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ABSTRACT. Let A be a linear character on the center Z of a finite group Z of a finite
group H, such that

(1) A" = L., ¢,(1)¢, where the ¢/’s are inequivalent irreducible characters on H of the
same degree, and

(@) if 3% m¢(x) =0 for some x € H and nonnegative integers m,, then either
&i(x) = 0 for all i or m; = m; for all i, j.

The object of the paper is to describe finite groups which satisfy conditions (1) and (2)
in terms of the multiplication of the group. If S is a p Sylow subgroup of the group H, and
R = S - Z, then H satisfies conditions (1) and (2) if and only if

(@ (x e H: x'"h"'xh € Z= Nx"'h~'xh) = 1,h € H}/Z consists of elements of
order a power of p in H/Z, and these elements form p conjugacy classes of H/Z, and

(b) the elements of {x € R: x™'r~'xr € Z = Nx~'r~'xr) = 1,r € R}/Z form p con-
jugacy classes of R/Z.

Introduction. Let G be a finite group with center Z. In [3] F. R. DeMeyer and
G. J. Janusz called G a group of central type if there is an irreducible (complex)
character x on G such that x(1)> = [G: Z]. Groups of central type arise in
Schur’s theory of projective representations [5, pp. 628-655] and the general
Galois theory of rings [1].

We study groups which appear as normal subgroups of index p for some prime
p in groups of central type. Let H be a finite group with center Z, and let p be a
prime. Let A be a linear character on the center Z of a finite group H, such that
A = 3P, &,(1)¢; where the ¢;’s are inequivalent irreducible characters on H of
the same degree. Assume that if X.%., m;¢;(x) = 0 for nonnegative integers m,,
then either ¢;(x) = 0 for all i or m; = m; for all i, j. We call a group satisfying
these conditions p-special with respect to A.

We show that if H is a normal subgroup of index p in a group G of central
type, then either H is of central type or H is p-special (Theorem 2.1). We next
give necessary and sufficient conditions on a p-special group H that it be a
normal subgroup of index p in a group of central type (Theorem 2.2).

We then examine some properties of p-special groups. For a group H, let
Cly(x) be the conjugacy class in H containing x. Let Z be the center of H and
let A be a linear character on Z. Define

T(H,\) = {x € H: x' Cly(x) N Z C kernel(\)}.
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If S is a p Sylow subgroup of H, let R = S - Z and define
T(R,A) = {x € R: x"! Clg(x) N Z C kernel(A)}.

We show (Corollary 2.26) that if H is a finite group with center Z, then H is p-
special with respect to A if and only if

(1) every element of T(H,\)/Z has order a power of p and T(H,\)/Z consists
of p conjugacy classes of H/Z, and

(2) T(R,\)/Z consists of p conjugacy classes of R/Z.

Additional information is given concerning the set of elements T(H,\) and
how it relates to the character on H.

Throughout this paper, all groups are finite and all characters are complex. If
H is a group, Z(H) denotes the center of H. If x € H, {x) denotes the subgroup
of H, generated by x. The conjugacy class of x is denoted by Clg(x) or simply
by Cl(x) if there can be no confusion. If 4 is a subset of H, [4 : 1] denotes the
number of elements in 4 and if A and B are two subsets, [4: B] = [4: 1]/[B: 1].
A p element is an element whose order is a power of p and a p group is a group
in which every element is a p element. If n is any integer and ¢ is any prime n,
denotes the g part (or g factor) of n. All unexplained terminology and notation
is as in Huppert [5].

This paper is the author’s doctoral thesis at Colorado State University written
under the direction of Professor Frank R. DeMeyer. The author extends her
heartfelt thanks to Dr. DeMeyer for his advice and encouragement. She also
wishes to express her appreciation to Dr. Gerald J. Janusz of the University of
Illinois for his careful reading of the text and for offering many corrections and
suggestions.

1. F. R. DeMeyer and G. J. Janusz [3] defined a finite group G with center Z
to be of central type if there is an irreducible character x on G so that
x(1)? = [G: Z]. They proved the following: If G is a group of central type then
there is a 2-cocycle « on G = G/Z so that K(G), has center K, where K denotes
the set of complex numbers. Herbert Pahling [6] showed that if G is a group of
central type with center Z, then for every x € G, x & Z, there is an element
g € Gsothat 1 # x'g~'xg € Z; and conversely, if [G,G] N Z is cyclic and
foreveryx € G,x & Z, thereis anelementg € Gsothatl # x~'g~'xg € Z,
then G is a group of central type. In this section, results will be proved which
connect the above results.

