K, OF A CURVE OF GENUS ZERO(1)

LESLIE G. ROBERTS

ABSTRACT. We determine the structure of the vector bundles on a curve of genus zero and calculate the "universal determinant" K_1 of such a curve.

1. Introduction. Let F be a field. Then there is a bijection between (nonsingular projective irreducible) curves of genus zero over F and central simple algebras of rank 4 over F. If X is such a curve then X is isomorphic to a plane curve of degree 2, and there is a separable extension [K: F] of degree 2 such that $X \times_F K \cong P_K^1$, the projective line over K.

on X and M the (abelian) category of coherent sheaves on X. Let K_1 be the "universal determinant" K_1 as defined in [3, Chapter VIII]. The groups $K_1(\mathbb{C})$ and $K_1(\mathbb{N})$ are both defined. Set $K_1(X) = K_1(\mathbb{O})$. In this paper we prove that if X is the curve of genus zero over F corresponding to the central simple algebra A then $K_1(X) \cong K_1(F) \oplus K_1(A)$. At the end of the paper it is proved that the inclusion of categories $\mathbb{O} \to \mathbb{M}$ induces an isomorphism $K_1(\mathbb{O}) \to K_1(\mathbb{M})$ so $K_1(X)$ could have been defined with coherent sheaves instead of vector bundles. If A is the ring of 2×2 matrices over F, then $X = P_F^1$ and the formula reads $K_1(X) \cong K_1(F) \oplus K_1(A) = F^* \oplus F^*$ (where F^* denotes the nonzero elements of F). This has already been proved in [8] or [9] (working with coherent sheaves in the first case and vector bundles in the second) so we can confine ourselves to the case where A does not split, i.e. is a division ring of rank 4.

Recently [7] Quillen has developed a theory of higher K's for schemes, and in [7] he calculates the K-theory for Severi-Brauer schemes, the simplest example of which are the curves of genus zero. The result that I have obtained agrees with his, although Gersten in [6] has proved that if X is a nonsingular elliptic curve over C Quillen's K_1 is not the same as the "universal determinant" K_1 .

This paper is based on the second half of [11]. Throughout Z denotes the integers, R the real numbers, and C the complex numbers.

I am grateful to M. P. Murthy for pointing out reference [14] to me.

Received by the editors May 3, 1973.

AMS (MOS) subject classifications (1970). Primary 14F05, 14F15, 14H99.

Key words and phrases. Vector bundle, coherent sheaf, K1, curve.

⁽¹⁾ The preparation of this paper was partially supported by the National Research Council of Canada, Grant A7209. Copyright © 1974, American Mathematical Society

2. The structure of vector bundles on X. The results in this section seem to be more or less "known" (see the discussion in [7, §8]). I include them here because I need the detailed description of the vector bundles for my calculation of K_1 and do not know a suitable reference.

Let X be a curve of genus 0 over the field F, $X \not= P_F^1$, and let K be a separable extension of degree 2 such that $X_K = X \times_F K \cong P_K^1$. If $f: X_K \to X$ is the morphism obtained from the change of field, then f^* is an injection on isomorphism classes of vector bundles or coherent sheaves [12, remark at the end of §1]. We use this, together with the known structure of vector bundles on P_K^1 to determine the structure of vector bundles on X.

The Krull-Schmidt theorem holds for vector bundles on X and X_K because all Hom's are finite dimensional vector spaces over the ground field [2]. That is, every vector bundle can be written in a unique manner as the direct sum of indecomposable vector bundles. If we write $P_K^1 = \operatorname{Proj} K[T_0, T_1]$ and let $\mathbb{O}(1)$ be the canonical line bundle determined by this projective structure, then the indecomposable vector bundles on X_K are just the line bundles $\mathbb{O}(n)$. Some discussion of this can be found in [10]. Furthermore $\Gamma(\mathbb{O}(n))$ is a vector space of dimension n+1 over K if $n \geq 0$ and is zero otherwise. Also Hom $(\mathbb{O}(m), \mathbb{O}(n)) = \Gamma(\mathbb{O}(-m) \otimes \mathbb{O}(n)) = \Gamma(\mathbb{O}(n-m))$. Therefore there are no nonzero morphisms from $\mathbb{O}(m)$ to $\mathbb{O}(n)$ unless n > m.

