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EQUIVARIANT METHOD FOR PERIODIC MAPS
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WU-HSIUNG HUANG

ABSTRACT. The notion of coherency with submanifolds for a Morse function on a

manifold is introduced and discussed in a general way. A Morse inequality for a given

periodic transformation which compares the invariants called qlh Euler numbers on fixed

point set and the invariants called 17th Lefschetz numbers of the transformations is thus

obtained. This gives a fixed point theorem in terms of qth Lefschetz number for arbitrary q.

Let /be a periodic transformation of a closed m-dimensional manifold M with

fixed point set N. We develop in this note an equivariant approach using Morse

theory. We introduce in §2 the notion of coherency with a submanifold S of M

for a Morse function and show that such S-coherent Morse functions are dense

in CX(M). Furthermore, in this approximation/-invariance will be preserved

(§3). The coherency with the fixed point set N of/makes it possible to compare

the difference of qth Euler number of N and qth Lefschetz number of /. More

precisely, let ßq(N) and Xq(f) be respectively the ^th Betti numbers of N and the

trace of/* on the qth homology group Hq(M) with real coefficients. Let Bq(N)

and Aq(f) be their alternative sums respectively, i.e.,

ßq(N) = ßq(N) - ß?_,(7V) + • • • + (-l)'ßo(n

A,(/) = Xq(f) - X,_, (/) + ••• + Hrxoco,
where 0 < q < m. We establish in §5 an inequality for arbitrary q that

\ßq(N) ~ A,(/)| is no greater than the ^th Morse difference of an arbitrary/-

invariant N-coherent Morse function. We obtain as corollaries a fixed point

theorem in terms of arbitrary A, (when q = m, this is the Lefschetz fixed point

theorem) and a more geometric proof of the fact that ß„(A0 = A„(/), i.e., the

Euler number of N is equal to the Lefschetz number off.

The Lemma 1 (§1) which states that a smooth function can be approximated

by a Morse function with prescribed "boundary value" is essential to the

construction of the approximations.

1. A Morse extension. For a real-valued smooth function F on M, let C(F)

denote the set of all critical points of F. F is called a Morse function if for any

p G C(F), the determinant of the Hessian atp does not vanish.

We assume without loss of generality that M is a riemannian manifold with a

metric g. Let gtf be the metric tensor of g with respect to a local coordinate (x')
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and let g'J be the inverse of g¡j as matrices. Using the metric g, the differential

c7F(x) of Fat x has a natural way to be identified with a tangent vector at x which

is called the gradient VF(x) at x. Locally we have VF(x) = giJ(dF/dx')(d/dxJ).

We define \\dF(x)\\ by

lkF(x)||2 = g(VF,VF)   atx

and define llFiha and \\F\\ja of Fon an open set ß in M by

H74,a = sup{|F(x)|;xGß},

llFllu. = sup{|F(x)| + \\dF(x)\\;x G ß}.

Let fa R -> R be a C°°-function with 0 < \far)\ < 1, fa[0) = 1, <p"(0) < 0 and
<b(r) = 0 for |r| > 1. We denote throughout the induced function of mollifier by

fa for each positive number e, i.e. fa(r) = fa{r/è).

There exists a constant a > 1 such that

(1) Itftol < a/t.

It is well known ([4] or [3]) that any given real-valued smooth function on a

compact manifold M can be approximated by a Morse function in the norm

|| ||1A/. The following lemma establishes this approximation theorem even when

the "boundary value" of the desired Morse function has been given.

Lemma 1. Let ß and D be open sets of a smooth manifold M such that ß has a

compact closure ß with smooth boundary 3ß and DC®. Let F be a Morse function

defined on M — D. Then F \ M — ß can be extended to a Morse function F: M

-* R. Moreover if a smooth function G on M with \\F — GIIq^-jj < e, is given, then

the above Morse extension can be made so that W? — G\\\m < 2e.

Proof. Choose a metric g for M. For a point x inside ß, we denote by r(x) the

distance with respect to g from x to 3ß. Let ß, be the set (x G ß | r(x) > r}.

Since C(F) is discrete and ß is compact, there exist positive numbers tj, R and 8

such that

(2) 8 < min{l/2(l + a),y/7f¡j}   and   ||«7F(x)|| > n

for all x in the strip ßÄ_8 - ß/j+a contained in ß - D.

