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REPRESENTATIONS AND CLASSIFICATIONS

OF STOCHASTIC PROCESSES
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DUDLEY PAUL JOHNSON

ABSTRACT. We show that to every stochastic process X one can associate

a unique collection      4>+, T(t), E{U), p*) consisting of a linear space on

which is defined a linear functional p*, together with a convex subset *+ which

is invariant under the semigroup of operators T\t) and the resolution of the iden-

tity E(U). The joint distributions of X, there being one version for each <t> € 4>+,

are then given by

P0(A-(tj) eUv..., XUj + ... + tn) e UJ . p*E(UJT(t) • • • E(U ̂TU^.

To each 4> contained in the extreme points *++ of 4>+ and each time t we find

a probability measure P*(<t>, •) on *++ suchthat T(t)<t> = fc+^P*(<t>,d$. P*

is the transition probability function of a temporally homogeneous Markov pro-

cess X* on «>++ for which there exists a function / such that X = f{X*). We

show that in a certain sense X* is the smallest of all Markov processes Y for

which there exists a function g with X=g(Y). We then apply these results to a

class of stochastic process in which future and past are independent given the

present and the conditional distribution, on the past, of a collection of random

variables in the future.

Introduction. It is the purpose of this paper to find minimal algebraic and

Markov process representations of general stochastic processes and then to apply

these representations to what we hope will turn out to be an interesting class of

stochastic processes. The reader should note that our definition of a stochastic

process will not be the standard one. Indeed we will define a stochastic process

to be simply a convex set of probability measures on the sample path space which

is closed under conditioning on the past. There are several reasons for our doing

this. In the first place, a Markov process consists of a convex set of measures

on the sample path space, one measure for each initial distribution, and these

measures are closed under conditioning on the past. In the second place, suppose

that an observer is looking at some random phenomenon which at some initial time

is described by a particular measure on the sample path space. If a different
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observer were to come along at a later random time, the phenomenon he observed

would no longer be described by the original measure but by some convex combin-

ation of measures conditioned on the past. As a result we feel that it is best to

think of the stochastic process as the collection of all possible measures which

various observers might have to use to describe the phenomenon. Finally, we feel

that there is some reason to believe that every random physical phenomenon is

simply a temporally homogeneous Markov process in disguise. As a result, since

the Markov process is a convex set of measures closed under conditioning on the

past, we feel the original random phenomenon would also have this property.

Our first result is that to any stochastic process one can associate a unique

algebraic structure whose main component consists of a semigroup of operators

on a linear space. This association is well known in the case of temporally homo-

geneous Markov processes. The interested reader can refer to [6] to see how hit-

ting time distributions for general stochastic processes can be found, using the

algebraic representation, as the solution of an abstract Dirichlet problem.

Having defined a stochastic process and having constructed an algebraic

representation for it, we then concern ourselves with the problem of representing

the stochastic process as a function of a temporally homogeneous Markov process.

We feel that this problem is an important one. In the first place, once having re-

•duced a stochastic process to a function of a particular temporally homogeneous

Markov process, we can then use the well-developed theory of Markov processes

to study the original process. In the second place, we feel that in nature stochas-

tic processes are Markovian and that the only reason we observe non-Markovian

processes is that we are not observing enough; that there is some other variable

which, taken together with ours, would make the process Markovian. For example,

the number of cancerous cells in the body, as a function of time, is probably not

Markovian. Yet one feels that there is probably some other observable, such as

the amount of some substance in the body, which together with the number of

cancerous cells would form a temporally homogeneous Markov process. This other

observable would then be treated as the cause of the cancerous growth and its

regulation would then hopefully regulate the growth of the cancer. We feel that

finding a Markov process representation of a given stochastic process is equiv-

alent to finding what is causing the process to behave as it does. Unfortunately

one can find many Markov process representations of a given stochastic process.

The problem is to find the simplest. In [5] we gave a method for constructing

Markov process representations for general stochastic processes, but we did not

show that the resulting representation was the best. In this paper we have divided

stochastic processes into simple and nonsimple ones. We then order all Markov

representations for a given stochastic process, and show first that for simple

processes there is a unique minimal Markov process representation and that it is
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precisely the one constructed in [5]. We then show for discrete time stochastic

processes, whether simple or not, that the minimal Markov process representations

can be constructed using a variation of the construction used in [5]. Unfortunately,

this representation need not be unique for nonsimple stochastic processes.

Finally we introduce classes of stochastic processes which we call H pro-

cesses. These are generalizations of temporally homogeneous Markov processes

and include the basic Bush-Mosteller [1] model for learning. Their defining prop-

erty is that past and future are independent given the present and the conditional

distribution, on the past, of a collection a of random variables in the future. We

describe the algebraic representations of H processes and then construct explic-

itly the minimal Markov process representation for a particular example.

