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THE GROWTH OF SUBUNIFORM ULTRAFILTERS

BY

S. NEGREPONTIS(l)

ABSTRACT. Some of the results on the topology of spaces of uniform ultra-

filters are applied to the space S)(a  )  of subuniform ultrafilters (i.e., the set

of ultrafilters which are  a-uniform but  not a-uniform) on a  when   a is a regular car-
ra

dinal.  The  main object is to find for infinite cardinals  a,   such that  a = a-*^, a topo-

logical   property that separates the space  /8(fl(a ))\ß'. a ) (the growth oí ß(<* ))

from the space  U(a ) of uniform ultrafilters on   a .  Property   *a fulfils this rôle

defined for a zero-dimensional space  X by the following condition: every non-

empty closed subset of  X of type at most   a. is not contained in the uniform

closure of a family of  a pairwise disjoint nonempty open-and-closed subsets of

X.  The "infinitary" properties of S!(a  ), as they are measured by   ♦   , are more

closely related to those of U(a)  than to those of  U(a ).   A consequence of this

topological separation is that the growth of fi(a )  is not homeomorphic to   U(a )

and, in particular, that  Q(o.  ) is not   C -embedded in the space 2(& )  of  a-uni-

form ultrafilters on   a .   These results are related to, and imply easily, the

Aronszajn-Specker theorem: if a. = œ-' then  a    is not a ramifiable cardinal.   It

seems possible that similar questions on the C -embedding of certain spaces of

ultrafilters depend on (and imply) results in partition calculus.

Property $a was introduced in [7], where it was proved by a diagonal argu-

ment that the space  U (a)  of uniform altrafilters on a has property $a (Theorem

4.2 of [7]). It is easy to see that Uia) does not have property $ o for regular

cardinals ß,    co < ß < a   (Lemma 3.3).  The main result of the present paper

(whose proof relies on Theorem 4.2 of [7]) is that if a = av then the space

/S(Q(a+))\fi(a+) has property 0a.

Informally we think of this result as showing the inability of the space Q(<x)

to break away from certain infinitary properties characteristic to  a  (such as $a),

which are local after all, and to adopt the corresponding ones characteristic to

a   (such as $   +), in the process of "going to infinity".   Instead, under the con-

straint of a pigeon-hole principle (contained in Lemma 2.1 and in the proof of
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Theorem 3-2) the process of going to infinity is so "slow" that the local proper-

ties of fi(a ) (such as <l>a), normally of little importance in determining the pro-

perties of the growth of a space, become the dominant factor.

An immediate consequence of; the main theorem is that if  a = aÄ then fi(a+)

is not C -embedded in ß(a ) (Corollary 3.4).  For a = où this (together with

Corollary 3.5, below, for a = &>) was a problem proposed in [l], [3l, and proved by

Nancy M. Warren in [91, [ 10].

1. Notation and terminology.   The axiom of choice is assumed. Ordinal num-

bers will be denoted by ç, <£, t¡, a. An ordinal is the set of all smaller ordinals,

i.e.  ç < C is equivalent to ç £ 4 •  Nevertheless, we will make the notational

distinction between 0 (the first ordinal) and 0 (the empty set). A cardinal number

is an initial ordinal. Cardinals will be denoted by a, ß, y. 0,1,...,«,...

denotes the sequence of natural numbers. The first infinite cardinal is co. The

least cardinal greater than a is denoted by a .  a is a limit cardinal if it is not

equal to ß    fot some ß. A cardinal is regular if it is not equal to the sum of

fewer smaller cardinals. /t2 this paper a will always denote an infinite regular

cardinal.   A nonlimit cardinal is regular, ß     denotes the cardinal number of the

set of all mappings from  a to ß. We set ao - l\a7 < /3j. This cardinality of a

set A will be denoted by \A\. A set of cardinality  a will usually be identified

with a  itself.  For a set A, let S (A),  S a(A)   be the set of all subsets of A, the

set of all subsets of A   of cardinality less than a, respectively.  Note that for

