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MINIMAL SEQUENCES IN SEMIGROUPS

BY

MOHAN S. PUTCHA (1)

ABSTRACT. In this paper we generalize a result of Tamura on ¿-indécomposable

semigroups. Based on this, the concept of a minimal sequence between two points, and

from a point to another, is introduced. The relationship between two minimal sequences

between the same points is studied. The rank of a semigroup S is defined to be the

supremum of the lengths of the minimal sequences between points in 5. The semirank of

a semigroup S is defined to be the supremum of the lengths of the minimal sequences from

a point to another in S. Rank and semirank are further studied.

Introduction. Semilattice decompositions of semigroups were first defined and

studied by Clifford [1]. Since then several people have worked on this topic,

notably Tamura [5]-{9]- The author's work on the subject can be found in [3], [4].

In this paper, we start by generalizing a result of Tamura [8] (or [9]) on <£-

indecomposable semigroups. Based on this, the concept of a minimal sequence

between two points, and from a point to another, is introduced. The relationship

between two minimal sequences between the same points is studied. The rank of

a semigroup is defined to be the supremum of the lengths of the minimal

sequences between points in the semigroup. The semirank of a semigroup is

defined to be the supremum of the lengths of the minimal sequences from a point

to another in the semigroup. Rank and semirank are further studied. To

understand this paper, the reader need only be aware of the first few chapters of

Clifford and Preston [2] and Tamura's decomposition theorem. (See any of [5],

[6], [8] or [9]. It was rediscovered by Petrich [10].)

1 Preliminaries. Throughout, S will denote a semigroup and Z+ the set of

positive integers. A congruence a on S is called a semilattice congruence if S/o

is a semilattice. S X S is the universal congruence on S. S is «^-indecomposable

if S x S is the only semilattice congruence on S.

Definition. Let a, b G S. Then

(\)a\bil and only if b E S]aSl. | is transitive and reflexive.

(2) -» is defined as a -» b iff a | b' for some i E Z+; let -*° denote -*, i.e.,
-»« = -►.

(3) a -»"+1 b iff there exists x E S such that a -»" x -* b.

(4) a -»" b iff a -* b for some n E Z+.

(5) — is defined as a — b iff a -*    -* a;  let —° denote —, i.e., —°
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(6) a — "+1 b iff there exists x E S such that a—"x — b.

(7) a —°° b iff a —" b for some n G Z+. —°° is an equivalence relation.

The following theorem and corollary are due to Tamura [8] or [9].

Theorem [Tamura]. Let S be a semigroup. Then -*°° n (-»°°)-1 is the finest

semilattice congruence on S and each component is ¿-indecomposable.

Corollary [Tamura]. Let S be an ¿-indecomposable semigroup. Then -*°° is the

universal congruence on S.

We generalize these results to:

Theorem 1.1. Let S be a semigroup. Then —°° is the finest semilattice congruence

on S. —°° is also the equivalence relation generated by the relations ab = aba = ba,

for all a,bESl and ab E S.

Corollary 1.2. Let S be an ¿-indecomposable semigroup. Then —°° is the universal

congruence on S.

It is easy to deduce Tamura's result from ours.

To prove Theorem 1.1, we need the following

Lemma 13. Let o be an equivalence relation on a semigroup S satisfying

xy o xyx a yxfor all x,y G S1. Then for all a, b, c, d E Sx (with the convention 1

al),

(1) abe o ab1 c for alli G Z+,

(2) abed o aebd,

(3) a —°° b implies xay o xby for all x,y E Sl.

In particular —"Ça.

Proof.       (1)       abc a cab a b(ca)b = (bc)(ab) o (ab)(bc) = ab2c.       ab'c =

(ab'-l)bc o (ab'-^Pc = abi+ic.

(2) Using (1), for any A, B, C E Sl,

ABC o A(BC)(BC) o (ABCBC)(ABCBC)

= (AB)(CBCA)(BC)2o (AB)(CBCA)BC

a (AB)(CBCA)(CBCA)BC

= A(BC)2(ACBCABC) o A(BC)(ACBCABC)

= (ABCACB)(CABC) a (ABCACB)(ABCACB)(CABC)

= (ABCACBA)(BC)(ACB)(CABC)

o (ABCACBA)(BC)(BC)(ACB)(CABC)

= (ABCACBAB)(CBCA)2BC o (ABCACBAB)(CBCA)BC

= (ABCACBA)(BC)2(ABC) o (ABCACBA)(BC)(ABC)

= (ABC)(ACB)(ABC)2a (ABC)(ACB)(ABC).
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In short ABC o (ABC)(ACB)(ABC). Interchanging B and C, we have

ACB o (ACB) (ABC) (ACB). But (ABC) (ACB) (ABC) a (ABC)(ACB) o

(ACB) (ABC) (ACB). So ABC a ACB.