1. Definitions and statement of results. Let JH =)H(Q,!?) be the space of all

finite valued signed measures on the measurable space (Q, ?) of all functions a>

mapping a subset T of [0, «>) into a measurable space (S, X) where 3" is

the CT-field generated by the events X(t)(oj) - a>(t) € U e 2 and where S is a sep-

arable compact metric space with Borel sets 2. Let Tit), t £ T, be the semigroup

of linear operators on 5K defined by TU)lAXUj) £ Op ••• , X(/„) 6 U„) =

p(X(* + tl)eUl,-..,X{t + tn)e Uj; E{U), U e 2, be the resolution of the identity

on JR defined by

E(fJ)p(A) = p(X(0) e U, A),

and p* be the linear functional on )K defined by p*(i = p(Q). We define a stochas-

tic process to be any convex subset 0+ of probability measures in JH which has

the property that the positive cone which it generates is invariant under T(t), teT,

and E{U), U e 2, and closed in the weak* topology over the continuous functions

in the product topology of 0. We denote by $ the smallest linear space in 3R con-

taining 0+ and we define the algebraic representation of the stochastic process

to be the collection X = (q>, $+, TU), E(u), p*). Clearly if <p e <p+, then we

can calculate the joint distributions of <f> from the algebraic representation X

using the easily verifiable fact that

cp(X(/.) el/.,..., X(t. +••• + /) e U) = p*E{U )T(t ) • •. E(U .)T(t.)<p.

Two collections

X =      <&+, TU), E(U), p*)   and   X =      $+, TU), E(U), ß*)

will be called isomorphic if there exists a one-to-one linear mapping y of $ on-

to 0 such that

(i) y$+ = <&+,

(ii) yT(t)cp = f{t)y<f>,
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(iii) yE(U)<p = E{U)y<p,

(iv) p*<f> = p*yqb.
With this in mind we have the following theorem.

Theorem I. A necessary and sufficient condition that a collection X =

(O, $+, T(t), E(U), p*) be isomorphic to the algebraic representation of a stochas-

tic process is that:

(1) 0 is a linear space generated by the convex subset $+.

(2) T{t), t eT, is a semigroup of linear operators on $ with T(Q) = 1.

(3) E{U), U £ 2, is a family of linear operators on 0 which is a resolution

of the identity. That is to say,

E(U U V) = E{U) + E(V)   if U n V = 0, E(U n V) = E(U)E{V) and E(S) = /.

(4) p* is  a   linear functional on 3> for  which  p*T{t)<p =p*<p,

p*E{Un)T{tn)...E(U1)T{t1)cp is continuous under monotone limits in Ul, • • • ,

Un and <p = 0 whenever p*E{Un)T{tn) ■ • ■ E(Ut)T(t Jcp -0 for all Uv ... , Un

in 2 and fj, ... , tn in T.

(5) The positive cone J?+$+ is invariant under the operators T(t), t€T, and

E{U), Uel, and for each <f> e $+, p*<p = 1 and p*E(Un)T{tn) ■ • • E(Ut)T{t Jcp > 0.

Furthermore 0+ is closed in the topology generated by the neighbourhoods

Me, /j, •• • , /m> *i» •• •• '„K<p)

= j^: I j • • • jf.biv • •, an)f*£Uan)T(/J. • • EUjM^Xcp - ^)| < e,

i — 1, • • •, w>

where /j, • • • , /   arc continuous functions on S". tj, • •« , tH are in T and e > 0.

For example, any temporally homogeneous strong Markov process will be a

stochastic process under the above definition. Indeed, if S is the state space,

then up to an isomorphism $ would be the set of all measures on S, $+ would

be the set of all probability measures on S, T(r) wuold be the semigroup of oper-

ators on 0 defined by

(T(t)<p)(U) = f d>(du)Pt{u, U)

where P( is the transition probability function, E(U) would be the resolution of the

identity on $ defined by (E(K)cp) (U) = <p(l/ D V) and p* would be the linear func-

tional on $ defined by p*<b = <f>{S).

A temporally homogeneous Markov process V on a measurable state space

CT, SB) will be called a perfect representation of the stochastic process X if
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there exist measurable functions / and 6 mapping J into S and the set SP(J) of

all probability measures on 3 onto $+ respectively such that, for all to e JP(fT),

MxUj) 6 Uv    ., X(/n) e Un) = Pjf o Y(/,) e I/,, • • •, / o Y(/n) 6 l/J

where P   is the distribution of Y(r), f e T, when the initial distribution is to. In
TO

other words, the measures in G*+ can be interpreted as being precisely those

measures derived from the temporally homogeneous Markov process V with various

initial distributions. That is to say, any initial distribution of Y yields via / a

measure in <P+ and any measure in $+ derives from a particular initial distribu-

tion of Y. We will call a perfect representation measurable if there exists a

measurable subset 3' of 3 such that 6 restricted to 3' is a one-to-one mapping

of 3' onto the set $++ of extreme points of 4>+. The set 9X °f a^ perfect

measurable representations of X can be partially ordered by letting Y' < Y if:

(1) The state space (J', SB') of Y* is contained in the state space (3\ SB)

of Y in the sense that 7' C J and 3$' C SB, /' is the restriction of / to Y1 and

6' is the restriction-of 6 to !P(J').

