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Kj OF A CURVE OF GENUS ZERO(i)

BY

LESLIE G. ROBERTS

ABSTRACT. We determine the structure of the rector bundles on a curve of

genus zero and calculate the "universal determinant" K j of such a curve.

1. Introduction. Let F be a field. Then there is a bijection between (non-

singular projective irreducible) curves of genus zero over F and central simple

algebras of rank 4 over F. If X is such a curve then X is isomorphic to a plane

curve of degree 2, and there is a separable extension [X: F] of degree 2 such that

X Xp K asP^, the projective line over X.

Let 0 be the category of vector bundles (= locally free sheaves of finite type)

on X and 5H the (abelian) category of coherent sheaves on X. Let X t be the

"universal determinant" Xj as defined in [3, Chapter VIII]. The groups Xj(C)

and KjCK) are both defined. Set K^XJ-K^Ö). In this paper we prove that if

X is the curve of genus zero over F corresponding to the central simple algebra

A then Xj(X) St Xj(F) © Xj(A). At the end of the paper it is proved that the

inclusion of categories ö —♦ JH induces an isomorphism Xj(ö) —» X jOR) so

Xj(X) could have been defined with coherent sheaves instead of vector bundles.

If A is the ring of 2 x 2 matrices over F, then X = P1p and the formula reads

Xj(X) Ä Xj(F) © Xj(A) = F* © F* (where F* denotes the nonzero elements of F).

This has already been proved in [8] or [9] (working with coherent sheaves in the

first case and vector bundles in the second) so we can confine ourselves to the

case where A does not split, i.e. is a division ring of rank 4.

Recently [7] Quillen has developed a theory of higher X's for schemes, and

in [7] he calculates the X-theory for Severi-Brauer schemes, the simplest example

of which are the curves of genus zero. The result that I have obtained agrees

with his, although Gersten in [6] has proved that if X is a nonsingular elliptic

curve over C Quillen's Xj is not the same as the "universal determinant" Xj.

This paper is based on the second half of [ll]. Throughout Z denotes the

integers, R the real numbers, and C the complex numbers.

I am grateful to M. P. Murthy for pointing out reference [14] to me.
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2. The structure of vector bundles on X. The results in this section seem to

be more or less "known" (see the discussion in [7, §8]). I include them here

because I need the detailed description of the vector bundles for my calculation of

X j and do not know a suitable reference.

Let X be a curve of genus 0 over the field F, X ^Pp, and let X be a

separable extension of degree 2 such that XK = XxFKsPJ{, If /: XR —» X is

the morphism obtained from the change of field, then /* is an injection on isomor-

phism classes of vector bundles or coherent sheaves [12, remark at the end of § l].

We use this, together with the known structure of vector bundles on P ^ to deter-

mine the structure of vector bundles on X.

The Krull-Schmidt theorem holds for vector bundles on X and XK because

all Horn's are finite dimensional vector spaces over the ground field [2]. That is,

every vector bundle can be written in a unique manner as the direct sum of

indecomposable vector bundles. If we write P1K = Proj K[TV Tj] and let 0(1)

be the canonical line bundle determined by this projective structure, then the

indecomposable vector bundles on XR are just the line bundles G(«). Some dis-

cussion of this can be found in [10]. Furthermore IXG(n)) is a vector space of

dimension n + 1 over X if « > 0 and is zero otherwise. Also Horn (0(m), 0(h)) =

r(0(- m)®Q(n)) = IXG(« - m)). Therefore there are no nonzero morphisms from

0(m) to G(n) unless n > m.

The Picard group of XR is Z, generated by 0(1). The Picard group of X is

Z also, generated by 0(1), where 0(1) is defined by the projective structure of

X as a second degree curve. Also /*0(1) = 0(2). (I will write simply 0(n), it

being clear from the context whether this is a bundle on X or X^.)

The following lemma will be used throughout this discussion:

Lemma. Let Y be a scheme of finite type over a noetherian ring A. Let B

be a flat A-algebra, and let U be an open subset of Y. Write Y' = Y ®A B and

let f: Y' —» y be the morphism induced by change of base. Let n be a quasico-

herent sheaf on Y and A/' = /*CV). Then r(/-1(t/), «V) = B ®A Hi/, AT).

