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GENERALIZED DEDEKIND ETA-FUNCTIONS

AND GENERALIZED DEDEKIND SUMS(i)

BY

BRUCE C. BERNDT

ABSTRACT. A transformation formula under modular substitutions is derived

for a very large class of generalized Eisenstein series. The result also gives a

transformation formula for generalized Dedekind eta-functions. Various types of

Dedekind sums arise, and reciprocity laws are established.

1. Introduction.  In [12], J. Lewittes proved transformation formulae for the

analytic continuation of a very large class of Eisenstein series.  From another

viewpoint, these results give transformation formulae for a large class of functions

which generalize the classical Dedekind eta-function r](z). However, the formulae

[12, Theorem 3, equation (51)1 are so complicated that even in the simplest case

of the Dedekind eta-function it is exceedingly difficult to deduce the usual trans-

formation formulae in terms of Dedekind sums.

Our objective here is to take Lewittes' proof and give a different account of

the last parts of his proof.  Our new proof will yield more elegant transformation

formulae in which Dedekind sums or various generalizations of Dedekind sums

appear.  From this new version of Lewittes' theorem, we shall show that results

of several other authors are special cases.  In addition, we shall deduce several

new results as well.

Firstly, we easily deduce the transformation formulae of Dedekind's eta-func-

tion. Secondly, we derive transformation formulae for a large class of functions

which generalize tj(z).  This class includes those functions studied by C. Meyer

[14], U. Dieter [6], and B. Schoeneberg [17] and which are connected with F. Klein's

functions [10].  Appearing in our transformation formulae are the generalized Dede-

kind sums  s(h, k; x, y)  first defined by H. Rademacher in 1964.  It is interesting

to observe that in the work of Meyer [14], [15], Dieter [6], and Schoeneberg [17],

only rational values of the parameters x and y appear, while in our generalization
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x and y may assume any real values.  We next show how the reciprocity theorem

for generalized Dedekind sums [16] may be derived from the transformation formulae.

Another special case of our general theorem is the result of T. Apóstol [2] where-

in the transformation formulae of certain Lambert series are derived. S. Iseki [9]

considered a more general class of functions than Apóstol but derived a transforma-

tion formula only in the special case V(z) = - \/z.  However, we shall easily derive

the transformation formula for any modular substitution.  Another generalization of

the classical Dedekind sums appears in Apostol's formulae, and L. Carlitz ([4],

l5J) derived a reciprocity theorem for these sums.  Still another generalization of

Dedekind sums appears in our transformation formulae from which we derive a

reciprocity theorem which includes Carlitz's as a special case.

2. An improved version of Lewiites' theorem. We review some notation from

Lewittes' paper [12].  Put z = x + iy and s = a + it with x, y, a and / real.  For

any complex number w, we choose that branch of log w with - rr < arg w < n. Let

V(z) - Vz = (az + b)/(cz + d) be an arbitrary modular transformation.  Let rl  and

r2 be arbitrary real numbers, and define R.   and R,  by

R    = ar l + cr 2    and     R    z=br    +dr2.

Let  Z  denote the ring of rational integers.   Let K  denote the upper half-plane

\z: y > Oi. For z € H and cr > 2, define the Eisenstein series G(z, s, r., r2) by

G(z, s, ry r2) =   22   ((m + rx)z + n + r2)~s,

m, n

where  m and n range over all pairs of integers except for the possible pair m =

-t., n = - r,.  For z eK  and arbitrary  s, define the following generalization of

Dedekind's eta-function by

~ 1    27Tikr2+27Tik(m+rx)z

A(z, s, rv r2)=    L     2>       e
m> — r.   k = 1

Put H(z, s, r,i r2) = A(z, s, rx, r2) + en'sA(z, s, - rx, - r2).  For a real and a >

1, Lewittes defined £(s, a) by

— s
£(s, a) =    £ (« + a)

n> — a

Observe that £(s, ct) = £(s, \a\ + y(a)), where ia| denotes the fractional part of

a, and X^a^ denotes the characteristic function of the integers.  These two latter

notations will be repeatedly used in the sequel. Since 0 < jal + \;(a.) < 1

£(s, |ai + x(a))  denotes the classical Hurwitz zeta-function.