Thus abed o d(abc) = (da)bc o (aa)cb = d(acb) o (acb)d.

(3) First suppose o — o. So we solve sat = b', s'bt' = a'. Then using (1), (2),

we have xaby o xab'y = xasaty o xsaaty o xsaty = xb'y o xby. Similarly,

xbay a xay. So by (2), xay o xby. Now assume a —" b, n > 1. So a — ax — • • •

— a„ — b. By the above xay o xaxy, xa¡y a xai+xy (i = 1,... ,7» — 1),

xa„y a xby. Thus, xay o xby.

Thus o —°° b implies xay o xby for all x, y G S1.

Proof of Theorem 1.1. Consider the following.

(*) xy = xyx = yx,   for all x, y G Sx, xy G S.

Let o, 6 G S1. Then aba \ (ab)2, ab | aba. So o6a — ab. Now ab \ (ba)2, ba \

(ab)2. Thus ab — ba. So ab —°° aba —°° ba. Thus —°° is an equivalence

relation satisfying (*). By Lemma 1.3, we conclude that —°° is the smallest

equivalence relation satisfying (*). In the same lemma, replacing a by —°°, we

have —°° is a semilattice congruence. Since any semilattice congruence satisfies

(*), we have that —°° is the finest semilattice congruence on S.

Corollary 1.2 is now immediate. We will need the following lemmas later.

Lemma 1.4. Let S be a semilattice of semigroups Sa(a G ß), 8 the corresponding

semilattice congruence.

(1) Let a G fi, with a, b G Sa. If a -» b in S, then a -* b in Sa.

(2) Let a G 5a, 6 G Sß, a -» b. Then a > ß.

(3) Let a, b G S with a — b. Then for some a G fi, a, b G Sa and a — b in S„.

Proof. (1) For some x, y G S1, xay — b'. So b'xayb' = e3'. Then b'x

= xayx 8 xay — b'8 b. So b'x G Sa. Similarly .yo' G Sa. So a \ b3' in Sa, whence

a -* è in Sa.

(2) a -» /ß in ß. Since ñ is a semilattice we deduce a \ ß in ß and then that

a > /?.

(3) Let a G Sa, b G 5^. By (2), a > ß, ß > a and so a = /?. By (1), a — ¿» in

S„.

Lemma 1.5. Lei S be a semigroup and a, b, c G 5.

(1) Leí » G Z+. Then a -» 0' implies a -* b.

(2) a\ b —* c implies a -* c.

(3) Let i,j G Z+. 77»e7» o' — b' implies a — b.

Lemma 1.6. (1) Let S be a semigroup with an ideal I and a, b G S. Suppose b is

not nilpotent in S/l, and a ~* b in S/l. Then a —» b in S.

(2) Let S be a semigroup with zero, and suppose a G 5. 77»t?7i 0 -» a if and only

if a is nilpotent.
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Proof. (1) We can solve xay = b' in the semigroup S/I. Since b is not nilpotent

in S/I, b' G S\I.So x, a, xa, y, xay E S\I. Thus xay = V in S.

(2) If 0 -* a, then 0 | a' for some / G Z+. Hence a' = 0. Conversely if a* = 0

for some / G Z+, then 0 | 0 = a' whence 0 -» a.

2. Minimal sequences.

Definition. Let 5 be a semigroup, a, b G S.

(1) By a sequence between a and b, we mean a (possibly empty) finite sequence

<x,>¡_i in S such that a — xx, x, — jc,+i (i = 1,...,«- 1)> •*» — & We call n the

length of <x(>. By « = 0, or <*,>"_ ( empty, we mean a — b. We say <x(> is

minimal if it is nonempty and there is no sequence of smaller length (including

the empty sequence) between a and b.

(2) By a sequence from a to b, we mean a (possibly empty) finite sequence

<x,)"_i, such that a -* xx, x¡ -* xM (i = 1,..., n — 1), x„ -* b. Again n is the

length of the sequence, and by n = 0 (or <jc(> empty) we mean a -* b. <x(> is

minimal if it is nonempty and there is no sequence of smaller length (including

the empty sequence) from a to b.

Lemma 2.1. Let S be a semigroup with a, b E S.

(1) Let <jc,)"_i, (.y¡y¡-\ be two sequences between a and b of the same length. If

<*,■> is minimal, then so is <>»,■).

(2) Let S be ¿-indecomposable. Then either a — bor there is a minimal sequence

between a and b.