The Picard group of X_K is \mathbb{Z} , generated by $\mathbb{O}(1)$. The Picard group of X is \mathbb{Z} also, generated by $\mathbb{O}(1)$, where $\mathbb{O}(1)$ is defined by the projective structure of X as a second degree curve. Also $f^*\mathbb{O}(1) = \mathbb{O}(2)$. (I will write simply $\mathbb{O}(n)$, it being clear from the context whether this is a bundle on X or X_{K^*})

The following lemma will be used throughout this discussion:

Lemma. Let Y be a scheme of finite type over a noetherian ring A. Let B be a flat A-algebra, and let U be an open subset of Y. Write $Y' = Y \otimes_A B$ and let $f: Y' \to Y$ be the morphism induced by change of base. Let N be a quasicoberent sheaf on Y and $N' = f^*(N)$. Then $\Gamma(f^{-1}(U), N') = B \otimes_A \Gamma(U, N)$.

Proof. First of all the lemma is true if U is affine, by the construction of product in the category of schemes and the behavior of f^* in the affine case. If U is not affine then U can be covered by a finite number of affine schemes U_i $(1 \le i \le n)$. If we write $U_{ij} = U_i \cap U_j$ then U_{ij} will be affine also. We have an exact sequence

$$0 \to \Gamma(U, N) \to \prod_{i} \Gamma(U_{i}, N) \rightrightarrows \prod_{i,j} \Gamma(U_{ij}, N)$$

since N is a sheaf. Tensoring with B and using the lemma for affine sets we get an exact sequence

$$0 \to B \otimes_A \Gamma(U, N) \to \prod_i \Gamma(f^{-1}(U_i), N') \rightrightarrows \prod_{i,j} \Gamma(f^{-1}(U_{ij}), N').$$

But $f^{-1}(U)$ is covered by the $f^{-1}(U_i)$ and $f^{-1}(U_{ij}) = f^{-1}(U_i) \cap f^{-1}(U_j)$. Therefore we have an exact sequence

$$0 \to \Gamma(f^{-1}(U),\,N') \to \Pi_i \Gamma(f^{-1}(U_i),\,N') \rightrightarrows \Pi_{i,j} \Gamma(f^{-1}(U_{ij}),\,N').$$

Therefore $B \otimes_A \Gamma(U, N) = \Gamma(f^{-1}(U), N')$ as required.

In the application A = F, B = K and Y = U = X. The lemma is false if B is not a flat A-module. For example, let $A = K[T_1, T_2]$, $Y = \operatorname{Spec} A$, $U = \operatorname{Spec} A = (\operatorname{origin})$ and B = K, the homorphism $A \to B$ given by sending T_1 and T_2 to 0. If N is the structure sheaf of Y, then $\Gamma(U, N) = A$, and $B \otimes_A \Gamma(U, N) = B$. But $f^{-1}(U) = \emptyset$, so $\Gamma(f^{-1}(U), N') = 0$. (This example was pointed out to me by Paul-Jean Cahen.)

The structure of the vector bundles on X is given by the following theorem:

Theorem 1. Let X be a curve of genus 0 over the field F, $X \not\cong P_F^1$, and let K be a separable extension of degree 2 such that $X_K = X \times_F K \cong P_K^1$. Let $f: X_K \to X$ be the morphism obtained from change of base. Then the vector bundle $E(n) = f_* O(n)$ (n odd) on X is indecomposable of rank 2. Every vector bundle on X can be written uniquely (up to order of summands) as the direct sum of line bundles O(n), and the bundles E(n).

Proof. First we show that E(n) is indecomposable. If E(n) is decomposable, then $E(n) = \mathcal{O}(n_1) \oplus \mathcal{O}(n_2)$ and $f^*E(n) = \mathcal{O}(2n_1) \oplus \mathcal{O}(2n_2)$. The Galois group $\mathbb{Z}/2\mathbb{Z}$ of K over F acts on the vector bundles on X_K in an obvious way (denoted by a $\overline{}$). By (2') of [12] we have $f^*f_*\mathcal{O}(n) = \mathcal{O}(n) \oplus \overline{\mathcal{O}(n)}$. The equation $f^*\mathcal{O}(1) = \mathcal{O}(2)$ proves that the Galois group acts trivially. Therefore we must have $f^*(E(n)) = \mathcal{O}(n) \oplus \mathcal{O}(n)$. Hence E(n) must be indecomposible, otherwise the Krull-Schmidt theorem would be violated.

