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COUNTING COMMUTATORS(')

BY

R. J. MIECH

ABSTRACT. Let G be a group generated by x andj/, G2 be the commutator subgroup

of G, and G, be the group generated by y and G2- This paper contains explicit expansions

of y" modulo [G2,G2,G2] and (xy)m modulo \G\,G\,G\]. The motivation for these results

stem from the /»-groups of maximal class, for a large number of these groups have

[Gi.Oi.0i] • 1.

Let G be a group generated by x and y. There are various theorems on the

expansion of (xy)m modulo the commutator of G ([1, p. 50], [2], [3, p. 315]). These

results are of a general nature and are not too useful when dealing with the

construction of groups whose structure is nontrivial but not too complicated.

The purpose of this paper is to point out that there is a sequence arising from

the conjugation process having properties which enable one to prove some results

on the expansion yx" and (xy)m. To be specific let [a, b] be the commutator of a

and b, [a,b] = a~lb-*ab, oi(0) = y and o(» + 1) = [a(/),x] for < > 0. We have

y**=y = o(0),      yx = y[y,x] = a(0)a(l),

y"1 = o-(0)*o-(l)* = o(0)a(l)a(l)a(2).

In general, since o(i)x = o(/)a(» + 1),

y*m = a[i(m, l)]a[»(77»,2)]... o[i(m,2m)}

where i (m, n) is defined by

»(0,1) = 0,       »(77!,7») = i(m - 1,[(t» + l)/2]) + (1 + (-l)")/2

form > 1,7» = 1, 2, ...,2m.

Some of the properties of this sequence are given by

Theorem 1. Let »(0,1) = 0 ûtio" »(tu,ti) = i(m - 1,[(ti + l)/2]) + (1 + (-1)")/2
for m > 1 OT»o" 7» = 1,..., 2m. Suppose that n = 2«<') + 2i<2> + ... +2»«

where 0 < o(D< o(2) < •   . < o(/). 7>toi
(a)»(m,7») = o(l) + i-l.

(b) // m OTia" k are fixed then the solutions of the equation i{m,n) = A: are n = 2*
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and n = 2k~r + 2»(2> + ... +2«W + V~x where j = k + 1,..., m; r = 1,..., k;

andk-r = q(l) < q(2) <...< q(r) <y - 1.

(c) Ifm,k, andj are fixed then the number of integers n such that 2J~l < n < 2J,

i(m, n) = k, is equal to (JkZ\ ).

To continue let us fix m, write i(m,n) = /'(«) and return to

y*"=yo(i(2))---o(i(n))---o(i(2"')).

Let dx (n) be the number of a(l) lying to the right of a(/(«)) in this expansion. That

is

dx(n) = \{v:n<v<2m,Hy)= 1)|.

Then collecting the a(l) to the left one finds that

yX"=ya(lyv     n     o(i(n)Mi(n))A\y<M].
«<2";i(n)>2

Part (c) of Theorem 1 is used here; the number of o(l) in the expansion is (7).

Further "collection" considerations lead to the quantities of

Theorem 2. Let f, n, andj be fixed integers with 2J~l < n < 2J and 1 < /

< /(a). Set d,(n) = \{v:n < v < 2m,i{v) = /}| and m,(n) = \{r.2*~x <v<n,

i{v) = /}|. Then:

(a) d,(n) = (7) -(,) + (,-,)- «i/(«).
(b) For n = V,m,{V) = (,:',).

For 2>_1 < n < 2-', iAa/ «, w = 2«0 + ... +2«<n> + 2>',

0G-«)
Incidentally the condition 1 < / < i(n) of Theorem 2 arises from the commu-

tator collecting process. If we have a product of commutators

... o[/(n)]... o(t)... only those o(f) with / < i(n) are collected to the left of

a[('(n)]. The inequality / < /'(«) shall be used several times in the proof of

Theorem 2.

