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ON MANIFOLDS WITH THE HOMOTOPY TYPE OF COMPLEX

PROJECTIVE SPACER)

BY

BRUCE CONRAD

ABSTRACT.  It is known that in every even dimension greater than four

there are infinitely many nonhomeomorphic smooth manifolds with the homo-

topy type of complex projective space.   In this paper we provide an explicit

construction of homotopy complex projective spaces.   Our initial data will

be a manifold X with the homotopy type of CP   and an embedding y y S'     *

S .   A homotopy 7-sphere 2.    is constructed and an embedding  y.: S   —' S

may be chosen.   The procedure continues inductively until either an obstruc-

tion or the desired d'mension is reached; in the latter case the final obstruc-

tion is the class of Z "~    in@_,      ,.   Should  this obstruction vanish, the
2n— 1

final choice is of a diffeomorphism y : 2 "~   —> S .   There results a

manifold, denoted (X, y,, • • •, y     ., y ), with the homotopy type of CP".

We describe the obstructions encountered, but are able to evaluate only the

primary ones.   It is shown that every homotopy complex projective space may

be so constructed, and in terms of this construction, necessary and sufficient

conditions for two homotopy complex projective spaces to be diffeomorphic

are stated.

1.   Introduction.   The study of smooth homotopy complex projective spaces

received its first impetus as a means of classifying free circle actions on homo-

topy spheres [9], [10], [14], [15].   D. Sullivan [17] later classified PL homotopy

complex spaces as an application of his characteristic variety theorem.   In this

paper we examine the geometric structure of smooth homotopy complex projective

spaces.   Although our methods are specific to this problem, they clarify the rela-

tionship between surgery and smoothing obstructions which is central to the gen-

eral problem of classifying smooth manifolds within a homotopy type.

CP" denotes complex projective space. A point of CP" is described by ho-

mogeneous coordinates [zQ, • • • , z ], where each z . e C, and \zQ | + |zj | +-••• +

\z  \    =1.   If A is a complex number with  |A| = 1, the points  LAz0, • • • , Az ] and
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[zq,. • • , z ] are identified.   If i < n, CP* is the submanifold of CP" defined by

the equation   \z .   A2 + ■ • •+ |zj2 = 0.

Let  P"  be the submanifold of CP" whose points satisfy  \z Q\ < l/2.   Notice

that CP" - P"  is an open ball of dimension   2?z, and that   P"  has the homotopy

type of CP"~   .   Consider a homotopy equivalence  /: AI —> P", where Al is a smooth

272-dimensional manifold whose boundary is a homotopy sphere (a manifold with

such a boundary is called almost closed).   In S3 we show how to do surgery on /

to make homotopy regular on  P' C P", 3 < / < n; that is, / is transverse regular on

P*  and, if  AL = /~'(PZ), f\ AL is a homotopy equivalence onto   P*.   We call  M      j

the desuspension of Al.

The boundary of each submanifold   Al. is a homotopy sphere; if we arrange the

AI. to be nested we can examine the series of codimension two embeddings  r?M. C

z'+ 1"    PreParing f°r this, we define in §2 certain invariants for such embeddings.

The first of these invariants, t, assigns to  0A1. CdM.   .   the index or Arf invariant

of a framed submanifold W of <9AL   ., this W is essentially defined by dW = dM..

If Al*   .   is the almost smooth manifold formed by attaching a disc along  dM.   .,

— r(<9AL) becomes the Montgomery-Yang desuspension obstruction for  Al*   . [15].

The second invariant, 8, is defined only for embeddings  Sr —> .S'r+   , and is useful

in comparing two homotopy   P"'s AI and Al   if  Al      ,   is diffeomorphic to  Al',.

In §4, homotopy   P"'s are constructed.   Starting with a homotopy   P"_1, Al,

and an embedding y: dM —> S , our construction leads to a homotopy  P",

(Al, y), whose desuspension is Al.   As y runs through the set of embeddings of 0A1

in S , (Al, y) runs through the set of suspensions of Al; the latter set is thus

empty if dM i bP2      ,.

Given two suspensions   (Al, y) and (Al, y  ) of a homotopy P"      , Al, we have

an embedding yH{-y"): <9M#(-dM)= S2""3 -> S2n~l.   In §5, we apply the in-

variant 8 to this embedding and state necessary and sufficient conditions for the

two suspensions to be diffeomorphic.   The details may be found in Theorem 4.   In

»6 we apply Theorem 4 to the problem of determining which homotopy   P""s admit

a conjugation, i.e. a diffeomorphism not homotopic to the identity.   In the final §7

we make some observations about an obstruction theory for smoothing PL homo-

topy  P"'s; a similar obstruction theory arises from a spectral sequence considered

by G. Brumfiel [4].

I wish to thank Professors G. E. Bredon and G. Brumfiel for helpful advice

and encouragement, and to acknowledge the influence of [17] in the preparation of

this paper.

In what follows   B"  denotes the open ball, and  Dn  the closed disc in  R".   An

almost closed manifold with the homotopy type of  P" is an hPn.   A c-orientation

for an hPn, Al, is a distinguished generator of  H  (Al; Z).   All  hPn's are c-oriented,

and diffeomorphisms of hP"'s are required to preserve c-orientation.   In particular,
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fix as a c-orientation for  P" the cohomology class dual to [P"     ] e

W2n_2(P", 0P";Z).