(3) Let S be ¿-indecomposable. Then either a-* bor there is a minimal sequence

from a to b.

Proof. (1) Obvious.

(2) and (3) are trivial using Corollary 1.2.

Lemma 2.2. Let S be a semilattice of semigroups Sa (a E ß).

(1) Let a, b G S, with a sequence <■*,•>"-1 between a and b. Then a, b and all the

x¡'s lie in some Sa. Moreover <(*,) is a sequence between a and b in Sm. The minimal

sequences between a and b in S are exactly those in Sa.

(2) Let a E Q, with a, b E Sa. Let (x4>JLi be a sequence from a tob in S. Then

all the Xj's lie in Sa and <x,> is a sequence from a to b in Sa. The minimal sequences

from a to b in S are exactly those in Sa.

(3) Let a E Sa, b E Sß. Suppose there exists a sequence from a to b in S. Then

a>ß.

Proof. (1) That x¡$, a, b lie in some Sa and that <x,> is a sequence between a

and b within Sa follow from Lemma 1.4. So a minimal sequence between a and

b in S is a sequence between a and b in Sa and obviously minimal in Sa. Let (y¡)

be a minimal sequence between a and b in Sa. Let <z,> be a sequence between a

and b in S. By the above, <z,> is a sequence between a and b in Sa. So <z() has

length at least that of <.y,>. So (y¡} is minimal in S.
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(2) If <*,> is empty, a -* b in S and so in S„, by Lemma 1.4. Otherwise let

Xj G S0j, » = 1,..., 7». Then a -* xx -* • • • -* x„ -» b. By Lemma 1.4, a > ax

> • • • > <*„ > «• Consequently, a = ax = • • • = a„. Now <*,> is a sequence

from a to b within Sa, by Lemma 1.4. The rest follows as in (1).

(3) If the sequence is empty, a -* b and so by Lemma 1.4, a > ß. Otherwise,

a -» jci • • • x„ -* b, x¡ G Sq. By Lemma 1.4, a > ax > • • • > a„ > ß. So a

>ß-

Definition. (1) A semigroup S is a T-semigroup iff for any a,b G S, either

a -» b or b -* a. Clearly any semigroup S with ^-classes linearly ordered

(equivalently the ideals are linearly ordered or still equivalently for any a, b G S,

a | b or b \ a) is a T-semigroup. Such an example is the full transformation

semigroup. The null semigroup with more than one element is a T-semigroup, but

its ^-classes are not linearly ordered.

(2) S is a r*-semigroup iff S is a semilattice of r-semigroups.

Lemma 23. Let S be a semigroup. Then the following are equivalent.

(1) S is a T*-semigroup.

(2) S is a semilattice of Y*-semigroups.

(3) The ̂ -indecomposable components of S are T-semigroups.

Proof. (1) => (2). Obvious.

(2) => (3). Let S be a semilattice of r*-semigroups Sa (a G fi). Let T be an <£-

indecomposable component of S. Then T C Sa for some a G ß. Sa is a

semilattice of T-semigroups Uß. So T Q Up for some ß. Let a, b G T. Then

a, b G Uß. So a -+ b or b -> a in Uß and hence in S. By Lemma 1.4, a -* b or

b -* a in T. Consequently T is a r-semigroup.

(3) => (1). Obvious.

Definition. Let a, o G S. Then a ~» b iff a'' -» b for all » G Z+.

Lemma 2.4. Le» 5 be a semigroup with a,b,c G 5.

(1) /f o -* b ~* c, íAít» a -* c.

(2) If S is a T-semigroup, then either a ~* b or b ~* a.

Proof. (1) a | tV -» c for some » G Z+. So a -» c.

(2) Suppose a***b. Then a' -t* b for some » G Z+. So for any k G Z+,

o' T1* bk. Hence 6* -» a' and so Z>* -> o. Since k is arbitrary, 6 *** a.

Theorem 2.5. Let S be a T*-semigroup with a,beS. Let C**>2-i« 0/>"-i be two
minimal sequences between a and b. Then x¡ — y ¡for i = 1, ..., ti. We can further

conclude (if n > 1) that for i = 1, ..., ti - 1, either x, —yi+x or y¡ — xi+x.

Proof. S is a semilattice of T-semigroups Stt(a G fi). Using Lemma 2.2, we

deduce that if the theorem is true for each Sa, it is true for S. So we can assume

that S is a T-semigroup. We use Lemma 2.4 without further remark.
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First we prove the theorem for n = 1. We have

*'\

a ^¿>,       a-^b.

