim <t>(Sa) £ $(S x) Ç 4>(Irr(X)0).

(b) x < xafor each a £D.   Then 772      (sa) £ S    for each a £ D, and, again as

Sx is compact, s = lim $(sa) = limí>(777xx %a)) £ <P(Sx) Ç d>(Irr(X)0).

(c) xa < x for each a £ D.   Suppose x ^ inf Cx(x), where Cx(x) is the com-

ponent of X containing x.   Then, as \xa\aeD —* x, there is ß £ D with xa£ Cx(x)

fora>/3.   ThensfS'    = H'   = //' and 772'       is the identity for a > ß.   Hence,
-H a        xa xa x xax ' ~H

in this case, it is easily shown that there is  t £ H x with \sy\y€E —* t for some

subnet of [sa\a€D, and so s = lim<D(sy)= <D(r) £ 4>(r/x) Ç $(Irr(X)0).

We can conclude from the above that, if s £ $(Irr(X)0)*\<I>(Irr(X)0) and

^sa^aeD ~' s witn sa € Sx    and ^xJaeD ~' x> then   xa< x for eacn a e D.  x =

infCx(x), and x / (X ' u[0j).

We now show s £ H .
X

Since  Irr(X)0 is an H-chain, <I>(Irr(X)0), and, hence, $(Irr(X)0)* are H-chains.

If v: $(Irr(X)0)* —> $(Irr(X)0)*/M is the natural map, then \xJaeD —* x implies

!K3>(sa))!a6D — i/($(lx», and so v($(s)) = K^dx)).   Thus s £ f/x, and so

O(Irr(X)0)*= (UxeX,  0(5x))u(U^x'   Wx)> and in Particular, E(cD(Irr(X)0)*) =

E(í>(Irr(X)0)); whence <I>(Irr(X)0)* has idempotents X.   Suppose now that s, t £

<t>(h:i(X)0) and that s and / are K-related in  (I)(Irr(X)0)*.   Then, any idempotent

that acts as an identity for one of 5 or / acts as an identity for the other, and so

s, t £ <&(S ' ) for some x £ X.   If s, t £ H   tot some x £ X, then s and t ate K-related

in  $(Irr(X)0).   Suppose s, t £ <&(S'x) tot some x £ X'.   There are a, b £ $(Irr(X)0)*

with s = ta and t = sb, and so s = s (ab)" tot each n £a>. Thus  s = slz where 2 £ X

with some subnet of \(ab)"\ converging to   lz, and so x < 2.   Hence   1    • a,

lx • b £ Hx, and since  Hx Ç <5(Irr(X)0), s and t ate K-related in $(Irr(X)0) as s =

t • a = t • I    -a and t = sb = s • I    • b.   This shows that the K-class of a point sXX r

in <I>(Irr( X)Q)* is the same as its K-class in  (I)(Irr(X)0) unless s is in some sub-

group of $(lrr(X)0).   We are now in a position to prove the following:

Sublemma 2.   The Clifford-Miller endomorphism on ^(ltt(X)0)* is an injection

when restricted to each K-class of 3>(Irr(X)0)*.

Proof.  According to the above and Sublemma 1, we have the result except in

the case of a subgroup H   fot x ff (X' U [Oj), and x = inf Cx(x).   If s £ H   with

5 / lx, then $(Irr(X)0)* compact implies   </>x: Hx -> Viy<xHy by <f>x(h) =

(1   • h)    x is an isomorphism of Hx onto limiH , m    , y < z < xj where 772        is trans-

lation by   1   .   Hence, there is  y < x and 1     -s/1     for w £ [y, x).   As  x =

inf Cx(x) and x i (X' U |0j), Koch's Theorem implies  [y, x) n XV □.   If w £

[y, x) n X   then H    = $(/7 ' ), and so the core endomorphism is an injection when

restricted to  H     by Sublemma 1.   Now   lw • s / lw as w £ [y, x), and so lQ. s =

1q • (lws) / 1 q by the above.   Therefore the core endomorphism is an injection
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when restricted to  H  , and so the sublemma is established.

Now as Irr(X)0 is connected, O(Irr(X)0) and, hence O(Irr(X)0)* are connected

subsemigroups of T.   Thus  O(Irr(X)0)* is a compact connected subsemigroup of T

containing 1T and meeting M(T).   Let Irr(X) be any irreducible subsemigroup of

O(Irr(X)0)* containing 1T and meeting M(T).   Then the Clifford-Miller endomor-

phism on  Irr(X) is an injection when restricted to each K-class of  Irr(X) as this

property is easily seen to be hereditary.   We now show Irr(X) has idempotents X.

If S is the canonical /-semigroup through X, then S is irreducible with idempo-

tents X, and so there is  (p, J ) £ J  with (Irr(X)0//     J ) at S.   If  77 ̂    jj! T —»

(Irr(X)0/     J ) is the natural projection, then   77^ y^(Irr(X)) is a compact connect-

ed subsemigroup of (Irr(X)0 ,     J) containing 77,    crAij-), the identity of

(Irr(X)0 ,     J), and meeting   77, _ <r\(M(T)), the minimal ideal of  (Irr(X)0 ,  , J ).