2.   Invariants for codimension two knots. We present two lemmas which will

be useful later.   Both proofs center on the evaluation of a certain obstruction

which was consideted by Kervaire in his proof that every codimension two sphere

in  Sn+     bounds a framed submanifold of S"+  ; see Theorem I of [l l].

We are interested in the following abe lian groups:

G     Group of concordance (or ¿-cobordism) classes of embedded homotopy n~

spheres in 5"+2; (2)

C , Group of concordance classes of embeddings of S" in Sn+   ;(  )

P , Group of framed cobordism classes of framed, almost closed w-submani-

folds of Dn + S, s large;

A     Group of almost framed (i.e. framed on the  complement of  an 77-disc) co-

bordism classes of re-submanifolds of Sn + S.

In each case the group structure is induced by a connected sum operation,

e.g. for   P    one takes connected sums along the boundary, as in [ll].   We will

define homomorphisms  r: G    —> P     , and 8: C   —»A      ,.
r n n+l n n+1

If X" C Sn+     is an embedded homotopy sphere whose concordance class is

k 6 G  , find a submanifold Vf of Sn+    with dW = E".   Let Uj   be a normal vector

field of W in S"+2.   By pushing int(W) into int(D"+3), and letting F - (t>l, iA

where tv,  is the outward normal vector field of Sn+    in R"+   , (W, F) becomes a

framed, almost closed submanifold of D"+   .   Let  r(k) be the stable equivalence

class   of  (W, F)in P  iT.
' n+ 1

Now suppose X" as above is the image of an embedding e: S" —> 5"+     and

denote by e the concordance class of e in C   .   Use í to attach Dn+    to W along

dW to form an almost framed manifold  (V, F) which may be assumed embedded in

Sn+S  for s large.   Let 5(e) be the stable equivalence class of  (V, F) in A

Lemma 1.  r: G   —> P     , and 8: C   —> A      ,   are well-defined epimorphisms
n n+ 1 n n+ 1 j r r

if n>4.

Proof.   If XQ, X, C Sn+     are concordant there is an ¿-cobordism  C C Sn+    x

[0, 1] with dC O Sn+2 x {i\ = (- l)lp i = 0, 1.   Choose  W. C D"+3 with dW. =

S., and let F. be the framing of W. constructed as above.   C has an essentially

unique framing F. in Sn+    x [0, l] extending (- l)rF;|S;. on each end.   Let

(Y, F) be the framed submanifold (WQ, FQ) u (G, F2)u - (Wv F,)of Sn+i =

D"+3 x Í0S US"+2 x [0, l] UD"+3 x {lj.   Choose an open tubular neighborhood

U of Y; the framing F provides an embedding /': Y —» dU.   Denote by i the inclu-

sion of dU in Sn + ' - (7 and by & the composition z'/: Y —> 5" + 3 - U.   An argument

similar   to   the   proof   of   [ll, Theorem I]   shows   that   (Y, F)   bounds   a   framed

(   ) The notations 8    for G  , and   C     for C  , have been used by others.
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submanifold Q of S"+3 if ^[y]= 0, where  [Y] 6 ß„+ ,(Y; Z) is the orientation

class:   this 2 is a framed cobordism between  (W0, FQ) and (Vfj, Fj).   Now,

Hn+,(0(7)= Hn+](Y)  «ir/^1)   ©H/Y)   «/^(S1).   Thus write  /„M = (M  0 1,

a  ® [S  ]), with a. e H (Y), and observe that our choice of framing implies  a = 0.

Therefore  &+[y] = /¡«([Y]   ® 1, 0) which is zero by the homology sequence of the

pair (S"+3 - U, dû).

To see that S is well defined, let (j, fj  be concordant embeddings of S" in

Sn+2.   Then there is an embedding £: Sn x [0, l] -*S"+2 x [O, l] such that

E\Sn x\i\ = f¿.   Putting li = e;.(5"), and C = E(Sn x [O, l]), we construct (W., F.),

Y, and Q as above.   By attaching Dn+    x [0, l] to Q along C with £, we can con-

struct an almost framed cobordism between  (VQ, FQ) and (V,, Fj), where   V.=

D"+1   U(   W..
f ■ 2

A manifold representing a generator of  P      .   can be embedded in  5"+2  as

in L6j:   thus t is onto.   By chasing the diagram (exact rows):

©  ..->C   -+ G   ->@
22+1 n n n

0     ,->A     .-►?_,_.->@
77+1 22+1 22+1 22

we see that 5 is onto.   /:©     , —> C    is defined as follows:   Let  /': S"—>S" +
22 + I 2! '

be the standard embedding, and oj be a diffeomorphism of S". If [oj] is the isotopy

class of oj, viewed as an element of© ., let /([oj]) be the concordance class of

/oj.   The top exact sequence originated in [7].

Let Sn+2 = H + U H     be the union of two hemispheres, with   H + n H_ =

Sn*   .   Suppose  2]; 22  are embedded homotopy spheres, with  H+ n2p //_ O 22

unknotted and  2. O Sn+    = 2    C\ Sn+   , with both intersections transverse; then

2j # 22 = (H _ H 2j) u (H+ n 22).   Let g: 22 —» S" be a degree one map, with

g|(W_ n 22) = (identity), so that g: 2j # 22 —> 2,   is defined.

Lemma 2. g: 2. # 22 —» 2.   extends to a degree one map f: S"+    —> S"+   ,

transverse regular on 2., with f~   (^,) = 2. # 22.

