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ON THE CONVERGENCE OF BEST UNIFORM DEVIATIONS

BY

S. J. POREDA

ABSTRACT. If a function/is continuous on a closed Jordan curve T and meromorphic

inside T, then the polynomials of best uniform approximation to / on T converge interior

to T. Furthermore, the limit function can in each case be explicitly determined in terms of

the mapping function for the interior of T. Applications and generalizations of this result

are also given.

1. Introduction. For a continuous complex valued function / defined on a set E

in the plane let ||/||£ = supze£|/(z)j. Also, if E is compact, for n G Z+ let

p„(f, E) denote the polynomial of degree n of best uniform approximation to/on

E.

In general, the difference [f(z) - p„(f,E)(z)] does not converge to zero on E,

and so one is naturally led to the question of whether or not this difference

converges for each z G E in general. One might also inquire as to the conver-

gence or divergence of the sequence {[/(z) - p„(f E)(z)]/\\f - p„(f, E)\\E}, which

is of course a broader question.

By expanding on the work of Carathéodory and Fejér [1], Schur and Goluzin

[2, p. 497], we are enabled to show that if / is continuous on T, a closed Jordan

curve, and meromorphic in the interior of T, then the sequence {/ - p„(f, T)}™=0

converges in the interior of T in the following sense. If {a,}™, are the poles of/

in the interior of T with respective multiplicities {/,}",, then the sequence

converges uniformly on compact subsets of the interior of T, where w = <j>(z) is

an analytic function that maps the interior of T onto the open unit disc.

Furthermore, we show that the limit function for the latter sequence can be

explicitly determined in terms of the function <b.

2. Main theorem. We will first state our main theorem in the case where T is

the unit circle U, and then in §6 present the general case. Let D denote the

interior of U. If / is as above, we can write

/(z) = a(z)/ ft (¿-«,)'',
'-'

where a is analytic in D and continuous in D + U, and a(a¡) ^ 0 for /' = 1,

2,..., m.
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Theorem 1. Let f be as above; then for z E D,

(1) lim[/(z) - Pn(f, CO»] ft (f-^)'' = X 6 (f^)'

where X is a prescribed root of an explicitly determined polynomial, K S= (2i™i ';)

— 1, and the c/s, j = 1, 2,..., K, can be explicitly determined in terms of X.

Furthermore, the convergence is uniform on compact subsets of D.

Remark. Whether or not (1) holds for z G U is unknown. The few examples

of best approximation to meromorphic functions on U that are known [5]

indicate uniform convergence on U.

It should also be remarked that if/is as in Theorem 1, we can now calculate

firri„^,x\\f — p„(f,U)\\y, and we can find (using Taylor series for instance) a

sequence of polynomials {q„}%LQ such that

Jirn||/-<7n||[/ = ]im||/-jPn(/,F)||[/.

3. Preliminary results. We shall first show that if/is as in Theorem 1, then there

exists a unique function g, analytic in D, which minimizes

m m I z — a, \ ' il
||[/(z)-g(z)]n(T^Jt

or more precisely, which minimizes

where/,(z) = a(z)/ UT-i (1 - S,*)*. We shall then show that

g(z) = limPn(f U)(z)   forz G F.
n—>oo

To this end we note that proving the existence and uniqueness of such a

function g is equivalent to proving the existence and uniqueness of a function F

analytic in D, with the prescribed values F(-J)(ai) = f\i)(ai), for i = 1, 2,..., m

and/ = 0, 1,...,/,- 1, and which minimizes ||F||D. For if F is such a function

we can write

(2) F(z)=fx(z)-g(z)n{^)\

where g is analytic in D. Should there exist a function gx analytic in F for which

|/i« - A«) ft (f^fjl < l/iw - *> 8 (í^fz)'ÍL;
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then let

Fx(z)=fx(z)-gx(z)u((^)''.

The function Fx will then be analytic in D. Assume the values F<xJ)(ai) = fY)(ai)

for /' = 1, 2,..., m andj = 0, 1,...,/, - 1, and \\FX \\D < ||F||ß, thus contradict-

ing our assumption about F. Conversely, if we start with a "minimal" g and

define F by (2), we can likewise show that F has the desired minimal property.

We shall, therefore, presently concern ourselves with the problem of determin-

ing the function F. We begin by establishing its existence.

