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QUADRATIC EXPRESSIONS IN A FREE BOSON FIELDfo)
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ABEL KLEIN

ABSTRACT.   Quadratic expressions in a massive spinless free Boson field

are treated by an appropriate extension of the method of second quantization.

A certain class of these second quantized operators is shown to generate semi-

groups that act on a suitable scale of  ¿^-spaces, obtained through the diago-

nalization of the field at a fixed time, in a particularly regular fashion.   The

techniques are developed first in an abstract setting, and then applied to the

neutral scalar free field.   The locally correct generator of Lorentz transforma-

tions for  P(tfi)2  is studied in detail, and essential selfadjointness is shown.

These techniques are also used to solve explicitly the   (¡e2)n   model.

1.   Introduction.   We study quadratic expressions in a massive spinless free

Boson field.   Since their commutators with the field operators are linear expres-

sions in the field, they can be treated by an appropriate extension of the method

of second quantization.   We introduce and study this extension, and as an appli-

cation the locally correct generator of Lorentz transformations for  P{(p)2,  intro-

duced by Cannon and Jaffe LU, is worked out in detail, and selfadjointness is

proved along  the lines of the perturbation theory developed by Segal 111!.   We

also use these techniques to   solve   explicitly  the   (<P  )     model.

We introduce the extension of the method of second quantization in an ab-

stract setting, and study the regularity and covariance properties of the operators

thus obtained (s 3).   An appropriate version (Theorem 1) of a theorem of Segal

ill, Theorem ll is then proved for a certain class of these operators (v4).   The

semigroups they generate are shown to act on a suitable scale of  L  -spaces, ob-

tained through the diagonalization of the field at a fixed time, in a particularly

regular fashion.   The   L  -scale will depend on the particular operator, but the

class of admissible perturbations will not only be independent of the operator, but

will be the same one used by Segal LlU.

We then turn to formal quadratic expressions in the neutral scalar free field,

and show how they can be rigorously defined as second quantized operators fo 5).

The techniques developed are then used to study the locally correct generator of

Lorentz transformations for  Piifi)2 fo 6).   The free locally correct generator is a

quadratic expression in the field operators, and is thus obtained as the second
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440 ABEL KLEIN

quantization of an operator of a type that can be skew-diagonalized (Theorem 2),

and thus belongs to the class of operators to which Theorem  1 can be applied.

As the interaction locally correct generator is of the same form as the interaction

Hamiltonian, we obtain the essential selfadjointness of the total locally correct

generator of Lorentz transformations.

Finally, we study the i<P )    model (§ 7).   We solve this model explicitly by.

performing a mass renormalization, for arbitrary space dimension.   This has been

done, using different techniques and formalism, by Ginibre and Velo 12].   (See

also Rosen 16].)   We explain the need for cutoffs, and show how they can be re-

moved, leading to the renormalized Hamiltonian acting on the physical Hilbert

space.   This is done via a unitary renormalization of the cutoff Hamiltonian.

Segal has communicated to the author that he has a proof for the essential

selfadjointness of the locally correct generator of Lorentz transformations, using

his ' calibrated theory" L12J.

Part of the contents of this paper were contained in the author's Ph.D. thesis

at the Massachusetts Institute of Technology.   The author wishes to express his

gratitude to Professor Irving Segal, for having introduced him to this research,

and taken a continuing interest in its progress.   The author is also in debt to

Niels Skovhus Poulsen, Wilbert Wils, Michael Lennon and Barry Simon for help-

ful discussions.   The author wants to thank Niels Skovhus Poulsen for permission

to print his unpublished results.

2.    Preliminaries.   I.   We shall use the convention that the inner product in

a complex Hilbert space is antilinear in the first coordinate, and linear in the

second.

II.   If K is a given complex Hilbert space, the corresponding free Weyl process

(K, W, Y, v) consists of

(i)   a complex Hilbert space  A;

(ii)   a continuous map  W  from H  to the unitary operators on  K.  satisfying

the Weyl relations:

Wiz)Wiz') = expi- 0/2) Im(z, z')\Wiz + z'),     tot all  z, z   eK;

(iii)   a continuous unitary representation   17 —> Yiu) of the group of all unitary

operators on K,   such that

(a) YiU)Wiz)YiU)~ X = WiUz) tot all  U  and z,

(b) dYiA)> 0  for any selfadjoint operator A > 0  in  K,  where  dYiA)

denotes the selfadjoint generator of the continuous unitary one-parameter group

YieltA), t £R;

(iv)    a  unit  vector   v eK  which is cyclic for the  Wiz) and such that  YiU)v =

v  for all  U.
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The foregoing properties determine  (J\, W, Y, v) uniquely, within unitary

equivalence.   The selfadjoint generator of the continuous unitary one-parameter

group  W{tz), t £ R,  will be denoted by  Viz).

This definition is due to Segal.

III.   For  any  operator   H   in a real or complex Hilbert space,  D(H)  will de-

note its domain.

3.   Infinitesimal symplectics.    Let K  be a complex Hilbert space, and

(a, W, Y , v)  the corresponding free Weyl process.

Definition 1.   A symplectic transformation on K  is a bounded invertible real

linear operator T  such that Im {Tz , Tz   ) = Im(z , z A for all  z , z    £ si.

It is easy to verify that a bounded invertible real linear operator  T is a sym-

plectic transformation if and only if  zTz~    = {T )~   ,  where by  z  we denote the

operator multiplication by  i on K,  and Tl is the transpose of T,  i.e.,  Re(zp Tz 2) =

Re(T(Zp z2)   for all  Z., z2 £ si.