Hence, as   (Irr(X)Q .     J ) is irreducible, rr,    ys(Irr(X))= (Irr(X)0 ,     J ) and since

Irr(X) is compact 77(    J} (E(Irr(X))) = E(ht(X)Q/p, 3") at X.   Since  Irr(X)C

O(Irr(X)0)*,  E(Irr(X))CO(X), and, as   77,    y. is clearly idempotent separating on

0(X), we must have  E(Irr(X))= 0(X).   Finally, if S is an irreducible semigroup

with idempotents X, there are   (p, J ) £ J and an isomorphism if/: (Irr(X)0 ,     J)—>

S.   ii  rr.    y.: T —> (Irr(X)0^     J) is the natural projection, then  if/ o 77,    y.|lrr(X)

is the desired idempotent separating surmorphism of  Irr(X) onto S.

The converse of the last statement of the theorem is simply [3, 5.31, p. 156].

This completes the proof.

We conclude this section with an outline of some refinements of the construc-

tion of  Irr(X)0, and with some examples where  Irr(X)0  is compact, thus fulfilling

the role of Irr(X).   The reader is advised to review the proofs of parts (a) and (b)

of Theorem 4.4 before proceeding.

Let X be a compact totally ordered space, and, for each x e X, let

Gx= ¡/eR/'1 x': 3 z e X'\\l\ 3y£(z, l)x, =» f(y) = o|.

It is easily verified that  G    is a group for each  x e X, and that if x < y £ X, then

w'Xy(Gx) = Gy, where  lw'xy(f)] [z] = f(z) for z £ (y, l]       and / £ G'x.   To see that

the system  \ÍGx)   , (w     y', x < y £ X\ satisfies the properties desired for the

maximal subgroups of Irr(X)0, we show the following.

Lemma 4.6.   Let S be an irreducible semigroup with idempotents X, and let

\G  , m     , x < y £ X\ be the dual of the system of maximal subgroups and bonding

(x, \\xi
homomorphisms of S.   If if/  : G   —' R , '   is the injection defined in the proof

of Theorem 4.4, part (b), then   <A (G  ) C G    for each x £ X.

Proof.  Ii x £ Cx(l), this is clear.   If Xj = inf Cx(l) and Xj £ X.'then  G'x =

D(x, l]xi ,
nd tor each x £ X and so there is nothing to prove.   Suppose Xj f. X  . Since
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S is compact, <f>x  : Hx  —>  Ily<x    Hy with (f>x (b)= (myx (h))y<x    is an isomor-

phism of Hx   onto limí/7  , 772y2, y < z < xI j.   Hence, by duality, 77x   :

lim{G  , m* , x < y < x.j —> Gv   with 77    (77(g)) = m®    (g) is an isomorphism, where
—»      x        x y        -— i x « x« .*,.*.,

g £ G   and 77: V G   —* limÍG ,777* , x < y < Xjj is the natural map.   Thus,

as \Jjx is an injection for each x £ X,  tjx   : lim<<Ax(Gx), wxy, x < y < x1 j ~*

if/    (Gv  )with 77'  (77'(g))= w'     (g) is an isomorphism, where g £ if; (Gx) and 77':

\/ é (G ) —> limjiA (G  ), w/   , x < y < x,} is the natural map.   As S is irre-
v x<x,    >x     x7 —►   ~xv    x  '      xy'      — ■/ l

ducible, H     = |1     j, and so G^   = [Oj = </>    (Gx  ).   Now, let x £ X with (x, l]     ¿
X.X. Xj 11 ^

D and fix g £ G  .   Then x < Xj and rj' (if/x(g)) = 0.   Hence there is  r < Xj with

w' (<A (g)) = 0, and by Koch's Theorem, there is 2 £ [/, Xj ) n X ' as Xj =inf Cx(l).

Then, w'XM (ijJx(g)) = u/'rz(wxr(if/x(g))) = w'rz(0) = 0, whence tyx(g)] Ly] = 0 for 2 <

y £ X'.   Hence "A^(g) e G', and so ^„(G  )Ç G     completing the proof of the lemma.-* X   ^ X X X      "™ X

Suppose x\(X'u [0j)C Cx(l), and let x £ Cx(l).   If Xj < x, then  Gx={0j =

G   tot each y £ [xj, x], whence Gx œ lim[G     w       y < 2 < xj.   If x = xp then

Gx   = JOj = lim{G , w       y < z < xA since the G   are "locally zero" near x,.

Hence, in this case, H   =2 limi/V ,772     , y < 2 < xj if x ^ (X' u |0j), whence  (X,

S     777     ) is a chainable collection.   Since this collection satisfies the hypotheses

of Theorem 4.2, Irr(X)0 = Horm(X, Sx, m) is irreducible with idempotents X.   In

particular, Irr(X)0 is irreducible if X = X' U {0j.