Lemma 1. Let {a¡}™x and {/,-}", be as in Theorem 1 and {B¡J)}i-'xn}f-¿'-i be any set

°/2ïi h constants. Then there exists a function F analytic in D with F(J)(a¡) = B\^

for i = 1, 2,..., m and j = 0, 1,...,/, — 1 which minimizes \\F\\D for all such

functions.

Proof. Clearly, the class of all such functions is nonempty. In fact, one can

easily construct a polynomial P, which interpolates the given values and so since

II^IId < oo, a straightforward application of Montel's compactness criterion [3,

Vol. I, p. 415] establishes our lemma.

The following theorem completely describes the function F.

Theorem 2. Let fx be as before; then there exists a unique function F analytic in

D such that

F^iOi) = fY>(at)   for i =1,2,..., m andj = 0, 1,...,/, - 1,

and such that \\F\\D is a minimum. Furthermore,

where X and the cfs are as in Theorem 1.

Corollary 1. As an immediate consequence of the above theorem, we have that

there exists a unique function g analytic in D which minimizes

Il m   / z - a¡ \" Il

!'•«-*> fi It^JL
Furthermore,
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4. Proof of Theorem 2. As we shall see in the next section, Theorem 1 follows

directly from Theorem 2, whose proof we will concern ourselves with here.

Lemma 2. Using the notations and definitions of Lemma 1, a function F analytic

in D, with values F^(a¡) = B^ for i = 1, 2,..., m and j = 0, 1,...,/,- 1, will

minimize \\F\\D for all such functions if and only if the function

AW - l^^T/Ll-^Ff)F(z)J'

where X = 1/||F||D, nai ine property that if G(z) is analytic in D, and G^J)(ai)

= F[J)(ai) for i= 1, 2,..., m and j - 0, 1,...,/,- 2 if i - 1 anrf/ = 0, 1,...,

/,.- l///> 1, inen ||F, ||ß =S ||G||fl.

Proof. Suppose F^(a,) = B^ for / = 1, 2,..., m and/ = 0, 1,...,/, - 1 and

that ||F||ß is a minimum. Let F, be as above. Clearly F, is analytic "in F and

\\FX \\D = 1. If for some other function G analytic in F, with Gw(a,) = F\J)(a¡) for

/' = 1,2,... ,m and / = 0, 1,...,/,- 2 if / = 1 and / = 0, 1,...,/,- 1 for

i > 1, we have ||G||ß < ||F, |hj. Then let

F*is analytic in F and ||F*||ß < ||F||D. However,

F(z) - F*(z)

= i _ (1 + |AFf j2) ((z - a,)/(! - ZM)) [F,(z) - G(z)\_

X [1 + AFf ((z - fl,)/(l - axz))Fx(z)][l + XBm((z - a,)/(l - 5,z))G(z)]

= tfz) ft (z - a,)*,
<=i

where <|>(z) is analytic in D. Thus,

F*W(a,) = FP    for / = 1, 2,..., m and/ = 0, 1,...,/,- 1,

thus contradicting our hypothesis about F.

In order to prove the "sufficient" portion, let F, be as defined in the statement

of our lemma and let F, have the desired minimizing property. Now suppose 77

is a function analytic in D with values H(J)(ai) = B\ñ for / = 1,2,... ,m and

/ = 0, 1,...,/, - 1, and such that ||77||ß < \\F\\D. Let

u ,* - (l-axz\(XH(z)-XBM\

H^)-\z-ax Al-Vif H(z))'

where X = l/||F||ß. The function 77, is thus analytic in D. ||77, ||D < ||F, ||0 and
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1W        'W     \ z - a> /L( 1 - A25<°>F(z))( 1 - X2Bf)H(z))J"

Thus we see that Hx will take on the values H{xj)(a¡) = F\/>(a¡) for i = 1,2,...,

m and/ = 0, 1,...,/,- 2 if i = 1 and/ = 0, 1,...,/,- 1 if /> 1. This contra-

dicts our assumption about Fx, and so our lemma follows.

We will now proceed with the proof of Theorem 2.

Proof of Theorem 2. Let F be analytic in D with values F(J)(a¡) = fixJ)(ai) for

i = 1, 2,..., m and/ = 0, 1,...,/,- 1, and suppose ||F||ß is a minimum for all

such functions.