Symplectic transformations come naturally into the context of quantum field

theory.   If  W  is a Weyl map over  A,   i.e.,   W  is a map from  K   into the unitary

operators on a complex Hilbert space, such that W(jz)w{z )= expj- (z'/2)lm(z, z ' )\ '

Wiz + z ') fot all z, z ' £ H,  it follows that if  T  is a symplectic transformation on

H,  W °T is also a Weyl map.

Definition 2.   A symplectic transformation  T  on K  is said to be unitarily

implementable if there exists a unitary operator  U  on K. such that, for all z £ si,

UW{z)U~X = WiTz).   We will write   Y{T)  fot any such  U.   YÍT)  is determined only

up to a phase factor, which had been fixed for unitary operators   U  by requiring

Y{U)v = v.

Shale [13] has studied the group of symplectic transformations, and has de-

termined the class of unitarily implementable ones.   T  is unitarily implementable

if and only if  T'T — I is a Hilbert-Schmidt operator (equivalent to {T'T)    - I

Hilbert-Schmidt).

Definition 3.   A closed densely defined real linear operator S  in  K  is called

an infinitesimal symplectic if it is the generator of a continuous one-parameter

group of symplectic transformations   e     .    In case  S   is the infinitesimal generator

of a continuous one-parameter group, then S  is an infinitesimal symplectic if and

only if iSi~    = — Sl.

Definition 4.   An infinitesimal symplectic S  is said to be selfadjointly im-

plementable if there exists a selfadjoint operator H  in a   such that e uni-

tarily implements  fo   ,  for all  / e R.   We will write  H = y(S).   We note  //  is de-

termined only up to a scalar.   If the vacuum v  is in the domain of H,   we will

fix H  by requiring ( v, Hv) = 0,  and write  H = y0fo).
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Examples.    1.   Let A   be a selfadjoint operator in H.   Then  iA   is a self-

adjointly implementable infinitesimal symplectic, and  yfiA) = zir(A).

2. Let  K be a real linear self-transpose Hilbert-Schmidt operator on K,  such

that  iKi~    = - K.    Then e       is a continuous one-parameter group of unitarily im-

plementable symplectic transformations.   By Theorem 4.2 of [13L there exists a

continuous unitary one-parameter group el-     implementing e     , as every contin-

uous projective unitary representation of the real line can be made a bona fide

representation.   Thus  K  is selfadjointly implementable.   Actually, we can show

more.   el       can be exhibited explicitly, using the construction given in [13L  and

the vacuum can be shown to be in the domain of H (see also Poulsen [4]).

3. Let S  be an infinitesimal symplectic,  T a symplectic transformation.

Then  TST~     is again  an  infinitesimal  symplectic.   Moreover, if S  is selfad-

jointly implementable, and  T unitarily implementable, then the same is true of

TST~   ,  and we can take  yiTST~  ) = YiT)yiS)YiT)~  .   One particularly interest-

ing case is when S = iA,  where  A   is selfadjoint.

Remark 1.   Let  (K,  i, ( ,    ) )  be a complex Hilbert space, i.e.,  K  is a real

vector space,  i is the operation of multiplication by  i that makes  K  into a com-

plex vector space,  (  ,   ) is the complex inner product.   Let  T  be a symplectic

transformation on K.   Then if /' = T~   iT,   (x, y)    = (Tx, Ty)   for x, y £ si,

(H, /', ( ,   )„)  is a complex Hilbert space, in which K  is as before, / gives the

complex vector space structure, and  (   ,   )_  is the new inner product.   Then if

S  is a real linear operator on K  such that  TST~     is complex linear in (K, i, (  ,  )),

then S  is complex linear in  in, j, ( ,   )S).

Proposition 1.   Let A  and B  be selfadjointly implementable symplectics in

H,   such that  (A + B)~ generates a continuous one-parameter group.    Then, if

yiA) + yiß)  is essentially selfadjoint, iA + B)~   is selfadjointly implementable,

and yiiA + B)~) = iyiA) + y(ß))".

Proof.   By the Lie-Trotter formula

;t(A+B)-=    sAïm(ft/n)AeU/n)B)ne
72 —»OO

ind

e,2i(7(A)+r(B))~=    s_jim   (e(zi/72)7(A)e(2Z/72)y(B))r2_

n —*»0

Thus  {A + B)-   is an infinitesimal symplectic, and for all z £ J\

eit(7(A)+y{B))-y{z)=   s.lim {e(it/n)y(A)e(it/n)y(B))nw(a)

S

77 —»OO

-lim  W/((e(í/")'4e(í/")B)"z)((?(íí/")r<'4)e(!í/")r(B))"
—»OO

( lim   ieitMAe{tMB)nz) fs-lim   (eAt/n)y(A)eiltMyiB))f\
\n—oo /    [_72^O0 J
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because both terms are bounded in norm, and  W is strongly continuous.   But the

last expression is just

Wiet{A+B)~ z)elt(y{A)+y(B))~

and thus  iyiA) + y(ß))~   selfadjointly implements  (A + B)~ ■   End of proof.

Note.   We have been somewhat careless in the proposition, as y{A), y(ß),

and yiiA + B)~) ate defined only up to a constant.   What we mean is that given a

particular choice of yfoO  and yiß), iyiA) + y(ß))~   is a possible choice for

yiiA + B)~).

Particularly useful is the following result, due to N. Skovhus Poulsen [4].