If n is even, $f_*\mathcal{O}(n) = \mathcal{O}(n/2) \oplus \mathcal{O}(n/2)$. For we get $\mathcal{O}(n) \oplus \mathcal{O}(n)$ on both sides if we apply f^* , and f^* is an injection on isomorphism classes. Now suppose that V is a vector bundle on X. Then $f^*(V) = \bigoplus_i \mathcal{O}(n_i)$, so $f_*f^*(V) = V \oplus V$ is the direct sum of the $\mathcal{O}(n_i)$ and $E(n_i)$. By the Krull-Schmidt theorem so also is V. This completes the proof of Theorem 1.

I will conclude this section by making some general remarks about the vector bundles on X. Let Hom_F denote morphisms of vector bundles on X, and Hom_K denote morphisms of vector bundles on X_K . First of all, $\operatorname{Hom}_F(\mathbb{O}(n), \mathbb{O}(m)) = 0$ if n > m and is nonzero if $n \le m$. Also $\operatorname{Hom}_F(\mathbb{O}(n), E(m)) \otimes_F K =$

Hom_K $(f^* \mathcal{O}(n), f^* E(m)) = \operatorname{Hom}_K (\mathcal{O}(2n), \mathcal{O}(m) \oplus \mathcal{O}(m))$ so $\operatorname{Hom}_F (\mathcal{O}(n), E(m)) = 0$ if 2n > m and is nonzero if 2n < m. By applying f^* and using the fact that f^* is an injection on isomorphism classes we can prove that $E(n) \otimes \mathcal{O}(m) \cong E(n+2m)$, $E(n)^* = E(-n)$ (*denotes dual) and $E(n) \otimes E(m) \cong 4 \mathcal{O}((m+n)/2)$. From the last isomorphism it follows that $\operatorname{Hom} (E(n), E(m)) \cong E(-n) \otimes E(m) \cong 4 \mathcal{O}((m-n)/2)$. Thus $\operatorname{Hom}_F (E(n), E(m)) = 0$ if n > m and is nonzero if $n \le m$. Hence we may linearly order the vector bundles $\cdots E(-3), \mathcal{O}(-1), E(-1), \mathcal{O}(-1), \mathcal{E}(1), \mathcal{O}(1), E(3), \mathcal{O}(2), \cdots$ with nonzero morphisms going only to the right. One can also show that $\Lambda^2 E(1) = \mathcal{O}(1)$ by applying f^* to both sides.

Now we consider $\operatorname{Hom}_F(E(n),E(n))$. From the above it is a 4 dimensional vector space over F, and since E(n) is indecomposable, there are no nontrivial idempotents. Finally $\operatorname{Hom}_F(E(n),E(n))\otimes_FK$ is the ring of 2×2 matrices over K. Thus $\operatorname{Hom}_F(E(n),E(n))$ is semisimple and therefore a division ring over F. The $\operatorname{Hom}_F(E(n),E(n))$ are all isomorphic, since $E(n)\otimes \mathbb{O}(m)\cong E(n+2m)$.

More precisely, if F is a field of characteristic $\neq 2$ then the equation for for the plane curve X (in homogeneous co-ordinates) is (for suitable choice of variables) $T_0^2 - aT_1^2 - bT_2^2 = 0$, $a, b \in F$ and $\operatorname{Hom}_F(E(-1), E(-1))$ is isomorphic to the quaternion algebra (a, b) (as defined on p. 96 of [13]). If the characteristic F is 2, then X is given by the equation $aT_1^2 + T_1T_2 + bT_2^2 + cT_0^2 = 0$ with $a, b, c \in F$, and $\operatorname{Hom}_F(E(-1), E(-1))$ is isomorphic to the Clifford algebra of the quadratic form $acv^2 + cuv + bcv^2$ as defined in [1, p. 150]. The characteristic $\neq 2$ case was proved by a straightforward but tedious calculation in [11] and the characteristic 2 case can be proved in a similar manner. I will omit these proofs because all we need to know for the calculation in $\S 3$ is that $\operatorname{Hom}_F(E(-1), E(-1))$ is a division ring of dimension 4 over its centre F. In fact, $\operatorname{Hom}_F(E(-1), E(-1))$ is just the central simple algebra corresponding to X in the bijection mentioned at the beginning of the paper.