Proof. First of all the lemma is true if U is affine, by the construction of

product in the category of schemes and the behavior of /* in the affine case. If

U is not affine then U can be covered by a finite number of affine schemes

U. (1 < i < n). If we write U{. = Ui n U. then Uy will be affine also. We have

an exact sequence

o - rw, n) - n ixi/., tv) =t n. iXf/,.;, Art
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since n is a sheaf. Tensoring with B and using the lemma for affine sets we

get an exact sequence

o - b ®A nu, n) -n.nrHap, n')■=* n. r(/-Hu.p, n*).

But /_1(t/) is covered by the /"Hi/,.) and /" 1(t/fj.) = /"Hup H/"l(u.). There-

fore we have an exact sequence

o - nrHu), n') - ntnrHap, n') =j n^ixrHa-p, n%

Therefore B ®A Hü, N) = rX/-1(y), A?') as required.

In the application A = F, B = X and V = u = X. The lemma is false if B is

not a flat A-module. For example, let A = X[Tj, T2], y = Spec A, u = Spec A -

(origin) and B = X, the hornorphism A —» B given by sending Tj and T2 to 0.

If /V is the structure sheaf of Y, then T(u. ,V) = A, and B ®A T(u, n) = B. But

f~ l{a) = 0, so IX/- 1{u), n') = O. (This example was pointed out to me by Paul-

Jean Cahen.)

The structure of the vector bundles on X is given by the following theorem:

Theorem 1. Let X be a curve of genus 0 over the field F, X SfePp, and

let X be a separable extension of degree 2 such that XK = X xp X öS P^. Let

f: XK —»X be the morphism obtained from change of base. Then the vector

bundle Ein) - /+0(«) (n odd) on X is indecomposable of rank 2. Every vector

bundle on X can be written uniquely (up to order of summands) as the direct sum

of line bundles Q(n), and the bundles E(n).

Proof. First we show that E(n) is indecomposable. If E(n) is decomposable,

then E(n) = G(n j) © Q(n2) and f*E(n) = 0(2«.) © 0(2«2). The Galois group

Z/2Z of X over F acts on the vector bundles on Xj< in an obvious way (denoted

by a ""). By (2*) of [12] we have f*fß(n) = 0(«) © ÖW).  The equation /*0(l) =

0(2) proves that the Galois group acts trivially. Therefore we must have f*(E(n))

= 0(b) ©0(n). Hence F(«) must be indecomposible, otherwise the Krull-Schmidt

theorem would be violated.

If n is even, fß(n) = 0(«/2) © 0(«/2). For we get 0(n) © 0(n) on both

sides if we apply f*, and /* is an injection on isomorphism classes. Now suppose

that V is a vector bundle on X. Then f*(V) =©. 0(«.), so //"(V) = V © V is

the direct sum of the 0(».) and E(np. By the Krull-Schmidt theorem so also is

V. This completes the proof of Theorem 1.

I will conclude this section by making some general remarks about the vector

bundles on X. Let Homp denote morphisms of vector bundles on X, and HomK

denote morphisms of vector bundles on XR. First of all, Homp (0(«), 0(m)) = 0

if n > »n and is nonzero if n <m. Also HomF (0(«), E(m)) ®p K =
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HomK (/*0(»), f*E{m)) = HomK «9(2«), G{m) ©GU)) so HomF (Ö(n), EU)) = 0 if

2n > m and is nonzero if 2« < m.  By applying /* and using the fact that /* is an

injection on isomorphism classes we can prove that E{n) ®G(m) S Ein + 2m),

Ein)* = E(- n) (*denotes dual) and E(n) ® E(m) &* 4 0((m + n)/2).  From the last

isomorphism it follows that Horn (E(n), E(m)) & E(- n) ® E{m)     4 0((m - n)/2).

Thus HomF {Ein), E{m)) = 0 if n > m and is nonzero if n <m. Hence we may

linearly order the vector bundles • • • E(- 3), 0(- l), E(- l), 0, E(l), 0(l), E(3),

0(2), • • • with nonzero morphisms going only to the right. One can also show that

A2E(1) =0(1) by applying /* to both sides.