Define 77: M -* R by patching together F and G in ßÄ+< - ßÄ+M as follows:

77(x) = F(x), xEM- QR+t,

(3) = G(x) + <ps(R + 8- r(x))(F(x) - G(x)), x G ßÄ+i - ßfi+24,

- G(x), x G ßÄ+M.
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It follows that \\H - GlttAf < «•
Let £ be a Morse function on QK.S approximating H \ QR_S such that

(4) |*-£l*< <*'<'-

Finally we define F on M by patching together E and F in the strip QÄ_« — QR as

above. In order to see that F is a Morse function on M, it suffices to show that

F has no critical point in ÙR_S - QR. In fact, for x in Qj,.» - QK, we have

H(x) = F(x) and

\\dF(x)\\ > \\dF(x)\\ - \<ps(R - r(x))\ • \\dE(x) - dH(x)\\

- \\d<ps(R - r(x))\\ ■ \E(x) - H(x)\

> n - 82v - (a/8)S2r¡ > 7,(1 - 5(1 + a)) > n/2 > 0,

since we have the estimates (1), (2) and (4). The approximation of F to G follows

evidently from the construction.

2. Coherency with submanifold. Let 5 be a closed embedding submanifold of

M. In this section we define S-coherent Morse functions and show an approxi-

mation theorem of smooth functions by S-coherent Morse functions.

Definition 1. A Morse function F on M is called S<oherent if for each p in

C(F | S), there is a coordinate neighborhood (l/,(x,)) with origin at p, U D S

= fo+i = • • • = xm = 0}, and

F(x, • • -xj = F(0) - x?-x\ + ■ ■ ■ + x2m

where s is the dimension of S at p with s > X.

Such a (U,(x¡)) is called an S-coherent coordinate neighborhood of p for F.

Evidently, if F is an S-coherent Morse function on M, then F | S is a Morse

function on S with C(F | S) c C(F) and at each p of C(F | S), the index of

F | S is equal to the index of F.

For the convenience of later use, we fix the following notation:

Definition 2. Given a smooth function \p defined on a closed embedding

submanifold S of M, we denote by ip* an extension of i// on a tubular

neighborhood T„ of S with radius p defined as follows. Let p be so small that for

any x in Tp, there is a unique geodesic joining x to a point x' of S and having the

length equal to the distance r(x) from x to S. Let

**(x) = M.x') ■ (2 - %(r(x)))

where <p. is the mollifier relative to p(see §1).

If t// is a Morse function, so is uV*. In fact,

Cty) = C(xp*)   and   <p"(0) < 0.
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Note that at p G C(\f), the index of \p equals the index of \p*.

Theorem 1. Given a closed submanifold S of M, any smooth function G on M can

be approximated uniformly by an S-coherent Morse function F.

Proof. Let g be a Morse function on S approximating G | S. By Lemma 1, the

g* on a tubular neighborhood of S can be extended to a Morse function Fon M.

F is evidently S-coherent. If the tubular neighborhood of S is sufficiently small,

F can be made to approximate G.   Q.E.D.

3. Review of isometric actions. In general, for a compact riemannian manifold

(M, g), let ISO(M,g) denote the full isometry group. Let G be a closed subgroup

of ISO(M,g) andp a point in M. By the isotropy group Gp, we mean the subgroup

of isometries which leavep fixed. The orbit G(p) of G atp is the set (y(p); y G G}.

Each orbit is a closed submanifold embedded in M. An orbit G(p) is called

principal if

(1) for any q G M, dim Gp < dim Gq, and

(2) the number of components of Gp is no greater than the number of

components of Gq whenever dim Gp = dim Gq.

We quote the following well-known result.

Lemma 2 [5]. Let G be a closed subgroup o/ISO(M,g) of a complete riemannian

manifold (M, g). Then the union of all the principal orbits of G is open and dense in

M.

We return to our given periodic map f of M with order v. Without loss of

generality, we may assume that / is an isometry of (M, g) with some metric. In

fact we can modify an arbitrarily given metric g by taking the mean of the

induced metrics (fk)*g for k = 1,2, ... ,v.

Let T be the subgroup generated by / in ISO(M, g). T is finite and cyclic with

order v. By the order of an orbit of T, we mean the cardinal number of the orbit.

For the integer k such that there exists an orbit T with order k, let Mk be the

union of the orbits of order / where / is a divisor of k. Thus we have a lattice

consisting of these Mks with inclusion as the partial ordering. The lower bound

of the lattice is evidently the fixed point set N = Mx.

We now consider some geometries about N and more generally about Mks.

Lemma 3. The fixed point set N of an isometry f is a closed totally geodesic

submanifold embedded in M [2]. If the isometry f is periodic, then each Mk, defined

in the above, is a closed totally geodesic submanifold embedded in M as well as in

each Mj withj being a multiple of k.