Proposition 2 (Skovhus Poulsen).   Let  A   be selfadjoint in  M,   B   bounded

selfadjoint,   K  real linear self-transpose Hilbert-Schmidt infinitesimal symplectic,

z £ A.    Then the operators

yiiA) + yiiB), yiiA) + y{K), yiiA) + V{z), yiiA) + y{K) + Wfo)

are all essentially selfadjoint in any domain contained in the algebraic span of

the n-particle subspaces    K     z'72 which    yiiA) is essentially selfadjoint.

Example 4.   Let A   be a selfadjoint operator in  a,   K  a real linear Hilbert-

Schmidt infinitesimal symplectic on A.   Then  iA + K  is a selfadjointly imple-

mentable infinitesimal symplectic, and the vacuum is in the domain of y(zVl + K).

The statement follows from Propositions 1 and 2, with the remark that  K = Kj +

K2,   where   ifo = lA{K - Kl), K2 = Y2(K + K'),  and   K,  is bounded and skew-trans-

pose, which together with being an infinitesimal symplectic implies   Kj  is com-

plex linear, and thus skew-adjoint, and  K2 is a self-transpose Hilbert-Schmidt

infinitesimal symplectic.

Remark 2.   In [4], Skovhus Poulsen shows that if 5  is a bounded selfad-

jointly implementable infinitesimal symplectic, then  .V = iA + K, where  A  is

bounded selfadjoint, and  K is Hilbert-Schmidt.   It is natural to expect the more

general selfadjointly implementable infinitesimal symplectic to be of the form

iA + K,   where  A   is selfadjoint and  K is Hilbert-Schmidt, but this is just not

true, as shown by the following counterexample.

Let  e a be an orthonormal basis for a,  then  A = 1a 03 si ^  where  Aa= L

for all   a.   Let  A   be the selfadjoint operator given in  A  by  A = — a tb <2a/a.

where  fo is the identity operator in  Ka,  and let  T  be the symplectic transfor-

mation given by   T = S © Ta,  where  Fais represented by the matrix

t

A,       0

0   Klj
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relative to the decomposition  C = R €> R,   where Aa> 0,   and  2aUa- D2 < °°.

Then   T  is unitarily implementable.   Let S = TiAT'1.   Then 5  is a selfadjointly

implementable infinitesimal symplectic, and S = 1   ©5   ,   where

S„ =
0

Thus, if we write  S = zß + K,   where  z'B = V2iS - S'), K = V2iS + S1), then  B

— a©8a.   ^a=fla^a + Aâ   ^ a'   and so   ß   is selfadjoint, and

K=ïn®Kn,

where

t

0

C2 -k2

K2-*l
0

and so  K  is a self-transpose infinitesimal symplectic.   But  K is not necessarily

Hilbert-Schmidt, we can choose A   and  T such that   K is unbounded.   In fact,   K

has discrete spectrum, and its eigenvalues are + a a(A~    — Aa).  We recall  Aa =

1 + t a,   where  t a—>0.   Thus  A~    » 1- ¡a,  for  a  large enough, and  |à~2-À2|^î

4|/a[.   Thus, if we choose the ßa's  and Aa's  such that  |äa(Aa— l)| —> oo, then

K  is unbounded.   In this case, we can also show that the vacuum is not in the

domain of yiS), fot an appropriate choice of the  «a's  and Aa's.

Remark 3.   Another reasonable conjecture would be that if S is a selfadjointly

implementable infinitesimal symplectic, then  5 = TzAT-   ,  for some unitarily im-

plementable symplectic   T and selfadjoint  A.   But this is also not true.   Recall

that  S is of that form if and only if there exists a complex structure in H in which

S is skew-adjoint, or equivalently, in which  e      is a one-parameter group of unitary

transformations.   In [8] (see also Weinless [14]), Segal gives a simple criteria

for that.   el     is unitarizable if and only if  Im(x, el y)   is a bounded function of

t  for any  x, y £ K.   So let S = iA + K,   where  A   is selfadjoint, and  K  is a self-

transpose Hilbert-Schmidt infinitesimal symplectic, and assume there exists y  £

H  such that Ay = ay,   Ky = zéy,   a, k / 0.   Then  S  is a selfadjointly implementable

symplectic, but it cannot be of the form  TiAT~   ,  because for any x £ K

Im(x, etSy)^eltae'klm(x, y),

and this is not bounded if Im(x, y) / 0.

The selfadjointly implementable infinitesimal symplectics  S  of the form
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TiAT      or iA + K,   K Hilbert-Schmidt, are easier to deal with than the general

case.   In these cases, in addition to  e"yiS)W{z)e~ ii'y(s) = W{etSz), we can also

prove

Proposition 3.   Let S  be of the form  TiAT~X   or iA + K,   where  A   is self-

adjoint,   T  symplectic,   K  Hilbert-Schmidt infinitesimal symplectic.    Then,  if

H = yiS),

e-iMz)Hemz) = {H + V(Sz) + l/2 lm{z> Sz))-

for al! z £ DiS).

Proof.   For S = TiAT~X, it follows from Lemma 3.3 of Segal [9].   For S =

iA + K,   we first notice that the left-hand side is essentially selfadjoint on

DiyiiA)) intersected with the algebraic span of the 72-particles subspaces  K  ,   by

Proposition 2, and thus it is enough to show the formula holds in this domain.

With that, the proof is the same as that of Lemma 3.3 of [9l, except that one should

use

e-,*(z)eUHei*(z) = eIzHe-,'*(z-z)e7*(z)j

where  z_   - e~    z,   instead of the similar formula used there.   End.