Now we consider Homp {Ein), Ein)). From the above it is a 4 dimensional

vector space over F, and since E{n) is indecomposable, there are no nontrivial

idempotents.  Finally Homp (E(«), E{n)) ®F X is the ring of 2 x 2 matrices

over X. Thus HomF {E{n), E{n)) is semisimple and therefore a division ring

over F. The Homp (E(«), E{n)) ate all isomorphic, since Ein) ® 0(m) =%E{n + 2m).

More precisely, if F is a field of characteristic ^ 2 then the equation for

for the plane curve X (in homogeneous co-ordinates) is (for suitable choice of

variables) T2 - aT\ - bT\ = 0, a, b € F and Homp (E(- l), E(- l)) is isomorphic

to the quaternion algebra {a, b) (as defined on p. 96 of [13]). If the character-

istic F is 2, then X is given by the equation aT2 + T{T2 + bT2, + cT2 = 0 with

a, b, c e F, and Homp (E(- l), E(- 1)) is isomorphic to the Clifford algebra of the

quadratic form acv2 +cuv + bcv   as defined in [ 1, p. 150}. The characteristic

£ 2 case was proved by a straightforward but tedious calculation in [ll] and the

characteristic 2 case can be proved in a similar manner. I will omit these proofs

because all we need to know for the calculation in §3 is that HomF (E(- 1), E(- 1))

is a division ring of dimension 4 over its centre F. In fact, Homp (E(- 1), E(- 1))

is just the central simple algebra corresponding to X in the bijection mentioned

at the beginning of the paper.

3. Calculation of Xj. We now calculate the group Xj(X), where X is as

in §2. Let V be a vector bundle on X, with automorphism a. Let V =

«jVj ©«2V2© • • • ®nVr be an expression for V as the direct sum of indecom-

posable vector bundles V. which are ordered so that there exist nonzero morphisms

V. —*V. if and only if i </'. Using this direct sum decomposition a can be

represented by a lower triangular matrix, with r nixni blocks af down the

diagonal having entries in either F or A depending on whether V. is of rank 1 or

2. Here A = Homp (E(- l), E(- l)), which is the quaternion algebra {a, b) that

determines the curve if the characteristic ^ 2, or a certain Clifford algebra is

characteristic = 2. In both cases A is a division ring. The a. ate invertible.

One of the defining relations of X j is that if we have a short exact sequence

0 —» Vj —♦ V2 ~* ^3 ~'* 0 in Ö and j8j, ß2> ß$ are automorphisms such that
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0 — vt — V2 — Vj — 0

is commutative, then ^(Vj, ß2) = KjCVj, /3t) + kj(Vj, /Sj), where Kj denotes the

canonical image in Xj. Repeated application of this proves that K^V, a) =

2'=1 k.(* ,V., a ). Write A* and F* for the nonzero elements of A and F respec-

tively. One sees easily that KjOi .V. a.) = Ki_(V., a.) for some a; e A  or F*

(depending on whether rank V. = 2 or 1). Thus we have found generators for

Kj(X). We now try to reduce the number of generators by using exact sequences.

First of all, there is an exact sequence 0 -► C(- 1) —»C© C —*C(l) —»0 on

X since 0(l) is generated by two global sections. (The kernel of the resulting

map 0 ©0 —'G(l) —»0 is a line bundle and must be 0(- l) because the degree

is additive.) Tensoring with ©(«) we get exact sequences of the form 0 —»G(n — 1)

-*G(n) ©0(b) —»G(« + l) —»0 and these enable us to replace all the generators

of the form /Cj(0(n), A) by those of the form Kj(0, A) and /^(©(l), A), A e F*.

Tensoring with E(n) yields exact sequences of the form 0 -» E(n - 2) -»E(«) ©

E(«) —»E(» + 2) —* 0 and these enable us to replace the generators Kj(E(n), p),

fi e A* by those of the form Kj(E(- 1),/x) and Kj(E(l), /z). There is a nonzero

morphism E(l) —'O(l) which must be onto, otherwise the image would be isomor-

phic to 0(«) for some n < 0 and there are no nonzero maps E(l) —»0(n), n < 0.

