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REDUCTIONS OF IDEALS IN COMMUTATIVE RINGS
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JAMES H. HAYS

ABSTRACT. All rings considered in this paper are commutative, associative,

and have an identity.  If A   and B  are ideals in a ring, then B   is a reduction of

A   if B C A   and if BA" = An+    for some positive integer n.  An ideal is basic if

it has no reductions. These definitions were considered in local rings by Northcott

and Rees; this paper considers them in more general rings.  Basic ideals in

Noetherian rings are characterized to the extent that they are characterized in

local rings.  It is shown that elements of the principal class generate a basic

ideal in a Noetherian ring. Prüfer domains do not have the basic ideal property,

that is, there may exist ideals which are not basic; however, a characterization

of Prüfer domains can be given in terms of basic ideals. A domain is Prüfer if

and only if every finitely generated ideal is basic.

1. Introduction. All rings considered in this paper are commutative, associa-

tive and have an identity. We are concerned with the following definitions, which

appeared originally in a paper by Northcott and Rees [61.

Definition 1.1.  If A   and B  ate ideals of a ring R, then  B  is a reduction of

A   if 0 C A   and SA" = A"+    for at least one positive integer n.

Definition 1.2.  An ideal which has no reductions other than itself is called

a basic ideal.

In [6], Northcott and Rees considered reductions of ideals in a local ring with

an infinite residue field; and in a second paper [7] they considered the same prob-

lem for equicharacteristic local rings.

In this paper, we investigate reductions of ideals and basic ideals in more

general rings. We give several sufficient conditions in order that an ideal be

basic; for example, in a Noetherian ring elements of the principal class generate

a basic ideal.

We note in §2 that the product of basic ideals need not be basic, but in §3

we give two sufficient conditions in order that such a product be basic. The most

important theorem in §3 is a characterization of basic ideals in Noetherian rings:

An ideal A   in a Noetherian ring R  is basic if and only if z1fi„  is basic for each
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maximal ideal M  of P.  This result  characterizes basic   ideals in Noetherian rings

to the extent that they are characterized in local rings.

In §5 we define C-ideals and then obtain some simple results about them. We

note that in the case of a Noetherian ring, C-ideals can be identified with integrally

complete ideals; however, these definitions are not equivalent.

§6 is devoted to results concerning valuation rings and Prüfer domains, the

most important of which is that a domain is Prüfer if and only if every finitely gen-

erated ideal is basic. We also show that Prüfer domains need not have the basic

ideal property; that is, there may exist ideals wjiich are not basic.  We exhibit such

an ideal in a valuation ring and, by this example, observe that several results

about reductions of ideals in Noetherian rings do not extend to non-Noetherian rings.

This example also establishes the existence of an ideal that has no minimal reduc-

tions.

We will frequently refer to the following well-known result.

Lemma 1.3 [4, Theorem 3.10, p. 42],  Let A   be an ideal of the ring R.  Let

{AAj^îxeA  ^e the set of maximal ideals of R, and for each k let e., c.   denote exten-

sion and contraction of ideals with respect to the quotient ring  R „   .  // 2  z's the

set of maximal ideals that contain A, then

(D A = C\XeXAe*c*,and

// R  is an integral domain, then

(3)A = f|XeAAeX.

We will list at this time the results from [6] that are pertinent to this paper and

which indicate the nature of the problem.

Let y,, v2, • • • , v   be elements of a local ring (Q, M). The elements Vy, v2,

• • • ,v    ate analytically independent if for each form cb(X., • • • ,X) with coeffi-

cients in Q   such that cbiv ) = 0, it follows that all the coefficients of cb ate in M.

Theorem 1.4 [6, Theorem 4, p. 152].  Let (Q, M) be a local ring such that Q/M

is infinite. An ideal A   is basic if and only if it admits an analytically independent

generating set.