Let G be a group with center Z and let Cl(x) be the conjugacy class in G
containing x. The condition in Pahling’s results suggests the study of the elements
x € G, for which x7! Cl(x) N Z = {1}. In order to make the results of this
section as general as later applications require, we study a larger set.

Definition. Let A be a subgroup of the center Z of a group G and let A be a
linear character on 4. Define

T(G,A) = {x € G: x7 ' Cl(x) N 4 C kernel(A)}.
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If x € T(G.)). then Cl(x) C T(G.)A) and x - a € T(G.]) for all a € A. The
results of this section give relationships between the irreducible constituents of A%
and the elements of the set T(G,]).

Lemma 1.1. Let G be a group with center Z and let A be a subgroup of Z. If X is
a linear character on A, then there is a 2-cocycle a on G/Z so that the center of the
projective group algebra K(G/A), has dimension t over K where t is the number of
conjugacy classes of G/A contained in T(G)/A. Moreover, a basis of the center of
K(G/A), consists of elements of the form 3, .cc U,, where C is the natural image in
G/A of a conjugacy class of G contained in T(G,])).

We prove Lemma 1.1 first in the case that A restricted to [G, G] N A is faithful.
We carry out the proof of Lemma 1.1 by a sequence of assertions.

(1.2) If y € G = G/A, let y* be an element of G, chosen to represent the coset
v. It is possible to choose the coset representatives in such a way thatif 8,y € G
with 8 the natural image of an element of T(G,\), then (y!8y)* = (y*)™'B*y*.

Proof. Let C,,..., C, be distinct conjugacy classes in G, contained in
T(G,\)/A, where C, = {1}. Choose (1)* = 1. Foreach2 < i < ¢, fix an element
B € C; and choose B*. For every y € G, define (y~!'8y)* = (g)'B*g, where g
= y. We must show that (y~!By)* is well defined.

First of all it is clear that the definition of (y~'! By)* is independent of the choice
of g, since 4 C Z. Suppose §~'88 = y~'By for some § € G. Letd € G, so that
d = 6. Thend™'8*d = g~'B*g - a for some a € A, and

a!' = (B*)"'(gd™")'p*gd™! € 4 N [G,G].

Since 8 € C, B* € T(G,\) and (B8*)"'(gh™!)"'B*gh™! = a € kernel()). Since
A restricted to [G,G] N A4 is assumed to be faithful, a = 1, and d-'8*d
= g~!B*g. Hence (y~!By)* is well defined. Choose the representatives of other
elements of G arbitrarily. This completes the proof of (1.2).

Choose coset representatives of the elements of G as described in (1.2). We
define a 2-cocycle a on G by

a(8,v) = M((6v)*)'8*y*).

We isolate the following computation.
(1.3) If B is in the image of an element in T(G,A), then for every y € G,

a(y™, B)a(y™18,7) = M(y™")*v*).
Proof. By (1.2), (y"'8y)* = (y*)™'B*y*. Then

a(y™, Ba(y™'8,7) = M(y'8)") ' (v™)*8*) - M(v'Bv)*) ' (¢! B)*v*)
= MG'B)) @B - M) (B (YY)
= MO8 B (B Y (' B)Y)
= MOo)**).
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(1.4) Suppose that 3. .5 ¢, U, is in the center of K(G), where ¢, € K. If y is
not an element of the image of T(G,]) in G, then ¢, = 0. If v is in the image of
T(G,\), then ¢;-1.,4 = ¢, forevery & € G.

Proof. 3,cr ¢, U, is in the center of K(G), if and only if for every 8 € G,

U 2 0 8)0s = Ui S, 0 1)
v€G veG
- x(s*(s-')')( S ¢, U.,).
yea
Computing, we have
Ui 30U )t = 3, e,a@, D61 )lhs
y€G YyEG

= 26 (CM“)a(s-l ’ 878-' )a(ys—l ’8)(]1 .
b3
Hence, for every 8 and y in G,

(1.5) (cyo1)a(@7, 867 )a(y671,8) = A@*(67")*)c,.