The kernel is a line bundle, which must be isomorphic to 0 since we have seen

that A2E(l) = 0(1). Therefore we have an exact sequence 0 —»0 ~*E(l) ~*

0(1) —0. This enables us to get rid of the generators of the form Kj(0(l), A),

A e F*. Finally, on XK we have an exact sequence 0 —»©(- l) —♦ 0 ©0 —» 0(l)

—< 0. If we apply     we get an exact sequence 0 —* E(- 1) —»O©0©O©0-*

E(l) —>0. The map 0 ©0-»G(i)        on X K is onto on global sections.

Therefore so also is the map 40 — E(l) on XF (s ince the global sections re-

main the same). If p € Aut E(l) = A* then     induces an automorphism of TE(1)

which is a 4 dimensional vector space over F (as can be seen by applying /*).

Therefore p can be lifted to an automorphism of 40, and hence to an automorphism

of the whole exact sequence 0 —• E(- l) —» 40 —• E(l) —> 0. By taking duals any

automorphism of E(- l) also extends to an automorphism of the sequence. The

generators of Xj(X) are finally reduced to elements of the form Kj(0, A) and

Kj(E(l), p.) for A e F* /* e A*. This can be rephrased by saying there is a sur-

jection <h: F*© H*-> Xj(X) defined by 0(A) = k,(0, A) (A e F*) and 0(/t) =

#c,(E(l), u) {ft e H*).
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Now consider the reduced norm N: A*—» F*. It is proved in [14, Corollary p.

334], that the kernel of N is the commutator subgroup of A* (the index being 2

which is square free). Let NA* denote the image of N. The abelianized group

of A* is therefore NA*. Therefore <f> induces a surjection (also denoted <f>)

<f>: F*©,VA*-» Kj(X).
We now have homomorphisms det: Xj(X) —• F* and y. Xj(X) —» F*. The map

det is defined by taking exterior powers. If V is a vector bundle of rank r, then

a £ Aut V induces an automorphism det a. of ArV. But ArV is a line bundle so

Aut A'V a F* (canonically). Then det KjCV, a) = det a. The vector spaces

H°(X, V) and HKx, V) are finite dimensional, and <xe Aut V induces automor-

phisms of these vector spaces. These automorphisms will be denoted aQ and

a.j respectively. Then x(V, a) = (det aQ)(det dj)"1. If 0 -»(Vr cij) -. (V, a)

—♦ (V2, iXj) —»0 is exact, then x^v- a' = X^vv ai^X^2' a2^     the exact

sequence of cohomology. That ^(V, aß) = y(.V, a)y(V, ß) is obvious, so x

defines a homomorphism \: Xj(X) —► F*.

We now examine what these homomorphisms do to the generators of X j(X).

It is clear that det (0, A) = A, A e F*. End £(l) = A is a subalgebra of

End E(l) ®F X = EndK (0(l) ©0(l) which is the ring of 2 x 2 matrices over X.

Det commutes with base change. Therefore by the definition of reduced norm

[5, p. 142], we have that det (E(l), li) = Np.{(i e A*). The Riemann-Roch theorem

says that dimp H°(X, V) - dimF HHX, V) = degree (AVW r, where rank V = r.

If we take V = 0, then degree 0 = 0, r = 1, so we get dim Hl(X, 0) = 0. There-

fore x(0. A) = A also. If we take V = E(l), then dim H°(X, E(l)) = 4,

degree (A2E(l)) = degree 0(1) = 2, and r = 2. Therefore dim //Hx, E(l)) = 0.

Thus x(£(1)' r1) = det fV But H°(X' E^ = r(E(l)) is a one dimensional vector

space over A, so det uQ is the usual norm, which is the square of the reduced

norm. That is, det liq = GV/i) .

Now define a homomorphism ifr. Xj(X) -»F*©F* by iff = ((det)2*-1, ^det)-1).