4.   Regularity of the action on an appropriate   L   -scale.   In [ll], Segal in-

troduced a perturbation theory appropriate to quantum processes, based on the

action of the semigroups  e~l     on a certain scale of  L  -spaces, where H = dYiA),

and A   is a strictly positive selfadjoint operator, leaving A    invariant, where

A ' is a real Hilbert space of which A  is the complexification.   We extend these

results for infinitesimal symplectics.

Let  A denote the complexification of the real Hilbert space  A  ,   and let

(K, W, Y, v) be the corresponding free Weyl process.   Let A  be any given self-

adjoint operator in  A '   such that A > f > 0,   and let us also denote by  A   its

extension to  A  as a complex linear selfadjoint operator.   Let HQ = dYiA).   Let

R  be a bounded linear operator on  A ',   with bounded inverse, and such that

RlR - I is Hilbert-Schmidt.   Let  T = R © fofo)"1,   corresponding to K = H'ffiH'.

Then  T  is a unitarily implementable symplectic transformation in  A.   Let  H =

YiT)H0YiT)- X.

Theorem I.   There exists a weak probability measure p on si',   depending

only on   \T\ = ÍTlT)V\  such that K can be identified with  L 2(K ', dp), and

(i)   e~tH   is a contraction in   L  (K ', dp) for all I > 0  and  1 < p < °°;

(ii)   for all p > 2 there exists  IQip) > 0  such that, for  t > tQip). c~tH   is a

contraction from   L AM ', dp) to  L  (H ', dp);
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(üi)   if g  is the isonormal weak probability measure on H',

n  L(w,dg)=  n luí',dp).
pï[l.~)     P «.et!.»»)     "

Proof. We can assume T= \T\, i.e., R = |R|, because T= |T|0, where 0

is an orthogonal symplectic, hence unitary, and thus YÍ0)dYÍA)YÍ0)~ l is of the

form dYiA '), where A ' = 0A0~     has the same properties as  A.

We will use the real wave representation for (K, W, Y, v) (see [ll], [7]).   In

this representation A = LfK', dg), where g is the isonormal weak probability

measure, and v  is the function   1.   We recall ([7], [I3]) that in this representation

the tame functions over K    form a dense set in  A,  and we can choose YÍT) such

that

(r(T)/)(x) = fiRx)wix)     for all tame functions /

where  zzz = Vdp/dg,   and p is the weak probability measure on  K    defined by

jfix)dpix) = j fiR-Xx)dgix).

In particular,  YiT)v = w.   Let Z  be the unitary operator

Z: LAW, dg) —L,(K', dp.),       f — /,
-1

w

Then  Ztzz = 1,   and we can identify A   with   L  (K  , dp).

Lemma 1.   Let  Y = ZYiT).   Then  Y  is a Banach space isomorphism from

L  iK', dg) to  Lp(K', dp) for all p e[l, 00].

Proof.   (zr(T)/Xx) = /(Rx),  so

f\Yfix)\t>dpix) = j'\fiRx)\p dpix) = f \fix)f dgix).

End.

For an operator X  in K,   let us denote by  X  its representation as an oper-

ator in   L2Qi', dp), i.e.  3? = ZXZ-1.   Then  tt = ZYiT)HQYiT)~ XZ~ X = YHQY~X.

Thus  e~tH = Ye~tH°Y~X,   so  e~lH   acts on   L   (H ', dp)  in the same way   e        °

acts on   L  Qi', dg),  so (i), (ii) follow from Theorem  1 of [ill-

(iii)   follows by Holder's inequality, from the following lemma.

Lemma 2.   There exists  p, q > 1 such that w2 £ Lpisi ', dg) and w~    £

L  (K ', ziu).

Proof.   Let  \e \  be an orthonormal basis for K ',   such that  Re{ = c{ef   where

0 < c. = 1 + A.,  S A2 < 00.   Such a basis exists, as  R - /  is Hilbert-Schmidt.   Let
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(K, W, Y, v) be represented as in Corollary 3.6 of [?1.   Then  K is represented by

L2(zM),  where  M = (R, dg^K   and  L   (K', tig) = L  (M).

Let M-^x) = Vcjexpj- Hie2 - l)x2\ £ L 2(R, dg). Then w{x) = ©2 w.(x). We2

claim there exists p > 1 such that w2{x) £ LAW, dg) for all i, and |fofo|| < tfo*/

where  ij is a constant independent of z.   In fact,

,,    2„              / F       f Pel      lY 2Í          <     1    2\       ¿x     \1/P
fo    fo = c • (     exP <- TT \c . - 1 )x   V exp ¿ - - x   >-— )

'   P       !VJ        \   2     ' )        \   2     )   (2*)« /

".(^fî^-""1^)"'
For this to be finite we need   1 + pic2 - l) > 0.   We have two cases:

(a) c. > 1.   Then this is true for all  p.

(b) c¿ <  1.    Then we want p < 1/(1 - c2)-

We notice   1/(1 - cf) > 1,  hence if cQ = min cf,   then   1/(1 - c2) > 1/(1 - c2) > 1,

as cQ > 0  follows from the compactness of  R - I.    Thus if we choose   1 < p <

1/(1-Cfj),   lluz,2!!    < °° for all  i.   Moreover

J.p \U2p       I (1+A.)2p \l/2p

2\\h = c{l+Pic2-l))-X^

c .

\w ■ II.1       7 "p

,i+p(c2-D/ Vi + piii + Xr - Dz

Let  /U)= (1 + K)2p/{1 + piil + A)2- 1)).   Then, by Taylor's formula,  /(A)=  /(0)

+ /'(0)A+ y7 f"iKx)K2,  where 0 < Aj < A if A > 0, or A< Aj < 0, A < 0.