If y is not in the image of T(G,A), there is an element g € G, so that
8v*8™! = y*aforsome a # 1in A. Let = g. Then

a5, 318 a(r8,8) = N(G3)*) 1 (61)* (Brd)* () (18-)"8*)
= MO D e 68 )
= @)% - a)
# N(@E)*8*).

Since equation (1.5) must hold, ¢, = 0 for every y not in the image of T(G,]}).
If y is in the image of T(G, ), then 8y6~! is also and by (1.3), for every § € G,

(871, 8y8)a(y6~1,8) = N((571)*8*).

Thus ¢y = ¢, for every § € G.

If C, ..., C, are distinct conjugacy classes in G contained in T(G,\)/4, then
the elements 3 ¢ U, for C = C; for 1 < i < ¢ form a linearly independent set
of elements in the center of K(G),. By (1.4) these elements form a basis of the
center of K(G),. This completes the proof of Lemma 1.1 when A restricted to
[G,G] N A is faithful.

If A restricted to [G,G] N A is not faithful, let N = [G,G] N kernel(A). Let
G’ = G/N, A’ = A/N and let X’ be a linear character on G’ defined by
N(aN) = Na) for any a € aN. Then T(G',X’) in G is the natural image of
T(G,)) and the number of conjugacy classes of G’/4’ contained in T(G’,\")/A’
is the same as the number of classes of G/4 in T(G,A\)/A. Since G/A is
isomorphic to G’/4’, if o’ is a 2-cocycle on G’/4’ as defined in the previous case,
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then there is a corresponding 2-cocycle a on G/A4, so that K(G/A), and K(G'/A’).
are isomorphic K-algebras. This completes the proof of Lemma 1.1.

Lemma 1.1 allows us to count the number of inequivalent irreducible constit-
uents of A%, where A is a linear character on a subgroup 4 of the center of G.

(1.6) The number of inequivalent irreducible constituents of AC is ¢, the number
of conjugacy classes of G/4 contained in T(G, ) /A.

Proof. Let a be a 2-cocycle on G/A as defined in the proof of Lemma 1.1. By
[4. pp. 163-179], K(G/A), is isomorphic to 3., Homx(M,, M) where M, is an
irreducible left K(G/A4), module.

For each i, let T* be a projective representation of G/A4 corresponding to M,
If g € G and g is its image in G/A, then g = (g)*a(g) for some element
a(g) € A. Define T;(g) = Ma(g))T*(g). Let g and d be elements of G. Then

g = (8)*a(g), d = (d)*a(d), gd = (gd)*a(gd) and
T(8)T(d) = Ma(g))T?(g)Ma(d))T? (d)
= Ma(g)a(d))n(z;d)T? (2d)

= Ma(g)a(d))M((&d)*)'(8)*(@)*)T* (2d)

= Ma(gd))T? (gd) = T(gd).

Hence 7; is an ordinary representation of G. If ¢,(g) = trace(7;(g)) for g € G,
then ¢, is an irreducible character on G for 1 < i < ¢, and ¢, |, = ¢,(1)A.

Let ¢ be an irreducible constituent of A® and let M be a corresponding KG
module. Since ¢ |, = {(1)A, M is an irreducible left K(G/4), module. By [4,
Theorem 25.10, p. 166}, M is isomorphic to a minimal left ideal of K(G/4), and
M is isomorphic to M, for some 1 < i < ¢ Thus if { is an irreducible constituent
of A%, then ¢ = ¢; for some i.

Let ¢y, ..., ¢, be a maximum number of inequivalent characters from the set
{6:11 <i < 1).Since(d; |4,0) = (A%, ¢;) = ¢,(1),[G: 4] = A°(1) = S, (1)
= D) d?. However [G: A] = 3., d? andhence u =t and ¢y, ..., ¢, are
inequivalent irreducible constituents of AS.

Let G be a group with center Z. If x is an irreducible character on G such that
x(1)? = [G: Z], then x |z = x(1)A and A® = x(1)x for some linear character A
on Z. Conversely, if A is a linear character on Z such that A° = x(1)x for some
irreducible character x on G, then x(1)> = [G: Z]. Hence G is a group of central
type if and only if there is a linear character A on Z such that ¢t = 1 where ¢ is
the number in (1.6). Since ¢ is the number of conjugacy classes of G/Z contained
in T(G,A), then ¢ = 1if and only if T(G,\) = Z. These remarks verify the results
in §1 of [6]. Since for every linear character on Z one can define a 2-cocycle on
G/Z as in the proof of Lemma 1.1, Theorem 1 of [3] follows from Lemma 1.1 and
the above remarks.