(2) For each b e T\T there exists a probability measure M(b, •) on 3"' such

that whenever a e 3"' and (7 is a measurable set in 3"', the transition probability

functions Qt and öt' of Y and Y* are related by

Ö>, U) = g,(a, U) + ßt(a, A)M(fc, U)

or, if the time parameter is discrete, by

Q\(a, U) = gx(a, (7) + f^Q^, dbMb, U).

Intuitively, this means that Y' can be obtained from Y by taking each state

b £ 3\3"', splitting it into pieces and then assigning each piece to one of the

states in 3', where the proportion of b that is assigned to states in U is M(b, U).

If X = ($, $+, T(t), E{U), p*) is a stochastic process with a countable time

parameter T and if $+ is a simplex, then we shall say that X is simple. When

X is simple it follows from Choquet's theorem (see [5], [7]) that for each <f> in

the set of extreme points $++ of $+ and each t e T there exist unique probability

measures P*(<p, •) on <1>++ for which

T(t)<p=C iAP?(*,#).
•'*++

Since the probability measures P*{<p, •) are uniquely defined and since T{s +1) =

T(s)T(t), it follows that
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and so we construct a temporally homogeneous Markov process X* on $++ with

transition probability function P*. If we let / and 6 be defined by the equations:

E((/cpj)cp = rp and 6m = fo++<pm(dcp), then it follows from [5] that for each rp e <P+,

6m\X{t')eU., •     X(t) e (M = Pjf ° y(r.) e {/.,...,/ ° Y(r ) e 1/ j.
11 nnm'ii 1 Tin

We shall call X* the dual of X. Clearly X* is a measurable perfect representa-

tion of X.

Theorem II. // the stochastic process X is simple, then X* is, up to an

isomorphism, the only minimal measurable perfect representation of X.

The reader should note that if X is a temporally homogeneous Markov process,

then X is simple and $++ is isomorphic to the set of all probability measures

on S whose support consists of a single point. In this case 4>++ can be identi-

fied with S and P*, with this identification, is P(. In other words, X = X*.

If X = (0, $+, T{t), E{U), p*) is a stochastic process which is not simple,

then the above procedure might break down because Pt, t eT, need not be a tran-

sition probability function. However, we can get around this difficulty when the

time parameter is the nonnegative integers by defining the n-step transition prob-

ability function P* in terms of the one-step transition probability function P*.

Indeed, we know from Choquet's theorem that to each cp e $+ there exists a prob-

ability measure       on $++ such that tp = /♦++^ö<^(^)- When Q can be chosen

so that for each measurable set U £ $++, Q^W) is measurable in <f>, we will say

that X is measurable. It follows that when X is measurable there exist prob-

ability measures P*(<j>, •) on $++ for which

T,p= f   ^p*(,p,#),   r = r(i),
■'•++

and for which P*(., U) is measurable for each measurable U in We define

the dual X* of X to be the temporally homogeneous Markov process on $++ with

one step transition probability function P*. It should be noted that when X is

not simple, X* is not the same representation that was obtained in [5]. Taking /

and 6 as before we have

Theorem III. // X is a measurable discrete time stochastic process, then a

necessary and sufficient condition that a measurable perfect representation of X

be minimal is that it be isomorphic to a version of X*.

If $+ consists of the set of all <f> £ $ for which

p*E(Un)T(tn) • • • EO/jM/^tp > 0,     p*cp = 1,

for all l/j, — , U   in 2 and tj, • • • , tn in T, then X will be called an outer
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stochastic process and its algebraic representation will be written as X =

W>, T(t), E(U), p*) since in that case $+ is uniquely determined by O, T(t),E{ll)

and p*. On the other hand, if there is a f^0e$ such that $+ is generated by

the closure of the convex hull of the points E(Un)T(tn) • • • E(l/j)T(/j)<£0, where

l/j, — , Un are in 2 and fj, • • • , <n are in T, then X will be called the inner

stochastic process of tf>0 and its algebraic representation will be written X =

X(cAQ) = (O, T(t), E(U), p*, r/>0). To each inner stochastic process one can asso-

ciate the outer stochastic process X = (<P, T(i), E(U), p*). The reader should

note that $++ is not in general equal to $++ and X* is not in general equal to

X*. An example of this phenomenon is given in §7.