As an application of Theorems 1 and 2 we shall prove two results which are

needed to construct some /»-groups of maximal class [4]. These are

Theorem 3. Let G be a group generated by x and y, G2 be the commutator

subgroup of G, and K2 = [G2, G2, G2]. Let a(0) = y and o(i + 1) = [a(/),x] for

i > 0. Set

(c)

2>-,<n<2'\i{n)
2    «/W- 2 J~£ {j~a2sxx)(k-a
<.2';i(n)"k o=l   x=k-a-\  \     <*        '      / \K       O



COUNTING COMMUTATORS 51

***-(íXT)-r?-r%íi-/>
^M-(ïK7)-a***(*ï.)

/'M = ff ff [o(Â:),a(/)]',(m'*/>.
*=2  /-l

r/»t?7J /or OTiy nonnegative integer m

yx" m yo(\)W ... o(m)™P(m) mod K2.

Theorem 4. Let G, G2, o(i ), and a(k, t, t) be defined as in Theorem 3. Let Gt be

the group generated by y and G2 and K¡ = [Gx ,G\,G\ ]. Set

ut. .s     íí + l\fk + '\     (k + 2t-l-\\(    k + t    \
b(kj,t) = {    t    ){i+l) + {        ,_,        )\k + 2t-l\

BiPM = %b{kJ,t){k+\+),

Q(p) = ff ff [o(k),o(i))^'\
k=\   7-0

Then for any nonnegative integer p

(xy)p m x'y'ailp ...o(p- \){t)Q(p) mod Kx.

Proof of Theorem 1. Part (a) of Theorem 1 can be proved by induction on tt».

The argument depends on the parity of n. If t» is even then q(l) > 1 and we have:

[(n + l)/2] = 2*<»-i + ... +2«<'H.       (1 + (-l)")/2 = 1.

Thus, by the induction hypothesis,

i(m,n) = i(m - l.J^y1]) + -L±^ = (o(D - 1) + (f - 1) + 1

-o(l) + /-1.

If 7» is odd then ̂ (1) = 0 and we have [(n + l)/2] = 1 + 2*<2>-' + ... +2i<'>"',

(1 + (-I)")/2 = 0. If o(2) > 2 then

i(m,n) = i(m- '.[^4^1) = 0 + '- • =0(0 + i- I.

If q{2) = 1 and there is an integer » < t - 1 such that o(2) = 1. q(3) = 2. • • •,

q{i) = i - 1 and q(i + 1) > ». then [(« + l)/2] = 2M + 2"<'+»-' + ... +2*0-'

and



52 R. J. MIECH

i{m,n) = i(m - 1, T^y^]) - (i - 1) + (f -i + 1 - 1) - I - 1

-f(l) + f-l.

Finally if q(j) = j - \ for y = 2,..., / then [(« + l)/2] = 2'"1 and

/(m,«) = i(m - 1, [^y^]) = (/ - 1) + 1 - 1 = ?(1) + t - 1.

This completes the proof of part (a) of Theorem 1.

Part (b) of Theorem 1 follows directly from part (a).

To prove (c) fix r in (b). Then the number of integers n such that n

= 2*"' + 2*<2> + ... +2iW + V~x and k - r + 1 < q(2) < • • • < q(r) <j - 2

is equal to

Summing on r we get

|,t2,:rHi--',>
which proves (c).

Proof of Theorem 2(a). Part (a) of Theorem 2 is a consequence of (c) of

Theorem 1. The number of v such that 2J <iv <2m, i(y) = I, is equal to

l,C:¡)-(7)-(,>
The number of v such that n < v < 2' is equal to (/I1,) - mt(n). Thus

*w- (7) -(/)♦(,:',)—<*
Proof of Theorem 2(b). The first part of (b) is obvious; the second is not.

Suppose that V~x <n<2J so that n = 2««) + ... +2°M + V~l. We need to

count the number of v such that 2-M < v < n and /'(»>) = /. To this end we shall

first describe the v that are less than n. After this has been done the count will

follow.

To begin, since V~x < v < 2J we have

(1) v = 2*<» + ... +2*'> + 2>-'

where t > 1. Next, in view of the inequality

(2) v = 2*<1> + ... +2*« + V~x < 2?C) + ... +2?W + 2'-' = n.
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let

Z>(0) - HMD,.. • ,M0): ' > 1,0 < Ml) <       < h(t) < q(r)}

and for u = 1, 2,..., r — 1

D(u) - {(Ml),.. .,h(t))\t >u,0< A(l) < • • • < h{t - u)< q(r - u),

h(t-u+\) = q(r-u+ 1),... ,h{t) = q(r)}.