ß < a,   |S o(ex)| = ayj. The notion of an ultrafilter on a will be the usual one. An

ultrafilter containing a set with a single element is called principal", otherwise

nonprincipal.  The set of all ultrafilters on  a, topologized with the Stone topology,

and called the Stone-Cech compactification of a, will be denoted by /3(a). The

set of principal ultrafilters in ß(a)  is identified with  a  in the natural way.  An

ultrafilter on a  is k-uniform if each of its elements has cardinality at least k.  An

a-uniform ultrafilter on a  is simply called uniform. The set of all uniform ultra-

filters on a, topologized as a subspace of /3(a), is denoted by  U(a).  An ultra-

filter on a    will be called subuniform   if each of its elements has cardinality at

least a, and there is an element of the ultrafilter with cardinality a. The set of

all subuniform ultrafilters on  a , topologized as a subspace of  ß(a ),is denoted

by fi(a+). We set 1(a) = Í7(a+)u Í2(a+), again a subspace of ß(a ).

Let X be a (completely regular Hausdorff topological) space. For V C X, we

set clvY tot the closure of  Y  in X.  A zero-set Z  in X  is a set of the form

Z = ¡ x £ X: f(x) = 0j for some real-valued continuous function /   on X.  The set of

all bounded real-valued continuous functions on X is denoted by C (X). A subset

Y  of X  is  C*-embedded in X  if for / £ C*(Y), there is g £ C*(X)  such that

g\Y =/.   As with sets, ß X  denotes the Stone-Cech compactification of X. A space
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X  is called totally disconnected if for any two distinct elements of X there is an

open-and-closed subset of X  containing one but not the other element; X  is called

zero-dimensional if for any two disjoint zero-sets of X there is an open-and-closed

subset of X containing one and disjoint from the other zero-set.  Let  U be an open

subset of a totally disconnected space X; the type  r(E)  of  U is the least cardi-

nal ß  such that U  is equal to the union of ß open-and-closed subsets of X.  If E

is a closed subset of X, we set r(F) = r(X\E). We note that if E  is a closed sub-

set of a compact, zero-dimensional space, then E  is a zero-set if and only if

r(E) <co.  A totally disconnected space X will be called an Fa-space it every

open subset of X of type less than a  is C -embedded in X. We remark that the

usual notion of an E-space (meaning that every cozero set is C -embedded) is, in

general, stronger than the notion of an F^ -space, but that the two notions coin-

cide for compact spaces. (The reason for choosing this definition for an Ea-space,

rather than the exact analogue of an E-space to higher cardinals, is only one of

convenience.)

2.  In this section we prove some results that will be needed for the proof of

the main theorem (given in §3).

2.1. Lemma.   Let F be a nonempty subset of ßitiia. )), such that F  is equal

to the intersection of at most  a.  open-and-closed subsets of ßitiia. )).  Then

Enn(a )   is nonempty.

Proof.   Let E = C\r)<aF_, where F     is open-and-closed in /S(ii(a )). Set

U    =ii(a+)\E       7} < a.  If Fn 0(a+) = 0, then ¡ U^-.r) < aj  is an open cover of

0(a). Let tiia, )  be equal to  Ua<o.+ ^> where

Sç CSç for f < C< a+,

S c   is open-and-closed in tiia. ),

Si:  is homeomorphic to Uia.)

for   cf< a + .   Let   <p: a + _» Sja)   be   any   mapping such that for   <f < a   ,

\J\U   : q e<p(<f)p Sç.   Then, there is A £ S Ja), such that |{£< a+: </>(£) = A|| =

a.  Clearly, then, {J\U   :r¡ £ A\ = 0(a ), contradicting the fact that E  is nonempty.

2.2. Corollary.   Let  F     be open-and-closed sets in tiia/),  77 < a.  Then

,Fm.:1/3(n(<*+))( H ft) =  fi cl1S(n(a+))
\r)f- a     / r¡ < a

Proof.   We only need to prove that

cl/3(il(a+))(   0  Ft/)   D    PI   cl/3(ii(a+))/%
\Ti < a      /        -n < a.

Let p en7)<acl/3(!j(a+))Fr?\cl/5(n(a+))^7]<(IEr]). Then there is an open-and-

closed set N  of ßitiia?)), such that p £ N and N n clß(a<aa-))ir\r] < aF v) = 0.
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Then F = A/n llr¡<aclo,a^a+^F     is the intersection of at most a  operi-and-

closed subsets of ß(Q,(a+)), with p £F; however, Ffïfl(a+) CiVnfl   <aF    = 0,

contradicting Lemma 2.1.