Another counterexample. We now present a counterexample to another pro-

posed structure for Irr(X).   When it was discovered that the full direct product

_(x, l]w ,

Krf would not work as the dual to H   in Irr(X), the next logical group to try

was the weak direct product, or direct sum, which we denote by R ,.   For

,       (x, iJv-i,, , , ,
each x £ X, let  Gx= Krf, and if x < y £ X, let w xy: Gx —>Gy be defined by

lw'xy(f)][z] = f(z)foty <z £X'and/£ G'x.   For each x £ X, let S'x= H'xif x Ï X',

while, if x £X', let S'=lx tí. where  //'= (G')".   Let S ' = Horm(X, S', m'   ),
x x xx x      xy

where 772     : S   —> S   is the natural extension of (w'   )   .   Then S   is an irredu-
xy        y x xy

cible semigroup with idempotents X (we do not prove this as S   does not satisfy

the properties of Irr(X) as the following example shows).

Let X = jl, e, \xn\ne(\ where 1 > e > xn+ l > xn for each n £ a>, and

Let  T' = 2 x Rj, and let <f>: M(l) x Rj — Rj by<¿((°°, g)h) =gh.   Note that

4> I \(°°, 0)1 x Rrf   is essentially the identity.   Let p = p + U A, note that p is a

closed congruence on T  , and let   T = T /p.   It is clear that the Clifford-Miller

endomorphism on T when restricted to the group of units acts like the identity map.

We now form a chainable collection  (X, S     mx  ).   For each  n £ a>, let S      =

T, and note that M(S ) ~ f/      under h —> ((0, 0), h).   Define  772 : S —»
.1" XX,        x»

7î+ I 77 nrï+ln+1
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S      to be the core endomorphism of Sx composed with the above isomorphism
xn n+ 1

and note that m \ H is essentially the identity map.   If k < n, let

mkn = mkk+l000mn-ln Let   Se = He = Rd > and let  S1 = S'   Note that   E& ̂

limÍEx  ,mx x ,n<k£co\, and define mx  g: He~* Sx   by m% e(h) = ((0, 0), h).
n n   k n n n

Finally, let mgl: 5j —» S& be the core endomorphism on Sj followed by the iso-

morphism of M(2) onto H = R , given by (<*>, g) —> g, and let m . = m • m .

for each n £ <o.   Then (X, S  , m    ) is a chainable collection and, if S =
x'       xy' '

Horm(X, S     m    ), S is easily seen to be irreducible with idempotents X by using

Theorem 4.2.

Now suppose f: S   —► S is an idempotent separating surmorphism.   Then, for

each x e X, f\ S  : S   —> S    is a surmorphism, and so we can obtain / : 2 x H   —>

Sx with / ((0, 0), h)= h fot each h t H .   As in the proof of Theorem 4.4, part (b),

we can then obtain if/  : G   = H   —> G ' where ^ ig) = if ti™ ^ (g))) , -   We
XXX x X yxy x < y çX

now show if/     (G    )<4g'  .
x0     *0„ x0

Since H     = R ,,  G     = E     = R ,.   Let g £ G     with g 4 0.   For each n £ co,
x o *0        x0 x0

wï^ is an isomorphism of M(S„  ) onto E^  .   Now, /„  (2 x }l     !) is the closure
X nX *■ X X n 'X X

On n o n n

of a one-parameter semigroup in S     running from 1      to M(S    ), and since any

such contains  M(S% ), f%  (M(2) x \lx  \) = M(S%  ).   Hence, fj: M(Sx  f^Rd is
n      ± n  i n n n n

an injection, and so /     (772^       (g)) 4 0.   As n is arbitrary, ifi    (g) 4 G    , thus
n 0xn x0 x0

completing the counterexample.

Conclusion.  Our main result establishes the  existence   of   a generator

in the category of irreducible semigroups with idempotents X.   From a semigroup

standpoint, however, the whole point in finding such an object is to gain more in-

formation about the objects in the category from the the generator.   Thus, one

would ideally desire a complete description of Irr(X), as Hofmann and Mostert at-

tempted to obtain.   If an explicit description of the system of maximal subgroups

and bonding homomorphisms could be obtained, then it is not hard to see that a

complete description of Irr(X) would be forthcoming.   Moreover, since  Irr(X) is

irreducible with idempotents X,  Irr(X) is the idempotent separating surmorphic

image of  Irr(X)0, and so the dual of the system of maximal subgroups is contained

in the dual of the system for  Irr(X)0.   We have seen that the extremes, the full

direct product and the weak direct product, will not suffice.   Another candidate

proposed by Karl Hofmann is the following:

For each x £ X, let

G'x={feR*'   x' :z £(x, 1] 3z 4x'^ly e(x, z)nx'

so that f(w) = f(y) for w £ (y, z)x, \.

This conjecture is still unsettled.
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