Now a ~* b or b ~* a. By symmetry, we assume a ~* b. Since a -/- b, we conclude

that b •** a. Now either xx ~* a or a ~* *,. If x, ~* a, we have (since ¿> -* xx) that

b -* a, a. contradiction. So, a ~» JC|. Since .y, -» a, we have j>| -» x,. Similarly

x,->.)>i. Thusx, — yx.

We now proceed by induction on n. We have,

^XX-X2      •••      *»\^
a ^ b,       w > \,a-7e-b.

^^l—y2   •••   yn

Now either a ~* b or b ~* a. By symmetry, we assume a ~* b. Since aY-b,

b -t* a. Again, either x, ~» a or a « x„. If x„ ~* a, we obtain (since b -* xn),

b-*a,a. contradiction. So a ~* x„. Now assume a ~» xj+x,j > 1. Then xy+i •** a,

for otherwise, a — xj+x and so C*j)"-,/+i is a sequence between a and b,

contradicting the minimality of C*i)"-i' Now either x7 ~* a or a ~* x,. If x,- ~* a,

then since xJ+x -+ Xj we have x,+1 -* a, a contradiction. So a ~* Xj. Thus a ~* x,

for all / = 1, ..., n. Similarly a ~* y¡ for all /' = 1, ..., n. In particular a ~» xx,

a ~* yx. Since jci -» a, we have Xi -* y\. Similarly, yx -» xx. Thus xx —yx. We

further have yx -» a ~» x2, and so >>| -* x2. Similarly, xx -* y2. Now xx ~* yx or

yx ~* xx. We assume xx ~*yx, the other case being taken care of similarly. So

x2 ~* xx ~* yx and hence x2 -* yx. Since we already established yx -» x2, we have

x2 —yx. Thus we obtain:

<^ y>, yf ^b.
^^i—k   •••   yn \^2   •••   ä

In the figure on the right, the sequence <y,>"=2 is a minimal sequence between^

and b. This is because a sequence between yx and 6 of length less than n — 1

would produce a sequence between a and ¿ of length less than n, contradicting

the minimality of <j/(>"=1. By Lemma 2.1, <x,>"=2 is a minimal sequence between

yx and b. By our induction hypothesis, we have x¡ — y¡, for / > 2. Also if n > 2,

x,—7,+1, or >>, — jtj+i, / = 2, ..., w — 1. Since we already know xx—yx,

yx — x2, the theorem is proved.

We will see later that Theorem 2.5 is not true for arbitrary semigroups, even

for n = 1.

Problem 2.6. In Theorem 2.5 can we conclude that x¡—yi+x and y¡ — xI+|,

/= 1,...,«-!?
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Problem 2.7. Call a sequence <jc,> between a and b indecomposable if (x¡) is

nonempty and no proper subsequence of 0c,> is a sequence between a and b.

Clearly a minimal sequence is indecomposable but not conversely. An indecom-

posable sequence of length 1 is minimal. Is Theorem 2.5 true for indecomposable

sequences of the same length? For t» < 2, the proof goes through.

Lemma 2.8. Let S be a Y-semigroup and a, b G S. Let {*<)"_ i be a minimal

sequence from a to b. Then <x,>"=1 is a minimal sequence between a and b.

Proof. We have a -* xx • • • x„ -» b, n > 1. Set x0 = a, xn+x = b. For « > i

> 1, x¡ ~» xi+x implies x¡_x ~* xi+x (since x^x -* x¡) contradicting the minimality

of (x¡y"=x. So xi+x ~* x¡. Thus x, — jc1+i, n > i > 1. Now a ■** x2 by minimality

of <x,)"=I. So x2 ~* a. Since xx -» x2, we have xx -*a.Soa — xx. Consequently,

<*,>"_, is a sequence between a and o. Since any sequence between a and o is a

sequence from a to 6, we have that <*,> is a minimal sequence between a and b.

Corollary 2.9. Le» S be a T-semigroup with a,b,c& S. Let 0c,)"=1 and O^î-i

Oe? minimal sequences of the same length from b to a and c to a respectively. Then

x¡ —y¡ for i = 1,..., 7». For n > 1, we can further conclude that for each

i = 1, ..., ti - 1 either x¡ —yM ory, — xM.

Proof. Now either xx ~* yx ot yx ~* xx. By symmetry, we assume X| ~*yx. Since

b -» X], we have 6 -* .y,. Thus (j»/)?-] is a sequence from b to o. Since <*,>"_, is

minimal, we obtain that <^,>"_i is also a minimal sequence from b to a. By

Lemma 2.8, <x,> and <>»,-> are minimal sequences between b and a. By Theorem

2.5, we are done.

