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ABSTRACT. We introduce a class of p-absolutely summing operators which

we call p-extending. We show that for a logmodular function space A(K), an

operator T: A(K) —>Jf is p-extending if and only if there exists a probability

measure ß on K such that T extends to an i some try T: AP(K, We

use this result to give necessary and sufficient conditions under which a

bounded linear operator is isometrically equivalent to multiplication by z on

a' space L"(K, n) and certain Hardy spaces fip(Kt /x).

1. Introduction. We wish to discuss the problem of representing an operator

on a Banach space as multiplication by the independent variable z on the function

spaces Lp(K, li) and HP(K, p), where K is a compact subset of the complex plane

and ft a positive measure on K such that li(K) = 1. Perhaps the best known in-

stance of this arises via the spectral theorem for normal operators on a Hilbert

space [7]. Given a normal operator N from a certain class called simple normal

operators [4], the spectral theorem shows the existence of a positive measure p.

on the spectrum (A.N) of N, with p.(a(N)) = 1, such that N is unitarily equivalent

to multiplication by z on L2(erOV), p). Another important instance is provided by

the subnormal operators on a Hilbert space. It is well known[l] that given any

subnormal operator S having a cyclic vector, there exists a positive measure ft

on the spectrum o(S) of S, with fi(a(S)) = 1 such that S is unitarily equivalent to

multiplication by z on H2(cÄS), li). Such representations have proved important,

for example, in the study of the invariant subspaces of these operators ([2], [18]).

On a general Banach space the analogue of a normal operator is a spectral

operator of scalar type (Definition 2.1), which we shall, for the sake of brevity,

call a scalar operator. The restriction of such an operator to an invariant subspace

will be called a subscalar operator. In §2 we introduce these operators and dis-

cuss some of their properties. In particular we show that each type has a certain
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kind of functional calculus which will be used to establish later results. In §3

we introduce p-absolutely summing operators and the particular properties of them

that we shall require. In §4 we show how the theory of p-absolutely summing oper-

ators can be applied to the functional calculi obtained in §2, to derive several

results concerning a weak form of similarity between operators. We close this

section with an example to show that such results cannot in general be improved

to similarity. In §5, we introduce p-extending operators, and use these to give

necessary and sufficient conditions under which such operators are similar, by an

isometry, to multiplication by z on LP(K, p) and HP(K, p) respectively. Finally,

in §6, we apply our results to the special case of multiplication by z on

Ll(oiT),n).

Notation. X and Y will always denote complex Banach spaces, and L(X) the

Banach algebra of bounded linear operators on X (with the usual norm). By "oper-

ator" we shall always mean an element of L(X). The spectrum of an operator T

will be denoted by o\T). The complex numbers will be denoted by C and the

reals by R. K will denote a compact Hausdorff space and C(K) (resp. CR(K))

the Banach algebra of complex (resp. real) valued continuous functions on K. A(K)

will denote a closed subalgebra of C(/0, and if p is a positive measure on K,

AP(K, p) will denote the closed subspace of LP(K, p) generated by A(K). When

KCC, P{K) will denote the closed subalgebra of C(K), and HP{K, p) the closed

subspace of LP(K, p) generated by the polynomials on K.

By a probability measure on K we mean a positive Borel measure on K of

total mass one.

2. Scalar and subscalar operators. For a complete discussion of scalar oper-

ators we refer the reader to Dunford and Schwartz [8]. In particular we refer to

them for a discussion of spectral measures. We shall consider the domain of any

spectral measure to be the Borel sets of the complex plane and shall be concerned

only with those spectral measures whose support (that is the intersection of all

those closed sets on whose complement the measure vanishes) is compact.

Definition 2.1. An operator T e L(X) is called a scalar operator if there

exists a spectral measure E( •) such that

(1) T- fczEidz).

This spectral measure is unique [8]. It is called the resolution of the identity

for T and its support is o{T). We can therefore replace C by o(T) in (1). Further-

more, we can integrate any Borel measurable function on C with respect to £(•).

To lend some perspective to this observation we give the following definition.

Definition 2.2. Let KCC and A(K) be either a closed subalgebra of C(K)
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containing the polynomials, or the Banach algebra of bounded Borel measurable

functions on K with supremum norm. A functional calculus for an operator T € L(X),

or an A(K)-calculus for T, is a homomorphism h: A(K) —» L(X), where h is bounded,

Kl) = / and h(z) = T.

Lemma 2.3 [8]. Let T e L(X) and B(oA.T)) be the algebra of bounded measur-

able functions on a(T). T is a scalar operator if and only if it has a B{o~{T))-calculus

h: BioiT)) —» L(X) such that for each x e X the map

(**) A : BioiT)) — X,     b (/) = M/)x,

is weakly compact.

Proof. If T is scalar we define, for each / e B(ct(T)),

bif)^ f<x(T){iz)E(dz),

where E(>) is the spectral measure for T. Obviously h: B(oT)) —* L{X) is linear,

and MX) = /, h{z) = T. The boundedness and multiplicativity of h follow easily

from the properties of spectral measures, while the weak compactness of the maps

h   follows from the weak countable additivity of E( • ).

If h: B(oiT)) —* L(X) is functional calculus for T we define for each Borel set

a of ct(T), B(a) = hiy^, where Xa ls tne characteristic function of a. Since h is

a bounded algebra homomorphism it follows easily from the Boolean algebra prop-

erties of characteristic set functions that E( •) is a spectral measure, except for

weak countable additivity. This latter property follows from the weak compactness

of the maps h . Now, by using simple functions and passing to limits of simple

functions one can prove that for each / e BioiT))

*(/) = famf(z)E(dz).

Applying this result to the function /(z) = z shows that T is scalar.

As an improvement of this result we quote without proof the following theorem

due to P. G. Spain [17].

Theorem 2.4. An operator T e L(X) is scalar if and only if for some K C C

it has a C(K)-calculus h: C(K) —> L(X) satisfying

for each x 6 X the map * : C(X) —. X,
(**) *

hx(f) = h{f)x, is weakly compact.

Observe that if X is weakly complete, then by a theorem of Grothendieck [ll],

condition (**) is automatically satisfied. The connection between K and the

spectrum of T is given by the following theorem which may be found in [3].