The following theorem has been proved as Theorem 3.1 in [5l. (We recall that

in the present paper a is an infinite regular cardinal.)

2.3. Theorem.    U(a)  is a compact  F  +-space.

We will now prove a stronger result for the space l(a ) of all uniform and

subuniform ultrafilters on a . The proof of the following lemma is left to the

reader.

2.4. Lemma.   Let S = D U T be a space, where D  is discrete in S and T is

compact.   Then S  is a paracompact (and hence normal) space.

2.5. Theorem.   2(a )  is a compact F espace.

Proof.   It is clear that 1(a)  is a compact, zero-dimensional space.  The

Boolean algebra of open-and-closed subsets of 1 (a ) is (isomorphic to)

S (a )/Sa(a ), an a-complete Boolean algebra; thus, it is clear that the closure

of any open subset of 1 (a )  of type less than a  is open. It follows easily (e.g.

as in Corollary 2.2 of [5]) that an open subset of l(a )  of type less than a  is

C -embedded in S (a ). Thus, we only have to prove that if G is an open subset

of l(a )  oí type (exactly) a, then G  is C -embedded in S (a ).

Let G = \Jg<aAg, where A^ C a   and A^ = cl      + Aç n l(a )  (see

Lemma 2.8 below in this connection). We express  G  as the increasing union of

open sets of type less than a, of a chain of length a, in the natural way: let

G^ = \Jv<çA'7}   fot ¿f< a. Thus, G^ is open, r(G ç) < a,  G^ C G ̂    for <f< 77 < a,

G = U^or^í-   By tne remarks above, G p (= cl      +S*ç)  is open-and-closed in

l(a ), and C;   is C*-embedded in G ß  for £ < a.  Let //= KJç<aPç; then H  is

open in X(a ),   t(H) < a and G  is dense in H.

We prove that G  is C*-embedded in H. Indeed, let / £ C*(G).   Set ¡ç = f\Gç

for cf < a. Let gc   be the unique continuous extension of  f¡j  to Gp. Further, for

cf < 77 < a, we have that f g Cf      and since the extensions are unique, that g^ C

g   . Let g = ÜA<ac?í • Since G ç   is open for  cf < a,  g is continuous.

It is clear that Ö ç = (\JV^A^)' tot  cf < a. Set Be = Uis^r B =

(J        ß^ = \J¿<aAg. Thus Bç CBv  fot  ¿¡<r) < a. We now prove that H is

C*-embedded in BUH.   Indeed, let / £ C*(H).   Set fg = f\G ç  tot   ¿f< a. We pro-

ceed by transfinite recursion.  By 2.4, BQUG0   is a normal space, and GQ  is a

closed subset of BqUCq.  Let g0 £ C*(B0UG0)   be an extension of /0, such that

sup[|g0(x)|: x £ß0uG0J = sup||/0(x)|: x £'G0J.
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Let £< a, and suppose that for every i)<^we have defined g     such that gv £

C*iBvUGv), fvCgv,

supilg^U)!:* eBvuGv\ = sup | [/.,,(*) | : x eG^S,

g^ Cg       for £< 77 < a. We define

«•*■((,«*•') ü")",yí(,'u8')u-8í-'

(where R denotes the space of real numbers).

We verify that gc  is well defined: our inductive assumption implies that

KJv<Çgv   is well defined on U      AB    u G   )  and f ç   is defined on G ç; further,

>7)<£ ' T)<Ç

and both functions U^fS-n«  /f  are equal to f\i\J „ < ¿-ÍB   ^-> S^ ^G*  on the

intersection. Thus g*   ¡s weu defined. Further, \Jrj<¿.gr¡   IS continuous, since

the sets B    U G     are open-and-closed for 17 < ç.  Finally, gt  is continuous,

because the sets

U ß    U   UG,     and    G A   UG,
7)<Ç TJ<Ç V)<£

are open-and-closed in Uti-c^^ti u S^ u G £■ ^e note tnat the space ßr U G^

is normal by Lemma 2.4, and that [J      AB    \j G   ) u Gt  is a closed subset in

SiU G¿r. Further, notice that our inductive assumption implies that

supi|gj(x)|:x £  (J (B    u Gv)u G A = sup\\fçix)\: x eGf\.