3. Calculation of K_1 . We now calculate the group $K_1(X)$, where X is as in §2. Let V be a vector bundle on X, with automorphism α . Let $V = n_1 V_1 \oplus n_2 V_2 \oplus \cdots \oplus n_r V_r$ be an expression for V as the direct sum of indecomposable vector bundles V_i which are ordered so that there exist nonzero morphisms $V_i \rightarrow V_j$ if and only if $i \leq j$. Using this direct sum decomposition α can be represented by a lower triangular matrix, with r $n_i \times n_i$ blocks α_i down the diagonal having entries in either F or A depending on whether V_i is of rank 1 or 2. Here $A = \operatorname{Hom}_F(E(-1), E(-1))$, which is the quaternion algebra (a, b) that determines the curve if the characteristic $\neq 2$, or a certain Clifford algebra is characteristic = 2. In both cases A is a division ring. The α_i are invertible. One of the defining relations of K_1 is that if we have a short exact sequence $0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow 0$ in 0 and $0 \rightarrow 0$, 0, 0, 0, are automorphisms such that

$$0 \to V_1 \to V_2 \to V_3 \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\beta_1 \downarrow \qquad \beta_3 \downarrow$$

$$0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow 0$$

is commutative, then $\kappa_1(V_2,\beta_2)=\kappa_1(V_1,\beta_1)+\kappa_1(V_3,\beta_3)$, where κ_1 denotes the canonical image in K_1 . Repeated application of this proves that $\kappa_1(V,\alpha)=\sum_{i=1}^r\kappa_1(n_iV_i,\alpha_i)$. Write A^* and F^* for the nonzero elements of A and F respectively. One sees easily that $\kappa_1(n_iV_i,\alpha_i)=\kappa_1(V_i,\alpha_i)$ for some $\alpha_i\in A^*$ or F^* (depending on whether rank $V_i=2$ or 1). Thus we have found generators for $K_1(X)$. We now try to reduce the number of generators by using exact sequences.

First of all, there is an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \oplus \mathcal{O} \to \mathcal{O}(1) \to 0$ on X since O(1) is generated by two global sections. (The kernel of the resulting map $0 \oplus 0 \rightarrow 0$ is a line bundle and must be 0 (-1) because the degree is additive.) Tensoring with O(n) we get exact sequences of the form $0 \to O(n-1)$ $\rightarrow \mathcal{O}(n) \oplus \mathcal{O}(n) \rightarrow \mathcal{O}(n+1) \rightarrow 0$ and these enable us to replace all the generators of the form $\kappa_1(O(n), \lambda)$ by those of the form $\kappa_1(O, \lambda)$ and $\kappa_1(O(1), \lambda), \lambda \in F^*$. Tensoring with E(n) yields exact sequences of the form $0 \to E(n-2) \to E(n) \oplus$ $E(n) \rightarrow E(n+2) \rightarrow 0$ and these enable us to replace the generators $\kappa_1(E(n), \mu)$, $\mu \in A^*$, by those of the form $\kappa_1(E(-1), \mu)$ and $\kappa_1(E(1), \mu)$. There is a nonzero morphism $E(1) \rightarrow O(1)$ which must be onto, otherwise the image would be isomorphic to O(n) for some $n \le 0$ and there are no nonzero maps $E(1) \to O(n)$, n < 0. The kernel is a line bundle, which must be isomorphic to O since we have seen that $\Lambda^2 E(1) \cong \mathcal{O}(1)$. Therefore we have an exact sequence $0 \to \mathcal{O} \to E(1) \to 0$ $\mathcal{O}(1) \to 0$. This enables us to get rid of the generators of the form $\kappa_1(\mathcal{O}(1), \lambda)$, $\lambda \in F^*$. Finally, on X_K we have an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \oplus \mathcal{O} \to \mathcal{O}(1)$ \rightarrow 0. If we apply f_* we get an exact sequence $0 \rightarrow E(-1) \rightarrow 0 \oplus 0 \oplus 0 \oplus 0 \rightarrow 0$ $E(1) \to 0$. The map $\mathfrak{O} \oplus \mathfrak{O} \to \mathfrak{O}(1) \to 0$ on X_K is onto on global sections. Therefore so also is the map $4 \circ \rightarrow E(1)$ on X_F (since the global sections remain the same). If $\mu \in \text{Aut } E(1) = A^*$ then μ induces an automorphism of $\Gamma E(1)$ which is a 4 dimensional vector space over F (as can be seen by applying f^*). Therefore μ can be lifted to an automorphism of 40, and hence to an automorphism of the whole exact sequence $0 \rightarrow E(-1) \rightarrow 40 \rightarrow E(1) \rightarrow 0$. By taking duals any automorphism of E(-1) also extends to an automorphism of the sequence. The generators of $K_1(X)$ are finally reduced to elements of the form $\kappa_1(\mathcal{O}, \lambda)$ and $\kappa_1(E(1), \mu)$ for $\lambda \in F^*$, $\mu \in A^*$. This can be rephrased by saying there is a surjection $\phi: F^* \oplus H^* \to K_1(X)$ defined by $\phi(\lambda) = \kappa_1(0, \lambda)$ $(\lambda \in F^*)$ and $\phi(\mu) = \kappa_1(0, \lambda)$ $\kappa_1(E(1), \mu) \ (\mu \in H^*).$