There is another relationship which exists between the elements of the set
T(G,A) and the irreducible constituents of A° which will be useful later.
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(1.7) If x & T(G,\) and ¢ is any irreducible constituent of A%, then ¢(x) = 0.
If x € T(G,\) then there is an irreducible constituent of A° for which ¢(x) # 0.

Proof. Suppose x & T(G,A). Then there is an element g € G, such that
g 'xg =xa,a € A,Na) # 1. Then ¢(x) = ¢(g7'xg) = ¢(xa) = AMa)d(x).
Since Ma) # 1, ¢(x) = 0.

Let A = 3!, ¢;(1)¢; and let T, 1 <i <t be inequivalent irreducible
representations of G, T; corresponding to ¢;. For each i and each conjugacy class
C of G, 3,ec T(x) is a scalar matrix by Schur’s lemma [4, 27.3, p. 181]. Let
Seec T(x) = k- T(1), k € K. The trace of k - T,(1) is k - ¢;(1), and

k- ¢(1) = xgc trace(Z;(x)) = ng ¢i(x) = n - ¢(xo),

where n is the number of elements in C and x; is any element of C. Thus if
¢i(xo) = 0 for any xy € C, then 3, ¢ Tj(x) is the zero matrix.

Let T be a representation of A4 corresponding to A. Then for every g € G,
TC%(g) is similar to @ /., ¢;(1)7}(g). Let x € T(G,A\) and suppose that
¢:(x) =0forall 1 <i <t lIf Cis the conjugacy class of G containing x, then
Syec T(y) is the zero matrix for every i, and hence 3 ,ec T9(y) is the zero
matrix. For all g, & € G, there is i, j 50 that (S,ec T°(); = Zyec Ng~1yh),
and thus 3, A(g~'yh) = O for all g, h in G. In particular 3,ec A(x™'y) = 0.
If x'y € 4 for any y € C, then x'y € x7! Cl(x) N A. Since x € T(G,A),
x~VCl(x) N 4 C kernel(A). If n is the number of y’s in C for which x~'y € 4,
then 3 cc AMx'y) = n-1=0. Since x € C, n > 1, contradicting the state-
ment that n = 0. Hence for some i, ¢;(x) # 0.

We can summarize the results of this section in the following theorem.

Theorem 1.8. Let A be a linear character defined on a subgroup A of the center of
a finite group G. Let

T(G,A) = {x € G: x“'g'xg € kernel()) if x"'g"'xg € [G,G] N A}

and let t be the number of conjugacy classes of G/A contained in T(G,\)/A. Then \°
has t inequivalent irreducible constituents. If ¢ is an irreducible constituent of \° and
x & T(G,N), then ¢(x) = 0. If x € T(G,N), then there is an irreducible constituent
¢ of XS for which ¢(x) # O.

2. In this section we study groups which are not of central type but share
properties with normal subgroups of index p of groups of central type.

Definition. Let H be a group with center Z. We call H p-special if there is a
linear character A on Z, such that

(a) A¥ has p inequivalent irreducible constituents ¢, ..., ¢, all of the same
degree, and

(b) if 32, m;¢;(x) = O for nonnegative integers m; and some x € H, then
either ¢,(x) = 0 for all i or m; = m; for all i, j.

We will also say H is p-special with respect to A.
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Note. Let H be p-special with respect to A and A = e(¢y + -+ + ¢,). If
x € H, such that ¢;(x) = 0 for some i, then by condition (b), ¢;(x) = 0 for all
j. If TH,N) = {x € H: x' Cly(x) N Z C kernel(\)} then ¢,(x) # 0, 1 <i
< p, if and only if x € T(H,A) by Theorem 1.8.

Theorem 2.1. If G is a group of central type with center Z(G) and H is a normal
subgroup of G of index p, then H is of central type if Z(H) + Z(G) and H is p-
special if Z(H) = Z(G).