Hence   g^   is  bounded;  thus, we can find a continuous extension  g¿   e

C*(ß^U Gesuch that

supfl/^U)!: x e G^} = sup[|g^(x)|: xeB^uGf|,

This completes the recursive definition of g¿  fot  £ < a. We let g = [J¿<ag£ ■

Since the sets Be U G;,   rf< a, are open-and-closed, g  is continuous. Also,

sup{|g(x)|: x e B U tfj = sup[|/(x)|: x e B\,

and hence g  is bounded.  This completes the proof that  H  is  C -embedded in

B U E.

Finally, we note that BCB Uf/Ccl    &+B = /3(ß).   Hence, B U E is C*-

embedded in cl„,   +B.  Since cl„    + B  is open-and-closed in ß(a ), it is C -
ß(a ) ß(a  ) r r-

embedded in ßia. ).  Thus, by the transitivity of C -embedding, G is  C -embedded

in ßia ), and since it is contained in S(a ), it is C -embedded in X(cx ). This

completes the proof of the theorem.

The following result is a generalization of Theorem 4.1 by Fine and Gillman
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[31; we remark that the reason for the additional restriction on the spaces Se

below is not significant, and only reflects our restrictive (but convenient) defini-

tion of an Fa-space.

2.6. Theorem.   Let X  be an F ¿space and let S C X  be the union of a oper,

and-closed subsets Se,   ç < a, of X, each Se  being equal to the union of less

than a compact subsets.   Then

(a) S  is an F a-space;

(b) if G C S and G n S e   is of type less than a  in S for ¿; < a then G  is

C -embedded in S;

(c)   if X  is zero-dimensional, then so is S.

Proof,   (b)  We may assume that S = \Jç<aSiç   and that Se C S £ for if< C < a.

We note, since each S;   is an open subset of X  of type less than  a, that Se   is

an Fa-space for cf < a. Let g £ C*(G), and set gç = g\G O Se  fot  cf < a    Let

4 < a   and suppose that gc  has been extended to se £ C (Se)  fot each   <f < £, ,

and that s r C s r/  f or C < C   < cf. The function  U<f < çs^r U g£   is well defined and

continuous on the set \Jf< rSe CJ (GnS r), an open set of type less than  a  in the

F a -space S r; hence it has an extension to a function sr £ C (Sr), such that

supi|sç(x)|: x £SA= supf|sç(x)l:x £   U Sç Cl (GnSM .

Finally  \Je<ase   is a continuous extension of g  to the space S.

(a)   If G   is an open subset of S  of type less than  a, then by (b), G  is  C -

embedded in S.

(c)   We assume that  X  is zero-dimensional.  Let A, B  be two disjoint zero-

sets of 5; we must prove that there is a  [0, lj-valued continuous function on S,

which is equal to 0 on A   and is equal to 1 on B.  Let A j, Bj  be open sets of S,

with  t(A , n Sç) < a, t(B x n S ç) < a  for cf < a, and such that A C A p   BCS,

A j n B j =0. (We can take A j, B j  to be disjoint cozero sets containing A, B,

respectively; then A    n Se, ß, flJt  are cozero sets in Se; it is easy to see

that the compactness condition on Se   implies that  r(A j n S e) < a, T\B^nS ¿A<a)

Let g £ C*(A jUßj) be equal to 0 on A j  and to 1 on ß j. Note, since (by (a))

Se   is C*-embedded in X, that S,¿t  is zero-dimensional for ¿f < a. In the proof of

(b), with G = Aj U Bj, we add to the recursive assumption that U<f<Çs,f   is

{0, lj-valued; then sr may be taken to be  [0,  lj-valued.

2.7. Corollary.   0(a )  is a zero-dimensional (locally compact) F   +-space.

Proof.   Apply 2.6(a), (c) with X = S(a ), an F   +-space by 2.5, S = il(a+),
+ . a

and with  a    replacing  a.

The following fact is also needed.
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2.8. Lemma.   Let X  be a locally compact, zero-dimensional space, and let

F  be an open-and-closed subset of ß X\X.   Then there is an open-and-closed set

N in X, such that N' = clgx/v\x = E.