Proof. For the first statement, one can refer to [2]. An elementary proof with

clearer geometric insight can be obtained by using the following two facts as the

basis of induction to construct, in an obvious way, local coordinates of N for

proving that N is a submanifold of M.
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(1) For two points p and q of N which are sufficiently close to each other, the

unique geodesic connecting p and q is contained in N.

(2) Let y, and y2 be two geodesies of M which are contained in N and intersect

with each other at a point p of N. Then the parallel transportation of y, along y2

generates a 1-parametered family of geodesies whose union is entirely contained

in TV.
For the second statement of the lemma, we need only to notice that Mk is

exactly the fixed point set of /* acting on M as well as on M¡ with j being a

multiple of k. This completes the proof.

For any two Mk and M¡, the intersection Mk n M, is evidently the Af(w) where

(k, I) is the greatest common divisor of k and /. On the other hand, M = M,. In

fact, for each M¡ and each x in M¡, choose a convex neighborhood U of x such

that for any ^ in U, the geodesic joinings to x in U is the only curve joining .y to

T(x) and having the length equal to the distance from y to T(x). It follows that

F C T* and therefore the order of T(x) is a divisor of that of Y(y). By Lemma

2, we see that the order of T(x) is a divisor of v.

4. The approximation.

Theorem 2. Given a periodic transformation f of M with fixed point set N, an f-

invariant smooth function G:M -» R can be uniformly approximated by an /-

invariant N'-coherent Morse function F.

Proof. We construct F inductively in the following steps.

Step 1. Let A, be a Morse function on A' approximating G | N uniformly.

Recalling the Definition 2, we extend A, to A*, on a tubular neighborhood T2p of N.

Step 2. For each prime number p which is a divisor of v, we shall extend

A*; | F, D Mp to an /-invariant Morse function hp : Mp -* R which approximates

G\My
For a general tc with 1 < k < v, let Uk denote the union of all orbits of order

k. By Lemma 2, Uk is open and dense in Mk. Now h*x \ F, D t^, induces a Morse

function

«1:(çn tf,)/r-R

where the quotient by T means the orbit space of Tp f\ Up under T. By Lemma

1, h*x can be extended to a Morse function

A^iz/T^R

approximating G/T restricted on Up/T. This hp induces an/-invariant N-coherent

Morse extension hp : Mp -* R of A*, | F, n Mp. hp evidently still approximates

G\Mr
Step 3. If v # p, we extend hp to an /-invariant Morse function Hp defined on

a tubular neighborhood T^Mp) of Mp by considering A*: TPf(Mp) -* R, and then

patching A* and A*, together near N as follows.
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77/x) = h*x(x), ier,n tPp(mp),

= h*(x) + <p,(/(x) - r,)(h*x(x) - h*(x)),      x G (35, - 7/,) n 7;(A/,),

= h*(x), x G T^M) - T2,,

where tj = p/3 and r(x) denotes the distance from x to N.

By taking pp sufficiently small, h*x and h*p as well as their derivatives will differ

from each other only by a small amount in the patching strip. This guarantees

that no critical point of Hp will appear in the strip. Clearly Hp approximates G.

77, is also /-invariant, since h\ and h* are /-invariant and «p, is symmetric with
respect to 0.

Step 4. For Mk, we assume according to the induction hypothesis that for each

divisor / of k, H, has been constructed. By the Lemma 1, we extend the function

UH,\Mk n (urp,(M,))

to an /-invariant JV-coherent Morse function hk : Mk -* R in the way similar to

that described in Step 2. hk approximates G again. If k < v, we construct again

h*k and patch together h*k and h% for all divisors /of k, as in Step 2 to obtain Hk.

If k = v, we take F = A,. This completes the construction of F.

Remark. Such F is indeed M, -coherent for all /.

5. The inequality and its applications. In general, for Y c X c M, let

ßq(X, Y) = the Betti number of the pair (X, Y),

Xq(X, y) = the trace of/* on Hq(X, Y),

and let

B„(X, Y) = ßq(X, Y) - ßq.x(X, Y) + - • - + (-\yß0(X, Y),

Aq(X, Y) = Xq(X, Y) - Xq.x(X, Y) + • • • + (-1)?Ao(a:, Y).

We fix an /-invariant JV-coherent Morse function F chosen arbitrarily. For a

real number a, let M" be the set (x G M \ F(x) < a).

Let all the critical values c„'s of F be ordered such that cx > c2 > • • • > cp.

Let pf, ...,pf.pk be all the critical points of F with critical value ca and of

indices vx, .. .,vf, . ,.,vk respectively, where pf, ..., pf are precisely the ones

contained in N. (I and k depend on a. The superscript a will be omitted

everywhere when no confusion can occur.)