But fiO) = 1,  / (O) = 0,   and /   (A) is a continuous function of A  and thus

there exists  r] '  such that   |/"(A)| < 277'   for A e Imin A., max A.].   Hence   |/(A)| <

I + rj'K    < eA fot A  in this interval.   Therefore

t -r}'X2/lp 7]X2
|fo2||p<e       '        =e      l     fot r, = V'/2p.

Thus   |fo2||    < expfo(2.A2))< =0,   so  w2 £L  Qi', dg) for some  p > 1.

Similarly, we can show  w~     £ L (K', dg) fot some  r > 0,   and this implies

227_     £ L       (H ', dp).   End of proof.

Remark 4.   (iii) says that the class of admissible (for Theorem 2 of I 111)

perturbations for H  as in the theorem is independent of //,   and is the same as

the one used by Segal 111].

Remark 5.   It follows from the proof that e~tH  has a positive kernel (i.e.,

(/. e~'Hg) > 0  if /, g > 0) in both  L 2(K', dg) and  L 2(K', dp).

Remark 6..   Let HT = (M, TiT~l, (  ,   >   _ 1) (see Remark 1).    Then   T: K —

KT  is a unitary map,   TM ' = H ',   and Kr = K ' + 7ïT~ 'K '.   Moreover,  ¿i  is the
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isonormal weak probability measure over the real Hilbert space H ' = (H ', (   ,   )   _ f.

If Uíj.,  Wt, Yt, Vj.) is the real wave representation for the free Weyl process

over KT,  then  KT = L fK ', dp) and   Y : L ßi ', dg) —> L fK ', dp) intertwines

(a, W, Y, v) and  i}\,r, WT, YT, Vj) unitarily implementing  T: H —» KT,   i.e.,

WTiz)= YWiT~Xz)Y~1  tot z eK',   YTiU)= YYiT~XUT)Y~l  tot  U unitary on

fij.,  and Vj. = Yv.

TiAT~     is a skew-adjoint operator in  Hr,   say = TiT~XB,   B   selfadjoint in

■H._.   Thus

dYTiB) = YdYiA)Y~ x = Y/70Y- ' = H.

It follows (i), (ii) hold as  H = dYfiß), and to prove (iii) it would have been

enough to show

n L (K\ dg) c   n L (K', dp),
pe[l,oo)     p j>e[l,oo)      p

as we can invert the roles of g  and /x.

Lorollary.   In the case of the neutral scalar free field with mass  m > 0,   in

two dimensional space-time, if H  is as in the theorem,   P  is any given real

polynomial bounded from below, and Vif)  is the selfadjoint operator represented

by j :Pi<f>ix)): f(x)dx,   where f £ Ly O L2(R), / > 0,   H + Vif)  is essentially

selfadjoint, and bounded from below.

Proof.   Follows from the theorem, and from Theorem 2 and proof of Corol-

lary 3-3 of [ill.   End.

5.   Quadratic expressions in the neutral scalar free field and its derivatives.

Let  H = L  (Rn), 77Z > 0.   If  C denotes the operator im2 - t\)y*   in  M,   then, within

unitary equivalence, the neutral scalar free field cf>  with mass  z7z,   and its time

derivative c/5,   are given, at time zero, by

</»(/) = tff, 0) = *P(C- V).      <pig) = «p(g. 0) = ViiCg),

tot teal functions / £ L2(R"), g 6 DiC).   We then have

[cpif), (pig)]' = i(f, g),       [(piff, (pif2)]~ = 0 = [<Mg,)> àigf]-,

or, symbolically, if </>(/) ~ / tpix)fix)dx,   and 0(g) ~ / <piy)giy)dy,   [ipix), tpiyYi =

iSix - y),  [*»(x), <piy)\ = 0 = \<pix), ¿(y)].   Time evolution is given by the free

Hamiltonian   HQ = dYiC  )■

Let  0  be a real quadratic expression in   ^>(x),   ipix) and its derivatives,

e.g.  P(x) = OT2^(x)2 + V^(x)2 + <f>ix)2.   Let us consider the formal expression

H = J :Qix): fix)dx,   where / is some real function.   We want to make sense out

of H.   All we really know about  H  ate its commutation relations with  </>  and  <f>,
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or equivalently, its commutation relations with  f..   Q  being a real quadratic ex-

pression,   z'[z7, Wfo)] = Wfoz), where S  is a real linear operator in  K,   and S  must

be an infinitesimal symplectic, because

w(zsz-fo) = r(zWsz-fo)rfo)-1 = r(z)z[H, virlz)]rii)-1

[Yii)HY{i)-x,Viz)] = V{-Stz),

as r(z'W(2)r(z    ') = Wiiz).   We know that if S is selfadjointly implemented by

yiS), then  i[y{s), Wfo)] = Wfoz), for z in the domain of S,   as  e'^^Ufofoe-^^fo

Wie    z).   If moreover we require  H  to have zero vacuum expectation, which is

equivalent to Wick ordering the terms in the quadratic expression  Q,   we fix y{S)

by requiring   {v, y{S)v) = 0.   We are thus led to define H by y0fo),  and thus ob-

tain  H  as a selfadjoint operator.