Proof.   Since X is zero-dimensional, ßX is also zero-dimensional.  The

family !V n ißX\X): V  open-and-closed in ßX\ forms a base for the topology of

ßX\X.  By the local compactness of X,   ßX\X is compact, and thus  F is equal

to the union of a finite number of elements of the base.  Thus  E = (V, U ••■UV )^
1 7Z

ißX\X) where n < co and  V. is open-and-closed in ßX fot i < n. We set N =

iV.U ■ • • U V ) n X; it is clear that N' = F.
1 n

2.9. Theorem.   Let F be a closed subset of ßitiia+))\tiia+) of type at

most  a.   Then there is a closed subset W of tiia ), of type at most a, and such

that W' = clß(a(a+))W\tiia+) = F.

Proof.   Let E = Pi   < aF7), where E     is open-and-closed in ß iti ia+))\ti (a+)

for 77 < a. Since, by 2.7, tiia) is locally compact and zero-dimensional, there

is, by 2.8, an open-and-closed set N     in tiia ), such that N    = F     for all r¡<a.

We set W = fi      „N   ; thus W is a closed subset of Q(a+) of type at most a.

By 2.2,

f'-cW^>*^(a^-cW^>(rtBw-

= n(ci*(«wvXa(a+)=n^;
r)<a 77<a

tj< a

3. The main results.  The following result, mentioned in the introduction,

will be used.

3.1.  Theorem.   U (a) has property <I> .   In detail, this means the following:

Let F  be a closed, nonempty subset of U (a)  of type at most  a, and let

\V   , 77 < a\ be a family of pairwise disjoint, nonempty subsets of U (a); then,

there is  p £ F and an open-and-closed set N  in  U (a) such that p £ N and

\\r) < a: V „ n N 4 0 \\ < a ithis last condition is expressed by saying that p is

not in the uniform closure of [V   , 77 < a[).

The proof of this theorem is given in Theorem 4.2(i) (together with 4.1(ii))

of [7].

We now state and prove the main theorem of this paper.

3.2 Theorem.   If a = a& then ß iti (a+))\ii (a+) has property $a.

Proof.   Let E be a closed, nonempty subset of ß iti (a+))\iî (cx+), such that

F = (~)v<aF   , where F     is open-and-closed in /3(ü(a ))\fi(a+) for 7/ < a.

,\Wa+)
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Let ¡V   , r] < a\ be a family of pairwise disjoint, nonempty open-and-closed sub-

sets of ß (Q (a ))\Q(a ).  By 2.7 and 2.8, there are open-and-closed sets N     in

Q(a+) such that N'   = cl^        +  N   \il(a+) = V     tot 77 < a.  Let Q(a+) be equal

to  U^<a+ Se, where

SçCS^    forcf<«f<a+,

Se    is open-and-closed in Q(a ) for ¿j < a ,

Se    is homeomorphic to  U (a) for cf < a .

Note that a subset of fi (a ) is relatively compact (i.e. it has compact

closure) in iî(a ) if and only if it is a subset of S¿  for some cf < a . Thus

Nvn N^, C Sg(       t) for some cf (r¡, r]') < a+, if 77 < 77' < a.  By taking ¿f, such

that f (77, 77') < rf < a+ for all 77 < 77' < a, and by replacing N     by N \S ¿, we may

assume that the family   Í/V   , 77 < aj consists of pairwise disjoint sets.  Further,

we note that we may assume that V    n F = 0  for all 77 < a; otherwise, any

p £ V    n F (fot some 77 < a ) and N = V     will satisfy the conclusion of the

theorem.

By Theorem 2.9, there is a closed subset W of Q(a ), of type at most a,

such that W = clß(Q(a+))W\n(a+) = F.   Then (W n AM' = W'n N'^ = F O V^ = 0

(using Corollary 2.2).  Thus W n N    C Se() for some £(77) < a ; in the same

way, as above, we may assume that W n N    =0  for 77 < a. We set

B = \x £ W: x is not in the uniform closure of the family \N   , 17 < ajj.