Then the v of the form (1) which satisfy (2) are those v where (A(l),... ,h(t)) is

in Z)(0), Z)(l).or D(r - 1). This is easy to see for if (2) holds then, since

2»*11 + ... +2*<r> < 2«W - 1, we must have ä(') < q(r). The i» where h(t) < ^(r)

are those whose exponents come from D(0); the v where A(0 = q(r) and

A(/ - 1) < q(r — 1) are those whose exponents come from £>(1), etc.

Consider next the quantity / appearing in the definition of the D(u). In D(0)

we have 0 < h(\)< ... < h(t) < q(r). Thus í - 1 < h(t) < ?(/•) or í < q(r).

Similarly in D(u), u > 1, we have t < q(r - u) + u. So for u = 0, 1,..., r — 1

let

A(«) = {(HO.A('))|0 < A(D <...<*(/- »)< q(r- «),

Ä(i - « + 1) - q(r - u + 1),... ,h(t) = g(r)}

with the conventions that if u = 0 the second set of conditions, the equalities, is

to be dropped while if u > 1 and / = u the first set of conditions is to be ignored.

We then have

q(r) q(r-u)+v

Z)(0)=UA(0),       D{u)=     U     DM
r-l i—«

Finally recall that we are assuming that / < /(«). Since n = 2«0) + ... +2«W

+ 2-/-' we have / < /(«) = ^(1) + k which implies that q(i) > / — r + i — 1,

i.e.

(3) 9(r -«)>/-«- 1.

We shall now count the v with i(p) = / stemming from a fixed DM' Suppose

first that m = 0. Then:

v = 2«'> + ... +2«') + 2>"',       0 < A(l)< h(2) <...< h(t) < q(r),

/(-) = /,(!) + / = f.

The last relation yields h{\) = / - t > 0. Since the number of integral (jc15 ...,

jcJ with a < xx < ... < x„ < b is equal to (V) the number of (A(2),... ,A(0)

such that A(l) + 1 = / - t + 1 < h(a)< ... < h(t) < <Xr) is equal to

(,iW-7-i+i/. We want next to sum on t. We have t < q{r) from the definition of
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D(0). We also have h(\) = / - / > 0 so / < / and / < q(r). By (3), / - 1

< q(r) or / < q{r). Thus the summation is from t = 1 to t = I. Summing we

have

'   /o(r)-/-l+/\      ( q{r)\

M       q(r)'-f       )      \f-\J'q(

and this is the number of v < tj with »'(»0 = / coming from D(0).

Suppose next that u > 1. The case / = u is slightly different from the rest so

we shall treat it separately. If / = u the set of inequalities appearing in the

definition of Du(u) is vacuous so there is but one v from £>„(«),

v = 2«" + ...+2««) + V~\

where h{\) = q(r - u + 1).h(u) = q(r). We would also have

»'(»>) = h(\) + u = q(r - u + 1) + u = /.

But. by (3), q(r - u + 1) > / - u. Thus there are no v with i(v) = / stemming

from Du(u).

The argument on the sets D,(u), u > 1, t > u + 1, is similar to the D,(0) case.

One finds that the number of v with »(»») = / coming from D(u) is equal to C,-î-l).

We then have

»,(»>-,!( *rj>,>
which completes the proof of Theorem 2(b).

Proof of Theorem 2(c). We have upon replacing t + 1 by o in the sum for

7717(7»),

(4) 2       «CO-       2       2 (*(7_a;!))

where for / > tV + 1 the ti in the index of summation are those of the form

n = 2k~r + 2«<2> + ... +2«M + 2>~x   with   r = 1, 2,..., k   and   k-r = q(\)

< <?(2) < ... < q(r) < j - 2. (We shall suppose./ > A: + 1 in what follows for

the case y = k of Theorem 2(c) is fairly trivial.)

Let S,  be that part of the right-hand side of (4) where a = r. Then

o(r - o + 1) = o(l) = k - r and

5,=   2   (*:;) = ¿0:;W)

where uXrX being the number of (q(l),...,q(r)) with k-r = q(l) < ?(2)

< ... < o(r) < / - 2, is equal to (J~k~\+r). Thus
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«-!(î:0rî:î+')-tf:!>
The last equation follows from the identity

"  (N+j\(M + n-j\^(M+N+\+n\

jè0\   N   )\       M       )      \    M + N +\    y

which  can  be proved  by equating coefficients in  the two expansions of

(1+J,)-"(1   +y)-».
To continue let S2 denote the remaining terms of the right-hand side of (4).