Proof.  First suppose 2j   is the standard S" C S" + 2.   Let U be a closed tub-

ular neighborhood of 22, and T be a closed tubular neighborhood of Xp then g

extends to a fibre-preserving map G: (7, 01' —* T, dT.   Put C = C1(S"+    - T);

then C = S1  and we must extend  G'|0(7: 0(7 —> C over Cl(<>"+2 - 10.   The obstruc-

tion to such an extension vanishes as in [ll, loc. cit.j.

The general case now follows easily.   If / is constructed as above, notice

that since  2    n //_   is unknotted we may require  /|tf_  to be the identity; then

/-1(21)=21#22."
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3.  Desuspensions.   If /: M, dM —» P", dP"  is a homotopy equivalence, we

say that / is admissible  if /|<9íM is homotopy regular on  <9P"~     and if / is admis-

sible we say / desuspends if /=;grel dM where g is homotopy regular on  P"~   .

Montgomery and Yang have dealt in [15] with the problem of desuspending

homotopy equivalences f: N —> CP", where N is a closed manifold (such a map de-

suspends if it is homotopic to g with g homotopy regular on  CP"™   ).   They found

that surgery could be applied to /, with an obstruction in the ''middle dimension."

Thus / » h such that h is transverse regular on  CP"      and h^: n.(h~"  CP"~ *) —>

tt.íCP"-1) is an isomorphism if  i<n-l.   Put   L = /A(CP"~ *), and   K„_1(W =

Ker h^.: H  _](L)—>H  _j(CP"     ).   The obstruction to desuspending / is then the

index of the (symmetric) intersection form on  K     Ah) when n is odd.   In case n

is even the intersection form is antisymmetric and so admits a symplectic basis.

Associated to this basis is an Arf invariant which is the desuspension obstruc-

tion.   In either case, we denote the desuspension obstruction by o(N, /); S(/V, f) S

Z if n is odd and  Z    if n is even.

The obstruction to desuspending an admissible  homotopy equivalence /: M,

dM —» P", dP"  arises from the same argument and has values in the same groups.

Of course it depends on f\dM; we emphasize this by denoting it ö(M, dM, f).

If M is an almost closed manifold, let M   be the PL manifold constructed by

attaching a cone to the boundary of a C°° triangulation of M.   The following theo-

rem relates the two obstructions o(M , F) and o(M, dM, j), when F is the extension

toM*of /: M -*P"CCP".

Theorem 1.   Let f: M, dM —> 1'", dP"  be an admissible homotopy equivalence,

n > 3.    f desuspends   iff o(M, dM, f) = 0.   Furthermore,

(1) S(M, dM, f) = S(M*   F) + rif'HdP"'1) C dM).

Notice that r(f~1(dP"~1) C dM) 6 P 2n„2 which we may identify with Z if

n is even, and 8Z if n is odd using the isomorphisms described in [12]. These

identifications are implicit in (1).

Proof of Theorem 1.  o(M, dM,  /) = 0 iff/ desuspends is proved by straight-

forward modification of [l 5L

To prove (1), triangulate M and P" and suppose / is an admissible  PL homo-

topy equivalence which is transverse regular on   P"~   .   Putting   L = f~   (P"~  )

we may suppose  / | L is (n - 1 )-connected.   Put   K   __. (/) = Ker f^ : H      ,(L)—»

H   _¡(P"~   ).   Again, by performing a homotopy reí M if necessary, we may assume

F is transverse regular on  CPn-1,with  F '' ' (CP" = 1 ) = L U Q; 0 C C1(M* - M)

transverse to dM.   Additionally, we suppose Q is (n — 2)-connected.   Then

Kn_l(F) » Hn_l(Q) S /<„_,(/), so S(M*, F) is the sum of the index or Arf in-

variants of H     j(2) and K  _j(/).   The latter quantity is S(M, dM, /).   Since there

is the relation of knots  (dL C dM) = - (dQ C dM) the index or Arf invariant of

w„_l(S)is - r(dL CdM) = - r{rl{dPn-l)CdM).
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Corollary 1.   // AI is an hP", n > 3, there is an admissible homotopy equiva-

lence f: Al, dM —» P", 0P" which desuspends.

Proof.  Choose a c-orientation-preserving homotopy equivalence  g: Al      '

CP", and let 2 C 0A1 be a knot such that r(2) = - d(A1 , g).   Lemma 2 provides a

degree one map p: dM —» S , transverse regular on S "~  , such that

p~   (S  ""3)= 2, and we can extend p to an admissible  c-orientation-preserving '

homotopy equivalence /: Al, <9A1 —» P", dV".   Applying (1), S(A1, dM, /) = 0 so / de-

suspends.

If /: Al, dM —> P", <9P"  is a c-orientation-preserving homotopy equivalence

which is homotopy regular on   P"~   , /"   (P"~   ) with the induced c-orientation is

said to be a desuspension of A1. Standard relative surgery arguments show that de-

suspensions are unique in the following sense:

Theorem 2.  Let P and 0 be desuspensions of the  hP", Al.   Then there is a

diffeomorphism f of M such that f is pseudo-isotopic to the identity and f(P) - Q.

4. Suspensions.  If Al is an hPn, n > 3, with dM e bP2  , we are going to show

how to construct suspensions of Al:   that is, hPn+  s whose desuspensions will

be Al.

Let tf w  be the 2-plane bundle over Al whose Euler class is the c-orientation

of Al.   £„ and SM are to denote the total spaces of the associated D   and S -

bundles, and E   „, SdM  their restrictions to 0A1.

Lemma 3.  SM is diffeomorphic to dM x D   .