Problem 2.10. Is Corollary 2.9 true for T*-semigroups?

3. Rank and semirank.

Definition. Let 5 be a semigroup.

(1) The rank px(S) of a semigroup S is zero if there is no minimal sequence

between any two points. Otherwise p, (S ) is the supremum of the lengths of the

minimal sequences between points in S.

(2) The semirank p2(S) of S is zero if there is no minimal sequence from a

point to another in S. Otherwise o2(S) is the supremum of the lengths of the

minimal sequences from one point to another in S.

The following is an easy consequence of Lemma 2.1.

Lemma 3.1. Let S be an S-indecomposable semigroup, and a, b G S. Then there

exists a sequence between a and b of length at most px(S).(2) Also there exists a

sequence from a to b of length at most p2(S).

Lemma 3.2. Let S be the semilattice of ¿¡-indecomposable semigroups Sa(a

G fi). 77ié?7»

(\)px(S) = supoenp,(5j,

(2) Pi(S) - sapaeQPl(S.).

(2) If Pi(S) = oo, the length is less than p,(S). Similarly for ^(S).
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Proof. (1) Immediate from Lemma 2.2.

(2) By Lemma 2.2, we have p2(Sa) < fo(S) for all a G ß. So supae0p2(S'a)

< fr(S). Now let a,bES, <x(>"_i a minimal sequence from a to b. We have to

show that n < supae0p2(5a). Let a E Sr b E Sß. By Lemma 2.2, y > ß. So

ab G Sß. By Lemma 3.1, there exists a sequence 0¡)*_i from ab to b, k

< p2(Sß). Since a | ab, by Lemma 1.5, <.y(>*_i is a sequence from a to b. By

minimahty of <x(>"_i we have n < k < p2(Sß) < supa6Qp2(Sa). Thus p2(S)

< supaeöp2(Sa). Combined with the previous result, p2(S) = supaeap2(S(,).

A semigroup S is archimedean if and only if for all a, b G S, a -* b (see [3],

[7] and [8]).

Theorem 33. Let S be a semigroup.

(1) pi(5) « the smallest n < oo for which —" is transitive (i.e., —" = —°° or

equivalently —" = —B+1)-

(2) p2(S) is the smallest n < oo for which -f is transitive (i.e., -*" — -»°° or

equivalently -»" = -*n+l).

(3) Let S be a semilattice of semigroups Sa(a E ß). Then p¡(S)

- supaEap,(S0), i = I, 2.

(4) PiiS) < Px(S).
(5) Pi(S) = 0 if and only if p2(S) = 0 if and only if S is a semilattice of

archimedean semigroups.

(6) If S is a T*-semigroup, px(S) = p2(S).

(7) A finite semigroup has finite semirank and rank.

Proof. (1) and (2) are easy consequences of the definition.

(3) For each a E Q,Sa is the semilattice of the ^-indecomposable components

of S, contained in S„. So the ^-indecomposable components of S1 are just those

of all of the Sa's. Now the result follows from Lemma 3.2.

(4) By (3), we can assume S is ^-indecomposable. Let a, b E S and <x,>"_i a

minimal sequence from a to b. By Lemma 3.1, there exists a sequence 0>i)îli

between a and b, such that m < px(S). But <^,> can be considered a sequence

from a to b. By the minimahty of <x,>, « < m < Pi(S). So p2(S) < Pi(5).

(5) Again we can assume S is ^-indecomposable. Clearly if S is archimedean,

it has no minimal sequences and so px(S) = (^(S) = 0. If for / = 1 or 2,

p¡(S) = 0, then by Lemma 3.1, S is archimedean.

(6) By Lemma 2.3 and by (3) and (4) above, we can assume that S is an ¿~

indecomposable T-semigroup and that p2(S) < px(S). We have to show px(S)

< p2(S). Let a, b E S and let (x,)"^ be a minimal sequence between a and b.

Then a-/-b. So either a +* b or b -/* a. By symmetry we assume a-*b. By

Lemma 2.1, there exists a minimal sequence <(.y()¡li from a to b. So m < p2(S).

By Lemma 2.8, {y¡)T~\ is a minimal sequence between a and b. Thus n = m

< p2(S). So px(S) < p2(S), whence px(S) = p2(S).

(7) Obvious.
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Lemma 3.4. Let S be an ¿¡-indecomposable semigroup and T a homomorphic

image of S. Then p¡(T) < p,(S), i = 1, 2.

Proof. Let a, b G S, <p: S -» T an onto homomorphism. Let there be a

minimal sequence Oí)"-! in T, between tp(d) and (p(b). So <p(a) -/- <p(b) and so

a-7*-b.By Lemma 2.1, there exists a minimal sequence 0c¡>¡1 i between a and b.