Thus x £ B  if and only if there is some open-and-closed set N (x) containing x,

such that  IÍ77 < a: N (x) n N    / 0\\ < a.  By Theorem 3.1, we conclude that B  is

not relatively compact in  Q (a ).   Indeed, if  B   is relatively compact, then  B CS,

for some cf < a . Since W is not relatively compact (because W   = F / 0), there

is (, <f < C< a+, such that (W\ß) n (S ̂ >\S^) / 0.  Thus S ̂ \S¿  is homeomor-

phic to (7(a), and W\B  is a nonempty closed subset of it, of type not exceeding

a, every element of which is in the uniform closure of the family \N   n (S \S ¿):r¡<a\,

in contradiction to 3.1. By transfinite recursion, we can find a set C = jc^, ¿f < a j and

open-and-compact sets N(ce) in Q(a ) for cf < a , such that C C B, \C\ = a ,

it DCC, then D  is relatively compact if and only if \D\ <o.,Ce £ N (c ¿)    for

cf < a+, N(cç) nN(cf) =0   for    cf < t, < a+, and  \\n < a: N (c ̂ ) D N    / 0J| < a

for cf < a+. We set A p = [77 < a: N (c J H N    ^ 0j,and let 0: a+ —» 5a(a) be

defined by </>(¿f) = A,. Since  |Sa(a)| = a.2-= a, there is A £ 5a(a), such that

A = A , for a+ many cf < a+. We set DA = icf < a+: A = A A We consider the set

G=   (J \N   : r) £a\AjU IJ i/V(c^): ̂  £ D^ j.
7)<a.

We apply Theorem 2.6, with X = S = Q (a ), and with  G  defined as above (with

a   replacing  a).  The condition t(G n S,) < a is satisfied for cf < a+.  Thus G

is C*-embedded in Q (a+).  Let / £ C*(Q(a+)) be such that
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fix) m 1    if x e  U j/V   : 77 eaVU,
7)<a

= 0   if x eVlNicg): £ eDA\.

Let / e C(j3(iî(a )) be the continuous extension of / to j8(0(a )).  Let p be any

element of ßitiia^)\tiia ) in the closure of \c ,: ¿j £ DA\.  Then, since  C C

B C W and  W = E, we have p e E; further, J{p) = 0.  Also, if q £ N'^ = Vv fot

some 77 e o\A, we have that Jiq) = 1.  We set N = \p £ jß(0(a+))\ß(a+):   Jip)4 l\.

Then p e N and [77 < a: V    C\ N 40\CA, hence  |{t7 < a: V   n N j¿ 0 }| < a.  This

completes the proof of the theorem.

For a = co, Theorem 3.2 is easily seen to be equivalent to the statement:

Every nonempty zero-set of ßitiico ))\ß(cj ) has nonempty interior. The reader

will be able to give a simple direct proof of this statement, along the lines of the

proof of Theorem 3.2, using only the following known facts: every nonempty zero-

set of ßco\co has nonempty interior; tiico ) is a pseudocompact, locally compact,

zero-dimensional  E   .-space; and Theorem 4.1 of [3]. Note that it follows that
or

ßitiico ))\tiico ) is not basically disconnected.

3.3. Lemma.   // a, ß are regular cardinals and co < ß < a, then  U ia) does

not have property <J>,,.

Proof.   Let d = (D   )      0 be a family of subsets of a, such that \D   I = a

for r]<ß, Dv uD7), = 0     for 77 < 77' < ß, and \Jv<ßDv = a- Let  F =

fï c</S(a\Drj<í D   )' and  V    = D'v  for 77 < ß.  (We have set for A C a, A' =

(clo-.A) n Uia).) Then  E is a closed, nonempty subset of E(a) of type at

most ß, and {V  , 77 < ß\ is a family of ß pairwise disjoint nonempty open-and-

closed subsets of Uia).  But it is clear that it p £ F and N is any open set of

Uia) containing p, then  |{rj < a: V    O N 4 0\\ = ß-

3.4. Corollary.   If a = a'Q then /3(f2(a. ))\fi(a ) is not homeomorphic to

Uia?).   In particular ii(a) is not C -embedded in ßiai.

Proof.   By Theorem 3.2, ß iti (a+))\íi (a+) has property <S>a.  By Lemma 3.3,

(with a+, a replacing  a, ß, respectively)  Uia ) does not have property $a.

The following argument is the natural extension of the proof given for

Corollary 2 in [9].

3.5. Corollary.   Let a = a^;

(a) // a+U fi(a+) C X C ßia*j\U(a+), then X is not a normal space; and

(b) íí(a ) is not a normal space.

Proof, (a)   follows from the fact that fl(a ) is a closed subset of X which

is not  C -embedded in X  (by 3.4).
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(b)   It follows from (a) that a  U iî(a+) is not a normal space.  To prove (b)

it is sufficient to prove that there is a closed subset of Q(a+) which is homeomor-

phic to  a   uO(a),  Let </>: a  —> a    be the unique one-to-one, order-preserving

function such that

</>[a+] = !cf<a+:c/(cf)=aS.