Proof.   Let S   * be the extension of S„   over the PL homotopy complex pro-

jective space Al  .   S   * is homeomorphic to S  "+   , and  S   * - 5^  is homeomor-

phic to S   x B     ; since  S    must be unknotted in S  n+   , we see that S..   is a

smooth manifold which is homeomorphic to Í  ""    x D   , and whose boundary  S iM

is diffeomorphic to dM x S  .   IntCS^) is a smoothing of S  ""    x B   ; by the prod-

uct theorem of Hirsch [8] there is a unique (up to diffeomorphism) homotopy sphere

2 such that 2 x B    is concordant to int(SM).   It will be sufficient to show that

2 ~ dM.   The complement of a small open tubular neighborhood of 2 x \0\ in L

is easily seen to be an ¿-cobordism between 2x5    and dM x S  ; since   W/j(Z) =

0 this ¿-cobordism is a product.   According to L2], two homotopy spheres are dif-

feomorphic if their products with S    ate diffeomorphic:   therefore 2 * dM.

Now choose an embedding y: dM —> S  "+    (recall that such embeddings exist

iff dM e bP2n).   Let F: dMxD2 ^S2n+1  be a collar for y, a: Em — <9A1 x D2

be a trivialisation, and o: S,„ —> <9A1 x S    be the restriction of a.   From the dis-

joint union  EM u S2n+    x [O, l] form a manifold X by identifying x € EdM with

(ya(x),  0) e S x {0\ and straightening the angle.   The two components, dQX =

5MU1V(.Ç2"+1 x \0\~F(dMx B2))and r?,X = S2"+1 x \l\, of dX  ate homotopy

spheres; compare Lemma 3.
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Lemma 4.   The diffeomorphism class of X is independent of the choice of y

within its concordance class.

Proof.   Let yQ, y,   be concordant embeddings of dM in S  "+   , and choose

collars  Tg, IA   dM x D    —> S  "+    .   Let v be a concordance between  y0 and y,,

parameterized so that v : dM x [0, l] —* S2n+ ï x [- 1, O] with u \dM x j i\ = (y.,

í — l), for  z = 0, 1.   There is no obstruction to extending v to a concordance T

between A and IA so we assume this is done.

Let 2D    C R    be the disc of radius 2, and  2F„ be the 2D -bundle associat-

ed with  ¿;M.   Construct the manifold  2XQ from 2FM U S  "+    x [- 1, l]  by identi-

fying x € 2E   „ with (Ta(/^x), — 1).   2XQ  is obviously diffeomotphic to X„, and

embedded in  2XQ we will discover a copy of X. as follows.

Choose a collar K of dM in AI, and a diffeomorphism /3: F^, —> dM x D2 x

[0, l] such that /3|FaM = (a, 1).   Also choose a diffeomorphism ;': C1(E„ - £„)—->

F^   such that where both are defined  ß = (a/, 0), and define  k: E „ —» 2X„ by

¿(*) = /(*) if x e C1(FM - EK) and ¿(%) = (ß(Y2x)) if x e ER.   Then Xj ~ ¿(FM) U

S  "+    x [O, l].   Moreover, upon straightening the angles

C1(2X0- Xj)= SM x[l,2] u(S2"+! x [-1, 0] - T(t?Mx Y2B2 x [0, l]))

becomes an /j-cobordism between  <3„X0 an£l ^oA > tnus  ^n * ^i-

Let  i: M, dM —» X, d X  be defined as the composition  M A M udiMx [0, l]-^

X where «fis a diffeomorphism that is the identity outside a collar of dM, and

e= (0-section) U y x id : M udM x [O, ll -» E^ U 52"+1 x [0, l].

We could attach  D  "+    to X along f3,X; while the resulting almost closed

manifold would be an  hPn+   , its desuspension would not be   i(M).   We therefore

prefer to make a slight alteration in the differential structure of M.   Specifically,

let  B C dqX be an open ball, and let t: B —• S  n+    - im(T) be an orientation-

preserving embedding.    Putting

X' = (X - (i(B) x [0, 1]))   ut (d0X - B) x [0, l],

<50X'= (<90X)# (- r)QX) * A"+1 andc91X' s - dQX.

Let  (M, y) be the almost closed manifold obtained by attaching  D  "+    to X

along dqX  .   It is clear that the diffeomorphism class of  (M, y) is dependent only

on the diffeomorphism class of M and the concordance class of y.

Since   (M, y) is obtained from  F^  by attaching a cell   along   SM  it is obvi-

ous that  (M, y) is an ¿P"+   .   This fact, together with Corollary 1 and Theorem 2,

gives us the following theorem:

Theorem 3.   (AI, y) is an hPn+   .   Moreover, if N is any hPn+     there exists

a unique  hPn, AI, and an embedding y: t3A1 —* S2n+    such that (Al, y) * N.
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Let H    be the set of c-oriented diffeomorphism classes of hPn's and a,  (dn)
n r n

be the subset consisting of elements whose boundaries belong to  bP2  .   There

is a desuspension function d: 3     , —• Sn(dn) defined by d(M, y) = Al.

Corollary 2.   There is an action of C2   _ l on Z<      ..   The orbit set of this

action is placed in 1-1 correspondence with 2  (an) by the desuspension function.

Proof.   C2      ,   acts transitively on the set of concordance classes of embed-

dings of ¿Ml in S    +   by a connected sum operation #.   Thus, if N = (Al, y) e

Hn+1 and e e C2n_i, let e • N = (Al, e # y).