Theorem 1. Assume that c > 0.  Let Q = \z: x > - d/c and y > 0\.  Let p =

p(Rp R2, c, d) = \R2\c - ÍRjl¿.   Then G(z, s, r^, r2) can be analytically

continued to the entire complex s-plane, and for z e Q and all s,
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du.

(cz + d)   sG(Vz, s, rv r )

(1)

= G{z, s, Rv R2)-2isin(ns)y^l)Ç(s,-R2) + ——L(z,s,RvR2,c,d),
1 w /

where

L(z, s, Ry R2, c, d)

(2) -<cz*d)(j-\Rx\)u/c      Uld+p)/c\u
= Y f  us~ie---

~'lJC e-(cz+d)u_1 eu_l

where C  is a loop beginning at + <», proceeding in the upper half-plane, encircling

the origin in the positive direction so that u = 0  is the only zero of (e~(cz+d>u _ l).

\eu - l) lying "inside" the loop, and then returning to + <*> in the lower half-plane.

Here we choose the branch of us with 0 < arg u < 277.

Proof.  From (26) and (29) of [12], we have for z e Q and a > 2,

{cz + d)~sG{Vz, s, r     r )

(3) '     2

= G(z, s, Rv R2)-2isin(7rs)(X{RlK(s, -R2) + K(z, s, Ry Rr c, d)),

where

r(s)K(z, s, rv R2, c, d)

m>R1 n>R2+(m-Rl)d/c  J0

If we put m   = m - [R.] - 1  and n   = n -[R2 + {m - R.)d/c] - 1, then the above

becomes

X      £    rus-lexp(-(m'+ l-\Rl\)zu-(n'+l-\R2\ + [(m'd + d + p)/c])u)du.

m'mO   fl'a.0

If we put  772   = qc + j, 0 < ;' < c - 1,  0 < q < °o, and replace  ?z    by n, we get

c— 1     CO       oo

Z   £ L/¡O^"1exp(-(?c + ; + l-ÍR10^-(« + l-ÍR2! + ?¿+[(/¿ + í/ + p)/c]V)^
7=0   9=0 n=0

c-1

£ J'^-'expi- (; + 1- [R^zu - (1 - jR2| + [(/d + d + p)/c])u) du

oo        oo

9 = 0 n = 0

siexp(- (/- iRjDza - (1 - \R2\ + [(jd + p)/c])u)
Z rus~l-:-:-:-du
.= 1J0 {x_e-(cz+d)u){l_e-u)

,=ij°    i-

(«WKí-l^hu/c   J(,-¿+p)/c}«

■(cz-rd)u
J«,

e-icz-rfl)u e" _ 1
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where, since x > - d/c, we have interchanged the order of summation and integra-

tion by absolute convergence.  By a classical method of Riemann [18, pp. 18—19],

the integrals above may be transformed into loop integrals.  Letting C be as de-

fined in the statement of the theorem, we find that

r{s)K(z, s, Rv R2, c, d)

(4) c I r ,c-,aW,,''-|Sll)"/c   eU,d+P)/c\u
= Y—:— |  us~l---

¡Tl e2nis-l Jc l_e-(cz+d)u eu_l

It we now substitute (4) into (3) and simplify slightly, we arrive at (1) for z e Q

and a > 2. However, these loop integrals converge uniformly on any compact set

in the s-plane and thus represent entire functions.  Hence, by analytic continuation,

(1) is valid for z e Q  and for all  s.

We now restate Theorem 1 in terms of the function  H(z, s, r,, r2).  The proof

is like that of equation (51) in Lewittes' paper [12], and so we omit the proof.

Theorem 2.  For z e Q and all s,

(cz +d)-sH(Vz, s, ry r2)

= H(z, s, R,, R2)- x(r1)e'7^(2«)-s(cz + d)-sr(s){Ç(s, r2) + e»isÇ(s, - r2))

(5)
+ X(RI)(2«)-sr(S)(C(s, - R2) + e"isÇ(s, R2))

+ (2rn)-sL(z, s, R y Ry c, d),

where  L(z, s, R., R2, c, d)  is given by (2).