Theorem 2.5. If T e L(X) has a C(K)-calculus h, then oiT) C K and the sup-

port of h is oiT).
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We shall now turn to the discussion of subscalar operators.

Definition 2.6. Let T e L(X). T is called a subscalar operator if there exists

an operator S e L(Y) having a C(K)-calcuIus for some K C C, such that X is con-

tained in Y as a closed invariant subspace of 5, and the restriction of 5 to X is T.

S is called a quasi-scalar extension of T. 5 is called a minimal quasi-scalar

extension of T if for some C(K)-calculus h, for S, there exists no proper closed

subspace of Y containing X which is invariant under h(f) for every / e C(K).

We call h a minimal C(K)-calculus of S relative to T.

Since normal operators on a Hilbert space are precisely those with a C(K)-

calculus of norm 1 [14], subnormal operators form a special class of subscalar

operators on a Hilbert space. The following theorem proves the existence of a

minimal quasi-scalar extension for a subscalar operator.

Theorem 2.7. Any subscalar operator has a minimal quasi-scalar extension.

Proof. Let T e L(X) be a subscalar operator and S € L(Y) a quasi-scalar

extension of T with a C(K)-calculus h. Let Z be the intersection of all closed

subspaces of Y which contain X, and which are invariant under h(f) for every

/ £ C(K). Obviously Z itself is such a subspace. The restriction S of S to Z

has the C(K)-calculus

Moreover, no proper closed subspace of Z containing X is invariant under b(j)

for every / € C(K), since such a subspace would then be invariant under b(f) for

/ e C(K) and so must contain Z. It follows that 5 is a minimal quasi-scalar ex-

tension of T with a minimal C(K)-calculus b.

To obtain a satisfactory functional calculus for subscalar operators one

requires the spectral inclusion theorem 2.9. The most important argument in this

theorem is covered by the following lemma.

Lemma 2.8. Let T be a subscalar operator, and S a minimal quasi-scalar

extension of it. If T is invertible then so is S.

Proof. Let h be a minimal C(K)-calculus for S relative to T. We assume

0 e K, otherwise, by Theorem 2.6, S is already invertible. Now, using Theorem 2.6

again, we must show that if T is invertible, 0 does not lie in the support of h.

Choose f < llT-1!!"1 and let Df be the closed disc of radius e and centre 0.

Let rp e C(K) have its support contained in D( fl K. For any x € X and positive

integer n

h : C(K) — L(Z),

(2)
||M<p)x|| = ||M«p)5"T-»x|| <||M2n<p)||||r-1||"||x||

because b is a C(K)-calculus for S, and Sx = Tx for any x e X. From (2) it follows
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that for every x € X and integer n > 0

WM< 11*1111*11   sup IzWIlT-l111 n

(3)

*||    sup   |0(2)| • (ellT-1!)"
z£D£ nK

Since e^H*Z  x|| < 1 it follows that h(cf>)x = 0 for every * € X and <f> e C(X) whose

support lies in D( D X. For any / e C(X) the support of f<j> lies in D( O X so that

(4) b(<f>)h(f)x = M<p/)x = 0.

Now the subspace

(5) \h(g)x\x e X, g e C(K)\

is invariant under h(f) for every / e C(K), and contains X since b(\) = /. Since

b is a minimal C(X)-calculus of X relative to T, the closure of this subspace must

be Y. From this and (4), it follows that b(cp) = 0 for every <f> e C(K) whose sup-

port lies in. D( O X, so that 0 does not lie in the support of h.

Theorem 2.9. Let S e L(X) be a subscalar operator and S e L(Y) a minimal

quasi-scalar extension of T, then oi.S) C o{T).

Proof. Let h: C(K) —► L{Y) be a minimal C(X)-calculus for S relative to T.

For any A let X^ = \a> - A|tu 6 X} and define

(6) bx: C(KX) -> L(Y),     ix(/) = bif °(z- A)).

Now      is a CXXj^-calculus for S — A/. Moreover it is obvious that any sub-

space of Y invariant under b(f) for every / € C(X) is invariant under hx(f) for

every / e C(X^), and this for every A e C. It follows that T — A/ is a subscalar

operator with S — A/ a minimal quasi-scalar extension. By Lemma 2.8, S — XI is

invertible whenever T — A/ is, so       C o-(T).

Theorem 2.10. Ler T e L(X) fee a subscalar operator. T has a functional

calculus

h:P(oiT)) — L(X).

Proof. Let 5 be a minimal quasi-scalar extension of T with a functional

calculus

(7) ;:C(X) -»L(Y).

By Theorem 2.6, if 0 e C(X) is one on a compact neighbourhood of o{S), then ;'(/)

= ;(/0) for each / e C(X), so that for any such <f>

(8) n/(/)ii < m sup \f(t)<f>{t)\.
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It follows that

(9) wn< ii/ii sup

Using (9), the spectral inclusion theorem, and the fact that for any polynomial

p(z), p(T) is the restriction to X of p(S), we obtain

(10) HpWII < 11pCS>n < II/II  sup |pW| < II/H   sup |p(f)|.
teo\S) tecr{T)

The algebra homomorphism which takes p(z) to p(T) may therefore be extended

to an algebra homomorphism

(11) h: PioiT)) — L(X)

with ||*|| < ||/||.

Corollary 2.11. If T € L(X) is a subscalar operator, and if some quasi-scalar

extension of T has a C(K)-calculus j with       = 1, then the functional calculus

for T is an isometry. In particular, the functional calculus for a subnormal opera-

tor is an isometry.

Proof. Using the formula for spectral radius of an operator one obtains

(12) sup   |p(/)| < ||p(D||
t«°tT)

for every polynomial p(z). If some quasi-scalar extension of T has a C(K)-calcu-

lus of norm less than one, then it is clear from the proof of Theorem 2.7 that T

has a minimal quasi-scalar extension with such a C(K)-calculus. The corollary

follows by putting ||; || = 1 in Theorem 2.10 and recalling that a normal operator

on a Hilbert space has a C(K)-calculus which is an isometric isomorphism.