The next two theorems are proved in [6] for an ideal A   in a local ring (Q, M),

such that Q/M  is infinite, but an examination of the proofs of these theorems shows

that they hold for arbitrary Noetherian rings. An ideal which does not consist

entirely of zero divisors is called a regular ideal.

Theorem 1.5.   Let A   be an ideal in a Noetherian ring.  Then

(a) [6, Theorem 1, p. 155].  There exists a unique ideal, A, with the following

two properties:
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(1) A   is a reduction of A.

(2) Every ideal which has A  as a reduction is contained in A.

(b) [6, Theorem 3, p. 156]. // A is regular, then Â = {x| x" + zjjx"-1 + ••• +

a   =0 where a . £ A'\.
72 2

2. Elements of the principal class. We noted in Theorem 1.4 that, in the local

rings studied in [6], basic ideals are characterized as those that can be generated

by analytically independent elements.  It is of interest to see how this theorem can

be extended to Noetherian rings, and to this end we first extend the notion of ana-

lytic independence to Noetherian rings.

One such generalization is given by Davis [2],  In order to avoid confusion, in

the following definition we will say that  "x. , • • • ,x    ate of the principal class,"

instead of the terminology used by Davis  "x., • ■ • ,x    are analytically indepen-

dent".

Definition 2.1.  Let x,,.--,x    be elements of a Noetherian ring. The elements

x.,...,x    are of the principal class if for each form cp(X., •••, X ) suchthat

4>(x.) = 0, it follows that all the coefficients of <¿  are in  radix,, • • • ,x  ).'2 I 72

By the height of an ideal in a Noetherian ring, we mean the minimum of the

heights of the associated primes.  An ideal is of the principal class if it has height

n and can be generated by n elements.

Davis has shown ([2, Corollary 1, p. 199] and [3, Proposition 1, p. 49]) that

an ideal A in a Noetherian ring is of the principal class if and only if A can be

generated by elements of the principal class.

We will show that if x,,.--,x    are of the principal class, then the ideal

(*,,■ • • ,x )  is basic; we will then give an example to show that the converse is

not true.

The following lemma, which provides a sufficient condition for an ideal to be

basic in any ring, is needed here.

Lemma 2.2. Let A be an ideal in a ring R and let \M^\ be the set of maximal

ideals of R. Let e^ denote the extension of ideals to RM and let c. denote the

contraction of ideals of R„     to R.  If A A   ¿s basic for each A, then A   is basic.

Proof. Let B be a reduction of A; then B * is a reduction of A * for each

A. Since A** is basic, Ae* = ße* for each A. Then B = H^B**^ = í"\AeAcA

= A  by Lemma 1.3.

We will use the notation  e.   and c.   as in Lemma 2.2 for the remainder of the

paper.

Theorem 2.3.   // R   is Noetherian and if the elements x., • • • ,x    are of the

principal class, then the ideal generated by \x.\" .   is basic.
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Proof. We show first that [cbix A, • • •, cbix )} is an analytically independent

set in RM , where M^ is a maximal ideal containing A and cb is the canonical

homomorphism used in the formation of R „   .

Suppose that {(bixy), • ■ ■ , cbix )|  is not analytically independent in /?„   .

There exists a form FÍX,,• • • ,X ), with coefficients cbia )/cbis )  in /?..     such
1 72 'It m^

that some cbia )/<p(s .)  is not in MXRM   , and such that F[cbixy), • • • , cbix )] = 0.

Clearing this equation of fractions, we find that there exists a form f ÍX.,•••, X )

with coefficients in R, at least one coefficient not in M. , and with the property

that cbifix., • • • , x )) = 0.  By the definition of cb, there exists an m in R — M^

such that mifix)) = 0. This is a contradiction of the fact that the elements x. ate
' I 2

of the principal class.

We now need only show that in a local ring, analytically independent elements

generate a basic ideal and then apply Lemma 2.2. That this is the case follows

easily from [6, Lemmas 1 and 3, pp. 149 and 147], which do not depend on the

special conditions concerning the residue field.