Thus m < Pi(5). <<pC*i))/li is a sequence between tp(à) and <p(o). By minimality

of 0>»)"-!> we have n < m < Pi(S). Thus px(T) < pj(S). A similar argument

shows that p2(T) < p2(S).

Problem 3.5. Is Lemma 3.4 true for arbitrary semigroups?

Theorem 3.6. Let S be an ¿¡-indecomposable semigroup with an ideal I. Then

P2ÍS/I) < P2(S) < P2(I) + p2(S/l).

Proof. That p^S/I) < pj,(S) follows from Lemma 3.4. By [5] (or [10]), both /

and S/I are ^-indecomposable. Let a, o G S. We have to show the existence of

a sequence from a to o of length at most p2(I) + p2(S/I). (3)

Case 1. a G S, b G /. Then ab G /. So by Lemma 3.1, there exists a sequence

(yi)?-i from aè to o in / such that m < fo(I). By Lemma 1.5, (.V/XLi is a

sequence from a to b.

Case 2. a G /, b G S\I, b is nilpotent in S/I. Then 6* G / for some k G Z+.

Then by Lemma 3.1, there exists a sequence {y¡}T~x from a to bk, m < p2(I). By

Lemma 1.5, <.y(>¡Li is a sequence from a to b.

Case 3. a G /, b G S\I, b is not nilpotent in S/I. So in S/I, 0 ■*» b. By Lemma

2.1, there exists a minimal sequence <^(>"«i from 0 to b. So t» < p2(S/I). So in

S//, 0 -+ ̂ i -»-* y„ -* b. If yj is nilpotent in S/I, for some/ > 1, we would
have, by Lemma 1.6, Q-* y¡-*•••-* ym-* b contradicting the minimality of

(.y¡y¡-i- Soyj is not nilpotent for/ > 1. By Lemma 1.6,yx -* • • • -*yH-* b in S.

Now since 0 -* yx, yx is nilpotent in S/I. So by Case 2, there exists a sequence

C*<)!li from a to ̂  in 5 such that m < p2(I). So in S,

a -► xx -*-* x„ -*yx -*-*yn -* b,      m + n< PiQ) + p2(S/I).

Case 4. a G S\I, b G S\I. If b is nilpotent in S/I, then e* G / for some

k G Z+. By Case 1, there exists in S a sequence <>>,> from a to 6* of length

< P2(I). By Lemma 1.5, <^,> is a sequence from a to o in S.

Thus we may assume b is not nilpotent in S/I. So if a -* b in S//, then by

Lemma 1.6, a -* b in S and we would be done. So we assume a •** b in S/I. By

Lemma 2.1, there exists a minimal sequence (x,>"_i in S/I from o to b. So

n < P2ÍS/I). If none of the x-s is nilpotent, then <*,>"_t is a sequence from o to

b in S, by Lemma 1.6. So let some *, be nilpotent in S/I. Then a -* Xj, -»

(3) The theorem is trivial if pjC/") = » or ft(S//) = oo. So we assume ^(7) < oo and

p2(S/l) < oo.
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• • • -* x„ -» b in S/I. By minimality of (Xf)"-W = '• Thus x1 is nilpotent and

Xj is not nilpotent (orj > 1. Thus by Lemma 1.6, xx —»••■-» xn —» Z> in S. From

what we proved above there exists a sequence 0,)¡li in S from a to X! such that

m < P2(I)- Thus in 5,

a -» >>, -»-» j;m -> x, -»-» xn -* ¿>,       w + « < P2(/) + P2(S//).

Problem 3.7. Is Theorem 3.6 true for arbitrary semigroups? In Theorem 3.6,

can we replace p2 by p,?

Consider the following condition on semigroups:

,.> a E S implies there exists a fixed n = n(a) E Z+

(   ' such that for all i E Z+, ain \ a".

Clearly any semigroup with a power of each element lying in a subgroup (in

particular a periodic semigroup) satisfies (A).

Lemma 3.8. Let S be a semigroup satisfying (A). Let a, b E S, k E Z+, such

that b -* ak. Then b | a"H

Proof. For some i E Z+,b\a'\ a'"M | a"H So b \ a*"\

Theorem 3.9. Let S be a semigroup satisfying (A). Suppose p2(S) < 1. Then

Pi(S) < 4.