Remark.  We can continue to decompose an  hP"+   , N until we arrive at a se-

quence  (W, y    • • • , y ), where W is an hP   and y.: 2  '~    —' S    +     is an embed-

ding of the homotopy sphere d(((-- • (W, y3), y4)- • • ), y¿_i)= S; this sequence de-

termines the diffeomorphism class of N.   Omitting certain parentheses from our

notation, we shall write  N « (W, y?,- • • , y  ).

5.  Determination of the action of C2n_jOn H      ,.   It is a consequence of

[17], [18] that Hn+1 is in 1-1 correspondence with  [Pn+1; F/O] ^ [CP", F/O].

Moreover, the desuspension d: 2^+ { —> 3n corresponds to z" in the Puppe se-

quence

(2) [5CP"_1; F/O] -£-> [CPVCP""1; F/O]   -4   [CP"; F/O]   -^    [CP"-1; F/O].

Now, [CPVCP"-1; F/O] - 77,  (F/O) a A,    so /"  induces an action of A      on
' 2r2 2n ; 2?2

[CP"; F/O].   We will show that our action of  C2n_j on Hn+ j   factors through this

action via the homomorphism 8 of V2.   Upon identifying  Im k    with the inertial

group  /(CP") we will then have a complete description of the action of  C2      . on

S      p or equivalently a necessary and sufficient condition for two suspensions

of the same  hP" to the diffeomorphic, as follows.   Let  /   C ©2    be the inertial

group of CP".

Theorem 4.   // e e C,      , and Al 6 H      ,, e • M  * M iff 8(e) e I .
' 222— I 22+ 1 » "        x    ' n

Theorem 4*. // Al is an hPn and y, y' : dM —> S2n+ are embeddings, (M, y) «

(M,y')iffytt (-y'): (dM)ft (- dM) *,,2"-1 — s2n+l satisfies 8(y # (-y'))e /n.

Remark.  Note that 0,    —> A.,    is injective since  &F.      , = 0.   Thus  /   C
2n 2n ' 2n+ I 22

2n

Let a: n2n(F/0) —► ^2« ^e tne isomorphism defined by Sullivan in [17].   We

define 8  : C2n_j —» 772  (F/0) so that 8 = a.8 .   Using the definition of 5 , it is a

simple matter to factor the action of  C.      , on S,      , through A-    as promisedr 2 72— 1 22+1 b 2 27 ^

above.

If e: Sm~l ->Sm + 1 is an embedding, let e': Sm~l x D2 ->Sm+1 be a collar

for <r. Choose a smooth degree 1 map /: Sm+l ~* Sm + l with f-l(Sm-l) = c(Sm~l)

and such that fe': S™'1 x D2 —> Sm+l   is the standard embedding of S™-1 x D2
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in Sm+ 1; such a map exists by Lemma 2.   Extend /to F: Dm + 2 —• Dm+2 and let

w: (Dm + 2, S7""1) ->(Dm, S™"1) be the composition

(Dm + 2, S7"'1) — (Dm x D2, S™"1 x {0}) — (Dm, 5™-1).

By construction, /r/t ' : Sm~ l x D2 —>Sm'1  is the projection.   Let F = (Bm + 2 U

¿'(S7*-1 xß2))x Ps~2, s large, and define t: E -> Dm x Rs by í(x, y) = (F(x), y),

where we have identified  (ßm + 2u5m_1 x B2) x Rs~2 with Dm x Rs.   Now let

t: Dm — E be an embedding extending (e, 0): 5m_1 — E.   E fibres over   z(Dm)

as an extension of the trivial fibration  nf: e (Sm~    x B  ) —» Sm~   , and ¡ is a

fibre homotopy trivialisation of this fibration.   The element of [(Dm, Sm~ ); F/0, *J

= nm(F/0) defined by (F, t, nf) is   5'(f).   It is clear from the definition of a that

S = a5A

If  (Al, y) = N is an hPn+   , and  e £ C        ,, there is a homotopy equivalence

h: e • N —» N, defined as follows.   Let e: A"~ '  —> S2"+ '  be an embedding rep-

resenting e.   Then  e • TV = (AI, y # e).   By Lemma 2 we can find a degree one map

/: d(e • N) —> N such that f~x(y(dM)) = y # e(dAl).   Mapping EM by the identity and

d(e • N) x / by /, we may extend without obstruction to the homotopy equivalence h.

The following lemma establishes the factorization of the action of C,      , on
° In— 1

Hn+l through A2n.

L^emma 5.  Wz'rÄ /¿e above notation, the characteristic F/0 bundle [17] for h,

dh = -j»8'(e)e[N; F/0].

Proof. Since  h\M is the identity, Qh e lmjn: [(N, Al); F/0, *] -> [N; F/0].

The proof that 6, = /"(- S'(e)) is straightforward and omitted.

If Vm is a closed manifold recall that the inertial group I(Vm) is the sub-

group of @m consisting of elements a such that a # Vm  is diffeomorphic to  Vm

by a diffeomorphism homotopic to the identity.   We propose to extend this defini-

tion to cover the case of almost closed manifolds.

Diffeomorphisms  /„, /.   of a closed manifold   Wm~     ace conjugate if there is

a diffeomorphism g of W such that /Q  is pseudo-isotopic to  gf,g~    L3L   Let

S)0(Wm~   ) be the set of conjugacy classes of diffeomorphisms of W which are

homotopic to the identity.   As in [3] we have a natural map pw:®    —' S)JWm~   ).