Corollary 2.4.  An ideal in a Noetherian ring which is of the principal class is

basic.

Lemma 2.5.  Let A   be an ideal of a Noetherian ring which is of the principal

class; then A   is principal or some power of A  is not basic.

Proof. There exist elements x.,•••, x , which are of the principal class, such that

A = (x,, ■ • •, x ). If r=l, the result holds. If r > 2, we claim that ixT., x2, • • •, xr)

• ÍArY~     = ÍAT)T■   The ideal   iArY   is  generated  by  elements   of  the   form

x\l . ..x'r, where  £r   .  i. = r2.  If  i. < r for all ; then V.  .  i. < rir - l) < (r)2.
1 r ' ; = 1    ; . 7     . .    ' ._7 = 1    ].—

Thus i> r tot some / and x\   ... x'7 = xr(xi 1 • •. xV   T • • .x'r) £ ixr.,... ,xT)iArY~l.
7 — t T J     I ; 7 1 r

We thus obtain (AT C (xj, • • - ,xr)iArY~   , and consequently (xj, • • • ,xT) is a

reduction of A'. That this is a proper reduction follows from the fact that the ele-

ments x.  are of the principal class.

Example 2.6.  Let A  be a nonprincipal ideal in a Dedekind domain z9. Then

A  is invertible, hence basic, and can be generated by two elements x, y. By

Lemma 2.5, the elements x, y  ate not of the principal class.

Theorem 2.7.  // R   is a Noetherian ring such that powers of basic ideals are

basic, then the dimension of R   is < 1.

Proof.  Suppose that  P  is a prime ideal of height n > 1. There exist n ele-

ments x., • • • , x    contained in  P that are of the principal class [8, Theorem 31,

p. 242]. The ideal A  generated by these elements is basic by Theorem 2.3, and

each power of A   is basic by hypothesis, a contradiction to Lemma 2.5.

An ideal A   is said to be a cancellation ideal if the equation AB = AC, where

B and C are ideals, implies that B = C.  It is obvious that cancellation ideals
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are basic and that the product of cancellation ideals is a cancellation ideal. The

following example shows that a basic ideal need not be a cancellation ideal.

Example 2.8.  Let R = k[X., • ■ • ,X ] where n > 1. The elements Xj, • • • ,X

are of the principal class, so that A = (X., ••• ,X ) is basic. Lemma 2.5 shows

that A"  is not basic.  We also note that each maximal ideal of R   is basic since

each such ideal is of the principal class [9, Theorems 20 and 24, pp. 194 and

I97]. Thus the condition that each maximal ideal of a ring R  be basic is not suf-

ficient to conclude that R has the basic ideal property.

3. Some results on basic ideals.  Two of the goals of this paper are to charac-

terize basic ideals and rings which have the basic ideal property. We have already

given, in Lemma 2.2 and Theorem 2.3, two sufficient conditions in order that an

ideal be basic. We now consider two simple results illustrating the usefulness of

Lemma 1.3.

An almost Dedekind domain is defined by Gilmer [4, p. 408] as a domain D

such that D„   is Dedekind for each maximal ideal M.

Proposition 3.1. An almost Dedekind domain has the basic ideal property.

Proof.  Observe that in each D„  every ideal is invertible and thus basic.

The result then follows by Lemma 2.2. Alternately, Proposition 3.1 follows from

the fact that each nonzero ideal of an almost Dedekind domain is a cancellation

ideal [4, p. 413].

Proposition 3.2.   Let A   be an ideal of the ring R which is contained in only

one maximal ideal M.  Then A   is basic if and only if A        is basic.

Proof.  Assume that A        is basic; then A   is basic by Lemma 2.2. Now let

B    be a reduction of A     . Since B = (ß')c contains a power of A, it follows

from Lemma 1.3 that ß  is a reduction of A. But A   is basic, hence ß = A  and

so B' =AeM.