3. p-absolutely summing operators. If we are to show that an operator T e L(X)

is similar by an isometry to multiplication by z on some L*"(K, p) we must con-

struct an isometry U: LP(K, p) —» X. If T is scalar, Theorem 2.4 provides a map

h%: C(cKr)) —» X. Our line of approach will be to determine conditions under which

there exists a probability measure p on a{T) such that h   extends to an isometry

of Lp(o(T), p) onto X. This will not be possible unless the range of b   is dense.

Therefore before discussing the extension problem we introduce the following

concepts.

Definition 3.1. Let A(K) be a closed subalgebra of C(K) and h: /4(K)-»L(X),

a bounded algebra homomorphism. A vector x € X is called a topologically cyclic

vector for h if the set of vectors h(f)x is dense in X as / ranges through A(K).

Equivalently we could require that the range of hx: A(K) —» X, where hj.f) =

h{f)x, be dense in X.
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Lemma 3.2. Let b: A(K) —» L(X) be a bounded algebra homomorphism with a

topologically cyclic vector x € X. hx is a monomorphism if and only if h is.

Proof. If h(f) = 0 for some / 6 A(K), f^O, then h(f)x = 0. Therefore if h is

not a monomorphism neither is h . On the other hand, if h is a monomorphism,

assume hx(f) = 0. For any g € A(K),

.  h(f) • h{g)x = h(fg)x = h(gf)x = h(g)h(f)x = 0.

But the range of hx is dense in X. Therefore h(f) = 0 and so / = 0 which shows

that h   is a monomorphism.

Definition 3.3. A scalar operator T is said to be simple if some C(cr(T))-cal-

culus for T has a topologically cyclic vector.

We remark that if T is a normal operator on a Hilbert space our terminology is

that of Dieudonne" [5].

Definition 3.4. A vector x e X is said to be cyclic for T £ L{X), if the sub-

space of X generated by T"x, »2 = 0, 1, 2, • • •, is dense in X. Equivalently we could

require that the subcpace p(T)x where p(z) ranges though all polynomias, be dense in X.

Lemma 3.5. Let T e L(X) have a functional calculus h: P(K) —» L(X) (where

K C C). A vector x € X is topologically cyclic for h if and only if it is cyclic for T.

In particular a functional calculus for a subscalar operator, such as derived in

Theorem 2.10, has a topologically cyclic vector if and only if T has a cyclic vector.

Proof. Let x e X be cyclic for T. For any polynomial p(z), h(p)x = p(T)x.

The set h(f)x where / ranges through P(X) contains the set p(T)x where p(z)

ranges through all polynomials, and is therefore dense in X. Therefore x is topolog-

ically cyclic for h.

Suppose x e X is topologically cyclic for h. If u e X, there exists a sequence

of functions f in P(X) such that hJ,Q converges to u. Given some f > 0 we

choose n such that l|^x(/n) - "II < f/2. Since any / e P(K) is a uniform limit of

polynomials, we choose a sequence of polynomials pm such that pm converges to

/ . Since h is continuous h (p ) converges to h (f ). We therefore choose m so
'n x x   m x *n

that \\h (p )-h (f)\\< til. Now we have

\\hx(pj-u\\<\\hx(pj-hx(fn)\\+\\hx(f)-u\\<e.

But hx(pm) = pJ,T)x. For any e > 0 we can find a polynomial p(z) such that

||p(T)x - a|| < £. Since u was chosen arbitrarily, this shows that p(T)x is dense in

X as p ranges through all polynomials; that is x is cyclic for T.

Having given an indication as to which operators T e L(X) with an A(K)-cal-

culus, give rise to a map h : A(K) —► X with dense range, we turn to the problem

of extending b   to a bounded linear operator on AP(K, li). The relevant concept

here is the following.
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Definition 3.6 (Pietsch [16], Lindenstrauss and Pelczyriski [15]). A linear map

S: X —> y is called p-absolutely summing, 1 < p < <x>, if there exists a C > 0 such

that any x,, • • •, xn e X

(13) Z \\Sx.\\t><C sup   £ \a{x)\p
i=l aeK* isl

where X* is the weak star closure of the set of extreme points of the unit ball of

X*. The infimum of Cl/p over all C> 0 for which (13) holds is denoted ap{S).

Using sets consisting of only one element in (13) shows that S is bounded, and

\\S\\<ap{S).

Lemma 3.7. Let A(K) be a closed subspace of C(K). A linear map S: A{K) —» X

is p-absolutely summing if and only if there exists C> 0 such that for any

...,/n eA{K)

(14) £ IIS/JI^Csup t l/.WI*.
i=l ten i.l

Proof. In the case of A{K) every aeK* can be expressed a = aS., where

a e C, \a\ = 1 and 8, is the evaluation functional at t e K. For every aeK* we

have |a(/)| = |/(r)| for some t eK and every / eA(K). The result follows trivially.

The relevance of p-absolutely summing operators is demonstrated by the fol-

lowing theorem (Pietsch [16], Lindenstrauss and Pefczyrfski [15]) which we quote

without proof.

Theorem 3.8. If S: X —* Y is a p-absolutely summing linear map, there exists

a probability measure p on K* such that

(15) IM| <a^)(jKJa(x)|"«p(a))1/P

for all x eX.

Conversely, if (15) holds with some ß in place of ap{S) then S is p-absolutely

summing and ap(S) < ß.

Corollary 3.9. Let A(.K) be a closed subspace of C(K). S: A(K) —» X is p-

absolutely summing if and only if there exists a probability measure p on K and

a bounded linear map U: AP(K, p) —» X such that the following diagram commutes:

Ap{K, p)

A(K)-

where i: A{K) —* AP(K, p) is the canonical infection.
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Proof. Such a U exists if and only if there exists a probability measure p on

K such that S: A{K) —♦ X extends to a bounded linear map U: AP(K, p) —» X. This

will occur if and only if there exists C > 0 such that

l|S/||<c(/|/W|f^y/*'   forall feA(K),

and so the corollary follows from Theorem 2.8.

4. Application to weak similarity. In this section we apply the results of §3

to obtain some information about a kind of weak similarity between operators.

Definition 4.1. Given two operators A e L(X) and B € L(Y); if there exists a

bounded linear map S: X —» Y such that SA = BS we say

(1) A is weakly similar to B if S has a densely defined unbounded inverse.