Proof. Suppose x is an irreducible character on G, so that x(1)*> = [G: Z(G)].
If Z(G) € H, then x | is irreducible since elements of Z(G) are represented by
scalar matrices by Schur’s lemma. Hence (x |y (1))* = x(1)* = [G: Z(G)] £
[H: Z(H)). Therefore, [Z(G): Z(H)] = p and H is of central type. If Z(G)
C H, then Z(G) C Z(H) and [H: Z(H)] < [G: Z(G)]. Hence x |4 cannot be
irreducible. Since H is a normal subgroup of G of index p, by Clifford’s theorem
[4, Theorem 49.2, p. 343] either x |, = pp where ¢ is irreducible on H or
X |y =&+ + ¢, where ¢, ..., ¢, are conjugate irreducible characters on
H. If x|y = po, then, by Frobenius reciprocity [4, Theorem 38.8, p. 271},
% = px + -+ and ¢%(1) = pe(1) > px(1) which is impossible. If x |z = ¢,
+ +++ + ¢, then H has an irreducible character of degree ((G: Z(G)) /p*)V? and

[H: Z(H)] 2 [G: Z(G))/p* = [H: Z(H)} - [Z(H): Z(G))/p.

If [Z(H): Z(G)] = p, then H has an irreducible character of degree [H: Z(H )]
and H is of central type.

If Z(H) = Z(G), H is not of central type. Let Z = Z(G) = Z(H), and
x |z = x(1)X where X is a linear character on Z. Then A\¥ = ¢;(1)¢y + -« +
¢,(1)¢, and since the ¢, ..., ¢, are conjugate characters, they all have the same
degree. Suppose X, m; ¢;(x) = 0 for nonnegative integers m; and some x € H.
If x € T(H,\) then, by Theorem 1.8, ¢,(x) = O for every i. If x € Z then
¢i(x) = ¢:()A(x) and 0 = L., m;¢;(x) = Sy mi¢y(1)A(x). Hence L., m,
= 0 or m; = 0 for each i. Now suppose x € T(H,A), x & Z. Since G is of
central type, T(G,\) = Z and since x & Z, there is an element g € G such that
x~lg-'xg = z and A(z) # 1. Since x € T(H,\), g & H and by relabeling if
necessary, we can assume that ¢; = ¢§' and ¢,(x) # 0. Since g? € H, and
x“lgPxgP = z?, N(z?) = 1, and A(Z) is a primitive pth root of 1 if i 0
(modulo p). Then

0= iél m; ¢;(x)
- é. mid, (g7 xg")
= ,'g mi)\(x"g"xgi)¢p(x)

- (g m,.A(z"))¢p(X)-
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Since ¢,(x) # 0, T/} mA(z) = 0 and since A(z'), 0 < i < p — 1, are p distinct
pth roots of 1, m; = m; for all i and j. This completes the proof of Theorem 2.1.

Note. If H is a p-special group and H is a normal subgroup of index p in a
group of central type and x € T(H,\) then there is an element g € G, so that
x'g=1xg =z € Z and Mz) # 1. If we define an automorphism ¢ on H by
o(h) = g~ 'hg, then

(a) o” is an inner automorphism of H;

(b)o(z) = zforallz € Z;

(c) o(x) = x - z where z € Z, A(z) # 1 for some x € T(H, ).
Thus if a p-special group H is a normal subgroup of index p of a group of central
type, then there must be an automorphism of H satisfying conditions (a), (b), and
(c). We next show these conditions are sufficient.

Theorem 2.2. Let H be a finite group with center Z and let X be a linear character
on Z such that H is p-special with respect to A. Suppose there is an automorphism ¢
of H, so that

(@) o” is an inner automorphism of H;

(b) o(z) = z for all z € Z;

(c) o(x) = x - z where z € Z, N(z) # 1 for some x € T(H,\) where T(H,\)
={x € H: x"W'xh € Ziff x'h~'xh € kernel(\)).

Then H is a normal subgroup of index p of a group of central type.

Proof. Let G be the group generated by elements h € H and an element g
where hg" = g"¢"(h) for any integer n. Then Z(G) = Z and since ¢” is an inner
automorphism of H, H is a normal subgroup of index p of G.

Since H is p-special with respect to A, A¥ = (¢ + - - - + ¢,) where the ¢s are
inequivalent irreducible characters on H and ¢;,(1) = e for all i. Let x be an
irreducible constituent of A°. By Theorem 1.8, x(y) # O only if y € T(G,A). If x
is the element given in part (c) of Theorem 2.2, x & T(G,A) and hence x(x) = 0.
Since x is a constituent of X%, x |z = 3f., m;¢; where the m;’s are nonnegative
integers. Then x(x) = 0 = 2., m;¢;,(x). Since H is p-special and x € T(H,)),
m; = m, for all i. Hence x |y = m, S, ¢, and x(1) = m, - p- e or

X = -2 = md 2 [H: Z1/p
=m-p-[H:Z] = m}-[G: Z].