We observed in the last section that the product of basic ideals need not be

basic; however, the next two results provide sufficient conditions for this to occur.

Theorem 3.3.   The product of comaximal basic ideals is basic.

Proof.  Let A  and ß  be basic ideals such that A + B = R, and assume that

C is a reduction of Aß, say C(Ab)" = (Aß)" + 1. We claim that C + Am  is a reduc-

tion of A  for each positive integer m.  The ideal C + Am  is contained in precisely

those maximal ideals which contain A. Moreover, (A" + 1)e = ((Aß)"+1)e =

CeiiAB)n)e = CeiA")e for each such maximal ideal; and thus, by Lemma 1.3, C +

Am  is a reduction of A.  We thus obtain A = C + Am for each positive integer 722,

and by a symmetric argument we show that ß = C + B" fot each positive integer 72.
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After observing that Am and Bn ate comaximal for positive integers  m and

n, we note that C = CA" + CB = CA + CB71. Therefore, CB" = CA"B" + CB" + i =

(A"+1 + C)Bn+l =ABn+1. In a similar way, we obtain CA" = BA"+l, and from

these two equations it follows that C = CÍA" + B") = BAn + 1 + ABn+1 =

ABÍB" + A") = AB. Thus Aß is basic.

Theorem 3.4.  Let A  and B  be ideals of the ring R, and assume that A   is

invertible.  Then AB  is basic if and only if B  is basic.

Proof.  Let B be basic and assume that C  is a reduction of AB, say CiAB)n

= (Aß)"+1. Since A   is invertible, this implies that CBn = ABn+l. We note that

CA~l CB and CA~lB" = B" + 1. Since B  is basic, B = CA~l  and thus C = AB.

Now let AB be basic and let C be a reduction of B, say CB" = B"+1. We

note that this implies that CA C Aß and iCA)iAß)" = (Aß)*+1, and therefore

CA = BA  since Aß  is basic. Thus we obtain C = B  since A  is invertible.

The next example shows the somewhat surprising result that the extension

of a basic ideal to a quotient ring need not be basic.

Example 3.5.  Let R = k[[X, Y, W, Z]] be the power series ring in four indeter-

minates over a field k. Then R  is a local ring and X, Y, W, Z ate analytically

independent. We note that the ideal (ZX   , WXY, ZY )  is basic by Theorem 2.3,

as it is generated by analytically independent elements. And yet, if P = (X, Y),

then A C P, and ARp = (ZX2, WXY, ZY2)Rp = (X2, XY, Y2)Rp, which is not

basic.

The following theorem seems to provide the best characterization of basic

ideals in a Noetherian ring, in that it reduces the problem to that of basic ideals

in local rings. By the results of [6], it is possible to determine the basic ideals

in local rings with infinite residue field.

Theorem 3.6. An ideal A   z'n a Noetherian ring R  is basic if and only if

A *   z's basic for each maximal ideal M.   containing A,

Proof.  Lemma 2.2 shows that A   is basic if each A *   is basic. Now let A

be basic and let ß' be a reduction of ARM, where M £ {M A. We let (ß')c = B

and then show that (B n A) + AM  is a reduction of A.  For M. ^ M, we observe

that [(B n A) + AmYx = Ae*, and in RM  the extension is [(ß O A) + AMY = Be +

AeMe = B' + AeMe. The set of maximal ideals that contain [(B n A) + AM]  is

precisely \M^\. Moreover, since B (Ae)" = (Ae)n+ , the relations obtained above

in conjunction with Lemma 1.3 imply that [(ß O A) + AM]A" = A"+ . Thus A =

(ß (~\A) + AM  since A   is basic, and thus Ae = Be + AeMe. Since RM  is a local

ring, it follows by [6, Lemma 1, p. 147] that Ae = Be and thus ARM     is basic

for each À.
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Corollary 3.7. Ler A CM, a maximal ideal in a ring R, not necessarily Noe-

therian. If B is an ideal of R such that BRM is a reduction of ARM, then (ß O

A) + AM  is a reduction of A.