6.   The locally correct generator of Lorentz transformations for  P{<f>)  .   The

locally correct generator of Lorentz transformations,

M(gv g2)-^0 + M0{gl) + M¡ig2),

wher

M0 p) = \ ^:m2*{x)2 + V^(x)2 + ¿(x)2: glix)dx,

M]ig2)=  j-.Pi.fiix)): g2ix)dx,

( > fo g i. g 2 e S(R)' g i. g ? - ^' ^ a polynomial bounded from below, has been

introduced and studied by Cannon and Jaffe [l]. They treated the (<¿> )2 case,

and their results have been extended to  i<P ")2 by Rosen L5J.

Notice that cHQ + MQ{gA = MQif), where / = t + gr    MQif) is a real quadratic

expression in the field and its derivatives, so we apply to it the procedure out-

lined in the last section.

Formally,   [M0{f),<pib)] = -i<pilAfb), [M0if),'<pih)]= icpiim2Mf- VM^)h),

where  M, denotes multiplication by /,   and  V= d/dx.   Recalling epih) = XH{C~  h),

cpih) = ipiiCh), we have  i[MQ(f), Wfo)] = Wfovz), where S has the matrix represen-

tation

I" o     -c-1U2m/-Vm/V)c-1"]

CMf. 0

if we write  L2(R) = RL2(R) © RL2(R), where  RL-,  is the real  Lr

Thus,  S = iA + K,  where
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K=2

L

LO

0

Y

:j

.1
L = CA^C + C~ Xim2Mf - VmV)C~ X,

Y = CMfC- C-lim2Mf VzM^C"1.

We assume  f = ( + g v   ( > 0,   0<g,  £ S(R).   It follows   Y  is a Hilbert-Schmidt

operator, because in Fourier transform space it is an integral operator with kernel

Yik, p)
(m2 + k2)Vfm2 + p2)V>- m2 kp

i     2       i2\lA(    2   ,    .2\\
(m    + k )   (m    + p )

¿{ik- p).

where 1^)= J e!  xgfx)dx,   and  Yik, p) is an   L2-kernel by Lemma 3.2.2 of

[l].   Thus  K is a real linear self-transpose Hilbert-Schmidt infinitesimal sym-

plectic.   In case  e > 0,  M, has a bounded inverse, and so  CM ,C  is a real self-

adjoint operator, being the inverse of the bounded real selfadjoint operator

C~   AL    C~   .   If ( = 0,   CM ,C > 0,   and we can take its Friedrichs'  extension.

In either case we obtain   L  as a real selfadjoint operator, and thus  A   as a self-

adjoint operator.

It follows (see V 3)   that   S   is selfadjointly   implementable, and v £ DiyiS)).

We thus define  MAf) rigorously by  Mn(/) = y0(2î)»  as  yQiS) is a selfadjoint op-

erator having the required commutation relations and zero vacuum expectation.

It also follows that AL(/)  is essentially selfadjoint on any core for ítT(A)  con-

tained in the algebraic span of the n-particles subspaces.

In particular, if t = 0, M0(g,) is still defined as a selfadjoint operator. We

would like to notice that John Cannon has a nonpublished proof for that (private

communication).

We now want to show that Migv g A = M ff) + M jig f, with f = ( + g v ( > 0,

0 < g,, g2 £ S(R), is essentially selfadjoint.   By the Corollary to Theorem 1,

it suffices to show that MAf) satisfies the hypothesis of Theorem  1.

This will follow from

Theorem 2.   Let K  be a complex Hilbert space, and K '  a real subspace

such that si = K' + isi .    Let

S =

ß'

a

0

where  a2, ß2 > e > 0 are selfadjoint operators in K ',   such that  ß    - a    is

Hilbert-Schmidt ior bounded, or trace class), and  a(/32 - a2) is densely defined.
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Then  R = (a/3   a)^a~     is a bounded invertible operator in K',   with a bounded

inverse, such that  R'R - I is Hilbert-Schmidt ior bounded, or trace class).

If T = R 0 (R')"1,   TST- x = iiaß2a)'A,  where  iaß2a)l/i  is selfadjoint and

> e > 0.

Corollary.   The locally correct generator of Lorentz transformations for

P((p)2 is essentially selfadjoint and bounded from below.

Proof of Corollary.   Mn(/) = yfS), where S  has the form

0 - (L -Y)~

L + Y 0

where  L  and  Y  are selfadjoint operators in  H',   Y  is Hilbert-Schmidt, and it is

easy to check that  L - Y > c > 0,   L + Y > e > 0.   As   R§(R) (real functions in

o(R)) is left invariant by   L  and  Y,   it follows (L - Y) 2Y is densely defined.

Thus  S  satisfies the hypothesis of Theorem 2, and so  S = T~   i AT  tot a unitarily

implementable symplectic transformation  T and a selfadjoint operator A > c > 0.

Thus

yfs) = r(T)-17ir(A)r(T) - irirh. dYiA)YiT)v).

The corollary now follows from the Corollary to Theorem 1.   End.

Proof of theorem.   One has first to prove existence of all the operators in-

volved, and this is handled with the help of the following simple lemma:

Lemma.   Let A  and B  be closed densely defined operators with bounded

inverses.    Then AB   is a closed densely defined operator.   If A   and B  are self-

adjoint,  ABA  is selfadjoint.

Proof.   AB = ÍB~XA~X)~X   so Aß  is closed and densely defined.   In case

A   and  ß  are selfadjoint,  ABA  is the inverse of the bounded selfadjoint opera-

tor A~   B~   A        and hence selfadjoint.   End.

It follows   a/3   a is a selfadjoint operator, and it is obviously > (  .   Thus

R = (a/32a)^a       is a closed densely defined operator, as  Diaß   a) C

Diiaß2a)Yi) nD(a), and  a-1 is bounded.   It also follows that R~X  is closed

and densely defined.