Proof. Let 5 be the finest semilattice congruence on S and Sa (a E S/8) the ¿-

indecomposable components of S. Let a E Sa. By (A), there exists n = n(a)

E Z+ such that for all i E Z+, éK,+2)" | a" in 5. So there exists x, y G S1 such

that xa"ainany = a". But then xa" = x(xa^i+2)ny) 8 xa^+2^y = a" 8 a. So xa"

E Sa. Similarly a"y E Sa. Thus a'" \ a" in Sa. Consequently each Sa satisfies (A).

By Theorem 3.3, it suffices to prove the theorem for each Sa. Consequently we

may and do assume that S is an .¿'-indecomposable semigroup. Let a, b E S. We

have to show the existence of a sequence between a and b of length at most 4.

We use Lemma 3.1 and Lemma 3.8 without further remark. Let nx = n(a),

n2 = n(b). There exists c G S such that a"1 ̂ > c ^> b"2. Set n3 = n(c). So a"' | c"\

There exists dx E S such that c"' -» dx -* a"'. Set mx = n(dx). So dx \ a"' | c"5 | d^.

So </, | c"3 and a"1 | d","1'. T^lus c"3 — ^i — a'',• By Lemma 1.5, c — ¿, — a. Now

since c -» ¿"2, c | ft"2. There exists ¿2£S such that b"1 -+d2-* c. Let m2

= n(d2). Then c | è"J | d22. Thus c | d22 and hence, è"2 -» d2 — c. There exists

¿3 G S such that dp -» ö"3 -» ¿"2. Let w3 = h(¿3). So rf3 | Z>"2 | dp \ dp. Hence

d3 | ¿f2 and ¿"21 dp. Thus ¿f2 — d3 — ¿)"2. By Lemma 1.5, d2 — d3 — b. Hence

c — d2 — d3 — b. Consequently a — dx — c — d2 — d3 — b, and the theorem is

proved.

Problem 3.10. Can the bound on p, be improved in Theorem 3.9? Does a

semigroup of finite semirank necessarily have finite rank?
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4. Examples. It can be deduced from Corollary 1.2 or from Tamura's corollary

that a 0-simple semigroup is ^-indécomposable if and only if it has a nonzero

nilpotent element. Also notice that for an ^-indecomposable semigroup S with

zero, P](S) = 0 if and only if p2(S) = 0 if and only if S is nil.

Example 4.1. Let S be a 0-simple* semigroup with a nonzero nilpotent element

b. Then 0 — b. If x is a nonnilpotent element in S, then 0 — b — x, 0 -» o -» x

are minimal sequences. So px(S) = p2(S) = 1.

Example 4.2. Let Sx, S2 be two 0-simple semigroups with bx G Sx, b2 G S2

being nonzero nilpotent elements of S, and S2 respectively. Identify the zeros of

S, and S2. Let S = S, U S2 and S, n S2 = SXS2 = S2SX = {0}. Let x G Sx,

y G S2 be nonnilpotent. Then x — bx — b2 — y is a minimal sequence between

x andy. So px(S) = 2. But* -* b2 -*y,y -* bx-* x, whence p2(S) = 1. Thus

the rank of a semigroup can be strictly larger than the semirank.

Example 43. Let S, Sx, S2 be as in Example 4.2. This time choose bx G Sx,

b2 G S2 such that bx,b2¥= 0, b¡ = b¡ = 0. Let T = S U {u}, u & S. Define

u2 = 0, xu = jc7>i, «x = 0) x, «.y = b2y, yu = yb2 where x € Sx,y G S2- It can

be seen that T is a semigroup with ideal 5. If sx G Sh s2 G S2, then u | bx | jj,

m | o2 | j2> ̂ i | w2 = 0, s2\ u2 = 0. Hence sx — u — s2. Thus px(T) = 1. But

px(S) = 2 by Example 4.2. Thus the rank of an ideal of a semigroup can be

greater than that of the semigroup. Can a similar thing happen with semirank?

Can it happen for T-semigroups? Can the rank of a semigroup be less than that

of an ideal by an arbitrary number?

Example 4.4. We are now going to construct ^-indecomposable T-semigroups

of every rank (and hence semirank). A group is an example of an ^-indecompo-

sable, T-semigroup of rank and semirank zero. Now let <S,,>i6Z+ be a sequence

of 0-simple semigroups. Assume 5, has zero 0„ a nonzero nilpotent element ¿>„

b2 = 0j, and a nonzero idempotent e¡. (For instance 5, could be a completely 0-

simple semigroup which is not a Clifford semigroup.) Now identify e¡ and 0,+].

Thus 5, n SM = {e,) = {0,+,}. Let S = Ul6Z+S,-. Set I¡ = U,<,S). We define

multiplication on S by defining multiplication on each I¡. /, = Sx is a semigroup.