(2) A is similar to B if S has a bounded inverse.

(3) A is isometrically equivalent to B if S is an invertible isometry.

We point out that while (2) and (3) are equivalence relations, (1) is only reflexive

and transitive. Thus if A is weakly similar to B, it need not be true that B is

weakly similar to A. If X and Y are the same Hilbert spaces, (3) becomes the

usual unitary equivalence of operators.

Definition 4.2. Let A(K) be a closed subalgebra of C{K) and h: A(K) —♦ L(X)

a bounded algebra homomorphism. A vector x € X is said to be a p-summing cyclic

vector for b if it is topologically cyclic for h and the map bx is p-absolutely summing.

Theorem 4.3. Let T e L(X) have a functional calculus h: A{K) —» L(X) (K C C)

sz/ob rißt h is a monomorphism and has a p-summing cyclic vector. There exists a

probability measure p on K such that multiplication by z on AP(K, p) is weakly

similar to T.

Proof. By definition there exists a vector x € X such that b   is p-absolutely

summing. Consequently, by Corollary 3-9 there exists a probability measure p on K

and an operator U: AP(K, p) —> X such that the following diagram commutes:

Ap{K, p)

A(K)-f-»X

By Lemma 3-2, h   is a monomorphism, and, since x is topologically cyclic for h,

hx also has dense range. It therefore has a densely defined inverse which, com-

posed with i, provides a densely defined inverse for U. Now let w = hx(g) for some

g € A(K). We have

hx{zg) = b(z)h(g)x = 77>(S)x = T(Ax(g))
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and, since the range of z is dense,

U(z ■ f) = TU(f)   for all / € AP{K, ft).

Denoting multiplication by z as Mz this gives UMz = TU which concludes the proof.

Corollary 4.4. Let T e L(X) fee a simple scalar operator. If a C(aiT))-calcw

lus for T bis a p-summing cyclic vector, there exists a probability measure ft on

o(T) such that multiplication by z on Lp(a(T), ft) is weakly similar to T.

Proof. Replace A(K) by C(ct(T)) in the proof of Theorem 4.3.

Corollary 4.5. Let T € L(X) be a subscalar operator with a cyclic vector. If

some cyclic vector for T is a p-summing cyclic vector for a p(a(T))-calculus for

T, then there exists a probability measure ft on a(T) such that multiplication by

z on Hp(a(T), ft) is weakly similar to T.

Proof. Replace A{K) by P(oiT)) in the proof of Theorem 4.3.

Corollary 4.6. Let T € L{X) be a simple scalar operator. If a C(p(T))-cal-

culus for T has a p-summing cyclic vector for some 1 < p < 2, there exists a simple

normal operator N with o~{N) C a(T) such that N is weakly similar to T.

Proof. If S: X —» Y is p-absolutely summing then it is tj-absolutely summing

for every q > p (Pietsch [16]). If x is a p-summing cyclic vector for a C(o{T))-

calculus and 1 < p < 2 then'it is a 2-summing cyclic vector. By Corollary 4.3

there exists a probability measure ft on o{T) such that multiplication by z on

L2(a(T), ft) is weakly similar to T. This-is the normal operator N which we are

required to find. The spectrum of N is the support of ft which is obviously con-

tained in oi.T). Further, every normal operator of this form is known to be simple [5].

Corollary 4.7. Let T € L(X) fee an operator with a P(o(T))-calculus (in parti-

cular a subscalar operator). If this functional calculus has a p-summing cyclic

vector for some 1 < p < 2, there exists a subnormal operator S with a cyclic vec-

tor whose spectrum is contained in the polynomial convex hull <j(T) of the spec-

trum of T, such that S is weakly similar to T.

Proof. We follow through the proof of Corollary 4.6 with P(cr(T)) and

H2(o(T), ft) in place of C(a{T)) and L2(a(T), ft) respectively. Multiplication by

z on H2(a(T), ft) is known to be a subnormal operator with cyclic vector whose

spectrum is contained in a{T) [2].

We now demonstrate a large class of simple scalar operators to which Corol-

lary 4.6 applies.

Definiiion 4.8 (Lindenstrauss and Pelfczyrfski [15]). A Banach space X is

called an £   . space, 1 < p < <», 1 < A < oo, if for every finite dimensional sub-
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space B, there is a finite dimensional subspace E containing it such that

a\E, lp) < A where lp is the lp space of dimension «, n is the dimension

of E and for Banach spaces X and Y

aXX, Y) = inf!||S||||S-1|||S:X - Y, S invertiblej.

If no such S exists put a\X, Y) = <».

A Banach space is called an S.p space if it is an £p ^ space for some A > 1.

Every space LP(K, p) is an £p x space for all A > 1. For any K, C(K) is an

A space for all A > 1. For 1 < p < °° an   £p space is isomorphic to a comple-

mented subspace of some LP(K, p), and if X is an £2 x space, there exists a Hil-

bert space Z such that d(X, Z) < A. For these and many other results we refer the

reader to the comprehensive study of S.p spaces by Lindenstrauss and Pelczyrfski [15].

Theorem 4.9. Let X be an S.p space for some 1 < p < 2 and T a simple scalar

operator on X. There exists a simple normal operator N with o{N) C a(T) such

that N is weakly similar to T.

Proof. Let h: (Xo(T)) —* E(X) be a functional calculus for T with a topologically

cyclic vector x. The map h_ \ C(o(T)) —» X is a map from an 2^ space to an S.p

space, 1 < p < 2. Theorem 2.3 of [15] states that any such map is 2-absolutely

summing. The theorem follows from Corollary 4.6.

Theorem 4.10. Let X be a Hilbert space and T e L(X) have a cyclic vector

and a P(a(T))'Calculus. There exists a probability measure p ontbeSilov boundary

si.T) of P(o-(T)) such that multiplication by z on H2{s(T), p) is weakly similar to T.

Proof. P(s(T)) is isometrically isomorphic to P(a(T)), so we can regard T as

having a functional calculus h: P(s(T)) —> L(X), where b is a monomorphism and

has a topologically cyclic vector x. Now P(s(T)) is a Dirichlet algebra, hence,

by Lemma 1 of Foias, and Suciu [9], h   is 2-absolutely summing. The result fol-

lows by Corollary 4.7.