Proof.  This is contained in the proof of Theorem 3.6.

Corollary 3.8. // R is a Noetherian ring and if B' is a regular reduction of

A, then B is a minimal reduction of A if and only if BRM is a minimal reduc-

tion of ARM    for each maximal ideal M^  containing A.

Proof. We note that Theorem 1.2(b), implies that ß is a minimal reduction if

and only if B is basic, and this occurs if and only if BRM is basic for each A.

But BRM     is basic if and only if it is a minimal reduction.

4. A special condition.  It is easy to find examples in  k[X, Y], for instance

Example 3.5, to show that there is no strong connection between an ideal and its

primary decomposition with respect to the property of being basic. In this section,

we consider ideals for which such a connection exists.

Theorem 4.1.  Let A   be an ideal in a Noetherian ring R such that each asso-

ciated prime ideal of A   is maximal. An ideal B  is a reduction of A   if and only

if rad B = rad A   and each primary component of B  is a reduction of the correspond-

ing primary component of A,

Proof.  Let rad B = rad A  and let each primary component of ß be a reduction

of the corresponding primary component of A. If B = ("*)*_. B ■ and A = 0"_, A .

ate primary decompositions of B and A, then we can choose / so that B A1. =

AlA    fot i = 1, • • • ,n. It then follows from Lemma 1.3 that B  is a reduction of A.

Now suppose that B  is a reduction of A. Since B  contains a power of A,

rad A = rad B and it follows trivially that the components of B are reductions of

the corresponding components of A.

Corollary 4.2.   Let A  be an ideal as described in Theorem 4.1; then A   is

basic if and only if each primary component of A   is basic.

Proof.   This is obvious by the theorem and the uniqueness of the primary decom-

position of A.

Corollary 4.3.  // A   z's a regular ideal as described in Theorem 4.1, then A

has a minimal reduction.

Proof.  Let Px, • • • ,P    be the associated prime ideals of A. Each A   ' has

a minimal reduction B.' [6, Theorem 1, p. 147], and if we let B = 0", B . we

can use Lemma 1.3 to show that B  is a reduction of A. That B  is a minimal reduc-

tion follows from Corollary 3.8.
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Example 6.8 will show that an ideal may not have a minimal reduction; how-

ever, we may note that in a one-dimensional Noetherian integral domain, every

ideal has a minimal reduction.

Theorem 4.4. Let R be a Noetherian integral domain such that R/M is infi-

nite for every maximal ideal M. Each nonzero ideal has an invertible reduction if

and only if the dimension of R  is < 1.

Proof. We may assume throughout the proof that the dimension is nonzero,

for if not, the result holds trivially. Assume that each proper ideal has an inver-

tible reduction. Now let P be a maximal prime ideal with invertible reduction B.

Thus BRp  is principal and so the height of BRp  is  1  by the principal ideal

theorem. This implies that height P = height PRp = 1  and therefore the dimen-

sion of R  is < 1.

Conversely, if dim R = 1, let A = P)"_j A., where A. is P.-primary. The con-

dition that RM  be infinite implies that the results of [6] hold for the quotient

rings Rp .  Each A   ' has a principal reduction B A [6, Theorem 1, p. 154], and
i '

if we form B  as in Corollary 4.3, then B  is an invertible reduction of A.

Corollary 4.5.  Let R  be a Noetherian integral domain, not a field, such that

R/M is infinite for every maximal ideal M of R. Then the dimension of R  is  1

if and only if every basic ideal is invertible.

Proof.  If R  is one dimensional, Theorem 4.4 implies that every basic ideal

is invertible. Conversely, if every basic ideal A  is invertible, then A" is basic

for each positive integer n. It then follows by Theorem 2.7 that dimension R = 1.