It suffices now, to prove the theorem, to show that  RlR - I is Hilbert-Schmidt

(or bounded, or trace class), as this also implies that  R   is bounded, by the use

of the polar decomposition for  R,   and that  R~     is bounded.

But

R'R-I = a-xiaß2a)l/ia-x - arl(d*)*eTl.
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Recalling that if A > e > 0 is a selfadjoint operator, then for all z e DÍA)

AVlz = l- J"~ dy y-yAy + A)~xAz

(Dunford-Taylor formula, see Kato [3, p. 282]), it follows that

(r'r - I)z = - C00dyy'4a-1(y + a/32a)- xa{ß2 -a2)a(y + a4)-1«*-1*

= lf™dyylAa-x{y + aß2aT x aiß2 - a2)fo + a4)" fo,

for z £D{aß2aa-x)n D{aAa~x)= D{a{ß2 - a2)), which is dense in  H '  by hy-

pothesis.   As ß   - a    is Hilbert-Schmidt (or bounded, or trace class), and

||(y + a4)- !|| < (y + <r2)     ,  it is enough to show that   a~x{y + a/32a)- 'a is a

bounded operator for y > 0,  norm continuous as a function of y,   uniformly bounded

in norm for y  near zero, and such that its norm is   0{y~   )  as y —> oo.   As

a~ x(y + aß2a)~ xa = (a~ foy + a/32a)a)~ x = (y + ß2a2)~ l,  it suffices to show

that  (- oo, 8) is in the resolvent set of ß  a2,  tot some 8 > 0,   and that

||(y + /32a2)-1|| = Ofo-1)  as y -* ~.   Let z £ D{ß2a2),  \\z\\ = 1.   Then

(z, ß2a2z)={z, {a2 + iß2 - a2))a2z) = {z, a4z)+{z, iß2 - a2fo).

But

\{z, {ß2 - a2)afo)| < ||/32 - a2|!||afo|| = \\ß2 - a2||(2, a4*)fo

Thus

Re(z, /32a22)>(z, a4z) - |(z, iß2 - a2)a2z)\

>{z, a*z)-\\ß2-a2\\{z, a4z)y>-% ||^2-a2||2,

as   {z,  cfoz) > 0.   It follows it is enough to show that  o{ß2a2) C{w eC| Re w > 8\

for some 8 > 0,   where  oiß2a2) is the spectrum of ß2a2, as ß2a2 + % \\ß2 - a2\\2

will then be Trz-accretive, so  ||(y + ß2a2)~x\\ < iy - Y4 \\ß2 - cx2|| 2)~ 1   for y >

MU/32 - a2||2 (see Kato [3, p. 2791)-   Actually  o(ß2a2) is even nicer, in fact

o(ß   a  ) C [c   , oo),  as shown by the following argument, due to W. Wils:   If o ' =

a-JOS,  then  a ,((/32a2)- fo = o >{a~ 2ß~ 2) = a 'iß- xa" 2ß~ x) C (0, e~2], as

o-'{AB) = o'ÍBA) for bounded operators  A   and  B,   and  a2,/32>c>0.   It follows

o\ß2a2) C [f   , oo),  as   c(A) = (ff '(A-   ))        for a closed densely defined operator

A  with a bounded inverse, as  A — A = — A(A_    — A~   )A.

To show  R~x = a{aß2a)~   '     is bounded, we repeat the argument used to

show that  R  is bounded.   Using the appropriate polar decomposition for  R~  ,

it  is  enough  to  show  that    R~X{R~XY  is bounded.
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As before,

R-HR~XY - I = a(a/32a)-Ha- a(a4)-'/2a,

453

(p~1(p-1)'_/)2 = _ f" dy y-lAaiy + aß2a)~xaiß2 - a2)a(y + a4)~ laz

= \$™dy y-yfa-2y + ß2)"1^2 - a2)(a-2y + a2)~Xz,

,2 ,2for z £ D(a(a/32a)   1'2a), which is dense in H'.   But

a~2y + ß2 > ß2 > f > 0,   for y > 0,   so both  (a~2y + a2)- '   and  (a"

y + aL > az > c > 0,

2.,   ,   «2)-l

are bounded operators for y > 0, norm continuous as a function of y, and uniformly

bounded in norm for y near zero.   Moreover,

(a   2y + a2) > inf     (A~2y + A2)>

Aeo-(a2)

inf     (A"2y + A2)>2y
z\e[t ,oo)

H

and  a~2y + ß2= a"2y+ a2 + (/32 - a2)>2y1/2- ||/32

,-2„   ,   „2Ï-1N    0„j   ll(„-2„ a   o2\-l\\   „ra   ni„-l/2

a2|L Thus both

a-.y+a2)-l||   and   ||(a-2y + /32)-l||   are   0(y-1/2)  as  y

It follows   R~  ÍR~   Y -I is a bounded operator, and thus so is  R~   .

If we let  T = R © (r')~ l,  it is clear that T5T- x = z(a/32a)1/2,.   End of

proof.

7.   Renormalization of a quadratic Hamiltonian.   Let us consider the self-

interaction of the neutral scalar free field given by the interaction Hamiltonian

V = A   \[:<pixY dx.