That is,

« -   2   2 (*,-_■; ")•
2J-><n<2';i(n)=k a-1  \ '        " /

Now fix a, fix r, fix q(r - a + 1) and set x = q(r - a + 1). Then the number of

n with n = 2*_r + 2«<" + ... +2«<r> + V~x and

* - r - ^(1) < <7(2) <... < q(r - a)< f(r- a + I)

= jc < q(r - a + 2)< ... < q(r) <j - 2

contributing a C'T-T") to S2 is equal to

i-ri-.tvTS-r)
Keeping a and x fixed and summing on r we get the quantity

*    (x-\-k + r\/j-2-x\ = (       x       \/j-2-x\

r4V. V    r-a-\    )\   a-\    )      \k - a - 1 )\   a-\    )

Thus

*-i?(.-.-.Xy:,-v)0;.)
where the range of * is to be determined.

To determine this range note that since <Xl) < q(2) < ... < q(r) we have

q(") > <X0 + p - 1 and <X»-) > q(r - v) + v. That is

q(r - a + 1) > ^(1) + r-a = k — r + r — a = k — a

and

?(r - a -I- 1) < q(r) - a + 1 <y" - 2 - a + 1 =y - a - 1.



56 R J. MIECH

Consequently k-a<q(r — a+l) = x<j-a-\ and

S> " .?, JL U - a - l)v   o - 1 *)(/ -a)

Note finally that if we extend the range of summation above by letting

x = k — a — 1 the terms thus added are equal to

i,ti:rT7-;')=(r-',H.
Bringing these results together we have

2 «/(») = S, + S2
2J-<<n<2>;Hn)-k

= a?i ,-£■-. \   a-l    )\k-a-l)\/-a}

This completes the proof of part (c) of Theorem 2.

Lemma 1. Let A(m,k,f) = 22<«<2~;/(«)-* ^/(")- Then

A{m,k,l) = (mk)(mt)-Dx-D2

where

*-l(i--.)(V>
^i,l(*-:-)(,-.K"-:-")

Proof. First of all,

/*(«,*,/) =2 2 «»•
7-* 2>-|<»i<2J;i((i)-*

Secondly, d,(n) = ("¡) - (J~,x) - m,(n). Finally, the number of n such that

i(n) = k, 2J~l < t» < 2j is equal to (£',). If we put these results together we get

Lemma 1.

Lemma 2. // x > b > a then

\a)\b) = „?ow(       *       j(fl + e-«j

OTîd

7§WW " .?oWV       a     ")(a + 6+l-«|
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To prove the first equation multiply (Jb) = 22-o (ï)(£î) by (i) and rearrange

in the obvious way. The second equation is a consequence of the first.

We are now in a position to prove Theorem 3. The first step in the proof is

Lemma 3. Let A(m, k,f) be defined as in Lemma 1. Then

-**d-GX:) -s*'-'>(*:.j
where a(k,l,t) = 2,'-'o (VX^-T').

Proof. By Lemma 2,

*%I,U,X/)-á(0rv-%+;-.>
Similarly

n  _ 4   ™v~"   V Í1 - a\(k ~a-\+l-a-u\

/ x N/^-l-xN

V*-a-l+/-a-r/\        a        /

'   Ç? // - a\ ik - a - 1 + / - a - u\i m \
àxào\   u   )\ i-a )\k + l-a-u)-

Next, note that if we extend the range of summation in D2 to a = 0 and call the

resulting sum D2 then D'2 = D2 + Dx. Furthermore if we rearrange D2 by

bringing together those terms where t — a — u = t then

*-áuuv)r;::-°)](*:,)

Since A{m,k,i) = (™)(7) - D'2 this completes the proof of Lemma 3.

Lemma 4. Let a(k, I, i) be defined as in Lemma 3. Then

Proof. Consider the quantity

•-Oí,X*í')-***
•    =(/,)er)-i(/;:,)r;-r>
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-0-.)[Cr)-(tt;-,)]-S.0i;:,x*"i-r')
-('r-WXVM/.-.wiL-,1)

Thus, by induction,

-gOiTi.x*-)-:-)
Consequently

-2,0- - (o       \/A: + » - <o\

+ 1 -w/V    l-a    )

Vv+7 * + '-« \
/A U + 2/-/-1/1

)(tc + 2/-/)-

- 1

Lemma 4 follows from this equation.