Let us first rename the a,'s as follows: let bk = a¡ for 2j-i~' /, < ^ = 2j=i h-

Then define a finite sequence of functions analytic in D by

F0(z) = AF(z)    where X = l/||F||fl,

«rr v     (l-hAf Fk_x(z)-Fk_x(bk)l
tk{Z)     \z-bk Jli -F—(bT)Fk_x(z)}

for k= l,2,...,M where M = (2"i /,-) - 1. We then have that \\Fk\\D = 1 for

k — 0, 1,..., M; and furthermore, if G is analytic in D and of the form

G(z) = Fk(z) + h(z)J=f(\z - bj),
>=*+i

where h is regular in D, then ||/¿||0 á ||G||D. This follows from Lemma 2. In

particular, ||/w||ß is minimal for all functions G analytic in D which satisfy the

single condition G(bM+x) = FM(bM+x). It thus follows as a consequence of the

maximum principal that FM is identically this constant. Furthermore, by our

assumptions we have that

(4) \FM(bM+x)\=\.

Looking back we find that FM(bM+x) can be expressed as a rational function

in X whose coefficients are determined by the a,'s and the values fY)(ai),

i = 1, 2,..., m and/ = 0, 1,...,/, — 1. From (4) we thus obtain a polynomial

A which we can explicitly determine, and of which A is a root, i.e. A(A) = 0. The

inverse of (2) yields

(5) F    () _ [ ((* - 5t)/(l - bkz))Fk(z) + Fk_x(bk) 1

k~lK        Ll + Fk_x(bk)((z - bk)/(\ - bkz))Fk(z)I

and allows us to calculate F0 and then F once we have determined X. We note

that the values Fk_x(bk), k = 1, 2,..., M, are functions of X, and that as defined

by (5), each function Fk_x will be analytic in D with \\Fk_x \\D = 1 (as desired)

provided that the function Fk is and that \Fk_x(bk)\ < 1. Thus X will be the largest
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positive root of the polynomial A which satisfies the condition \Fk_x(bk)\ < 1, for

k = 1, 2,..., M. We shall give an example of how A, À and thus F can be

determined later.

From (5) it is also evident that the function Fk_x will be rational and

\\Fk-X \\D = 1 for k = 1, 2,..., M, since FM(z) = ±1. In particular the function F

will have the form

where \cj\ < 1 for/ = 1, 2,..., K and K á M = (2," /,-) - L Note that due to

possible cancellation of terms we might have K < M.

The uniqueness of F now follows easily. Suppose G is another function analytic

in D which assumes the values G<J)(ai) = F(J)(ai) for / = 1, 2,..., m and

/ = 0, 1,...,/, - 1, and such that ||G||D = \\F\\D. Let X be as before and define a

sequence [Gk}k_x from G as we did from F. We will then conclude that

\Gu(bM+x)\ = 1, and furthermore, we will find that GM(bM+x) can be expressed

as the same rational function of X that we obtained for FM(bM+x), namely one

whose coefficients depend only on the prescribed values of F at the points {a,}™,.

As a result we find that GM(bM+x) = FM(bM+x), and then working backwards we

obtain G0 = FQ, and thus G = F.

Proof of Theorem 1. Let g be as in Corollary 1, the unique analytic function of

"best approximation" to / on D. We may then write

\\f-s\\u = \\f^)-g^n({^)ll\\D

(6) sIN-^^)fi(f^)4L
= \\f-Pn(f,U)\\D,       for « = 0,1,2,....

Furthermore, the function g is not only analytic in D but continuous in

D = D + U, and so by Walsh's theorem [4, p.98], given any e > 0, there exists a

polynomial q such that \\g — q\\u < e. Thus for n sufficiently large (greater than

the degree of q), we have

11/ - PnU, U)\\u ̂ 11/ - 911,7 S 11/ - g\\u + e,

which together with (6) implies that

(7) feftll/ -PnU, U)\\v -ll/-*lley

From (7) and the uniqueness of g it now follows that every subsequence of

{Pn(f, ^)}^=o contains itself, a subsequence that converges uniformly on compact

subsets of D to g. However, the sequence {p„(f, U)}^0 is equicontinuous on every

compact subset of D, and so our theorem follows.
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5. An example. We now give a simple application of Theorem 1. Let

f(z) = l/[z(z - 1/2)]. In order to find lim„^00[/ - pn(f, U)] we first find that

function F analytic in F, with values:

F(0)-/,(0)-l,
F(l/2) =^(1/2) = 4/3, for which ||F||D is a minimum, where

/,(z)=l/(l-z/2).