Example 4.11. We conclude this section with an example to show that under

our hypotheses, weak similarity cannot in general be strengthened to similarity.

We choose for our Banach space X, the Hilbert space L2(K, p) where p is a

probability measure on X, and K is some infinite compact subset of C. Denote

by Mj the operator of multiplication by the continuous function /. The operator

Mz on L2(K, p) is a simple normal operator having as functional calculus

*: C(K) — L(X),     h(f) = Mf

and the function 1 is a topologically cyclic vector for h. This makes b the

canonical injection i: C(X) —> L2(K, p). For every p > 2 the following diagram

commutes:
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Lp{K, ft)

/ \

h

C(X)->L2(X, ft)

where i, hx,      are the appropriate canonical injections. This shows by Corol-

lary 2.9 that b   is p-absolutely summing for each p > 2. But for p 4 2, LP(K, ft)

is not isomorphic to L2(X, ft), so multiplication by z on LP(.K, ft) cannot be simi-

lar to M .
z

5. p-extending operators and applications. Example 4.11 indicates that if the

map hx'. C(X) —» X is to extend to an isometry U: LP{K, ft) —» X, more must be

required of it than that it be p-absolutely summing. We set out to establish such

requirements.

Definition 5.1. Let A(X) be a closed subspace of C(K). A bounded linear

map S: A(K) —♦ X is called p-dominating if there exists C > 0 such that for every

finite set /,»•••, / e A(X)

(i6) c ̂  £ mp < £ mp>

We denote by bp(S), the supremum of Cl^p over all those C > 0 for which (9) holds.

The importance of p-dominating maps will appear in the next two theorems.

Compare Theorem 5.2 with Theorem 3.8.

Theorem 5.2. // S: A{K) —» X is p-dominating there exists a probability mea-

sure v on X such that

fi)(fK\mp*>y/p<wi(17)

Conversely, if (10 holds with some ß > 0 in place of b (S), S is p-dominat-

ing and b^S) > ß.

Proof. We modify the proof of Theorem 2.8 given in [15].

To prove the second part, suppose (17) holds with some ß > 0 in place of

bJ.S). In this case
P

ßP JK X \fM)\Pdu< £ ÜS/.I'
i=l i'=l

for any finite set /j, • • •, f e A(K). Since v is a probability measure it follows

that

ßp inf (i i/^iA < i m
t€K   \i=l / 1=1

so that S is p-dominating and bp(S) > ß.
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Now assume that S is p-dominating and consider the set

g e CR{K)g(t) = £ \f.(t)\p and £ \\Sf.\\p = 1 for some /,.•••,/„€a(K)
i=1 i=l 1

W is a convex set. Put y = (fc,,(S))p and define

V = \w e CR{J()\wU) = 2 - y • g(t) for some g e Wi.

V also is convex, and from (17) it follows that if h € V, s\ip[eK h{t) > 1. Hence

V is disjoint from the set N = ig e CR(K)|sup<eK /(f) < 11.

Since N is an open convex set disjoint from V, there exists a linear functional

aQ on CR(K) such that aQ(g) < 1 for all g e N and aQ(g) > 1 for all g e V. Since

N contains the cone of negative functions, otQ must be positive. Also, since the

constant function 1 is in the closure of N, ctAl) < 1, so aQ = act where a(l) = 1

and 0 < a < 1. By the Riesz representation theorem there exists a probability mea-

sure v on K such that for each / e CR(K), a(f) = /R / du. If g e W, 2 - yg e V,

so

JK(2-yg)rfV>a0(2-yg)>l

and hence y/K gau < I. For any / e A(K) the function g(t) = \f(t)\p/\\Sf\\p is in W.

Consequently

y fK\fl')\pdv<\\sf\\t

and so

Definition 5.3. Let A(K) be a closed subspace of C(K). A linear map

S: A(K)     X is said to be p-extending if for any /j, • • •, f  6 A(K)

(18) inf (£ \fit)A < £ iS/y <s*p(£ \fft)\p) .

The major result concerning these maps is Theorem 5.7. We observe that S is both

p-absolutely summing and p-dominating.

Lemma 5.4. // S: A(K) —» X is p-extending, \\S\\ < I. If A(K) contains the

'   constant function 1, then ||S(l)|| = 1 and ||S|| = 1.

Proof. Using a single / e A(K) in (18) shows

\\Sf\\p< sup \f(t)\*
teK

or in other words < ||/||. Therefore ||S|| < 1. If 1 e A{K) then (18) applied to

1 gives p(l)|| = 1. This combined with       < 1 shows that ||5|| = 1.
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We recall the definition of a logmodular function space.

Definition 5.5. A closed subspace A(X) of C(X) is said to be logmodular if

the set Hog |/| \f e A(X), /(/) 4 0 for any t € Xl is dense in CR(K).

We point out that our definition is slightly weaker than the usual one when

A(X) is a uniform algebra [10]. In that case / e A(K) is required to be invertible

A(X) before log |/| is considered admissible. Here we merely require it to be inver-

tible in C(K).

Observe that any Dirichlet algebra is logmodular. In particular for any X,

C(X) is logmodular. Moreover if X C C and s(X) is the Silov boundary of P(X),

then P(s(K)) is Dirichlet and hence logmodular. For these and similar results we

refer the reader to the books by Gamelin [10] and Hoffman [13].

Lemma 5.6. A closed subspace A(X) of C(X) is logmodular if and only if for

some p > 0, and so for all p > 0, the set \\f\p\f eA(X)| is dense in the positive

functions of CR(K).

Proof. Assume that A(X) is logmodular and let u € C"R(K) be strictly posi-

tive, so that log a is a well-defined function in CR(K). Let p > 0 be fixed. By

hypothesis we can find a sequence /j, /2,«" in A(X) such that log |/J converges

to (l/p)log u and so log |/JP converges to log u. Since X is compact the range

of log u is compact and lies in some interval [- A, A] where A > 0. Choose

e > 0 and N such that for n > N ||log \fn\p - log u\\ < t. The range of log \fn\p

for n > N is contained in an interval [- B, ß] where B > A + e. The function ex

is uniformly continuous on [- B, B], so if log \fjp converges uniformly to log a,

\fn\p converges uniformly to a. Since the strictly positive functions are dense in

the positive functions we have that the set il/H/ e A{K)\ is dense in the posi-

tive functions of CR(K).

Now assume that this set is dense in the positive functions of CR(K), epu

is a strictly positive function and since K is compact, its range is contained in

an interval [A, B], B > A > 0. Choose a sequence /j, /2» • • • in A(K) such that

\fjp converges uniformly to epu. Choose /V such that for n>N, \\\fjp - <?u\ <

A/2, so that the range of \f^p is contained in the interval [A/2, B + A/2] for

n> N. Since log x is uniformly continuous on this interval log \fn\p converges

uniformly to U.

Theorem 5.7. Let A(K) be a logmodular closed subspace of C(K). A linear

map S: A(K) —» X is p-extending if and only if there exists a probability measure

p on K such that S extends to an isometric isomorphism U: AP(K, p) —» X.

Proof. Since S is both p-absolutely summing and p-dominating with a^(S) < 1

and bp(S) > 1, there exist, by Theorems 2.8 and 5.2, probability measures ft and

v on X such that for any / e A(X)
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(19) /|/W|*^< 115/11* </l/W|p*-

Consider the real valued measure <u = p - v. Since p(K) = v{K) = 1, ty(K) = 0.

As for any / e A(K), we have by (19)

fK\f(t)\pJa>>0.

But functions of the form \f\p are dense in the positive functions on CR(K) by

Lemma 5.6. Consequently tu is a positive measure with ty(K) = 0 which means

that <u = 0. Hence p = v and (19) becomes

(20) |s/|- (/K l/tol'*)1",

We can obviously extend S to an isometry 17: AP(K, p) —♦ X.

For the converse, if S extends to an isometry V: AP(K, p) —» X for some

probability measure p on X, then (20) holds for each / e A(K). From this we

obtain for each finite set     • • •, { e A(K)

£ w« fK £ w*-

Since p is a probability measure it follows immediately that 5 is. p-extending.

Definition 5.8. Let T € L(X) have a functional calculus h: A(K) —» L(X),

where X C C and A(X) is a closed subalgebra of C(X). A vector x € X is said to

be a p-extending cyclic vector if the map bx: A(K) —» X is p-extending and has

dense range.

We observe that by Lemma 5.4 \\bx\\ = 1 and ||x|| = ||*x(l)|| = 1.

Example 5.9. Let p be a probability measure on X C C and A(X) a closed

subalgebra of C(X) containing the polynomials. For / eA(K) let M^: AP(K, p)

—»A^X, p) denote multiplication by /. Since A(X) is an algebra and is dense in

AP{K, p) this operator is well defined. Indeed for any g e AP(K, p)

hm/«)»=(/k \f8\% yp < sup i/wi(/k igip*p)i/p=ii/niigii.

This further shows that the homomorphism

b:A(K)-*UAp(K,p.)),    b(f) = Mf

has      < 1 and constitutes a functional calculus for Mz.

We claim that the constant function 1 e AP(K, p) is a p-extending cyclic vector

for h. In fact

£ i*</p<i>i'- £ iim//i)p= r £ i//*
<=i       .=1      jk «=i
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from which it is obvious, since p is a probability measure, that

inf z i/,.toi*< z wtmp<*m i
teK i=l i=l ten i=l

Theorem 5.10. Let A(K) be a logmodular closed subalgebra of C(K) (where

X C C) containing the polynomials, and let T e L(X). There exists a probability

measure p on X such that T is isometrically equivalent to multiplication by z on

AP(K, fi) if and only if T has an A(K)-calculus which has a p-extending cyclic

vector.

Proof. Let p be a probability measure on X such that T is isometrically

equivalent, by an isometry U: AP(K, p) —» X, to multiplication by x on AP(K, p).

Using the notation of Example 5-9 we have T = UM U~l. Moreover, h(f) =
i x

UMfU~l defines an A(X)-calculus for T. Put z = U(l). Since U is an isomor-

phism and preserves norms, it follows easily, in view of Example 5.9, that x is

a p-extending cyclic vector for b.

On the other hand, suppose T has an A(X)-calculus with a p-extending cyclic

vector x. The map h%: A{K) —► X is p-extending, so by Theorem 5.7 there exists

a probability measure p on X such that hx extends to an isometric monomorphism

U: AP(K, p) — X. For each / eA(K), hjzf) = Tbjj).  Since the range of hx is

dense, U is an epimorphism and UMz = TU.

Corollary 5.11. A scalar operator T € L(X) is isometrically equivalent to

multiplication by z on Lp(o(T), p) for some probability measure p on a(T), if

and only if T has a C(o(T))-calculus with a p-extending cyclic vector.

Corollary 5.12. Let T € L(X) and s(T) be the Silov boundary of P(oiT)). T

is a subscalar operator isometrically equivalent to multiplication by z on

Hp(s(T), p) if and only if T has a P(o(T))-calculus and a cyclic vector x € X

such that for any /j, •••»/„ € P(a(T))

inf ii/,w<z:w< sup z\fß\>.
tes(.T) i=l inl tes(T) i=l

Proof. We apply Theorem 5.10 noting that P(s{T)) is logmodular and that,

since P(s(T)) and PiaiT)) are isometrically isomorphic, any P(<r(T))-calculus

for T is a P(s(T))-calculus and vice versa.

Theorem 5.13. Let T be an operator on a Banach space X, and s(T) the

Silov boundary of P(o(T)). T is isometrically equivalent to multiplication by z

on Hp(s(T), p) for some probability measure p on s(T) if and only if T has a

cyclic vector x (of norm one) such that for any polynomials pj, • • •, pn
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(21) sup   £\PiU)\p<£\\p{T)x\\p<   sup 2>.(/)|*.
te5(T) i=l i=l tes(T)

Proof. Necessity follows by Corollary 5.12 and the fact that in 5.12,

i(p.) = p.{T).

To grove sufficiency we first note that by the proof of Lemma 5.4, the map

bx(p) = p{T)x satisfies ||*x(p)|| < ||p|| where ||p|| is the norm in C(s(D). We

extend bx to a bounded map bx: P{s(T)) —► X. Now P{s(T)) is a logmodular alge-

bra. If, hx is p-extending we will be able to extend it in the usual way to an iso-

metric isomorphism U: Hp{s{T), p) —> X by which T is isometrically equivalent to

multiplication by z on Hp(s{T), p). We must show that b% is p-extending. Let

/,»•••> /n e P(s(T)). There exist sequences of polynomials pf ^, i = 1, > • •, n, k = 1,2, • • •,

such that pi k converges in P(s(T)) to /f. Therefore \pi k\p converges to in

C(s(D) and l|£x(pI■lfc)||,' converges to \\hx{f.)\\p. Given t > 0 choose M such that

for m > M:

Ill*>1-.JII''-Il*x(/Pll<'l<e/2"   aDd IIIPI-,J<'-|/Il<'ll<£/2«-

The two inequalities together show that

inf    £ |//*)|>-V/2<   inf   £ \p.(t)\p,
t«*(T) tes(T) i=l '

sup   £ \pimit)\p < sup   £ |/.(/)|"W2
t«s(T) 1*1     ' tes(T) t=l

and

i=i i=i i=i

for m> M. These together with (14) show that for any e > 0

inf I: i/,wi*-*< z: n*x(/f)p< sup £\fft)\p+(
«6s(T) i=l i=l <£s(T) i=l

which is enough to prove that hx is p-extending.

Corollary 5.14. Let T be an operator on a Hilbert space X, with a cyclic

vector x. T is a subnormal operator whose minimal normal extension has its spec-

trum contained in s{T) if and only if for any polynomials pj, • • •, pn

(22) inf    £ |pf(f)|2 < £ ||Pt.(T)*||2
t*s(T) i=l i=l

and T has an isometric P{a(T))-calculus.
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Proof. From our hypotheses T has a functional calculus h: P(s(T)) —» L(X)

which is an isometry. By Lemma I "in [9] we have for any cyclic vector with      = 1

and polynomials p1,"-,pn

£ \\hx(p)\\2<   sup   ± \p.U)\\
i=l tes(T) i=l

The result follows from this and (22) by Theorem 5.13 and the fact that the

minimal normal extension of multiplication by z on H2(s(T), p) has its spectrum

contained in s(T).

It would be interesting to know if s(T) can be replaced by o(T) in Theorems 5.13

and 5.14, thereby giving a more satisfactory discussion of the representation of

subscalar operators on W')(fC, p) spaces. We must point out here that our methods

fail to deal with this problem because the convex cone generated by the functions

l/l*1, where / € P(K) is not dense in C*(K) if K is not the Silov boundary of

P(K). The denseness of this cone is essential to our proof of Theorem 5.7, and all

later results depend on this. In fact we can prove the following general theorem.

Theorem 5.15. Let A(K) be a uniform algebra on a compact Hausdorf j space,

whose Silov boundary is T. If T 4 K then the convex cone generated by the func-

tions \f\p where f eA{K) (p is fixed) is not dense in CR(K).

Proof. Let K* be the weak star closure of the set of extreme points of the

unit sphere of the dual A(K)* of A(K). According to [15, p. 285], for any

4 e A(K)

sup        £ H/)|»=  sup t H/PI"-
aeA(K)* ,|a|=l i=l aeK* i=l

Since any aeK* can be written a8(, where a e C, \a\ = 1, t e T and 8( is the

evaluation functional at t, we have

«>p £ i//*)!*- «upf:
teK i=l teT i=l

This means that any function g € C^(K) of the form g = S"=1 |/((/)|'> takes its

supremum on T.' Since the set of all such functions forms the cone under consider-

ation we can complete the proof by showing that if T 4 K, the set of functions in

Cß(K) which take their supremum on T form a proper closed subset of C^(K). We

prove that the complement of this set is open. If / e C"R(K) does not take its

supremum on T, put f = (M — m)/2 where M and m are the suprema of / on K and T

respectively. If g € CR{K) and ||/- g\\ < t, then on T we have g(t) < (M + m)/2,

while if / takes its supremum at t 4 T, git) > (M + m)/2. Hence no function in the

neighbourhood ||/ - g|| < t takes its supremum on T. The set of functions in C*R(K)

taking their supremum on T is therefore closed. A trivial application of Urysohn's

lemma using T and some t 4 T shows that this subset is proper.
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6. Multiplication by z on Ll{K, p.). In this section we use the results of §5

to characterise those simple scalar operators T which are isometrically equivalent

to multiplication by z on L^ioiT), p), purely in terms of their associated spectral

measures. We begin by showing that the relevant operators are 1-dominating

(Theorem 6.2).

Lemma 6.1. Let S: A(K) —♦ X be a bounded linear map with dense range,

where A(K) is a closed subalgebra of C{K). There exists a unique bounded alge-

bra homomorphism h: A(K) —» L(X) with Ml) = / such that S = hx with x - S(l),

if and only if there exists C > 0 such that for any f, g 6 A(K)

(23) irt/«)i<a/iwi.

In this case \\h\\ is the infimum of all C > 0 for which (23) is true.

Proof. Let h: A(K) —> L(X) be such a bounded algebra homomorphism with

x e X such that b   has dense range. Put S = hx. We have x = T(l) and

l|s(/*)|| = IW)M*)*||< = Wlll/ll Ml

so that (23) holds.

For sufficiency, observe that by (23) the map h(f) defined on the range of 5

by h(f)(S(g)) = Sifg) is bounded and \\h(f)\\ < C||/||. Hence it can be extended to a

bounded linear map h(f): X —* X since the range of S is dense. It is trivial to

check that h is an algebra homomorphism with h(\) = I (first do it on the range of

S, then extend to X). Using (23) again shows \\h\\ < C,

Theorem 6.2. Let S: C(K) —» X be weakly compact and satisfy ||S(/g)|| <

(24) ||S(/g)|| < «/ii \\Sg\\     for any f, g e C(X)

and \\S(1)\\ = 1. S is 1-dominating with bp(S) > 1.

Proof. The functional p: C(X) —♦ R defined by p(/) = is obviously a

seminorm on C(X). On the one dimensional subspace of constant functions we

define 6(c) = c. Since ||S(l)|| = 1 we have |0(c)| = ||S(c)||. By the Hahn-Banach

theorem 9 extends to a bounded linear functional on C(K) such that for all

/ e C(X)

lew < im < ii/ii
where the right-hand inequality is just (24) with g = 1. By the Riesz representation

theorem there exists a measure v on X such that

6(f) = Lfdv   for each / e C(K).
J K

Since ||0|| < 1 and 0(1) =1, v is a probability measure and

(25) |rK/^|<iM.
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Let B(K) denote the bounded Borel measurable functions on X. For any

/ e B{K) there exists a e B{K) such that a • /= |/|. Indeed we define

a(t)=ei9   if f{t) = re-ie, r^O,

= 0     if fit) = 0.

Since S is weakly compact it extends without change of norm to a bounded linear

map U: B(K) —♦ X. Using pointwise bounded limits shows that U satisfies (24)

for every /, g e B(K), and in particular

|B(|/|)|-|ü(a./)|<|a||lrV)|-|öV)|.

So for / 6 C(K) we have < ||S(/)||. Using this and (25) gives

,l/l*< l*l/l>l SlWI.

By Theorem 5.2, S is 1-dominating and b^iS) > 1.

Lemma 6.3. Let T £ L(X) be a simple scalar operator and b: C(o(T)) —» L(X)

a C(o{T))-calculus with \\b\\ = 1. h has a \-extending cyclic vector if and only if

it has a 1-summing cyclic vector x € X with \\x\\ = 1 and a^ih^ = 1.

Proof. Necessity is obvious. On the other hand let x be a 1-summing cyclic

vector with afij = 1 and ||x|| = 1. It follows that ||j&x(1)|| = 1 and ||*x(/g)|| <

11/11 fl*x(<?)|l since ||*|| = 1. Therefore, by Theorem 6.2, hx is 1-dominating with

b^ihj > 1. Since it is also 1-summing, with a <*[(*x) < 1 it is 1-extending.

We now turn to the problem of finding out when a linear map S: C{K) —» X is

absolutely summing. If 5 is weakly compact, there exists a Borel measure F( •)

on X with values in X, such that S(f) = JKfdF for each / e C(X). (See [6].)

Definition 6.4. Let F(-) be a Borel measure on X with values in X. For

each Borel set a of X we define

4M- sup £ \\F{a.)\\

where P{a) is the family of all partitions of a in a finite union of pairwise dis-

joint subsets io^l" of a. If <f>{K) is finite we put ||F||j = <p(K) and call this the

total variation of F(>) and say that /(•) is of bounded variation. In this case

<f> is a finite positive measure on k called the variation measure of F( •). We

define the semivariation of F( •) to be

sup 1

n

1=1

la.}" ePio), \a.\<l, iml,

The following theorem is a special case of a theorem due to Diestel [4]. We

offer a simpler proof in this case.
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Theorem 6.5. Let S: C(X) —> X. 5 is absolutely summing if and only if there

exists an X-valued measure F( • ) on K of bounded variation, such that S(f) =

ffdF for every f e C(X). In this case a^S) = \\F\\V

Proof. Assume that such an F exists. Let S = 2" , a. v„   be a simple

function on X. We have

j/K SdF^ < £ WflHcjl < £ la^Cj) < fK \S\d<f>.

Using uniform limits of simple functions, for any / e C(X), we have

m -|/K/^||< /Ki/i^ - iiFii,/K1/14»

where p is a probability measure such that <f> = ||F|| j. This shows that 5 is

absolutely summing and that flj(S) < ||F||j (Theorem 3.8).

If S is absolutely summing then it is weakly compact [16] and can therefore

be written S(f) = JK f dF where F is an X-valued measure on X. By Theorem 3.8

there exists a probability measure p on X such that

jjKfdF <fl,(S) Jj/Up

for every / e C(X), and hence using weak compactness for every / £ B(X). Let

faK^fc-i be any partition of X into pairwise disjoint Borel sets. If Xak ls tne

characteristic function of

Consequently F is of bounded variation and ||F||j <flj(S).

We conclude with the following characterisation.

Theorem 6.6. Let T e L(X) be a simple scalar operator and E( •) be the

resolution of the identity. There exists a probability measure p on oiT) such

that T is isometrically equivalent to multiplication by z on Ll{o{T), p) if and

only if the following conditions are satisfied:

(i) E{ •) has semivariation one.

(ii) There exists an x € X such that \\x\\ = 1 and the total variation of

E{a)x is one.

(iii) The subspace of X spanned by the set E{a)x as a varies over the Borel

sets of a{T) is dense in X.

// these conditions hold then p(a) = ||B(ff)x||.
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Proof. First we observe that (i) is equivalent to the condition that the map

b : CUT)) - L(X),     b{f) = f     fix) E(dz)

have ||*|| = 1. (See [6].) By Theorem 6.5, (ii) and (iii) are equivalent to the condi-

tion that * have a 1-summing cyclic vector x € X with       = 1 and «j(*x) = L

Hence (ii) and (iii) together are equivalent to the condition that * have a 1-extend-

ing cyclic vector. Since * is the C(cr(T))-calculus for T, the theorem follows from

Corollary 5.11 for the case p = 1.

If conditions (i)—(iii) hold then there exists an isometry U: Ll(a{T), p)—»X

for some probability measure p on a{T), such that

h{f)U = UMf,     t/(l) = x.

Therefore for any Borel set a of <Aj),

\\E(a)x\\ = ||UMX U-lx\\ = \\U{X()\\.
a

Since U is an isometry it follows that u{o~) = \\E{a)x\\.

Remarks in conclusion. We consider that the approach we have used to obtain

our results should be capable of producing many more. By perhaps introducing

different techniques of proof one could deal with operators whose functional cal-

culi are based on algebras such as F(X) for a general X, or the uniform closure

of rational functions on some K C C. By considering the algebra of k times con-

tinuously differentiate functions one could also give conditions under which an

operator can be represented as multiplication by z on certain types of Sobolev

spaces. The material concerning scalar operators can all be generalised to the

case of unbounded scalar operators, but we shall defer a discussion of this to a

later publication.

I should like to thank my supervisor Dr. J. D. Gray for his constant encourage-

ment and many helpful discussions of this work.
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