Now let  Vm be a manifold with connected boundary W.   The inertial group

¡(V) of V is then defined to be the subgroup of ©    consisting of elements a such

that pw(a) extends to a diffeomorphism of V which is homotopic to the identity.

If V = Al - (open disc), where Al is a closed manifold, then I(V) = /(Al), the latter

group being defined in the usual way.   The following theorem is a first step

toward identifying the image of k    in (2).

Theorem 5.  Let M be an hPn with dM e bP,  .   Then /(Al)= / .
2n v    '        n

The proof is contained in the following three lemmas.
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Lemma 6.   // Wm~     is a homotopy sphere which bounds a n-manifold then  pw

is an isomorphism.

Proof.   This lemma is well known; however, a proof is included for complete-

ness.   For any homotopy sphere W, pw is onto by an obvious argument.   By [3,

Lemma l], Ketpw = 1(W x Sl).   But I(W x Sl) = {0, 77 • \W\\ where 77 generates the

stable stem  77j, \W\ e©     .   and the action of  77^ on ©* is in [l]; see [5, Theorem

3.I].   But since W is a 7r-boundary, 77 • \W\ is clearly 0.

Let G denote the circle group of complex numbers with unit modulus.   If A is

a G-action on a homotopy sphere   Wm, we can consider the Hopf construction on

<p: G x W — W, which yields an element h^ e [G * W; SW] = ttm   2(Sm+1 ).   We say

that the action A is essential if h± 4- 0.

Lemma 7.   // Wm bounds a n-manifold, then W admits an essential G-action.

Proof.   If m is even, then  W ~ Sm = \(z, x) e C x R"2"1: \z\2 + \\x\\2 = l}.   De-

fine the G-action A by A(g, (2, x)) = (gz, x).   Then h±   is the (m - l)-fold sus-

pension of the Hopf map h: S    —'S    and is thus essential.

If m = 4k + 1, then W is diffeomorphic to the Brieskorn variety  V , C C  k+2

defined by the equations

|z0|2 + --'+|2,    ,|=1;     and     zQ + z2 + • • • + z2        = 0,     fot  d odd.

In this case, define A by A(g, z) = (g zQ, g Zp • • • , g z2k+ \)-   Clearly A is es-

sential on 54*+3 and leaves Vd invariant.   Principal orbits in S       3 - Vd link

Vd {2d) times; therefore A\V d is essential as well.

If 272 = 4k - 1   we can define in a similar fashion essential G-actions on the

Brieskorn varieties   V        C C with equations ¡|z|| = 1; and

zpQ + zq + z2 + ■ • • + z2    = 0,     for  (2, p, q) pairwise relatively prime;

the details are left to the reader.   Since W must be diffeomorphic to some   V       ,

this completes the proof.

Remark.  R. Schultz has shown that if a homotopy sphere W admits an essen-

tial circle action then 77 • \W\ = 0 [16].   It would be interesting to know if this

condition is sufficient.

Now let  W2n~l  be a homotopy sphere which bounds a 77-manifold and let oj

be a diffeomorphism of W,   As in [3L to each homotopy h of co with the identity

there corresponds an element oj ffl£ {.SW; F/O].   Lemma 7 implies that Qh w is

independent of h, as follows:

If h' is another homotopy, 6,   w = 6   ,       iff there is a diffeomorphism / of

W x / with f\W x I = id and h'/ =* h relW x /.   But if A is an essential 5    action

on W, we could put fix, t) = (A(t, x), t).   Then either  h   =; h rel W x I or h f ^

irelWx /.

Thus we simply write Ö(oj) for the element of n2r¡(F/0) corresponding to oj.
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Lemma 8. Let M be an hPn with \âM\ £ bP. , and let r: dM —» M denote the

inclusion. Then 6 ° p dfA places /(Al) in 1-1 correspondence with Im rH : [SAI; F/0] •

[SdAI; F/0].

Proof.  Suppose co is a diffeomorphism of <9A! and 0(co) = r r¡.   The problem of

finding a diffeomorphism of Al extending co is essentially that of finding a homo-

topy equivalence of manifolds T, dT —> AI x S  , dM x S    such that dT is the map-

ping torus of co; see L3].   But since dim M x S    is odd, there is no obstruction to

doing surgery rel ¿Ml x S    in the F/0-bundle c*r], where c: M x S   —> M A S   = SM

is the collapsing map, to get such a homotopy equivalence.

To complete the proof, we show  dp aM(l(M)) C Imr   .   Let ÎÎ be a diffeomorphism

of M and h   be a homotopy of ii with the identity.   The obstructions to altering

h(: M x 1 —» M by a homotopy rel M x {0, 1}, to obtain a new homotopy k   with

kXdM) C dM lie in H\dM x I, dM x \0„ lj; n.(M, dM)) = Hi~l(dM, n¿M, dM)) = 0

since  n.(M, dM) = 0 for i / 2.   Thus  r" 0(Q, £,) = 0(Q\dM).

We are now ready to prove Theorem 4.   Suppose first that e £ C.     . with

8(e) £ / .   Then there is a diffeomorphism co of S     ~     such that for an  ¿P"+    N =

(M, y), e • A/ = (Al, y # /cu) where /: S2""1 —> S2n + !   is the standard embedding.

If O) is a diffeomorphism of dM representing PdM(i(o\), clearly y # /cu  is concor-

dant to yco- dM —> S n+   .   Since co £ I     there is a diffeomorphism 0 of Al with

O) = i2|(9Al.   A lift of Í2 to a diffeomorphism of EM  can then be extended to a dif-

feomorphism  N —> e • TV; the details are left to the reader.