Now consider the reduced norm $N: A^* \to F^*$. It is proved in [14, Corollary p. 334], that the kernel of N is the commutator subgroup of A^* (the index being 2 which is square free). Let NA^* denote the image of N. The abelianized group of A^* is therefore NA^* . Therefore ϕ induces a surjection (also denoted ϕ) $\phi: F^* \oplus NA^* \to K_1(X)$.

We now have homomorphisms $\det: K_1(X) \to F^*$ and $\chi: K_1(X) \to F^*$. The map det is defined by taking exterior powers. If V is a vector bundle of rank r, then $\alpha \in \operatorname{Aut} V$ induces an automorphism $\det \alpha$ of $\Lambda^r V$. But $\Lambda^r V$ is a line bundle so $\operatorname{Aut} \Lambda^r V \cong F^*$ (canonically). Then $\det \kappa_1(V, \alpha) = \det \alpha$. The vector spaces $H^0(X, V)$ and $H^1(X, V)$ are finite dimensional, and $\alpha \in \operatorname{Aut} V$ induces automorphisms of these vector spaces. These automorphisms will be denoted α_0 and α_1 respectively. Then $\chi(V, \alpha) = (\det \alpha_0)(\det \alpha_1)^{-1}$. If $0 \to (V_1, \alpha_1) \to (V, \alpha) \to (V_2, \alpha_2) \to 0$ is exact, then $\chi(V, \alpha) = \chi(V_1, \alpha_1) \chi(V_2, \alpha_2)$ by the exact sequence of cohomology. That $\chi(V, \alpha\beta) = \chi(V, \alpha) \chi(V, \beta)$ is obvious, so χ defines a homomorphism $\chi: K_1(X) \to F^*$.

We now examine what these homomorphisms do to the generators of $K_1(X)$. It is clear that $\det(\mathbb{O}, \lambda) = \lambda$, $\lambda \in F^*$. End E(1) = A is a subalgebra of End $E(1) \otimes_F K = \operatorname{End}_K(\mathbb{O}(1) \oplus \mathbb{O}(1)$ which is the ring of 2×2 matrices over K. Det commutes with base change. Therefore by the definition of reduced norm [5, p. 142], we have that $\det(E(1), \mu) = N\mu(\mu \in A^*)$. The Riemann-Roch theorem says that $\dim_F H^0(X, V) - \dim_F H^1(X, V) = \operatorname{degree}(\Lambda^r V) + r$, where rank V = r. If we take $V = \mathbb{O}$, then $\operatorname{degree} \mathbb{O} = 0$, r = 1, so we get $\dim H^1(X, \mathbb{O}) = 0$. Therefore $\chi(\mathbb{O}, \lambda) = \lambda$ also. If we take V = E(1), then $\dim H^0(X, E(1)) = 4$, $\operatorname{degree}(\Lambda^2 E(1)) = \operatorname{degree} \mathbb{O}(1) = 2$, and r = 2. Therefore $\dim H^1(X, E(1)) = 0$. Thus $\chi(E(1), \mu) = \det \mu_0$. But $H^0(X, E(1)) = \Gamma(E(1))$ is a one dimensional vector space over A, so $\det \mu_0$ is the usual norm, which is the square of the reduced norm. That is, $\det \mu_0 = (N\mu)^2$.