We define

SA = (clß(a+)cf>(C)) n fi(a+)    for cf < a+

and we note that

n(a4)=U.   +s¿,
Ç<aT     Ç'

Se is homeomorphic to  U(a)  tot ¿f < a ,

Se is open-and-closed in fi(a )  for  cf < a  , and

Sl^S£   for   C<£<a-+.
Let \H e' ¿f < a j be a family of nonempty open-and-closed subsets of 0(a )

such that Up C S^r + 1\5/: for cf < a+ and define H = IJ,   a+ He-  It follows from

Theorem 2.6 and Corollary 2.7 that H is an open subset of fi(a ) which is  C •

embedded in 0(a ).  Let a a- ef/,  for cf < a+ and let A = [a,; ¿f < a+j.  Then A

is a C -embedded subset of iî(a+) homeomorphic to a  .  It is clear that if B C A

and  |ß| < a then cl   .  +.B is compact and hence homeomorphic to  a   u Çl(a>.

This completes the proof.

We remark that the argument given in part (b) of the above corollary proves

that for any infinite regular cardinal   a there is a closed subset of i!(a ) homeo-

morphic to  a  U fi(a ).

For the statement of the classical Aronszajn-Specker theorem, which follows

from our results, we need the following definitions.  A ramification system is a

partially ordered set {A, •<)   with a least element (if it is nonempty) and such that

the set

P(«) = jx£A:x-<« and x / a\

is well ordered by < for « £ A.   The order of an element a £ A» is the order type

of P (a), i.e., the unique ordinal isomorphic to the well-ordered set P(cj).  The

order of the ramification system (A,^)   is the least ordinal cf, such that the

order of P (a) < cf for all cz £ A.   A cardinal  a is ramifiable if every ramification

system (A, -K) of order a, such that

\\a £ A: order type of P (a) = ¿f j| < a    for ¿f < a,

has a subset of cardinality  a well ordered by ;< .

3.6. Corollary (Aronszajn [4]; Specker [8]; Monk [2, p. 76]). // a = a^ then

a    is not a ramifiable cardinal.

Proof. Since il(a+) is zero-dimensional (Corollary 2.7), and fi(al is not C*

embedded in  ß(a*) it follows that there is a  !0, lj-valued continuous function  /
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on  Q(a ) which cannot be extended to a {0, 1 [-valued continuous function on

S (a ).   For every  £ < a  , we choose a  [0, 1 [-valued function  /,: £—> [O, ll,

such that

Jç\tiia+) n clß{a+) f - /|ß(a+) n dß(a+)<;.

Since 0(a ) O clo(a+,f  is a compact subset of a   U (íí(a ) n el o(a+^)i such a

a function /*■ exists for <f < a .  For <f < a   we set

Cff = {£ e SO, l!f: A =/   \g for some 77 with f < 77 < a+[,

and we set (l =  \Jc< a+ "i-  ^e make  (I into a partially ordered set by setting

h < h' if h C h' (for i and h' in Cl).  It is easy to verify that (f is a ramification

system, that for <f < a   the set of elements of u of order rf is the set (l-, and

(since /, e (3,) that Ö, 4 0 iot t; < a  .  Furthermore, if h eö,, then

\\C<C:hiC)4f¿OW<a (because Z[Q (a+) n cl^ a+)£ = /?|iî(a+) n cl^^rf;

it then follows that \^-A < a3* = a <a+ for £< a ). And finally, (Í does not contain any

well-ordered subset of order-type  a  ; indeed if \h ,: <f < a \ were such a chain, then

h = U¿:<(1+^(e  would be a well-defined, Í0, li-valued function on  a    such that

/ C i|S(a ), contrary to the choice of /.  This completes the proof of the theorem.

We finally remark that results similar to those leading to Theorem 3.2 hold

for the growth of the space S Alp i» when a = a.1*   S    is the Stone space of the a-

homogeneous, a-universal Boolean algebra of cardinality  a, and p  is a P -point

of S    (see [6] for the theory of these spaces).   The details, which are similar and

somewhat simpler to those of the present paper, will be given elsewhere.
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