Theorems 1 and 2 may be considerably simplified if s  is an integer.  For then,

(6) L(z, s, Rv R2, c, d) = 2niR0,

where  R.  is the sum of the residues of the integrands at u = 0. Upon the substi-

tution of (6) into (1) and (5), Theorems 1 and 2 will then be valid for all z e K by

analytic continuation.  Thus, put  s = - m, where  m  is an arbitrary nonnegative in-

teger. Now [l, p. 804],

— -2X<*>nT,       M<*r.

where  B   (x) denotes the rath Bernoulli polynomial.  Hence,

-(cz+rfXj-JRjhu/c    J(yd + p)/c)u
u-m-ie_

- (cz+ d)u 1

a—3 £B f'-iRA{-{cz + d)ur £ g (jd + p\u1

CZ +d   M=0 \      C I ^ v=0 \    c       I  v*-
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where B   (x) = B   (jxi). Thus,
n n

«.---4¿ z b;(líííí)iv(¿íí£)*^±^

(7)
c   m+2

^2)^^.tjBk^)KJ^U^-,
+ ZA   y=l fe=0    X 7

3. The transformation formulae for log rj(z). Let s = r, = r2 = 0.  Put

A(z, 0, 0, 0) = A(z) and observe that  tf(z, 0, 0, 0) = 2A(z). We find then that (5)

and (6) yield

A{Vz) = A(z) + lim (2ni)-sr(s)Qs)(l- enis(cz + d)~s) + iriR.

= A(z) + Vz-rri - % logiez + d) + niRQ.

Using the product definition of r]{z), it is easy to show that  log r¡{z) = rriz/12 -

A{z).  Hence,

(8) log 4Vz) = log rj(z) + m{V(z) - z)/12 - Vim. + Vi logiez + d) - rriRQ.

From (7),

c

(9) R „ =   ^ Í- Vi B 2(jd/c){cz +d)-r +B ¿j/c)B ¿jd/c) -y2B 2{j/c){cz + d)].

7=1

Since [1, p. 804, Equation 23.1.10]

c-l

(10) B (cx)=c"-1  YB  {x +j/c),

7 = 0

we find that

c c-l

(11) Y.B2(j/c) =  £ B2(j/c) = B/c= l/6c.

7=1 7=0

Since (c, </) = 1_^

c c c— 1

(12) ¿ B2(jd/c) = Y,B2(j/c) =  ¿Z B 2(//c) = l/&-
,= 1 ,= l ;=0

Lastly,

c c-l

X B1{j/c)Bl{jd/c)=  £ Bl{j/c)BÁjd/c) + 3.(1)6.(0)
(13) 7 = 1 7=1

= s(¿, c) - 1/4,

since  B,(x) = x - % and

s{d, c) =     2     ((;/c)K(/rf/c)),
7  mod  c
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where

//  w       li*i - M    if x  is not an integer,
Ux)) =   <

(0 if x is an integer.

Putting (11)—(13) into (9), we find that

R0 = - 1/I2c(c2 + d)- (cz + d)/l2c + s(d, c) - Va.

Hence, from (8) we obtain

log rfVz) = log tt(z) - 77z'/4 + Vi log (cz + d) - ms(d, c)

(14) + (ni/l2)\V(z) -z + (cz + d)/c + \/c(cz + d)\

= log r¡(z) - m/A + 14 log (cz + d) - ms(d, c) + m(a + d)/l2c,

upon the simplification of the expression in brackets with the aid of the fact ad -

be =1.

4. Transformation formulae for generalized Dedekind eta-functions.  Put s = 0

and suppose that  r.   and  r2  ate arbitrary.   From (7),

'" +Bi(^),(^)..B;(^)(„+,|.