Since x(1)* < [G: Z], m, = 1, x(1)* = [G: Z] and G is a group of central type.

Example 23. Let H = {x,y | xX® = y2 = 1,y"'xy = x~1); H is the dihedral
group of order 16 and H is 2-special. Z(H) = {1,x*}. Let A be defined on Z(H)
by A(x*) = —1. If w is a primitive 8th root of 1, define 0,(x) = w'for0 < i < 7.
Let X = <x). Let ¢; |y = 0, + 0, with ¢;(h) = O for all & & X and let ¢, |y
= 03 + 05 with ¢,(h) = 0 for all » & X. Then ¢, and ¢, are inequivalent
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irreducible characters on H and are constituents of A¥. T(H,A) = {1,x,x3,x%,x5,
x"}. If we define ¢ by o(x) = x° and o(y) = y, then o satisfies the hypothesis of
Theorem 2.2.

Example 24. Let p be any prime, and let H = {a,b,c,d,e | a® = b? = c?
=dP=e?=1,b"'ab=ad c'ac =a, c'bc = be, d € Z(H),e € Z(H)).
Then Z(H) = {d,e). Let X be a linear character on Z(H), defined by A(d) = w,
Ae) = 1, where w is a primitive pth root of 1. Let C = {c,d,e). Let o,(c* - 2)
= W"*A(z). Then X¢ = 3, o, Define ¢; on H by ¢, |c = po; and ¢;(h) = 0 for
allh & C,1 < i < p. Then ¢, ..., ¢, are inequivalent irreducible constituents
of A and H is p-special with respect to A. T(H,\) = {c,d, ). If o is defined by
o(a) = a, o(b) = b, o(c) = cd, o(d) = d, o(e) = e, then o satisfies the hypothesis
of Theorem 2.2.

Example 2.5. Let p be any prime, p # 2 and let H = {x,y,u,v,z | x? = z#
=y=uP=yv?=1,z2€ Z(H), y'xy = xP*', u\xu = xyz, u"\yu = yz?,
vlxv = x, vy = y, v"'uv = uz”). The center of H is {z). Let A be a faithful
linear character on Z(H). Let X = {x) - {z) and let w be a primitive p? root of
1. If 0,(x° - 2) = w"A(2), then A¥ = 32, o,. Define ¢; on H by

p p-l
Gilx=po+ 2 3 Gy

u=1 v=1
and ¢;(h) =0 for all h € X, 1 <i < p. Then ¢, ..., ¢, are inequivalent
irreducible constituents of Af, and H is p-special with respect to A. T(H,))
= {x*2: 0 < i < p? — 1, s relatively prime to p}. If ¢ is defined by o(x) = x - z?,
o(y) =y, o(u) = u, o(v) =v, o(z) = z, then o satisfies the hypothesis of
Theorem 2.2.
We will study p-special groups by studying the set T(H, ).

Lemma 2.6. Let H be a p-special group with respect to A on the center Z, and
suppose [H, H] N kernel(\) = {1}. Let x € T(H,\), x & Z and n be the minimum
number so that x" € Z. Then y € T(H,)\) if and only if either y € Z or y is
conjugate to x* - z for some s relatively prime to n and some z € Z.

Proof. If x € H, let {x) denote the subgroup of H generated by x. Let
xE€ETHMN,x @ Z,X={xy-Zandn = [X: Z]. Let A\ = e(¢y + -+ + ¢,),
M=o+ +gando =3I, k9,

Supposey € T(H,\),y & Z, and y is not conjugate to any element of X. Then

ofi(y) =0= é‘.l kiid;(»).

Since y € T(H,A) and H is p-special, k;; = k, for all j. Hence off = k, 3F_, ¢,
and off(1) =[H: X] =k, -p-e. Hence ky =k, for all i and ¢ly
= a1 kji0; = kyp Siey 0, = k,,A*. Hence ¢;(x) = 0 for all 1 <j < p and
x & T(H,\) by Theorem 1.8, which contradicts our choice of x. Thus if
y € T(H,)A),y & Z, then y is conjugate to some element of X.
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Suppose x* € T(H,\) and s and n are not relatively prime. By the same
argument as in the preceding paragraph, x is conjugage to some element of
{x*) - Z. However, this is impossible since [{x*) - Z: Z] < [{x) - Z: Z]. There-
fore x* € T(H,)\) only if s and n are relatively prime.