Suppose that H is a collection of bounded measurable real valued functions

on (Q, ?) which includes the identity l(a>) = 1. An outer stochastic process X =

(3>, T(t), E(U), p*) will be called a H process if $+ is the weak* closure of

the set of all <p e $+ for which, for any t e T and AeJ,

0(A(+|y() = #A;|x(/)f EGpXc^), f effl.

Note that 3~( is the ff-field generated by X(a), « < t, £*(<a)) = where &>*(«) =

<u(/ + a) and A* = [<u: &>* e A]. Also E(<p) denotes the expectation using the

measure <p.

Theorem IV. A necessary and sufficient condition that an outer stochastic

process X = ($, f(t), E{U), p*) be a H process is that X be isomorphic to a

collection X = ($, T(r), E((/), p*) u/iere

(1) $ is a linear subspace of the set of all functions mapping 2 x E into

R which are such that, for each f eH, cf>(-,     is a measure.

(2) E(V)<p(U,     = <f>{UV, it).
(3) p*<p = <p(S,l).

(4) E(fp)(e/(/(x0)) = rp({;,ff).

Note that if X = ($, T(«), E(U), p*) is a discrete time H process, then we

can define the nonlinear operators R(x), x e S, via

R(x)<p(l/, 6 = E(<p)(^yX(l))|X(0) = x)

and it then follows that

EW(Cl VX(w+ !)) |X(0 " *1» * • * ' X{n) m Xn) ■ ' * *        W £

and so

rp(X(0) eUQ, ...,X(b) el/B)

= J   rpUx0, 1)       RUoW&i. 1) •••       R(*^,) I)-
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In other words, X is generated by first picking a point xQ according to the

distribution cp(., 1), then picking Xj according to the distribution R(xn)rp(., 1)

and then x2 according to the distribution R{x j)R(x 0)<p(., 1) and so on. The

reader can refer to [l], [3] and [4] for examples of stochastic processes similar

to the a processes defined here.

As an example, consider the discrete time a process where H = H0 is the

set of all functions £ of the form f (<u) = /y(X(l)(ca)) where ly is the indicator

of the Borel set U in R+. In this case S = R+ and 2 is the Borel subset of

R+ and so we can identify 0 with the linear space of functions 3> mapping

2 x 2 —♦ R. We will assume that all of the functions <f> e 4> are absolutely contin-

uous in their second varaible with respect to the Lebesgue measure on i?+ and we

shall simply write the derivative of <p(t/, ■) with respect to the Lebesgue measure

on R+ as <f>\l!, v). We will also assume that <p'(U, •) e C°°(R+) for each U e 2

and cp e 0. <p'(u, v) will denote the density of <f> with respect to the Lebesgue

measure on R+ x J?+ when it exists. If <f>({a\, S) = 1 for some a e S, then <f>\u, v)

is to be <p'(S, i/)/jaj(a). Finally, let B be a bounded measurable function mapping

R+xR+xi?+—»R+ which is a completely monotone function in its third variable

and for which B(x, y, y) = 1 for all x and y in R+. It follows that there exist

probability measures a(x, y, •) on R+ such that

B(x, y, z) = J"~ ezta{x, y, dt).

Theorem V. Let X = ($, T. E(U), p*) be a H„ process with

T<p(U, V) - - jy dv j(j du [B(x, u,u + v)<p'(dx, u + v)].

Then:

(1) (R(x)cp)'(u, v) - - 4- [ß(x, a, a + i>)<p'(x, a + t/)] /f° <p«(x, z) az.

(2) T£e mapping

(a, b) - <pa       V) = Jv e"6"^,     a e 17,

= 0, a/17,

z's a bijection of R + x R+ onfo <P++ a«a" /(a, t>) = a.

(3) X* ias transition probability function

P(a, fc U, V) = Jo du J(v_i)n[0>oo] *-f**>«U. a, a",).

(4) A necessary and sufficient condition that (ft be a version of X (i.e.

rp 6 $+) zs that for any 0 < x < y,
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<f>{X(n + 1) < x, X(0), .... X(n), X{n+l)<y< X{n + l) + X(« + 2))

= j'o B(X(«), (, y) dt/fl B(X{n), £ y)

2. Proof of Theorem I. The necessity of conditions (1) through (5) is clear.

To prove the sufficiency, suppose that X = ($, 0+, T(f), E{U), p*) satisfies con-

ditions (1) through (5). To each <f> e $+ for which p*cf> = 1 we get, via conditions

(1) through (5) and the Kolmogorov extension theorem, a probability measure

y<pe% where

yrpttUj) el/,,-.., X(/j + ... + tn) eUn). p*E{Un)T(tn) • • • E{U JTU fe.

Clearly X = (<&, 0+, f(/), E(l/), p*), where <& = yS>, TOty«? = yT(f)<p, E([/)y<p =

yE(U)<p and p*y<£ = p*$ is a stochastic process. Furthermore, y is an isomor-

phism of X onto X. For example, y is one-to-one since yrp = yifr implies that

p*E{Un)T(tn) • • • EWjTitJty -xfr) = 0 for all choices of Uv • • • , Un in 1 and

fj,««. , /   in T and so, by condition (4) of Theorem 1,    = i/r.