Let X = l/\\F\\D, F0 = XF, and Fx(z) = (l/z)[(F0(z) - X)/(l - XF0(z))]. The

function F, must then be a constant, and

M| = l2rM(4/3)-i)-|i
'\2/l      l2Ll-X2(4/3)JI      '■A2 (4/3).

In order to determine À we must then find the largest positive root of the

quadratic equation 2A/[3(1 — A2 (4/3))] = ±1 which satisfies 17^(0)1 < 1 or

A < 1. This yields A = ((13)1/2 - l)/4 = .65 .... Thus Fx(z) = F,(l/2) =

2A/(3 - 4A2) = 1, and F(z) = (l/X)[(z - A)/(l - Xz)]. It then follows that for

z G F,

lim[/(z) - „,(/, U)(z)][f^] = jt(ff£)'

and so

Jim ||/ -pn(f 17)11,, = I =1.53....

6. The general case. We now consider the case where / is a function that is

continuous on a closed Jordan curve T and meromorphic inside T.

Letting fl denote the interior of T wt have, by Riemann's mapping theorem,

that there exists a function w = <j>(z) that is regular in Q and maps fi conformally

onto the open unit disc D. Furthermore, since the boundary of £2 is Y, a closed

Jordan curve, <j> may be extended continuously, to Y so that it will map Y onto

the unit circle F in a one-to-one manner [3, Vol. Ill, p. 70].

The function/° <f>-1 will then be meromorphic in F and continuous on U. If

we let {ax,a2,... ,am} be the poles of/in Í2, then {ax,a2,... ,am} where a, = <f>(«,)

for i = 1, 2,..., m will be the poles of / ° <#>"' in D. Applying Theorem 1 to

/ ° <p~l on U we have

(8)
Jim[/o 4,-1 (w) - pn(f° r^UXw)] ft (jZT^)

1      K    (    W   -   C;    \4Js(r^J forH<i-
where A, K and the c/s,j = 1, 2,..., K, are as described in Theorem 1, and the

convergence is uniform on compact subsets of D.
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Theorem 3. Using the above notation,

m ( <h(z) - a, V

W/W-A(/.lX»)]fi(i^)
1    K   (  <¡>(z) - C.   \

vv/iere i«e convergence is uniform on compact subsets of Q.

Proof.   Let  J» = />„(/ ° «T1,1/),   Qn = p„(f T)  for  n = 0, 1,...,  and  Ä(w)

-¿n^,(H'-cy)/(i-cjW).
If z G S2 and w = <#>(z) we can write

R o <¡>(z) - [f(z) - Qn(z)]

(9)
R(w)-[fo^(w)-Pn(w)]

«■ l«("0 - Ö- ° «p-'(w)|.

* / <fr(z) - a, y I
,M Vi-a.-tfz)/ I

fí(w~M|

Consequently, our theorem will follow if it is shown that the sequence

{F„ - Q„ ° <b~l}%L0 converges to zero uniformly on compact subsets of D. In order

to accomplish this we first prove that

(10) limll/- ß„||r = „lim||/o ^-i - ^|!t/.

To this end, we observe that since <¡>_1 is regular in D and continuous in

D + U, it can be arbitrarily approximated by polynomials on U. This follows

from Walsh's theorem [4, p. 98]. Thus given any ex > 0 there exists a polynomial

Sm such that ||<f>_1 - Sm\\v < eI( and given any e2 > 0, by choosing e, sufficient-

ly small we will have

||/ o ,#>-> -QnoSm \\v ^ ||/ o *-1 - Qn o ^-i \\v + e2

= ll/-ÖJIr + e2.

But Qn ° Sm is a polynomial of degree nm, so we have

||/«   ♦-•-ft.lb.S     H/«*-'    -Coolly,

which then implies that

jimll/^-'-^ll^jimllZ-ailr.