5. C-ideals.  In this section we consider a notion dual to that of a basic ideal.

Definition 5.1.  An ideal is a C-ideal if it is not a reduction of any larger

ideal.

Let B  be an ideal in a ring R  and let x be an element of R  such that x" +

byx"~   +•••+ b   =0, where b. £ B'; then x is  integrally dependent on B. We

note that if ß  is a regular ideal of a Noetherian ring, ß  is a C-ideal if and only

if B  is integrally complete; that is, if x is integrally dependent on B, then x is

in B. Moreover, we note that a C-ideal is integrally complete. To observe this

fact, let A  be a C-ideal and let x be integrally dependent on A. We immediately

obtain the inclusion (xn) C A[A + ix)]"~   , which implies that A   ¡s a reduction of

(A, x); thus A   is integrally complete. We show in the next section that the con-

verse is false.

The following observations about C-ideals are immediate.

(1) A ring has the basic ideal property if and only if every ideal is a C-ideal.

(2) Prime ideals are C-ideals.
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(3) An ideal B  in a Noetherian ring is a C-ideal if and only if B = B, where

B is the largest ideal that has B  for a reduction.

Lemma 5.2.  The intersection of any collection of C-ideals is a C-ideal,

Proof.  Let \AX\ be a set of C-ideals and let B = 0X ^A- If B C Q and

BQn = Qn + 1, then Qn + l =QniC\KAx)CAxQ"   for each A. From this inclusion,

we note that (Q + A^)"+   = A^iQ + AA)n for each A. Since each A^  is a C-ideal,

Q C Ax  tot each A, and thus Q Ç B.

Theorem 5.3.   Let B be an ideal in a Noetherian ring and let ÎB^Î be the set

of C-ideals which contain B; then B = C\.B,

Proof. We first observe that ß  is a C-ideal.  If not, there exists an ideal C

which has B for a reduction and we have B C ß C C; but this implies that B is a

reduction of C [6, Lemma 1, p. 146], a contradiction to the definition of B. We

thus obtain the inclusion B C fY B   C B, from which it follows easily that f] B

is a reduction of B.  Thus by Lemma 5.2, (] B.  = B.

Corollary 5.4.  Let B C A   be a regular ideal in a Noetherian ring; then B is

a reduction of A   if and only if A   is contained in each C-ideal containing B.

Proof.  Apply Theorem 5.3 and Theorem 1.5.

Theorem 5.5.  If A  is a regular ideal in a Noetherian ring, then A   is a C-

ideal if and only if [AQ : Q] = A  for all regular ideals Q.

Proof.  Let A  be a C-ideal and suppose that there exists a regular ideal Q

such that A C [AQ :Q], After multiplying this proper inclusion by Q, we find that

AQ C [AQ :Q]Q C AQ  and thus that AQ = [AQ : Q]Q.  By [6, Theorem 2, p. 156],

A   is a proper reduction  of   [AQ :Q], a contradiction.

Now assume that [AQ : Q] = A  fot each regular ideal Q and let A  be a reduc-

tion of B, say Aß' = Bt+ . Upon noting that ß' is a regular ideal, we see that

A C B C [AB1 : Bl] = A. Thus A   is a C-ideal.

The next two results are analogous to Theorems 3.3 and 3.4.

Theorem 5.6.  // A  and B are comaximal C-ideals, then AB  is a C-ideal.

Proof.  Note that AB = A t~\ B and apply Lemma 5.2.

Theorem 5.7.   Let A  be an ideal and let B  be an invertible C-ideal. Then

AB  is a C-ideal if and only if A   is a C-ideal,

Proof.  Let Aß  be a C-ideal and assume that A   is a reduction of Q, say

AQ" = Q" + l. After multiplying by B" + 1, we note that Aß  is a reduction of BQ.

Thus AB = BQ, which implies that A = Q,
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Now assume that A   is a C-ideal and that Aß C Q  and (Aß)<3" = Qn+1. We

then note that Qn+   C BQ" f~l AQ" and this inclusion implies, as in Lemma 5.2,

that Q C A OB. Since B  is invertible, there exists an ideal F  such that BF = Q.

Substituting this into ABQ" = Q"*1, we see that AB" + lFn = B"+1F"+1.

Again using the invertibility of B, we note that AF" = F"+    and that A C F.

Thus A = F and Q = BF = BA.

We observed in Example 3.5 that the extension of a basic ideal to a quotient

ring need not be basic; however, the following theorem shows that the correspond-

ing result for C-ideals is valid in the Noetherian case.

Theorem 5.8.  Let S be a multiplicative system in a Noetherian ring and let

B be a regular C-ideal such that B n S = 0.  Then BRS  is a C-ideal.

Proof.   If BRS  is a reduction of QPç, let cb be the canonical homomorphism

used in the formation of Rs and let x £ Q. Then cbix) is integrally dependent on

BRS. Thus there exist b'.   £ ÍBRSY such that <p(x)" + b[ cbix)"'1 +...+ ¿/ =0.

By clearing this equation of fractions, we see that there exist  n. £ S  such that

<p(nQx" + ny\n~  6j + • • • + n b ) = 0, where b. £ B1. By the definition of cb, there

exists m £ S such that minnx" + n,x"~  b, + • • ■ + n è ) = 0. We then note that
0 1 1 72    71

77zn0x is integrally dependent on B  and thus is in B. Then cbix) = cbimnQx)/cbimnA

£ Be and so QRS Ç BRS.

Theorem 5.9.   Let R and S  be as in Theorem 5.8 and let B     be a C-ideal in

Rs; then (ß  )c  is a C-ideal.

Proof.  If iB'Y is a reduction of A, then ß' = AR$ and so A C iARs)c =
(B')c.

Corollary 5.10.   // A   z's tï regular ideal in a Noetherian ring, and if {M^\ is

the family of maximal ideals containing A, then A   is a C-ideal if and only if A *

z's a C-ideal for each k.

Proof.  If A   is a C-ideal, then Theorem 5.8 implies that A *   is a C-ideal for

each k. Now assume A *   is a C-ideal for each A; then apply Theorem 5.9 and

Lemma 1.3 to complete the proof.

Theorem 5.11.  In a Noetherian ring R, the following conditions are equivalent.

(1) R  is integrally closed in its total quotient ring T.

(2) Each invertible ideal is a C-ideal.

(3) Each regular principal ideal is a C-ideal,

Proof. (1)=>(3). Suppose that (x) is regular and is not a C-ideal; this implies

the existence of an element y 4 (x) and elements a. £ R such that y" + a.y"~ x

+ •• •+ a x" = 0. Then there is an element y/x not in R  which is integral over R.
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(3)=»(1). If an element y/x £ T — R  is integral over R, then, as above, (x)

is not a C-ideal.

(2)«=>(3).  That (2)=>(3) is clear. For the converse, let A  be invertible and a

reduction of Q.  Then there exists an ideal B  such that Aß = (x), where x  is

regular.  Clearly, (x) = Aß  is a reduction of QB, which implies that A = Q.

We note that the Noetherian property was used only in proving that (1) implies

(3). We show in the next section that this hypothesis is necessary.

6. Results in Prüfer domains.  In this section we show that although Prüfer

domains do not have the basic ideal property, we can characterize them in terms

of basic ideals. We first show a class of Prüfer domains which do have the basic

ideal property.

Theorem 6.1.  A l-dimensional Prüfer domain D has the basic ideal property.

Proof.  Let A  be an ideal in D. If A   is idempotent and B  is a reduction of

A, say BA" = A" + 1, then A = A"+1 C B  and A   is basic.