Using (10) again, we have

since [l, p. 804, Equation 23.1.8]

(17) B  (1 - x) = (- 1)»B  (x).
v      ' n n

Since  (c, d) = I, jd + [p] runs through a complete residue system (mod c) as / does, and

so by (10),

(18)        i^yp^.i.^

If (c, d) = 1, and x and y are arbitrary real numbers, the generalized Dedekind

sum s(d, c; x, y) is defined by [16]

s(d,c;x,y)=     £       lid

j mod c

Let g(d, c; ÍR,!, - ÍR.I)  denote the second sum on the right side of (15).  We

see that g(d, c; \R2\, - ¡Rjl)  is very closely related to  s(d, c; !/?2!, - ÍRji).
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Various possibilities occur.  If neither  R,   or p are integers, then

g(d, c; \R2\,-\Rl\) = s(d, c;ÍR2l,-ÍR1l).

If R,  e Z, but p 4Z, then g(d, c; \R2\, - \R. I) contains an "extra" term corre-

sponding to j = c. Suppose that p is an integer.  Let /   be the unique integer such

that  1 < /   < c and / d + p = 0 (mod c). Then there is an "extra" term correspond-

ing to 7=7 . Unless both Rj  and p ate integers and /  = c, we have in general

that

g(d, c; \R2\,-\R1\) = s(d, c; \R2\, -ÍRji)

(19) _
+ Y2x(Rl)Bl(R2)-y2x(p)Bl((i'-\R1\)/c).

Now if both R.   and p ate integers and ;  = c, the "extra" terms coincide.  In

such a case  R2  must be integral.  If R., R2 e Z, then r., r- € Z, since ad — be

= 1. Conversely, if r,, r, e Z, then R., p e Z. We see that we are then in the case

of log rj(z) discussed earlier. Thus, in the remainder of this section, assume that

at least one of the pair r., r2  is not an integer.  Observe that if p € Z, but R,  4

Z, then

B1((7,-!R1i)/c) = B1((7'-iR1l)/c).

Also, from the definition of p, it is easily seen that p e Z if and only if r.  e Z.

A short calculation shows that /   a ar^ - [R.] (mod c). Hence, from the definition

of /?,, (/  -, \R.\)/c = - r.  (mod l). From the above remarks and (17), we conclude

that

X(p)Bl((j' - IRjO/c) = X(rx)B¿- r2) = - X^)!^).

Finally, putting the above into (19) and then using (16), (18) and (19) in (15), we

find that

R0 = - B~2(p)/2c(cz +d)- (cz + d)B2(R])/2c

(20)
+ s(d, c; R2, - Rj) + y2X(Rl)Bl(R2) +V2X(rl)Bl(r2).

Let

f  (r , r2, c, d) =   lim    (2ni)-s(- X(r^'(cz + d)-sr(s)(Ç(s, r^ + e«'s((s, - r2))
s-* — m

+ X (Rx)r(s)(C(s, - R2) + e^Cis, R2))).

From (5), we see that we must determine /0(rj, r2, c, d) for the various possibil-

ities.

Case 1.  Let 7j 4 Z, r2 e Z. Suppose that R2 € Z.  By the definition of  R,,

èrj e Z.  If also Rj e Z, then ar.  e Z. Since r. 4 Z and (a, b) = 1, we have a

contradiction.  Hence,  R^ 4 Z, and so /Q(rj, r2, c, ¿) = 0. Assume then that  R2

^ Z.  Now for 0 < a < 1 [19, p. 271], ¿(0, a) = ^ - a and £'(0, a) = log T(a) -
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lA log (2tt). Also, if 0 < a < 1, {- a i = 1 _ ja \. Thus, if R j  e Z,

/Jr., r,, c, d) = lim  r(s)(¿(s, - R,) + em's<(s, R,))

= um ruxjí - a - !r2!) + dog m - ir2d - % íogc*^ + ...

+ 1A-\R2\ + (log r\¡R2¡) -l4 log (2ir) + roß* - |R20)5 + • • •)

= log Hl - {R2!) + log r(¡R2i) - log (2tt) - niBx{R2)

= log U/sin tt\R2\) - log (2rr) - ttzB^R^

= -log (2 sin 7rjR2D- 77zß1(R2)

= -log(l-e-2ni{R2l)-2mBx{R2).