Similarly given any e3 > 0 there exists a polynomial rk such that ||$ - rk\\v

< e3, and given any e4 > 0, by choosing e3 sufficiently small we will have

|/- Pn o rk\T Si ||/- Pn o <¡>||r + e4= ||/ o $-1 - ¿»IL, + £4.
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Repeating our previous argument we obtain (10).

Now let us suppose that on some nonempty compact subset of F,

{F. — Q„ ° <i>~'}^=o does not uniformly converge to zero. Then since the sequences

{%}™=o ano1 {Qn ° ^'l^o are equicontinuous on each compact subset of D, there

exists a subsequence {Pkii — Qkn ° <t>~l}™=0, such that:

(i) {Pkn }%L0 converges uniformly on compact sets of F to a function F, analytic

in F,

(ii) {Qk„ ° <t>~l}?=o converges uniformly on compact sets of F to a function L2

analytic in F, and

(iii)

(12) ||F1-F2||Z)>0.

By (10) we have

||[/o *-» -L,(W)] g (fr^/L

(13)

Now by (8),

i.ii.il m / <f>(z) - a, Y' „
= |[/(z)-F2o<í)(z)]n(f^)|í2

=   /ofM
m I w — a¡ \n

L2(w)]n(i—=-^1 •
,ti \ 1 _ a¡w/\\D

Lx(w) =/° <#>-'(w)- F(w) a(^¥)'
Furthermore, by Theorem 1, F,(w) is the unique "analytic function of best

approximation" to f° <p~l on F. This uniqueness together with (13) implies

Lx = L2 and thus our theorem follows.

7. Approximation to arbitrary continuous functions. Although Theorem 3 is not

in general applicable for an arbitrary continuous function / on a closed Jordan

curve T (since / is not in general defined in the interior of Y), a somewhat weaker

version can be obtained.

Let T and <j> be as in §6. For a function / continuous on Y let

p(/,r) = niim||/-JpB(/,r)||r.

Theorem 4. Let f be continuous on Y; then given any e > 0 there exists a rational

function R of the form
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such that: (i) |p(/,T) - \\R ° </>||r| < e, and

(ii) there exists a polynomial q such that \\(f — q) — R ° §\\Y < e.

Proof. If p(/, r) = 0 the theorem is true if we let R = 0. Thus we may assume

p(f, Y) > 0. It is well known [3, Vol. Ill, p. 100] that if /is continuous on a closed

Jordan curve Y, then there exists a sequence of rational functions that converge

to / uniformly on Y. In particular, there exists a rational function V for which

||/ - Für < e/2. Moreover, V is of the form V(z) = a(z)/ JJ,™i (2 - a,)1', where

a(z) is regular on Y and in its interior and the a,'s lie in the interior of Y. Since

we have assumed that p(/ T) > 0 it will then follow that V has at least one pole

inside Y if e is sufficiently small. Let us thus assume that this is the case.

Applying Theorem 3 to F on Y, let R*(z) be the limit of the sequence

{|,«-,,(,,r,Wm(^)X0

for z in the interior of Y, where <£ is as before and a¡ = </>(«,) for / = 1,2,..., m.

The function R*(z) is then of the form

m / 4>(z) - a j \"

where

«M4[n(^)"][n(f^)].

Now for any polynomial p and for z G Y,

\V(z) - p(z)\ á \V(z)-f(z)\ + \f(z) - p(z)\

^ e/2 + \f(z) - p(z)\.

Similarly,

\f(z)-p(z)\ ^ e/2 + \V(z) - p(z)\.

Thus |p(K,T) - p(f,Y)\ < £. But p(V,Y) = \\R o </>||r so (i) follows.

The function ( V — R ° <p) is continuous on Y and regular interior to Y so again

by [4] there exists a polynomial q such that || V — (R ° </>) — q\\r < e/2. Thus,

||(/ -?)-(«» <f>)||r â ||/ - K||r + || V - (R o «>) - q\\T

á e/2 + e/2 = e,
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and so (ii) follows.

Remark. If/and T are as in Theorem 4, and if one can find a sequence {Ä„}^0

of rational functions converging to/uniformly on T, and if one can calculate the

mapping function <f> for the interior of T, then it is now possible to determine a

sequence of polynomials {^}^10 such that hmk^x\\f — qk\\T = p(f,T).
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