3. Proof of Theorem II. We first show that < is indeed a partial ordering of

Px. Suppose that V < Y* < Y*. Then 3 C 3' C 3"" and there exist measures

AKfe, •) for each b e 3"'\3 and Al'(fc, •) for each b e 3"\3' for which

Q/ß,     = Q'/a, (7) + J      Q't(a, db)M(b, U)

and

u) = g*u t/) +/rvr,e>, u).

Setting M(i, •) = 0 for b e 3"'\3" and M'(b, ■ ) = 0 for    e.3"\3"' gives us

ß>. ü) = ß>, I/) + J"     , Q';(a, rf«M'(6, U)

+Jy'V     db)Mib> u) +fr\v e"(fl' db)fr v A1'(6, ^c)M(c' u)

= ß*(«, t/) + |rX3. e';(fl, ̂ )M"(fe, i/)

where

M"(b, U) =        17) + M(b, U) + M'(b, dcMc, U).

Thus Y < Y < Y implies that Y < Y . Since < is reflexive and antisymmetric, it

follows that <) is a partially ordered system. Suppose that Y is a measur-

able perfect representation of X. Then Y is a temporally homogeneous Markov

process on some state space (3, SB) with transition probability function P(, and
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there are functions / and 6 mapping 'S into S and 9*CD onto $+ respectively-

such that, for each m £ !P(J),

ömlxUj) et/,,..., X(/n) e i/J = Pjf o y(/1) e Ir1(>.. (/ o y(M e uj.

Since Y is a measurable representation of X, we know that there exists a mea-

surable subset 5T' of J consisting of exactly one point from each of the sets

6~ 'rp, rp £ $++. For each c £ 3", let r»c be the probability measure on (3", fB)

whose support is \c\. We know from Choquet's theorem, together with the fact

that X is simple, that there exists for each c £        a unique probability mea-

sure öc(.) on J' for which

Let P't be defined by

P'tU, U) = Pt(a, U) + jyNJ, Pt{a, db)Qb{U).

Then for any a £ 3"', we have

p*E(Un)T(tn) • • • E(l/jMfj) ^ <f>bPt{a, db)

=     p*E(Un)T(tn) ... E(U1)T(t1)(pbPt{a, db)

- j* <p6(X(/,) eD,.X(/j + •.. + ib) €l/B)P/a, o%)

= f pot (/ °      e Uv.. •, / o y(fl + ... + tn) £ Un)Pt{a, db)

= pm (/°Y(f + *.) £(/,,...,/oy(/+ /+... + /) et/ )

=    (X(r + iO e t/t, ..., x(f + f , + ••• + O € U )
' «* 1 & 1 ft ft

= p*E(Un)T(tn) ... E(U])T(t1)T{t)gba

= p*E(Un)T{tn) • - • Ed/jMt,) f    ^ p* (rpa,

Thus /g.rp6 Pt(a, db) = /#++^ P*(tpa, dtp) and so

JP **P>> *> = /j. *6P/". *> + Jj.     [Jy\y. dc)Q^b]
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Since $+ is a simplex, it follows that P't(a, db) = P*(<pa, d<pb) and so X* = Y*

< Y. Since X* is a perfect representation of X, see [5], it follows that X* is the

only minimal perfect representation of X and the theorem is proved.

4. Proof of Theorem III. Since, for each m e IP($++),

(0m)(X(O) e l/0, .. •, X(n) e 1/b) - p*E(U)T • • • E(l/,)rH(ü0)(9m)

- p*E(UjT ... EiUjTEWJ J#   ^Q m(<ty0)

- f*E(l/„)T • • • EWJT ->„ m(#0)

- f , m(d</,B)p*E{U)T-..E{U.)T<l>B

= f m{<h/,0)p*E{Un)T...E(U2)T f , * .P*tyOj,.)

" / ,    "Wo* /.,    PV0. WyiMjT ... Bd/2)7V,

- «<*o> /rl(/j pV0,#.).« Jrl^#„>

- p™(/ 0 **(0) 6 üo./ 0 x*(n) 6 ^

it follows that X* is a perfect representation of X. Suppose that X* is not mini-

mal. Then there exists a subset 0++ of $++ and a probability measure        .)

for each rpe$++\$++ such that the temporally homogeneous Markov process X'

on 0++ with one step transition probability function

P'(<p, •) = P*(<p, •) + f P*(<p, #)A#, •)

is a perfect representation of X. That is to say,

OmiXU.) eU., ...,Xü ) e U ) = P (/' ° Y(t.) 6 (7., •-.,/' o y(/) e fj )
* 1 n n m 11 ' fin

where /' and ö'are the restrictions of / and 6 to $>++ and JP(0++) respectively.