Now suppose  e £ C'2n_1 and N = (M, y) is an ¿P"+ ! with e ■ N « N.   From

Theorem 1,

-r(y) = S(/V*) = S(e. /V)*=-r(y#e),

so  r(e) = 0.

The commutative diagram (exact rows)

0—>©     -*-M,   ->P?,.2n 2« 2«I   ,  T!      Î'
©t * A     ,     * G.,     ,w2n ¿n-1 ln-1

implies  e = l(co) for some a) € ©,   .   In the diagram (upper row exact)

[SAl;F/0]-> [(N, Al); (F/0, *)] -> [N-F/0]

F 1«
[SdM;F/0]     S    An(F'/0)

it is clear that the element of [(/V, Al); (F/0, *)] corresponding to the canonical

homotopy equivalence (e • N, Al) —> (/V, Al) maps to 6(co).   Since this element goes

to 0 in  [/V; F/0], t%co)  lies in the image of r   which by Lemma 8 implies co £ 7(A1)=

/  .



176 BRUCE CONRAD [February

6. Conjugations.   If Al is an hPn, and p. e H2(M) is its c-orientation, let Al~

be the  hPn whose underlying manifold is Al, and whose c-orientation is - p.   A

conjugation of Al is then a diffeomorphism /: Al —» A1~.   Not every hP" admits a

conjugation; for examples see Í41.   We shall apply the results of §5 to prove

Theorem 6.   Let  N = (Al, y) be an hPn*   .   N admits a conjugation iff there is

a conjugation f of M such that if A = /" 'IdAl,

(i)   if n is even, A = identity,

(ii)   if n is odd, 8(y # y A) 6 /  .

Before proving this theorem, we will explain the  statement  (ii).   If 72  is  odd

A is easily seen to be an orientation-reversing diffeomorphism of <9A1, and so

y # yA i s an embedding of <9AI # (-<9Al), which is canonically diffeomorphic to

S "~  .   Therefore y # yA represents an element of C2      , and 8(y # yA) is defined

Proof of Theorem 6.  Let g be a conjugation of N, and let h: N —> P"+ '  be a

c-orientation-preserving homotopy equivalence, transverse regular on   P" with Al =

h~l(Pn).   If k is the usual conjugation of P"+1, k\Pn is the conjugation of  P",

and so the desuspension of N~ via kh is Al".   But hg — kh, so if we let Al    =

(hg)~  (P"), Theorem 2 provides a diffeomorphism /: N~ —> N~, homotopic to the

identity, with /(Al   ) = Al-.   Putting /= jg we see that / is a conjugation of N

taking Al into A1~.   In particular, Al admits a conjugation.

Suppose now that / is a conjugation of Al and A = f~   \dM.   Then / induces a

diffeomorphism F: (Al, y) —> (Al-, yA).   In case 72 is even, (Al~, yA) is diffeomor-

phic to N~ = (A1~, y) iff A e I ; then / can be replaced by a conjugation whose re-

striction to  dM  is the identity.

If 72 is odd, N~ = (Al", - y).   Put yA = (- y)A    as embeddings of - dM in

S2n+   , where A' : dM —> dM is an orientation-preserving diffeomorphism.   Let A

be a diffeomorphism of S2"-1 with P¡,u(4>) conjugate to A'.   Then N~ is diffeo-

morphic to  (Al~, yA) iff A represents an element of  ¡n.   Ii j: S —» S  "+     is

the standard embedding, - yA    is concordant to (- y) # jA.   Therefore  j4> is con-

cordant, as an embedding of S  n~   , to y#(-yA  ) = y#ycA.   Therefore A repre-

sents S(y#yr/j) in A     , and this completes the proof.

Corollary 3.   Let N = (AI, y) be an hPn+     which admits a conjugation, and

e£C.      p   If n is even, e • N also admits a conjugation.    If n is odd, e • N ad-

mits a conjugation iff 28(e) e / .

7. Smoothing obstructions.   Let H        be the set of PL homeomorphism class-

es of PL homotopy complex projective spaces.   In [17], Sullivan showed =!<n      is

naturally in 1-1 correspondence with  P, x Pg x • • • x P 2   _2.   Our methods can be

simplified for the PL case to recover this classification.   Define a function  k   :
r 22

H^L — P4 x-.-x P2n_2  as follows.   If Al is a PL hCP", M * (X, y3,. • • , yn_l)

where X is an  hCP-1 and y.: S2'~ 1 —• S2,+ l   is a PL embedding.   An analogue of
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Theorem 4 says that AI is diffeomorphic to Al'= (x\ y3,"< , yn_l) iff X « X and

Ay.) = Ay'-), i = 3, • • • , n - 1.   According to [14], there is an isomorphism </>: 33 —'

Z = P    (notice that 3, = 3fL ); we assume the sign has been chosen to agree with

[17].   Then we put kJX, yy . .. , yn_ , ) = (0[Xj, - Hy3), • . • , - r(yn_ ,)).