For each py, 1 <j<k, there is an JV-coherent coordinate neighborhood (x,)

of Pj. Let t?, be the rç-ceil {x,y+i = X»,+2 — " ' = Xm — 0}. Consider numbers a0,

ax,..., a^ such that
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oo > c, > a, > c2 > • • • > a^x > cp > au.

When a. is chosen sufficiently close to c„, we can have

(1) e/s are disjoint and 3e, C M°";

(2) {(<?,, dej) | j = 1,..., /} and {(<?,-, 3e,) | j = 1./,..., A:} are respectively

the generators of the homology groups H(Nam-i, N°") and H(M""-1, M"*); and

(3) for 1 <j<l,fis the identity map on e¡ and for I <Cj < k, f*(ej,dej)

= (e¡,de¡) with i ¥= j, where X is the induced map of/on H(M"'-\Ma").

It follows that for each q and a both of ß,(Ar"<-',Ara*) and X,(Ma«-',Ma") are

equal to the number of efs with v¡ == q and 1 <j<l. Hence we have

ßi(A'a-',JVa-) = X,(A/^',M'"),

Bq(Na->,N") = Ai(Ma<-',X/a').

From the exactness of

0 -* 3, (//,+,(#,#"«-')) -» Hq(Na-,N"^) -* Hq(N,N°-)

^Hq(N,N°->)^---,

we have

Bq(N,N") = Bq(Ntt-\N'-) + Bq(N,Na^) - tqA

where e?>a is the rank of 3» (.»Yi+, (#,#"«-')). Similarly, we have

A^A/.M*) = A,(A/"-,Ma-) + A,(M,Ma-) - i,^

where tj,^ is the trace of f+ on 3,,(.iY?+,(M,M''«-1)). By induction we have

Bq(N) = 2 Bq(N",N'^) - 2 e„«
a a

and

A,(/) = SA,(M*,M^)-2V
a a

The well-known Morse inequality states that given an arbitrary Morse function

on M, we have

Bq(M)<Cq = cq-cq.x + ••• + (-!)%

where c, denotes the number of critical points of the Morse function with index

q. The difference Cq - Bq(M) is given by

2rank[3,(#,+,(A/a-,Ma«-'))]
a
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if we adopt the subdivision of M according to the Morse function as we did in

the above.

Definition 3. We call the difference Cq - Bq(M) the qth Morse difference.

We denote the «7th Morse difference of F by 8q(F). However,

K« - Vi ^ rarik[3,(/7î+1(M'-,A/a~'))].

Therefore we obtain

Theorem 3. Given aperiodic transformation f of a compact smooth m-dimensional

manifold M with fixed point set N, we have the inequality

|A,(/) - Bq(N)\ < 8q(F)

for each q = 0, ..., m and each f-invariant AT-coherent Morse function F, where

A,(/) = i (-I)9"' trace off, on Hr(M),
r-0

Bq(N) = 2 H)*" rth Betti number of N,
r=0

and 8q(F) is the qth Morse difference of F.

As corollaries we obtain a fixed point set theorem.

Theorem 4. Given aperiodic transformation f of a compact smooth manifold M, if

|Af(/)| > 8q(F)for some q = 1, ..., m and some f-invariant Morse function F on

M, then f has a fixed point.

Proof. Suppose/is fixed point free. Then every Morse function is Af-coherent.

Also Bq(N) = 0. These lead to a contradiction.

Remark 2. In particular when q = m, Am is the usual Lefschetz number and

8m(F) = 0 for all F. Therefore this corollary is a generalization of the Lefschetz

fixed point theorem for a periodic map.

Remark 3. Such a fixed point theorem based on A, and Sq(F) for arbitrary «7

and F gives the best possible estimation. In fact, let T2 = Sx X Sx = {<?'*, e*) \ 0

<9,<p< 2ir) and consider /: (**,<?*) -► («V*) and F(ei8 + e») = cos 9

+ cos 2<p. Then Fis an/-invariant Morse function with A, = 1 = 8X(F) but/has

no fixed point.

Since 8m(F) = 0, we obtain

Corollary 1. Given aperiodic transformation f on a compact smooth manifold Mm

with fixed point set N, we have the Lefschetz number of f equal to the Euler number

of the fixed point set N and therefore equal to the integral over N of the restricted

"intrinsic curvature" in the sense ofChern [1].
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This statement can be regarded as a generalization of the Gauss-Bonnet

theorem. A stronger result for any isometry can be proven rather directly by

Mayer-Vietoris sequence applying on a tubular neighborhood of N. However, the

above approach using the viewpoint of Morse theory may help one to have better

geometric insight.
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