Now define a homomorphism $\psi: K_1(X) \to F^* \oplus F^*$ by $\psi = ((\det)^2 \chi^{-1}, \chi(\det)^{-1})$. Then $\psi \kappa_1(\mathbb{O}, \lambda) = (\lambda, 1)$ and $\psi \kappa_1(E(1), \mu) = (1, N\mu)$. Therefore the image of ψ is $F^* \oplus NA^*$ and $\psi \phi: F^* \oplus NA^* \to F^* \oplus NA^*$ is the identity. We have already seen that ϕ is onto. Therefore ϕ is an isomorphism. This proves

Theorem 2. Let F be a field and let X be a nonsingular curve of genus 0 which is not isomorphic to P_F^1 . Let the division algebra A be the endomorphism ring of the indecomposable vector bundle E(1) of rank 2 on X. Let NA^* denote the image of the reduced norm $N: A^* \to F^*$. Then there is an isomorphism $\phi: F^* \oplus NA^* \to K_1(X)$. (Note that $F^* = K_1(F)$ and $NA^* = K_1(A)$.)

4. Further remarks. We first consider the homomorphism $\Phi: K_0(X) \otimes_Z F^* \to K_1(X)$ defined by $\Phi \kappa_0(V) \otimes \lambda = \kappa_1(V, \lambda)$. Here K_0 denotes the Grothendieck

group of vector bundles with relations coming from short exact sequences, and $\kappa_0(V)$ denotes the image of V in K_0 . Then $K_0(X)=\mathbf{Z}\oplus\mathbf{Z}$ with the second copy of \mathbf{Z} being the Picard group. If we use this to identify $K_0(X)\otimes_{\mathbf{Z}}F^*$ with $F^*\oplus F^*$, then $\psi\Phi(\lambda,\mu)=\psi\kappa_1(\mathbb{O},\lambda)+\psi\kappa_1(\mathbb{O}(1),\mu)=(\lambda,1)+(\mu^{-1},\mu^2)=(\lambda\mu^{-1},\mu^2)$. If $F=\mathbf{R}$, since ψ is an isomorphism, we see that Φ is onto but has nontrivial kernel (-1,-1). We note that in general NA^* will be bigger than $(F^*)^2$. If this is the case $\psi\Phi$ will not be onto, so neither is Φ .

In [8] it was proved that Φ is an isomorphism for X a projective nonsingular variety over an algebraically closed field.

We now consider the homomorphism $f^*: K_1(X) \to K_1(X_K)$ induced by the change of base. $K_1(X_K) = K^* \oplus K^*$ generated by $\kappa_1(\mathbb{O}, \lambda)$ and $\kappa_1(\mathbb{O}(1), \lambda)$, $\lambda \in K^*$. The action of the Galois group $G = \mathbb{Z}/2\mathbb{Z}$ of K over F on $K_1(X_K)$ is just the obvious action on each copy of K^* . The image of f^* is contained in $K_1(X_K)^G$ (the fixed subgroup under the action of G) and by §2 of [12], the kernel and cokernel of the map $f^*: K_1(X) \to K_1(X_K)^G = F^* \oplus F^*$ are both killed by 2. One can check (using the above identifications of $K_1(X_K)$ with $K^* \oplus K^*$ and $K_1(X)$ with $F^* \oplus NA^*$) that $f^*(\lambda, \mu) = (\lambda, \mu)$, $\lambda \in F^*$, $\mu \in NA^*$. Therefore f^* is injective, and the cokernel of $f^*: K_1(X) \to K_1(X_K)^G$ is F^*/NA^* which is indeed killed by 2 because every square is a reduced norm.