To prove Theorem 3, let us return to the discussion following Theorem 1 where

we had

yx"=ya(\yV n <*l(7»))[0(/(7»)),a(l)<'.<''>].
"<2";<(n)>2

Since a(l), ct(2), ... are in G2 we have

[o(i(n)),o(\)d>W] m [o(,(t») ),o-(l)]4<">modtf2

where K2 = [G2,G2,G2]. In addition, for a, b > 1, o{a) and [a(o),o(l)] commute

modulo K2. Thus we have

y*m =>;a(l)(,r>P,P',mod/:2

where     P, = IIn<2-;iW>2 o(i(n)),     P\ - ÜSÍ M*), 0(1)]**«,     ¿(m,*, 1)
= 2B<2-;,(n)-* «U«)- Inductively one gets

y*" m yoilfV ... a(77»)(s)P(77»)mod K2
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where

PH=nn'[4Wfw,       A(m,k,l)=       2       d,in),
/_1 <;_/+! «<2" ;/(/!)=*

dM= \{v:n<v<2m,i{v) = l}\.

Theorem 3 now follows from Lemmas 1, 3, and 4.

Theorem 4 is a consequence of Theorem 3. To start the proof of Theorem 4

we have

Lemma 5. Let R(m) = o(\)W ... a(w)(S), S(p) = UfZ] P(p - /),

TO) - S   S  [o«,0(y)r'xtf>.

77le7I

(xy)p = *>>>Ml)(5) ... o(p - l)<»S(/»)7"(0) ...Tip- 2) mod tf,.

Proof. By Theorem 3 and the fact that, for any i,j, k > 0, a(/') and [o(y),o-(&)]

commute modulo Kx we have

(*y)' - *' fi y*~ - x' ft yR(p - t)P{p - /)mod tf2
/-i /-i

- *v[ÏÏ *(/» - /)^']s(/»)mod tf,

Now

S b(/» - ty' = n n *pY?)wr?Ky'-,\/-i /-i ,-i

-[S naW^JnojmodÂ-,.

Finally, collecting a(l), o(2), .... a(y) in the last double product one gets

-i

II o-(l)<V)...a(/,-/)<P

= o(l)(5)---a(y')OÎ,)

• [Tï1 «(/■ + if® —4p- j)®>]tu) • • • no mod it,

= a(l)(!> -"(¡ip- IpTip - 2) • • • r(l)mod AT,.

If these results are brought together we have Lemma 5.
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Lemma 6. Let T(j ) be defined as in Lemma 5. Then

ff T(\) = ff ff [°(k),o(\)]«™
X=0 *-l A-0

where tik,\) = 2,x-+o PFXfôX^U

Proof. We have

ffr(A) = fffl ff MkloiW-M
A-0 A-0 7-1 *-A+l

= fi ff [o(k),oi\)]^
*-l A-0

where \p(k,X) = 2£o (V)(Á+í)- Applying the second part of Lemma 2 to \p(k,\)

one gets the stated result.

Lemma 7. Let S(p) be defined as in Lemma 5. Then

s(p) = ff ff W)M\)]«™
*-l A-0

where

«">-,4 [OX* »+')-<H(*+'+.>
Proof. We have

S(p) = ff J»(p - /) = ff Tí' ff W*).o(X)]^'*»>
/-I 7-1   *-2   A-l

= ff ff Hk)M\)]^
*-2 A-l

where

*(*,A)-'2  A(p-/,k,\)

The range of summation can be extended to / = p — k since í4(tV,A:,X) = 0.

Applying Lemma 2 we get

•w-*[C)(*Í')-*m](^*.>
Since #(fc,0) = 0 for * = 1,..., p - 1 and d(p - 1,\) = 0 for A = 0,...,
p - 2, this proves Lemma 8.
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By the last four lemmas

(xy)p = xpy"o(\)® ...o(p- 1)«> ff ff [a(*),a(X)] «>•*•*> mod K¡
*-l A-0

where

\k+l + t)-

This proves Theorem 4.

I would like to thank the referee for several valuable suggestions on this paper.
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