Case 2.  Let r.  € Z, r2 4 Z. Suppose that R2 e Z.  By an argument completely

analogous to that in Case 1, Rj 4 Z.  Proceeding as in Case 1, we find that

-27Tz'j-r,! —

f0{ry r2, c, ¿) = log(l-e 2 ) + 2i7«Bj(- r2)

-2VÁRÁ -
-X(K,HlogU-e 2 )+2friB1(R2))

- 2 7Tí Í r -, i -2ttí\rA -
= log(l-e 2 )-x(R1)(log (1-e 2 ) + 2»riB1(R2)).

Case 3.  Let r.,r. 4 Z. Suppose that  R2 eZ.  If also R.  e Z, it follows

that  r., r2 € Z  since ad — be = 1. We have a contradiction, and so R,  4 Z. We

see that /^(r^ r2> c, (5?) is the same as in Case 1.

In summary, in all cases we have

— 2ttít~.

fQ(ryr     c,d) = X{rl)log{l-e 2)

<21) MM

-x(RlHlog(l-e 2) + 2tt¿B1(R2)).

Put

0-{r,, r) I
niB.'r-), -2rrir-.^

1    2 (1-e 2),        r1  € Z,  r24

1 *       7
otherwise.

Combining (20) and (21) with (5), we conclude that

H{Vz, 0,Ty r2) = H{z, 0, Ry R2)

(22) +2m\-—±-,  B Ap) - {E1±Û B (R ) + s(d, c; R,,-«!)!
I    2c(cz +a) 2c )

+ log air y r 2)  -  log a(Rj, R2).

The transformation formulae for H{z, 0, r,, r2) given by (22) appear to be new

in general. However, Meyer [14], Dieter [6], and Schoeneberg [17] have derived
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the result for a subset of these functions, and their formulae were given implicitly

by Hecke [8].  Previously, J. Lehner [ll] and J. Livingood [13] had achieved results

for special cases of the aforementioned results.

We now justify our claim that the results of Meyer, Dieter, and Schoeneberg

are special cases of (22). We shall employ some of the notation in [17].

For z e K, g, h e Z, and a positive integer N, define

(23)

77g_ h(z; N) = a(g/N, h/N)emzBl{s/N) J]        (1 _ e^i(b+zm)/N)

m = I ; msg(N)

oo

TT (j _ g2Wi(-ft+«m)/N)

m = l; m = —g(N)

Let g   = ag + ch, h   = bg + dh, and

1,       g =Ä=0 (N),

(0,       otherwise.

Then,

log r,g b(Vz;N)-log rtg, b,b;N)

(24) = (ma/c)B2(g/N) + (md/c)B~2(g'/N) - 2ms(d, c; h'/N,   - g'/N)

+ bg h(N)(log(cz +d)-Y2m).

To prove (24) we may without loss of generality assume that 0 < g, h < N.

Furthermore, note that 7/Q Q(z; N) = -q (z), and (24) reduces to (14). Hence, we

shall assume that at least one of the pair g, h is not zero. Taking logarithms of

both sides of (23) and then putting, respectively, m = jN + g, j > - g/N, and m =

]N — g»  7' > g/N> in the resulting two sums, we have

log rjgi h(z; N) = log a(g/N, h/N) + mzB2(g/N)

-   £    £

j>-g/N   k = l

(25)

l_„2nikh/N+27Tik(i+g/N)z

OO

y      y   L e-2nikb/N+2nik(j-g/N)z

j>g/N   k=\   k

= log a(g/N, i/N) + nizB2(g/N) - H(z, 0, g//V, ¿/N).

Observe that Rj = g'/N,  R2 = ¿'/N, and jpi = |- g/N\. Using these facts, sub-

stituting (25) into (22), and then simplifying slightly with the use of (17), we

arrive at (24).

5. The reciprocity formula for generalized Dedekind sums. We shall assume

that at least one of the pair r,, r2  is not an integer for it is well known that the
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reciprocity formula for the ordinary Dedekind sums may be derived from (14). Our

assumption on the pair r., r2 implies that at least one of the pair R., R2 is not

an integer.