Assume multiplication has been defined on I¡. Let jc G I¡ and y G SI+1. Then

define xy = xe¡, yx = e¡x. Then it can be seen that the multiplication is

consistent with the previous (i.e., when x or y = e¡ = 0/+1), and also that now Ii+X

is a semigroup. Consequently, we obtain a semigroup S. Let 0X = 0. Then 0 is the

zero of S, and each I¡ is an ideal of S. Now let x¡ be a nonnilpotent element of

S¡. For k G Z+, bk — ek = b\+x and so bk — bk+x. Thus 0 — bx — b2-•

— b¡ — x¡ is a minimal sequence between 0 and jc, of length i in both I¡ and S. It

now follows easily that px(S) = oo, px(I¡) = ». Since S, I¡ are T-semigroups,

Pi(S) = oo and Pi(I¡) = ». 5 and each I¡ are ^-indecomposable since there is a

sequence between any two points. It is also clear that if we choose 5,'s finite, we

obtain finite semigroups of every finite semirank and rank.

Example 43. Now we are going to show that Theorem 2.5 need not be true for

arbitrary (even finite) semigroups. Let S, Si, S2 be as in Example 4.2. Now we
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further assume that there exists a nonzero idempotent e¡ in S„ a nonzero nilpotent

element b¡ E S¡ such that bf = e¡b¡ = b¡e¡ = 0, /' = 1,2. (For instance S¡ could

be the Rees-matrix semigroup over the trivial group {1} with the 3 X 3 identity

sandwich matrix and

(1   0  o\ /o  0  0N
0   0   0 J   and   b¡ = I 0   0   0

0   0   0/ \0   1   0,

Let T = S U {m,,u2,u3,uA), uk & S, k = 1, 2, 3, 4, «, # u, for i ^/. We have

x

«i       % «3 «4

S,\{0) Ô

We complete the multiplication table as follows:

(1)«,«, = Ofor/ ¥>j.

(2) u\ - e,.

(3) u\ = 0.
(4) «32 = e2.

(5)u} = 0.

x E Sx_y E S2

S2\{0}

(6)

uxx = exx

xux = xex

u2x — bxx

xu2 = xé]

«3x = bxx

xu3 = xbx

uAx = 0

X«4 = 0

uxy = b2y

yux = .y62

u2y = 0

^m2 = 0

«3^ = e2y

yu3 = ye2

uAy = èj^

yuA = yb2

The multiplication intersects when x = ^ = 0 but then the values are identically

equal to 0. It can be shown with some effort that T is a semigroup with zero 0.

Furthermore

(i) «, divides every element of S.

(ii) u2 divides every element of Sx but no element of S2\{0}.

(iii) u3 divides every element of S.

(iv) m4 divides every element of S2 but no element of S,\{0}. Thus,
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u2\ ex = u2, u, ] 0 = u\, whence ux — u2.

u3 | ex = k2, ux\e2 = uj, whence ux — u3.

«4 | e2 = «I, «31 0 = «I, whence u3 — m4.

«4 | 0 = m2,       «j | 0 = «J,       whence u2 — «4.

«4 {ex = m2       and so   ux -y- «4.

«21 e2 = «2      and so   «2 -/- u3.

Thus,

u2

«1 «4> M, y-«4,1/2 7^ M3.

\/
"3

So Theorem 2.5 is not true for T. Note that u3 | 0 = u\ and so u3 -* u2. A slightly

more complicated example can be given where

,»2
\

UX " U4, Ux -t* «4, tt4 -f* UX, «2 •** U3, U3 -r* «j.1 I

«3

Example 4.6. Let A" be a finite set \X\ > 2, 5^ the full transformation

semigroup on X. Let 'T/y = <yx^Sx where S* is the group of permutations on X.

Then <VX is a prime ideal in Dx. <VX is ^-indecomposable. Moreover, there exists

afixedoo G <VX such that for all c G <VX, Oq — c. So p, (<VX) = p^*) = p,(!^)

= p2(Ox) = 1. Since Dx, <VX are T-semigroups, Theorem 2.5 is true for these

semigroups. As a side remark we mention that <VX cannot even be decomposed

into disjoint union of proper subsemigroups.

Example 4.7. Let X be an infinite set and Dx the full transformation semigroup

on X. Then there exists a fixed a0 G Ux such that for all c G Dx, ûq — c.

Furthermore ^ is a T-semigroup. So !Z»V 's an ^-indécomposable semigroup of

rank and semirank 1. Furthermore Theorem 2.5 holds for Dx. Can Dx be

decomposed into a disjoint union of proper subsemigroups?

Finally the author would like to thank Professor Julian Weissglass for his

helpful suggestions.
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