If Al is a PL hCP" and /^(Al) = (</>[X], OTJt • • •, **„_,), X £ "3y m. £ P 2j, we

can try to inductively choose embeddings  y;A(X, y,, • • • , y¿_ j) —♦ S   ,+    with

r(y.) = - m ..   If we are successful, and ¿KX, y,, • • • , yn_ j) ~ S n~  , we may con-

struct a smoothing of Al by attaching a disc to  (X, y',,■••, y  _ j ) along its

boundary.   The elements   ¿KX, y,,->.,y._,)+ dm . and ¿AX, y,, • • • , y  _,) are

thus obstructions to smoothing Al.   Substantially the same obstructions arise from

a spectral sequence of Btumfiel [4].   Although our viewpoint is unsuitable for ex-

tensive computation, the following theorem makes the primary obstructions ac-

cessible.

Theorem 7.  Let M be an hP" such that dM bounds a parallelisablc manifold.

If n is even, there is a homotopy sphere S(Al)  such that for every embedding y:

dM —> S     +   , d(M, y) «S(A1).   // 72 is odd and co is a diffeomorphism of dM,

d(M, yco) « d(M, y) # 77 • co.

77 above denotes the generatot of the stable stem 77j, and the homotopy sphere

r¡ • co  is constructed as in [l].

Proof.   If / is a diffeomorphism of dM x S  , let w(f) be the element of

nl(SF(2n))  s tTj represented by / i—► p,f(x, t), x £ dM, t £ S  .   Using an exact se-

quence of Browder [3, ^5] we see that  w(f) = 0 iff there is a diffeomorphism i/f

of S " such that fp   ,     . (lb) extends to a diffeomorphism of dAI x D   .

Let G denote the circle group.   If G acts freely on  r)A1 x D   , a trivialisation

of the action on the boundary is a diffeomorphism / of dM x S    such that

/(A ■ (x, /)) = (x, A/) where A £ G, x £ dM, t e S  .   The particular G-action we have

in mind is defined by the principal G-bundle structure on  L * dM x D    (compare

Lemma 3); the boundaty trivialisation is then, in the notation of §4, the diffeomor-

phism o.   Let us assume for the moment the following lemma:

Lemma 9.   /// z'.v a boundary trivialisation of the G-action on L, where M is

an hP", then w(f) = nr).

If n is even, then w(o~) - nrj - 0.   Let i/f be a diffeomorphism of S      such

that, setting iff   - p      A<A)> t/j' extends to a diffeomorphism of SM onto t?A1 x D .

-¿Km, y) = sM uTo (,s2"+I - W m x /i2)),

and if we let S(M) be the homotopy sphere  D2"+I  U   D2"+1,

-d(M, y)Hl(M)   *  S     u     ., (.V2"+ A iX^Alx B2)).
W I (7\fJ
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Since TÍA' extends over SM, - d(M, y) # a(M) = S2n+ \ or d(M, y) *2(M).

We now consider the case where tz is odd.   Let A be an essential circle action

on dM; then w(A) = 77 (cf. Lemma 8), so that if / is the diffeomorphism of dM x S1

defined by /(x, t) = (A(t, x), t), x e Al, t e S1, then w(f) =77.   If oj is a diffeomor-

phism of dM, put gw = oj x id: dM x Sl —♦ dM x Sl.   Then, by following De Sapio

[5]» 77 • oj can be shown to be the obstruction to extending the diffeomorphism

f~ SMf of dMx S1  to a diffeomorphism of dM x D2.

Now let  U * dM x LM, l] be a collar of dM in Al, and Mj = C1(M - U).  Choose

a diffeomorphism h: dM x D    —> S„  ; then

-d(M, y) # 77 • oj   « SM     u , S„ u      (52"+1 - r(<9Al x B2))
-1      <J       1erbgjb

« —d(M, yco).

Since 2r] • co ~ S  "+     this completes the proof of Theorem 7.

Proof of Lemma 9.  I am indebted to Professor Bredon for a suggestion con-

cerning this proof.   Denote by A the action of G on S M  induced by the principal

G-bundle structure, so A: G x SM —* SM.   Let if/: G x dM x D    —» dAl x D    be the

action defined by i/f(A, x, w) = (x, Xw), where  À € G, x e âM, w e D     and the action

of G on D    is the usual one.   To simplify our notation, we identify the manifolds

SM and (9A1 x D  ; in doing so we require that the composition

m iii_iU5Mx5i^L dMxS'-^UdM

be hornotopic to the identity, and  pJ(dM x {l\) = {l\.   It is clear that, as maps of

dM x S , / is hornotopic to /
-1

Consider the diagram

(T, 1)
-» G x dAlxili

»dAlx S1«

idx/-

Gx dAlx S1

The triangle on the right homotopy commutes because of the above requirements,

and the left triangle is easily seen to be commutative.   Furthermore, the entire

rectangle commutes because /""     is equivariant from the action 1// to the action A.

Therefore the middle triangle is homotopy commutative:   A(T, 1) <= /"    » /.   But

the action A on dM x D     is equivariantly homotopy equivalent to the free G-action

A,, on 5
u pn

pletes the proof.

:2n-l x D  ; it is easily seen that w(AQ(T, 1))= 7277 and this com-
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The following application of Theorem 7 may be of interest.   For every embed-

ding  y: SAk~l — S4k+l, d(P2k, y) *54*+1; therefore the PL hCP2k+l, Al, with

k2k+ j(Al) = (0, • • • , 0, m) is smoothable iff dm   is diffeomorphic to A*™   .   This

observation leads to the solution of a problem proposed by K. Wang at the 1971

Conference on Transformation Groups at Amherst:   to show that in every dimension

4k + 3 there are infinitely many free smooth circle group actions on homotopy

spheres which do not extend to free  A  actions.   Using [19]> we notice that if

772 / 0, Al is the orbit space of such a free circle action.
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