Let Vz = (az + b)/{cz + d),  V*z = (bz - a)/(dz - c), and  Tz = - 1/z, where

c, d> 0.  Replacing z by - 1/z  in (22), we obtain

H(V*z, 0, ry r2)-H(Tz, 0, Ry R2)

(26) = lo« a(rl- r2)-1°« a(Rp R2)

+ 2"f M¿77) 5» - "l7T ~B^ * "■"■ '■ Rr - R.»} •
Next apply (22) with  V replaced by  V*.  Observe that  R.   and  R2   are replaced by

R2  and — Rj, respectively. Thus, we get

tf(V*z, 0, ry r2) - H(z, 0, R2, - Rj)

(27) =1°8 a(ri' r2)-1°« a(R2' ~Ri)

+ 2m {- 2d(dl - c) 52^ - ~T B2(R2) +s{-c,d;-Rv- R2)}.

Lastly, apply (22) to the transformation  T, and set rx = Rj  and r2 = R2.  Accord-

ingly, we obtain

H(Tz, 0, Rj, R2)-H(z, 0, R2. -Rj)

(28) =log a(Rj, R2)-log a(R2, -Rj)

+ 27"{~ 27  Ö2(- Ri> - y ß2(R2) + ^(0, 1; -Rj, -R2)l.

Since  B2(x) = B A- x) from (17), we have upon combining (26)—(28),

(_I- +—1-)bAP)-  (ä-±^£+1-)BAR)+  (tlZl^BM
\    2c{dz-c)     2d(dz-c)J    2P        \ 2cz 2z/     2     '        \   2d       2/    2    2

+ {(Rl))((R2)) + s(d, c; R2, -Rj)-s(-c, d; -Rj, -R2)=0.

Since s(- c, d; - R  , - R  ) = - s(c, d; - Ry, R2), the above reduces to

s(¿, c; R2,- Rj) + s(c, d; - Ry R2)

(29)
= ((- Rj))((R2)) + B2(p)/2cd + dB2(- Rj)/2c + cB2(R2)/2d,

which is the reciprocity formula for generalized Dedekind sums first proved by

Rademacher [16]. When r. = g/N and r2 = h/N, proofs of (29) were previously

given by Meyer [15] and Dieter [6].  Another proof of (29) has recently been given

by E. Grosswald [7].

6. Transformation formulae of some Lambert series.    In Theorem 2, put r. -

r2 = 0 and s = - m, where  m > 0  is even. Here,
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H(z,   - m, 0, 0) = 2A(z, - m, 0, 0) = 2A(z, - m)

oc      oo oo 2nikz

= 2   Z   Z k-m-le2n'knz = 2  Zk~""

n = l  (fe = l fe = l 1- e 27Tikz

which is a Lambert series in the variable  e     LZ.  From the functional equation of

C(s) [18, p. 24],

M0, 0, c, d) = 2(2m)m(l - (cz + d)m)  lim    r(s)((s)
m s->- m

= 2(27T¿)m(l - (cz + ¿)m) lim    2s" V sec(y2nsK(l- s)
s -* — m

= (1 - (cz + «/)•")£(,» + 1).

Hence, from (5)-(7),

(cz +d)mA(Vz, -m)

= A(z, - m)+ JÍU- (cz + dr)£(m + 1)

(30) 2

The transformation formulae (30) were first proved by Apóstol [2].  However,

due to a miscalculation of residues, the term V2(\ - (cz + d)m)(,(m + l) was omit-

ted.  See also [9, p. 661].  Consequently, the result is also misstated by Carlitz

([4], [5])> but the  other results  in [4], [5] are unaffected by this and remain correa.

In the notation of Carlitz ([4], [5])> the double sum on the right side of (30)   is

-f(d, c, z).   To show this, all one needs is (17) and the observation that BÁj/c)

may be replaced by  B,(j/c).  For  k ¿ 1, this is clear.  For  k = 1, this is also clear

for  1 < 7' < c - 1, but for 7' = c,  Bj(l) ^ Bj(l).  However, in the latter case

B      i(d) = B      1=0, since  m > 0  is even.  Hence, in all cases   BÁj/c) may be

replaced by  B (j/c) in (30).