Let «peO^Xo^ Then

p*E(Un)T • • • E(1/,)TE(1/0)Wib)

= f      ÄMloifU,.x(fi)euB)

- f mGty0)p*E(Un)T ...E(U,)TE(Uo)0o

-p*E(t/ )T..-E(Ü1)TE(Ü0) f <!>0nA<N>a).
n J/'~1V0
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Since this holds for all choices of n, U0, • • • , Un, it follows that

But tp e 3>++ and <ptff'~ lU0 C $++\$++ and so we have a contradiction. Thus

X* is minimal.

On the other hand, suppose that V is a measurable representation of X. Then

there exists a measurable subset 3' of 3" consisting of exactly one point from

each of the sets 6~ 1<p, rp e $++. For each c e 7, let mc be the probability mea-

sure on (3*, SB) whose support is \c\. Since X is measurable we know that for each

we can find a probability measure Q (•) on 3"'which is measurable in

c and which has the property that

<f>c= Jy, <PbQcUb)>     <pc = emc.

Let P* be the one step transition probability function

.    P'(a, U) = Pia, U) + f       P(«, ̂ )e6((7).

Then for any a e 7' we have

p*E(Un)T • • • E(fJj)TE(f/0) J <pfcP(fl, <#)

= J" p*E(Un)T • • • E(Ul)TE(U0)<pb P(a, db)

= J" <p6(X(0) e l/0, . • •, X(») e Uj P(a, db)

= f P   (/ o Y(0) £(/.,...,/ o yOi) £ (7 )P(a, <#>)

= Pm (/oy(i) et/0,...,/oy(„ + i) el/n)

= <pa(X(l) 61/0, • • •, X(« + 1) e (7n) = p*E{Un)T . • • E{U0)T<pa.

Since our algebraic representation is reduced we can conclude that Tcpa =

^<f>bP(a, db). Hence

jj,   <V(«> ■    U   <P„P(*>   db)    /y,   <P,   [j^y,   P(«, rfc)ßcU)]

= f5,<f>bP(a,db)+ j^, [fv <j>bQc(db)^ P(a, dc)

= jv <t>b p(«» db) + J^, <PcP(a, <fc)

<pbP(a,db) = T<pa.

Since J' C $++ we conclude that y' is a version of X* and the proof is completed.
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5. Proof of Theorem IV. To prove the sufficiency, suppose that the stochastic

process X = T(r), E{U), p*) satisfies the conditions (1) through (4). To show

that X is a a process, we must show for all A e S, <j> e $+ and t e T that

0(A+1 St) = <p[\+t I X(t), EUpKt* I ft), € e a].

But for any choice of Uj, •. • , fVm+fj in 2 and Sj, ■ • • , sm+n in T, letting

yj(k) = E(Uk)T(sk) ... EiUjTbJtß, we have

<j>(X(s} + ... + sm+n) e l/m+n, • • •, XU, + "• + *„,+ sm+l)

eUm+l\X(sl + ... + sm)eUmf.:,X(9l)eUl)

= p*i/Km + n)/p*tlfim)

- ^f.J^.J • • • E(l/ ., M*_..)
ra+n"wm+n'       "wm+l" v m+1 [pVwJ'

Using (4),

0(w)(«7, Q

P*#m)

p*xjj(m)

E{<f>)[?s 1u(X(sl + • • • + sj), X(sj) el/,,..., X(s, + • • • + sj e Uj
1 m

<i(X(s,) eU,,       X(s. + ... + s )eU )

= KMC +...+» V^l ^•■• + SJ)\^0 el/,,—, XU, + — + «J.
1 7R

Thus

<MA+ +...+s I XU,) el/,,—, XU, + — + s „) e l/J
I fn

= <p[A+ |E(<p)(£+ /„(X(s. + ... +s ))\
\ m I m

XU,) el/,,..-,X(s, + ... + sJ el/J, f eS, l/e2]

or

0(A; |?t) = <p[At+1E(0X£/y(x(ri) I ? t), e e 3, 1/ e 2]

= <p[At+ |/y(X(rt)E(0K^ I ?t), f e ft 1/ e 2']

= rp[At+|xG), E^X^up, feH]

and so X is a a process.
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On the other hand, if X = (6, f(t), E(U), p*) is a E process, then (0, T(r),

E(U), p*) is isomorphic to (0, T(r), E(U), p*) via the mapping 0 —♦ <p where

(1) 0 is the set of all functions 0 mapping IxH into S defined by

cpd/,a=£(^)(f/(/(x(o)),rpee.
(2) T(t)<p(U, O = E(£)(t*,+/y(X(t))).

(3) E(V)0(U, £) = <p(UV, cf).

(4) p*<j> = 1).