Then ^Kj(0, A) = (A, l) and ^Kj(E(l), /x) = (l, Nfi). Therefore the image of iff is

F*®NA* and ifi<f>: F* @NA*-> F*® NA* is the identity. We have already seen

that <f> is onto. Therefore <f> is an isomorphism. This proves

Theorem 2. Let F be a field and let X be a nonsingular curve of genus 0

which is not isomorphic to Pp.  Let the division algebra A be the endomorphism

ring of the indecomposable vector bundle E(l) of rank 2 on X. Let NA denote

the image of the reduced norm N: A* —* F*. Then there is an isomorphism

(f>: F*®NA* -»Xj(X). (Note that F*= Xj(F) and NA*= K^A).)

4. Further remarks. We first consider the homomorphism $: XQ(X) ®z F* —*

Xj(X) defined by $kq(V) ® A = k^V, A). Here X„ denotes the Grothendieck
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group of vector bundles with relations coming from short exact sequences, and

KQ(V) denotes the image of V in XQ. Then XQ(X) = Z © Z with the second copy

of Z being the Picard group. If we use this to identify XQ(X) ®z F* with

F* © F* then 0*U, ft) = iK®. A) + ̂ (0(1), p) = (A, 1) + QT1, it2) = (ty"!. A
If F = R, since     is an isomorphism, we see that $ is onto but has nontrivial

kernel (- 1, -l). We note that in general A/A* will be bigger than (F*)2. If this

is the case if/<f> will not be onto, so neither is

In [8] it was proved that $ is an isomorphism for X a projective nonsingular

variety over an algebraically closed field.

We now consider the homomorphism /*: Xj(X) —»Xj(XK) induced by the

change of base. Xj(XK) = X* © X* generated by k^O, A) and Kj(0(l), A), A e X*.

The action of the Galois group G = Z/2Z of X over F on K ̂ (XK) is just the

obvious action on each copy of X*. The image of /* is contained in X j(XK)G

(the fixed subgroup under the action of G) and by §2 of [12], the kernel and

cokernel of the map /*: X^X) — Xj(XK)G = F* © F* are both killed by 2. One

can check (using the above identifications of X j(X K) with X* © X* and X j(X)

with F* © A/A*) that /*(A, p) - (A, p), A e F* p e A/A*. Therefore /* is injec-

tive, and the cokernel of /*: Xj(X) -»Xj(XK)G is F*/A/A* which is indeed killed

by 2 because every square is a reduced norm.

We conclude by proving that coherent sheaves and vector bundles give the

same Xj.

Theorem 3. Let Y be a regular protective scheme of finite type over a field

F. Let C be the category of vector bundles and % the category of coherent

sheaves on Y.  Then the homomorphism Xj(C) —»XjOlI) induced by the inclusion

of categories is an isomorphism.

Proof. This follows from Theorem 5, p. 72 of [4]. The hypotheses are all

immediate except (c). Let /V be an object in 3U. If n is sufficiently large then

A/ ® 0(n) will be generated by its global sections (which form a finite dimensional

vector space over F since Y is projective). If a. is an endomorphism of A/, then

i ® 1 induces an endomorphism of the global sections of A/ ®0(w). Suppose

dim TOY ® 0(»)) = m. Choose a basis for H-V ® 0(b)). We have a surjection

mOy —>,V ® 0(b) —»0 by mapping the unit sections of the copies of Oy to the

corresponding basis vectors for HV ®0(b)). If Ha ®1) has matrix A, then

the endomorphism of mO given by the same matrix lifts cl ® 1. Tensoring with

0(-b) we see that a can be lifted to an endomorphism of m0(-«), which proves

(c). Theorem 3 now follows.

If X were affine a similar result holds by [4, Theorem 3], but if Y is neither

affine nor projective then I do not know if the corresponding result holds. If
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A2, = Spec F[TQ, Tj] (the affine plane) and Y = A2p — (origin) then I suspect

that Kj(//, a) where H the structure sheaf of Spec FITq] restricted to Y and A

is multiplication by TQ does not lie in the image of the homomorphism Kj(C) —♦

Kj(Jl!) but I do not know how to prove it.
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