7. Additional new transformation formulae.  Let s = - m, where m > 0 is even,

and let 7j and r2 be arbitrary. Now, for 0 < a < 1   and a < 0  [18, p. 37],

r^i  -,>■/ >.       (2n)s      r^  sin (27772a + ns/2)
T(s)Ç(s, a) = ———   ¿J -;-•

sin(7Ts)n = 1 „»-*

It follows that for  a  real and a < 0,

r(s)(C(s, \a\ + x(a)) + enisC(s, \- a\ + x(a)))

(9_\s                       - 277772 a+377is/2       0-2TTina-1Tis/2(3D =_U7^-   ££--_e_-

2z sin (775) 72I_S

= (27r)5e^/2t7S(l - s, - a),

where for a real and a > 1,
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</>(s, a) =  £  e

n = \

277171 a„-i

In fact, (f>(s, a) is a special case of Lerch's zeta-function.  It follows from (31)

that

fjry r2, c,d) = -X{rl){cz+d)m<t>{m + l,-r2)+X(Rl)<p;(m + l, R2).

Hence, from (5)-(7),

(cz + d)mH{Vz, - m, ry r2) = H(z, - m, Ry R2) - ^^(cz + d)mcf>{m + 1, - r2)

(32) + X<Rj)^ + 1, R2) + (2mr+ 1«W. c; z; Rj, R2)/(m + 2)!,

where

7 = 1   fc=0     \ / v ' \     L        /

Iseki [9] has proved (32) in the special case  V(z) = - 1/z.  Another proof of Iseki's

result has been given by Apóstol [3].

8. The reciprocity formula for g(d, c; z; Ry R2).  Let  V, V*, and  T be as in

§5.  Put cm = (2ni)m + l/(m + 2)\.  Replacing z by - 1/z in (32), we obtain

(- c/z + d)mH(V*z, -m,ry rj - H(Tz, - m, Ry R2)

(33) =-x(r,)(-c/z+*r0U + l, -r2)

+ xiRjWtn + 1, R2) + cmg(d, c; Tz; Ry R2).

Apply (32) to  V* to get

(dz - c)mH{V*z, - m, ry r2) - H{z, - m, R2, - Rj)

(34) =-X(r1){dz-c)m<pAm + l,-r2)

+ y^R^&m + 1, - Rj) + cjg{- c, d- z;Ry- RA.

Lastly, let rj = Rj, r2 = R2, and apply (32) to the transformation  T. Then,

zmH(Tz, -m, Rj, R2)- H(z, - m, R2, - Rj)

(35)
= - x^j W(™ + 1, - R2) + xiRjtyO« + l>- Ri} + cm«(0' 1; z; Rr - Ril

Now,

g(0,l;z;R2,-Rj)=2:    frJB.d-lR.Oß^^-Vi-^-1

(36)

= (-l/z)(B(-Rj)-zB(l-{R2|)r+2,

upon the use of a standard symbolic notation for Bernoulli polynomials.  Combining

(33)-(36), we find that
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cmzmg(d, c; Tz; R ,, Rj - cmg(- c, d; z; R2> - R J

(37) -(Sn/zXB(-R1)-zB(l-¡R2|,r+2

+ xiR^W™ + 1, R2) - #m + 1, - R2)) = 0.

From the Fourier series [l, p. 805],

B (x) „ 2(-1)" + 1(2t7 + 1)!   y sin(277^x)

2" + 1 X   =        (2tt)2" + 1 tx     ^2n + 1     '

where  n > 1   and  0 < x < 1, we find that

^(777 + 1, R2) - 0(m + 1, -R2) = - (2777)m+1Bm+1(R2)/U + !)!■

Hence,(37)reduces to

(38) ZmZ{d-C' TZ'Ry R2^ = g(-C.d;z; R2,-R1)

+ (l/z)(B(- Rj)- zB(l - \R2\))m+7 + x(R,^mU + 2)Bm+1(R2).

In the case when r. = r2 = 0, (38) reduces to a reciprocity theorem proved by Car-

litz ([4], [5]) for the function f(d, c, z) mentioned in §6.
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