Clearly T(r) is well defined on 0 since if 0 =    then 0 = ^ since X is a H

process. Also one clearly has

p*E{U )T(t ).-. E(t/.)T(< )0
* n       n 11'

= rp(X(fl) e Uj,.... X(fj + • •. + tn) e Uj - fE(Un)f{tn) • • • BiUjfittf

and so the isomorphism is proved.

6. Proof of Theorem V. We first note that T satisfies condition 4 of Theorem

IV since if ^=/v,(X(l)),then

E(<p)(^/y(X(0)) = E(rp)(/v,(X(l))/(;(X(0)) = 0(X(O) e (7, X(l) e V)

= p*E(V)rE(l/)cp = E(V)TE((/)0(S, S) = TE{U)cp{V, S)

= " fT «*» f„     IT 4- [ß(*.    a + v)E(U)<p'{dx, a + v)]
JO        J v       JO ßu

- _ f °° dv f  <& f -r- [ß(x, a, a + v)(f>'(dx, u + v)]

= fv du      0'Ux, «) = <p(U, V) = 0(1/, 0-

Thus X is a 30 process provided that $+ is closed. We will show this later.

Part (1) of the theorem is obvious. To prove part (2), we note that

TE{Un) • • • TE(U0)<p{U, V)

= (-1)" f dv ( du C   ...f   —B{x,v,v + u)
Jv    Ju   Jun    JuQdv »

d d
— B(x     ,x.x+u+v) — B(x      x„ ., x„ . + x + a + v) • • • •

• — ß(xn, x,, x. + • • • + x +u + v)d>'(dxn, x. + • • • + x + u + v)dx, • • • dx
uii n 'ui n i n

and so a necessary and sufficient condition that <p e 0+ is that p*0 = 1 and for

all U, UQ, • • • , (/„
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p*E(U)TE(Un) • • • TE{U0 V - te(un) • • • TE(Ua)<p(U, S)

d d
m - [ du [   • •• f   —B(*„ ,. x. * +")t-b(x—2- x«-l + x» + ")
U) Ju    Jt/B     Ju0 du    "-1   "   " (9u

-B(xQ, Xj, x j + • • • + xn + a + v)<p'(dxQ, Xj + ••• + *„ + «)<&i • ■ • <&„ > 0
du

or equivalently that

(-l)"-1  I    _B(x       x , x +a)—B(x   ,x   ,x    , + x + u)

• • • — B(xn, Xj, Xj + • • • + xn + u)<p'(dxQ, Xj + ... + xn + u) > 0.

Letting x2 = ... = xn = a = 0 we see that a necessary condition that <f> e $+ is

that for all nonnegative integers n,

[-a/a*]V(i/,*)>o.

Thus <£'((/, •) is a completely monotone function on R+. Conversely, if <f>'(U, •)

is a completely monotone function, then it is clearly in <£+ since the completely

monotone functions are closed under products and the operators - d/dx. It follows,

therefore, that <P++ consists of the functions

ta.b^' V)= Sve"bV' a€U'

= 0, ail},

and so the proof of part (2) is complete. Part (3) follows, letting tx^a, y, U) =

«a y(U - b), from the fact that

J*~ e-^P{a, b; U, drj) = J*~ J"~ ̂(l/, v)P(a, b; d£, dr,)

= (T<pa b)'{U, v)=- C L B(fl, a, a + i^^dy

= Zu JT(*+^e'(fc+7?)(u+i')a(fl'».

= ^^n^e-^aXa, u,dr,)du
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which implies that

Pia, b; U, V) = fa e-^abU, u, dr,)du

To prove part (4), we assume first that cp is a version of X. Then for all

0<x<y

<j>(X{n ¥ 1) < x|X(0) = *„,•••, X(n) - xn, X(n f l) < y < X(»f l) + X(n + 2))

(-,)" Jo'        J^%tli +2 "(X"' + "»J-*** A2

n+1 <«n+2

|o B(V X"+«' y) jy B(X"- 1' V X« f y) * * • *'Wx0' *l + • * * ♦ % +

B(V Xn+1' ̂  ^ B(xn- I' V % + *>"• Xl + • • • + *. + >)Ä„tl

" Jo B(V *n*V >Ux«*l/Sl B(V Xn+1' >)</X-+r

On the other hand, suppose that

rp(X(n + 1) < x\5n, X(« + 1) < y < X(n + l) + X(n + 2))

= fXB{Xn,t,y)a?lfiB(Xn,t,y)d4.