We conclude by proving that coherent sheaves and vector bundles give the same K_1 .

Theorem 3. Let Y be a regular projective scheme of finite type over a field F. Let $\mathbb C$ be the category of vector bundles and $\mathbb M$ the category of coherent sheaves on Y. Then the homomorphism $K_1(\mathbb C) \to K_1(\mathbb M)$ induced by the inclusion of categories is an isomorphism.

Proof. This follows from Theorem 5, p. 72 of [4]. The hypotheses are all immediate except (c). Let N be an object in \mathbb{M} . If n is sufficiently large then $N\otimes \mathbb{O}(n)$ will be generated by its global sections (which form a finite dimensional vector space over F since Y is projective). If α is an endomorphism of N, then $\alpha\otimes 1$ induces an endomorphism of the global sections of $N\otimes \mathbb{O}(n)$. Suppose $\dim \Gamma(N\otimes \mathbb{O}(n))=m$. Choose a basis for $\Gamma(N\otimes \mathbb{O}(n))$. We have a surjection $m\mathbb{O}_Y\to N\otimes \mathbb{O}(n)\to 0$ by mapping the unit sections of the copies of \mathbb{O}_Y to the corresponding basis vectors for $\Gamma(N\otimes \mathbb{O}(n))$. If $\Gamma(\alpha\otimes 1)$ has matrix A, then the endomorphism of $m\mathbb{O}$ given by the same matrix lifts $\alpha\otimes 1$. Tensoring with $\mathbb{O}(-n)$ we see that α can be lifted to an endomorphism of $m\mathbb{O}(-n)$, which proves (c). Theorem 3 now follows.

If X were affine a similar result holds by [4, Theorem 3], but if Y is neither affine nor projective then I do not know if the corresponding result holds. If

 $A_F^2 = \operatorname{Spec} F[T_0, T_1]$ (the affine plane) and $Y = A_F^2$ – (origin) then I suspect that $\kappa_1(H, \lambda)$ where H the structure sheaf of $\operatorname{Spec} F[T_0]$ restricted to Y and λ is multiplication by T_0 does not lie in the image of the homomorphism $K_1(\mathbb{C}) \to K_1(\mathbb{M})$ but I do not know how to prove it.

REFERENCES

- 1. C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristic 2. I, J. Reine Angew. Math. 183 (1941), 148-167. MR 4, 237.
- 2. M. F. Atiyah, On the Krull-Schmidt Theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307-317. MR 19, 172.
 - 3. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
- 4. H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 61-79. MR 30 #4806.
- 5. N. Bourbaki, Eléments de mathématique. XXIII. Part. 1. Les structures fondamentales de l'analyse. Livre II: Algèbre. Chap. 8: Modules et anneaux semi-simples, Actualités Sci. Indust., no. 1261, Hermann, Paris, 1958. MR 20 #4576.
- 6. S. Gersten, Higher K-theory of rings, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 3-42.
- 7. D. Quillen, Higher algebraic K-theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147.
- 8. L. G. Roberts, K_1 of some abelian categories, Trans. Amer. Math. Soc. 138 (1969), 377-382. MR 40 #4340.
- K₁ of projective r-space, Proc. Amer. Math. Soc. 26 (1970), 587-592.
 MR 43 #6221.
- 10. ———, Indecomposable vector bundles on the projective line, Canad. J. Math. 24 (1972), 149-154. MR 45 #6828.
- 11. ———, Real quadrics and K₁ of a curve of genus zero, Mathematical Preprint No. 1971-60, Queen's University at Kingston, Ont.
- 12. ——, Base change for K_0 of algebraic varieties, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin, 1973, pp. 122-134.
- 13. W. Scharlau, Quadratic forms, Queen's Papers on Pure and Applied Mathematics, No. 22., Queen's University, Kingston, Ontario, 1969. MR 42 #4574.
- 14. S. Wang, On the commutator group of a simple algebra, Amer. J. Math. 72 (1950), 323-334. MR 11, 577.

DEPARTMENT OF MATHEMATICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA