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LOCAL NORM CONVERGENCE OF STATES ON

THE ZERO TIME BOSE FIELDS(t)

BY

OLA BRATTELI

ABSTRACT. For a sequence of vector states on the Boson Fock space which

are norm convergent on the Newton-Wigner local algebras, conditions are given

which guarantee norm convergence on the relativistic local algebras also. These

conditions are verified for the cutoff physical vacuum states of the P(4>)2 field

theory, and yield a simplification of the proof of the locally normal property of

the physical vacuum in that theory.

1. Introduction. In the C*-algebraic approach to the P(<f>)2 quantum field

theory, the existence of a physical vacuum is established by first studying the

ground states a>   of the space cutoff Hamiltonian H(g). The states <og ate Fock

space vector states, so that &>g(A) = (Qg, AQg), where Qg is a unit vector in Fock

space. It is then shown that <og lie in a norm compact set of states on each of

the local algebras generated by the Newton-Wigner fields [3], [6l. Thus a sequence

of g's can be picked out converging toward 1 such that the corresponding states

o>g converge in the norm on the Newton-Wigner local algebras. In this paper we

present a simplified version of an argument due to Glimm and Jaffe [3, Chapter 41,

which shows that this sequence of vector states also converges in norm on the

relativistic local algebras. This argument is based on the fact that operators in

the relativistic local algebras can be approximated by operators in the Newton-

Wigner local algebras in a topology which is stronger than the strong operator,

topology, but weaker than the norm topology. The topology is defined by a norm

which is weaker than the usual operator norm, and the approximation is uniform in

a way made precise in hypothesis (*) of Theorem 2.1.

The fact that the sequence of <og converges in norm on the local relativistic

algebras implies that the limiting state at is locally normal, and thus defines a

locally normal representation. By using this fact and the fact that the cutoff
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Hamiltonian H(g) locally defines a correct dynamics, it can be shown that the dy-

namics is implemented by a strongly continuous unitary group in the representa-

tion defined by co, and the existence of the Hamiltonian for the limit theory follows.

The details of this construction are in [3].

2. The general theorem. We will not consider the question of how states on

the Newton-Wigner fields shall be identified with states on the relativistic fields,

but simply assume that the states in question are vector states, given by the same

vector on both types of fields.

The notation is as follows; we indicate in parenthesis what the concepts cor-

respond to in the P(<p)2 theory.

? is a separable Hilbert space (~ Fock space).

{?I°!n is an increasing sequence of type I factors on ? (~ local algebras of

Newton-Wigner fields).

SI is a von Neumann algebra on ? (~ a relativistic zero time local algebra).

21^ is a weakly dense sub*-algebra of 21.

\Nn\n is a sequence of positive selfadjoint operators, such that Nn is affili-

ated with 21° C\ SI°l_ j       for n = 1). This means that the spectral projections of

N   lie in a0 n 21°' ,. (21°' . = the commutant of «1° , in Ä)
n n       n— 1      n — 1 n—i

\dn] is a sequence of positive integers such that 2fjft'*'2 = 1.

Let N = 2 d N   be defined as in Lemma 2.2.
n  n n

En: 2Irf —♦ 21° is a mapping.

/ is a continuous and strictly positive real function on R such that lim^^/W

exists in R.

Assume that / and \d | can be chosen such that

There exist constants K and K   such that lini _ K„ = 0

W and \\f(N)Ejx)f(N)\\ < K\\x\\ for x e 2Irf,

||/(N)(x - EJx))f(N)\\ < Kjx\\ for x 6 21,.

Theorem 2.1. // [co 1 is a sequence of vector states in ? such that

1. co (N ) < 1 for all n and m,
n    m — '

2. {ct)n! converges in norm on each 2lm,

then \con\ converges in norm on 21.

Proof. Let ( > 0 be given. Let P'   be the spectral projection of Nn corre-

sponding to the spectral interval [0, 196e~2d~l/2], and define P = R„P„- Since

l — P   < (2d^2Njl% it follows from assumption 1 in the theorem that cojl - Pj

<c2dx/2/l96. Since all the projections Pn commute we have that / - P = / -

IIP < 2 (l - P ), where the last sum is defined as in Lemma 2.2. Thus, by the
n  n —   n n

monotone convergence theorem,
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<»J1-p)< T.*> d-p)< T: -L(2d1/2 = -L t2.
« 9       n   1<X>      " 196

Define positive linear functionals of {•) = co (P • P). Then for x e $(?):
* mm

l».W - <(x)| < |o.m(x(/ - P))| ♦ - P)xP)|

< (<Bmbx*))1/2<fi>mU - P))1/2 + K.U - P))1/2(6)m(Px*xP))1/2

<2||x||(<Um(/-P))1/2<£||x||/7.

Thus, as states on

(2.1) K,-<ll<f/7.
Define Pn = H^=x Pn 6      We need other approximations to a)   defined by

of" ( • ) = <u_(P_ • P_). To estimate lie/"  -<uf II we observe as before that for
fit m    n       n "mm"

x €$(?):

»1/2
m v ' mv

Since

we have that

K"W - <WI " K«P» " P)xP« + Px(P» " P))l ̂  2Mk.(P- " P)

n oo / "      \  /        00 \

B-p=n^-n^=(np*)('- n 4
t=l At=I \*=1    / \     *=n+l /

"»<?"-p^4^TK^Äp')^
sW,-i.'»)rstE^,-,4))

- Wi196  ' /

which tends to zero as n —»00. Thus, as linear functionals on ÜH?):

(2>2) lira ll^m" -^tll " °'   uniformly in m.

P = II P   is contained in a spectral projection of N corresponding to the

interval [0, ln 196e~ xd~ 1/2dJ = [O, 196e"2]. This is because \\PNP\\ <

ldJPNP\\ <2d\\PNPj <^dl%r2d-l/2. Since / is continuous and

strictly positive on [0, 196e-2] there exists a S> 0 such that /(A) > 8 for A €

[0, 196e-2]. Thus P <8~lf(N) and since P commutes with N it follows from

Lemma 2.3 that ||PxP|| < 8-2\\f{N)xf(N)\\ for all x £ $(?), and then by assump-

tion 3 of the theorem:
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||PEm(x)P||<S-2r<||x|| for*e?Irf,

(2.4) \\P(x-Em(x))P\\<o-2Km\\x\\ forxead.

We make a sharper version of (2.3). Assume n > m. Since 21° is a type I fac-

tor, there exists a tensor product decomposition ? = 31 ® 3^ such that 21° «

SBO^)® /y2, see [2]. Since II£=1 Pfc € 21° and n£=„+I P^ e 21°', it follows that

nLl Pk = ÖJ® /j "T^+l P* = ' ®Ö2 for projections Qj, Q2 on 3^, 3F2, and
thus P = Q.® £),. Since E (x) e2I°, it is a y eSBfJ.) suchthat x = y ® /. Thus

llPEm(x)p|| = ii(ö1®e2)(y®^(ei ® e2)ll = iKßiyß.^ßj

= llß.yßill llß2ll = llßiyßill = IKßi ® ')(y ® 'Nßi ® M « II^ÄII-
From (2.3) it follows that:

(2.5) llp«E*W^j, II ̂ 5~ 2|cllxll   for * e ̂  and » > ro.

We are now ready to prove the theorem. Let x e 21^, and assume m < k. We ap-

proximate co fx) by <t)**(Em(x)):

|o, .(x) - co(HPm(x))\ < I^W - e><«| + \coeAx) - «%Bm<*))\ + \copJx)) - cof(Em(x))\

= m - op(x)| + \coJiHx - Em{x))P)\ + m - 4*)(PfeEm(x)rV|

< f||x||/7 + S-2Km||x|| +       - co?\8-2KW.

The last estimate follows from (2.1), (2.4) and (2.5). By hypothesis (*) of the theorem,

m can be chosen such that 8~2Km <e/7. By (2.2), k > m can then be chosen such

that ||<u*.-<4*||8_2K<e/7 for all i. Thus:

(2.6) \a.(jc) - a)f *(Em(x))| < 3e||x||/7   for k>m and m large.

Thus, for large m:

K-W - ö),W| < k,W - ^*(EmW)| +     (Hra(x)) - to]KEjx))\ + |o.,f *(Em(x)) - a»y(x)|

< 3eH/7 + m - o>,.)(PtEm(x)PA)| + 3eH/7

< <x||x||/7 + |(a)f - ü),.)|2I°||S-2K||x||, by (2.5).

Thus it follows from hypothesis 2 that |<af(x) -o{x)\ <(\\x\\ for all x e 2Irf pro-

vided i, / is large. By Kaplansky's density theorem [2] this is still true for all

x e 21, and the theorem is proved.

We now prove the two lemmas needed in the proof of Theorem 2.1.

Lemma 2.2. Let Mnl be a sequence of positive, mutually commuting, self-

adjoint operators on a separable Hilbert space J. Then there exist a unique
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projection p on 3" commuting with all A^ and a unique positive selfadjoint op-

erator a on P? such that

a = sup j £ Ak I ̂  j   anrf   sup ^. Z = 00

/or all ifj + 0 in (l - P)3\

Proof. The existence of P and A is easily established in a common spec-

tral representation for {An} in which each A^ is represented by multiplication by

some measurable function. The uniqueness follows from the fact that we have

p5=fcll(a1jv,ayv)<4 and wl/2*.^ V)- 2X/2My¥),

where ^ efD(A1/2) if and only if the sum to the right converges.

We remark that if / is a Borel function such that lim^^ /(A) = a exists, we

define /(A) = f{ap) + a(l - p).

Lemma 2.3. Let a and b be positive, bounded operators on ? such that

ab = ba and b< a. Then ||B X b\\ < \\a X a\\ for all X e !B(?).

Proof. Let e be the orthogonal projection onto the closure of the range of

B. Then ea - ae, thus ||AE X AE|| < ||A X A||, and it is enough to prove ||BE X

BE|| < ||AE X AE||, i.e., we can assume E = /. Then A-1 exists as a selfadjoint

operator and A_1B < /. Thus, for X eSH?):

||B X B|l = HBA-M X aa~lb\ < HBA-^lflA X AUflA^flU < ||A X A||.

3. Application to P(cp)2. Let ? be the Fock space over L2(R!) (see [4] for

explanation of the terms in this chapter and the results mentioned in the introduc-

tory remarks); let a(x) and a*(x) be the usual (configuration space) annihilation

and creation bilinear forms, and let

<p0M = 2" 1/2(A*(x) + a(x)),    n0(x) = iT 1/2(A*« - a(x)).

For fv f2 e §R(R), define the time zero Newton-Wigner fields by

<Po(fO= Jfi^^Mdx,    n0{f2)= ff2(x)n0bc)dx.

Then ^>0(/j) + ff0(/2) is a selfadjoint operator. Let p be the positive, selfadjoint

operator (-d2/dx2 + m2)1/2 on L2(R1). For / eSR(R), define the relativistic

time zero fields by

<?(/) = «p0(p-l/2/), n(f)=<p0{ll1/2f).

Let B be an interval in R and define
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U=l

n

c^.eC, supp/£. giCB

= 1

cfeC, supp/,.. gjCB

It follows from the commutation relations that 2I^(B) and 2I^(B) are '•'-alge-

bras. Let ?I°(ß) and 21(B) denote their weak closures. We will refer to the set

of 21°(ß) as the Newton-Wigner local algebras and the 2I(ß) as the relativistic

(time zero) local algebras.

2I°(B) has a simple algebraic structure, it is the von Neumann algebra

R(L2(B), L2(B)/L2(R)) defined by Araki [l]. 2I°(B) is a type I factor. If ?(B) is

the Fock space over L2(B) and Q^,ß is the vacuum of ?(~ B), ?(B) may be

identified with a subspace of 3":

?(B) = 3"(B) ® Q^B C 5(3(8) ® 3X~ B)) = 3:

where S is the projection from the total, unsymmetrized "Fock space" 3rn =

0~=o L2(R") into the Boson Fock space 3r =©~=0 L2ym(R"). It is easy to see

that 2l°(B) leaves 3"(B) (under this identification) invariant, and from the irreduci-

bility of the Fock representation it follows that 2I°(B)E = $(3(6)) where E is

the projection from 3" onto 3r(ß), and SB (3(B)) is the algebra of all bounded op-

erators on 3(B). Thus 2I°(B) is isomorphic to JB(3r(B)) in a canonical way.

Since fi±l^2 transforms functions with compact support into functions with

unbounded support, no such simple characterization is possible for 21(B).

21(B) is the algebra R(p~1/2L2(B), hU2L2(B)/L2(R)) of Araki [l], and is a

type III factor. The reason for considering the relativistic local algebras is that

both the free and the P{<f>) dynamics transform these algebras into themselves

with propagation speed 1. They can thus be used to construct local algebras over

space-time regions satisfying the Haag-Kastler axioms. The Newton-Wigner alge-

bras are not even invariant under the free dynamics. The reason for considering

these, is that they can be used to show convergence of the approximate vacuum. If

<og is the ground state of a space cutoff Hamiltonian H(g) in the P(<t>)2 theory

it is known that a)g(Nr ß) < K where NfB = dT{xBfi\B), 0 < r < % and K is a

constant independent of g and of translation of B [6]. Relative to the decomposi-

tion ? = 3Xß) ® 3"(~ B) we have NfB = S(Nr>B® l)S, and Nf B is positive with

compact resolvent [3]. Thus \cog\ is contained in a norm compact subset of the

dual of 2I°(B) [3] and we can extract from \a>g\ a sequence \o>n\ which converg-

es in norm on each 2I°(B). We will show that the elements in 21rf(C) for a bound-
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ed region C can be approximated by elements in ?I°(B) in the sense of Theorem

2.1, thus \o)n\ converges in norm on each 21(C). The limiting state <u will there-

fore be locally normal, from which it follows that a Hamiltonian defining the P{<f>)

dynamics can be defined on the representation of the local algebras 21(C) defined

by a) by the GNS-construction. We now turn to the proof of our main theorem.

Theorem 3.1. Let f&yl be a sequence of vector states on 7 such that:

1. wfI(N0i[m nl+j)) < K for n = 1, 2, • • •; m = 0, ±1, ±2, • • •, K e R is inde-

pendent of m and n.

2. For each bounded interval B C R, et>n converges in norm on 2I°(B). Then,

for each bounded interval B, a>n converges in norm on 21(B).

Proof. Let B be a fixed bounded interval. We will apply Theorem 2.1 with

N   =N.r       ,\, m e Z and

1/H3   iim^Q) !

1 if m = 0J " jm)3'

where the definition of \m\ is obvious. Furthermore, we let I = 21(B), 21^ = ^J,B)

and 21° = 2I°([-ra, m)). Define the mapping E^: 21^ — 21° by

n

Hypotheses 1 and 2 of Theorem 2.1 are fulfilled, so it remains to prove (*).

To do so we expand an element C e 21^ = 2l^(B) in terms of creation and annihi-

lation operators [3]:

aß P

Caß=)Caßbi •'•xa> *a+i»■ • • ̂ a+ß^^y) • • .A*(xa)A(*a+1). ..A{xa+ß)dxl . • • dxa,

where the kernel c a£.x) is symmetric in the creation and annihilation variables

respectively. We will furthermore expand the (unbounded) operators C aß in opera-

tors affiliated with the Newton-Wigner local algebras. By a slight modification of

the terminology in [3], a localization index L is defined as an ordered pair L =
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(La, Lß) where La and Lß are sequences of nonnegative integers:

La= (.• •       ^q, fc", • • •),    Lß = (• • • fcf j, • • •)»

where i     „ &   = a, 2°°   „kß=ß. L corresponds to the annihilation of kß
Tl 71 72 = — 00    71      ' 71

particles and the creation of A* particles in the region [n, n + 1), n = 0, ±1,

• • • . D(L) is defined as the number D(L) = 2°°   m \n\(ka + k0).
n s—oo        n ft

For fixed L, let /£ be a product of characterisitc functions of each of the

creation variables x. ••• x   where the function vr       ,v occurs ka times. Let
1 <* ^LWlW + l/ 771

ga be the symmetrization of fa in the variables Xj ••• xa. ga is then indepen-

dent of the choice of fa subject to the restriction above. Define g& in the cor-

responding way for the annihilation variables, and define

'*•*» *«fl»      » *a+ß) = g^i • • • *a)g^o.n> ' * * ' xa+ß)-

Then define, for x = (xj, • • xo+ß):

c£fl = the operator L2ym (R^) -» L2ym (R0) with kernel c^x).

Then C„o=2, L! C^fl where L! = a!/S!/(II   ua!))(II   (kß\)), and the same
tx/j       l a. p ' 172    )7i mm

relation holds for c tt/gW. The reason for the factor in front of C^ß is the follow-

ing: In the decomposition:

oo co

l~ 13      Z >fcI.«1+i>^'"xtia.«B*i>W
m j=—oo        ma=—ce

a function of the form /"occurs a\/Yl   (ka !) times.

Let A be the set of localization indices, and let A   be the set of localiza-
a

tion indices L such that ka = 0 =     for n <-m and n> m. Then it is clear
w n —

that:

Fm(C)=      £     L!C^     C-Em(C)=      £ L!C^.
o.,ß,LeK a.ß.Lti

771 771

Thus, in order to prove hypothesis (*) of Theorem 2.1 it is enough to prove:

Proposition 3.2. Let /(A) = e~M*2, MeR+. // M is sufficiently large

there exist constants RLaß such that 2a ß L Raß<°0, and L!!l/(N)C^g/(/V)!| <

*Laß\\C\\,for allCeUp).

Proof. To estimate ||/(N)CL«/(/V)|| we use an estimate on        derived by

Glimm and Jaffe. It is based on the fact that the operators p    '   transform a

function / e SR(R) with compact support into a function p*1''2/ which is domi-

nated by const e~m0l*l for large values of the argument x. This leads to the

estimate
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(3.1) Ika/jll < expect + ß) - m0D(L))\\C\\

where Kj is a constant dependent on the region B [3, Lemma 4.3].

Next we decompose the Fock space into the tensor product of Fock spaces

over the regions [n, n + l) (see [5l for the definition of infinite tensor products)

oo \an\

$ = S   ®       ?[», n+l),    12 = ® 0n
n =— oo n

and write J[b, n + l) = ©~=0 Sn m where 3^ is the eigenspace of N<, r„.n+1)

corresponding to eigenvalue m, i.e. ^„ m~ LjyB1(k « + l)m). Let V be the set

of sequences A = (• • • A_ j, AQ, Aj, • • •) of nonnegative integers such that

200   „ A < oo, and define
n =—oo n

for A e V.

This is the set of vectors in Fock space which has An particles in the region

[«, n + 1), n = 0, ±1,«««. The spaces ?A are mutually orthogonal and span 3:

3 = ©XeV 3A .
\ is an eigenspace of N = 2, «f„N0>[     n of eigenvalues 2n rfA^. Cay3

transforms 3\ = S ® 3  .   into S ® 5  .    .*..a if A^<A  for all n, and
A n   n,Kn n   n,X„-kg +*JJ        n — n

into {Ol otherwise. Furthermore

l|c^|3j| = if * < A„ for all nn — n

\ 0 otherwise.

This follows from the definition of the creation and annihilation bilinear forms

A*(x) and A(x). Since f(N)CaßfiN) transforms the mutually orthogonal spaces

3A into each other, it follows that:

||/(N)C^/(N)|| = sup ||/(/V)C^/(N)|5A||
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Using estimate (3.1) and the explicit definitions of / and dn it follows that:

<    sup a!ß!exp(-A,(£^(AB-^02))

' n n

= s2.r(^).rUa)||c||.

Proposition 3.2 now follows from the following two lemmas, since we may-

choose R^ß = S2T(kß)T(k°), and thus 2aßL R^ß - S2(2keV T{k))2.

Lemma 3.3. S < <».

Lemma 3.4. ^key T(A) < «> if M is sufficiently large.

Proof of Lemma 3.3. When at least one MO we have that:

^(?^)(?^)-?(?^.)!-t(?w.))

where Kf is a constant. Define a function g: V—* R by
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To prove Lemma 3.3 it is enough to show that g is bounded above. By Holder's

inequality:

n n >n /      \ n '

Defining x = (2b {«r3AB)l/4, y = (2B j»Un)1/4 we thus obtain:

g{k) < K£x1 + cy3+3e- Mxe/2 - «„y V2,

and the last function of x and y is easily shown to be bounded above when

f < 1/7.

Proof of Lemma 3.4. Define, for A > k > 0:

g(A) = ±X2 +£logA+ (k1+5)*"T

A calculation shows that

ll\ 1 OT0    '"o \\
sup g(A) < exp \k\- j + 3 logirai - j log M + Kj + -j - -j \n\jj.

Thus, by choosing M large enough, we obtain

sup g(A) < expU(- mQ\n\/4 - 1)).
AS*

It follows that

ZtU)<£ n «pW-jW-1))

= n (£ exp(-*B(_^H-i)j)= n (i-exp^N-i))"1.
n

Since 2n exp(-m0|n|/4 - l) < «> this last infinite product converges, and the

lemma follows.
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