The total Hamiltonian is then  H = HQ + V-   Unfortunately,   V  cannot be defined

as an operator in   K in any reasonable sense (see Segal [l0]).   The problem must

be reformulated.   Physically, to say  H is the Hamiltonian means that if </>  is the

field, and </> its time derivative, then   i [H, cpif, ')] = cßif, t).   This commutator

can be computed, formally,    It follows from the canonical commutation relations

that i[H, *P(z)] = W(5z),  for z e DÍS), where  S is represented by the matrix

(C2 + 2AC-2)

in the decomposition  H = RL 2(R") © RL AR").   If \>-m2/2,  it follows  C4

2A > 0,  and we can define D = (C4 + 2A)1/4.   Let
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D~lC

T =
DC

Then  T is a bounded operator, and (D~ fo)^- XC = CD~ 2C = (/ + 2AC- 2)~ X/2,

and D~  C is thus seen to be bounded, using its polar decomposition.   T is clearly

a symplectic transformation, but is not unitarily implementable, as  2KC~     is not

Hilbert-Schmidt.   This gives us some insight on the way H  cannot be defined as an

operator in  X,  as

TST-
0 -D¿

0

iDl

It follows (see Remark 1) there exists a complex structure in  A which makes S

a skew-adjoint operator.   Let Aj   be this new complex Hilbert space.   Then S is

selfadjointly implementable in the corresponding free Weyl process (K, Wv Y., v.),

and, as  T  is unitary from A,   to  A,  we can take  J\    = J\, W, = W o T, r,fo) =

r(T ' T"   ), and  v. = v.   In this representation,  5  is selfadjointly implemented

by H     =yATST~X).   Let S      =TST'1.   Then S     = iD2,  and thus H      =
J        ten       ' U ten ren ten

dYÍD").   Analogously to the construction of the neutral scalar free field, we define

^ten(/) = li,(D"V)'^ren(c?) = WiDg) for real functions / £ L 2(R"), g £ DÍD), and

we have  z YH     , cp    (/)]" = cp     if),  as desired.   Thus we have been able to make
ten     ^ ren  J '   ten   '

sense out of H,   but to do so we had to make a renormalization that was equivalent

to a change of Hilbert space, and the need for this change came from the nonuni-

tary implementability of  T.

The renormalized field is just the neutral scalar free field with mass

(m2 + 2A)   '   ,  as  D = im2 + 2A - A)   ' ..   We have thus done a mass renormalization.

In the usual treatment, cutoffs are introduced.   Their function is to make  S

selfadjointly implementable, but they also make   T unitarily implementable.

The space cutoff is introduced by defining

Hif) = H0 + A J^fo)2: fix)dx,

where  / is a real positive function, bounded and square-integrable.   This cor-

responds to defining

Sif)
t

0      - (C2 + 2AC-1tVLC"1)1

where  M, denotes multiplication by the function /.   Analogously to the case
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without cutoffs, if A > - 7?22/2,  we define Dif)= (C4 + 2A/W/):/4,   and from it con-

struct  Tif).

A momentum cutoff is also introduced.   It substitutes  M. a for  M,,  where

the operator M, a is defined.as having, in Fourier transform space, the integral

kernel %aik)fik - p)%aip), where  %aik) =1  if k < o,  and is zero otherwise.   As

this is an L2-kernel,  M, a is a Hilbert-Schmidt operator.   Thus,  Sif, o) =

iiC2 + \C~lM      C~X)+ Kif, o), where

Kif, o) =

-XC-XMiiyC~X'

XC~xMj aC-x

is a self-transpose Hilbert-Schmidt infinitesimal symplectic.   It follows Sif, o)

is selfadjointly implementable, and we can set Hif, o) = yfsif, o)).   On the other

hand,   Tif, o) is unitarily implementable, as  CDif, o)~2C = iC"XDif, o)2C~1)-1 ■-

(/ + C~ XiDif, o)2 - C2)C~ X)~X, and Dif, o)2 - C2 is seen to be Hilbert-Schmidt

using the Dunford-Taylor formula, as in the proof of Theorem 2 (only here it is

very easy to see that the integrand is bounded, with Hilbert-Schmidt norm bounded

by an integrable function), and it is easy to see that if X  is a Hilbert-Schmidt

operator, and  / + X  is invertible, then  (/ + X)      = I + Y,   where   Y  is again Hil-

bert-Schmidt.   It follows there exists a constant Eif, o) such that YiTif, o)) '

iHif, o) + Eif, o))YiTif, o))-1 = yfTif, o)Sif, o)Tif, ff)"1) = Hif, o)^,  as both

sides generate continuous unitary one-parameter groups implementing the same

continuous one-parameter group of symplectic transformations.   The constant

Eif, o) is needed to adjust the ground state energy of Hif, o) to zero.

Similarly, the techniques of Theorem 2 also show that  C~  (D  if)- C  )C~

is Hilbert-Schmidt, if the number of space dimensions is < 3,   so  Tif) is unitar-

ily implementable, and it follows that Sif) is selfadjointly implementable, and

we can repeat the above procedure with Sif).   But  Kif) is not Hilbert-Schmidt

(see Remark 2).

To remove the cutoffs, we make first  o —> oo,  and then  / —» 1.   It is easy to

see that D4(/, o) —» D4if)  strongly in the domain of Dif), as  o —> oq.   As

D4(/, o~), D4(/)  are uniformly bounded away from zero, we can use the Dunford-

Taylor formula to get  D 2if, o) —» D2(/)  strongly in the domain of D  (/), as

tS(i.o-) tS(f)
o —> o«.   By a theorem of Trotter,  e Kn —> e ren   strongly, so it follows

itHU.cr) itH(f) tS(l) tSm
e ™^ e ren.   Similarly,   e <en — e    •"   strongly, and

e
ren "tene strongly.
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