If A r/ A     and M  is a maximal ideal containing A, then A     is an ideal in a

valuation ring with rad A     being the maximal ideal. We will show that such ideals

are basic and then the theorem will follow from Lemma 2.2.

Let B be an ideal in a valuation ring (V, M), such that rad B = M, Suppose

that C  is a proper reduction of B  and that x £ B — C,  It then follows that B   C

C C (x) C B and thus that (x) is a reduction of B. Since (x) is invertible, there

exists an ideal Q  such that ix)Q = B2. We then observe that (x)nBn = B2n =

(x)nQn and this implies that B" = Q"; hence B = Q  [4, Lemma 20.4, p. 284].

If y £ B — (x), then, as above, (y) is a reduction of B and (y)ß = ß    = (x)ß.

Since  (x) C iy), x = ry  fot some  r £ M  and this implies that B = ir)B, from which

it follows that  B C B   , a contradiction.

We have been unable to determine the validity of the converse of Theorem 6.1,

but we will show that Prüfer domains do not in general have the basic ideal prop-

erty. We first need to establish the following result about prime ideals.

Theorem 6.2. A nonidempotent prime ideal P of a valuation ring is principal

or has a principal reduction.

Proof.  Let x £ P - P2 ; then we have P2 C (x) Ç P. Since P2 is P-primary [4,

Theorem 14.3, p. 173], it follows that [P2 :(*)] = P. We also have that (x)Q = P2

since (x) is invertible. Thus P = [(x)Q : (x)] = Q  and so (x) is a reduction of P.

We will now consider an example of a Prüfer domain that does not have the

basic ideal property.

Example 6.3. Let V be a discrete valuation ring of rank two. Let (0) C P C M

be the prime ideals of V. We note that P /■ P and that P is not finitely generated.

It follows from Theorem 6.2 that if x 6 P — P  , then (x) is a proper reduction of P.



62 JAMES H. HAYS LMarch

The ideal P does not have a minimal reduction. To see this, suppose that B

is a minimal reduction of P; we then have P   C B C P. Let x £ B — P  , then (x)

is a reduction of P and so by the minimality of B, (x) = B, Now let y £ M — P;

then P   C (yx) C (x) and again it follows that (yx) is a reduction of P which is

strictly contained in the minimal reduction (x), a contradiction.

We also note that we have (yx) C (x) C P and (yx) a reduction of P. However,

(yx) is not a reduction of (x). Theorem 1.5 implies this could not happen in the

Noetherian case.

Since a valuation ring is integrally closed, the ideal (x) is integrally complete

[4, Lemma 20.6, p. 287]; however, (x) is not a C-ideal.

We will now describe Prüfer domains in terms of basic ideals. The condition

of the following lemma will be the characterization.

Lemma 6.4.  Assume that each finitely generated ideal of the integral domain

D  is basic.  Then D  is integrally closed.

Proof. We show that if x/y £ F, the quotient field of D, is integral over D,

then x/y £ D. There exist c. £ D, z = 1, • • • ,n, such that ix/y)" + CjU/y)*- +

• • • + c = 0. We note that x" £ (x, y)"~ (y) and so (y) is a reduction of (x, y).

By hypothesis (x, y) is basic; therefore, ry = x for some r £ D and so x/y = r £ D.

Theorem 6.5. An integral domain D  is Prüfer if and only if every finitely gen-

erated ideal is basic.

Proof.   It is clear that the condition is necessary.  Assume that each finitely

generated ideal is basic.  It suffices to show that D  is integrally closed and that

there is a positive integer n > 1  such that (a, b)n = ia", b") tot all a, b £ D  [4,

Theorem 20.3, p. 28l].

We have that D  is integrally closed by Lemma 6.9; and for every a, b £ D,

ia, b)   = ia  , b ) since ia, b)    is basic. Therefore D is Prüfer.

Corollary 6.6. A Noetherian domain is Dedekind if and only if it has the basic

ideal property.
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