Then

J* B(X(n), tf, y)       <p(X(n + 1) < x < y < X(n + l) + X(» + 2)1?,)

jyo B(X(n), f, y) <p(X(n + l) < y < X(n + l) + X(n + 2)|

£[<p(X(« + 1) < x < y < X(n + l) + X{n + 2)|3rJ|+l)|S:>l

E[rp(X(n + 1)< y < X(« + l) + X(n + 2)\3 n+l)\f J

jl <p{X(n + 2) > y - *(") - fl*(XQ» + D -

"     <p(X(« + 2) > y - f|fB, X(« + 1) = &<p{X(n + 1) = #|5n)

j"X <p(X(n + 2) > y - t*|5B, X(« + l) = 00'(X(b + l) = f^) #

~ J** <p(X(« + 2) > y - £|Jn, X(« + 1) = 04>\X(n + l) = flS.) #

Differentiating both sides of this eqaution with respect to x and then letting x=y yields
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f* <p(X(« + 2) > y - {\5n, X(n + l) = tf<p'(X(« + l) = {ft J

= <p'(X(>7 + 1) = yl^J fyQ B(X(n), f, y)
Thus

fX rp(X(H + 2) > y - r*|J , X(« + 1)=&'(X(« + 1) = «fj? )
r B(xw, «* y) #=^- "—^-1_.

J° <p'(X(n+l) = y\3n)

Differentiating with respect to x and then replacing y — x by *n+2 and x by

*n+l yie^s tne equation

<p(X(n + 2) > «.^ly.. X(n + l) = xß+1)

«p'(X(«+l) = x   ,+*   JJ )
= B(X(„), ,    , x. + xJ -=+!-

„+I   n+l     „+2      ^(x(„ + l) = x

<£'(X(n + 2) - xn+2|X(0) = x„, • • •, X(n + 1) - xn+,)

«=-Btx > x   „ x   ,+*   •>)-•

^n+2       "    "+      " + + 0'(X(B + 1)-X1|+1|X(O) = XO.«■)-*,)

It therefore follows by induction on n that

0'(X(O)-xo, • • •, X(n) = xn)

- <£*(X(0) = x0V(X(l) - x, I X(0) - xfl) .. • <£'(X(n) = xn | X(0) - *„, .... XU - 1) - *„_,)

- - <£'(X(0) - x0V«'(X(l) = x, I X(0) = *„)••■ </>'(X(n - 2) - x^j |X(0) = xQ, • • •, Kin - 3) - *„_ 3>

. JL B(X(n - 2), xn_,, xn_, + xft'iXin - l) - xn_, + xj X(0) . x0, • • •, Xin - 2) = xn_J
n

= _JLb(x„ ,,x„ ., x. . + xW(X(0) = x„, ...,X(b-2)-xii     X(n-lj = x   .+x )

d d
= (-l)B-B(x   „x   „x   ,+x)-b(x   „x   ,, x   ,+x ,+x)

ßx       n-2'   n—1    n— 1     n ^x        n-3   n-2    n-2     n— 1 n

... A B(x0, x^ x, + • • • + xn)0'(X(O) = x0, X(l) = x, + • •. + xn)

and so, comparing with equation (1) we see that <f> is a H0 process. Finally, we

note that $ is weak* closed since 0++ is weak* closed. That is to say, if

<f>a   j   converges weak* to <£, then for any continuous function / mapping R+ x

R + —► i? one has
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r r f(u, v)p*E(dv)TEiduua  -0 ]
» u    u m' m       n' «

= f°° /(a , i/)«"*""*»- f°° /(a , v)e~bnVdv->0.
J 0      m J 0 "

Clearly this implies the existence of a and b such that a^     a and bn —* b and

7. Example where X* ^ X*. Consider the discrete time temporally homogene-

ous Markov process V on {1, 2, 3} whose transition probability matrix is

0   1 o"

0 Vt Vi

1 0 0

and whose initial distribution is (0, 0, 1). Let 0 be the mapping of Jl, 2, 3i onto

{1,2} defined by /(l) = /(2) = 1 and /(3) = 2, and let p be the probability mea-

sure generated by 6Y on (Q, 3") where Q is the set of all functions mapping the

npnnegative integers into {1, 2}. The reader can easily check that X(p) =

(<fr, T, E(U), p*, rpn) where

(1)

(2) r =

<s> = r\

"o  l o"

0 Vi %

1 0 0

(3)

(4)

E({11) =

1 0 0

0 1 0

0   0 0

E({2}) =

0 0 0

0 0 0

0  0 1

(5)

Furthermore,

p*(xy x2, Xj) = Xj + x2 + Xj,

0O = (0, 0, 1).

$..=1(1,0, 0), (0,1,0), (0,0, 1)J
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and X(cS0)* is the temporally homogeneous Markov process on $++ with transi-

tion probability matrix

"O   1 o"

0 Vi    Vi .

1 0 0_

Thus identifying 1 with (1, 0, 0), 2 with (0, 1, 0)_and 3 with (0, 0, 1) we see

that X(<£)* = Y. On the other hand, X* lives on $++ = |(1, 0, 0), (-1,2, 0),

(0, 0, 1)1 and has the transition probability matrix

\  lA o

0 0 1.

1 0 0_
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