Suppose s and n are relatively prime and x° & T(H,)). Then there is an
element & € H such that x *h~'x°h =z € Z and z # 1. Since s and n are
relatively prime, there is an integer ¢ so that st = 1(modulo n) and x* = x - z
for some z € Z. Since x*h'x*h =2z 2z = (x"h'x*h) = x*h"'x"h
= x""h'xh. If 2! = 1, then z = x*h~'x*h = (x"'h~'xh)’ = 1, which contra-
dicts the choice of A. Hence x & T(H,)), which contradicts our choice of x.
Therefore if s and n are relatively prime, then x* € T(H,\). If x°* € T(H,A) then
x*-z € T(H,)\) for all z € Z, and any conjugate of x*- z is an element of
T(H,N).

Lemma 2.7. Let H be a p-special group with respect to \ on the center Z and
assume [H,H) N kernel(\) = {1}. Then every element of T(H,\)/Z has order a
power of p in H/Z.

Proof. Let A¥ = e(¢y + -+ + ¢,). Let S, be a p Sylow subgroup of H,
R =S,-Z and let y be an irreducible constituent of AR By Schur’s lemma,
elements of Z are represented by scalar matrices, and hence y restricted to S, is
irreducible and (1) is a power of p. Since y¥ is a constituent of A, y#
= X7, m;¢; for some nonnegative integers m,. Now

v#(1) = [H: Rly(1) = 5, me
and
P 2 P 2
[H: RPY(1)* = (gl m.~) e = (2’. m.-) [H#: Z]/p.

By taking p-parts, we get the equation

2
W0 = (% m) (& 21

Since (1)’ < [R: Z), ¥(1)* = [R: Z]/p. Thus AR = ¢,(y, + +++ + y,) where
Yi»+++» % are inequivalent irreducible characters on R and y(1)’ = ¢ =
[R: Z]/p for all i.

Suppose x € T(H,)A) and x is not conjugate to any element of R. Then
vH(x) = O for all i. Let y# = 3/_, k;;¢;. Then

W) = 0 = 5 kyp ).
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Since x € T(H, ), ¢;(x) # 0 for some j and since H is p-special, k; = k;, for all
J. Hence

YW =kl + - +¢,) and /(1) = [H: Rl(1) = k;, - p-e.

By taking p-parts, we have e, = v,(1) = (k;,), - p - e, which is clearly impossible.
Thus if x € T(H,A), x is conjugate to an element of R. Since R = S, - Z, the
order of xZ in H/Z is a power of p.

Theorem 2.8. Let H be a group with center Z, and let A\ be a linear character on
Z. Let

T(H,\) = {x € H: x7' Cly(x) N Z C kernel(M)}.

If H is p-special with respect to A then for any p Sylow subgroup S of H, there is an
x € S such that

(@) T(R,\) Uy Cl, (x°) - Z whereR = S - Z;

(b) T(H,\) = U Cl, (x) - Z;

(c) for i # 0 (modulo p), Cl,(x') - Z = Cl, (x/) - Z if and only if i = j (modulo
p)-

Proof. We prove the theorem first in the case that [H, H] N kernel(A) = {1}.
Let S be a p Sylow subgroup and let R = § - Z. As in the proof of Lemma 2.7,
AR has p inequivalent irreducible constituents. By Theorem 1.8, T(R,\)/Z
consists of p distinct conjugacy classes of R/Z. Let x € T(R,A), x & Z. Since
R =S-2Z, we can choose x € S N T(R,A). As in the proof of Lemma 2.6,
Cly (x) - Z C T(R,M) for all i relatively prime to p. Since R/Z is a p group,
x"+ Z and x* - Z are conjugate in R/Z only if r = s (modulo p). Since T(R,\)/Z
consists of exactly p distinct conjugacy classes of H/Z,

1
TRN = U Cl(x) - Z.

Moreover, for i 3 0 (modulo p), Clg(x’) - Z = Cl(x/) - Z if and only if i =
(modulo p).

Lety € T(H,)A),y & Z. By Lemma 2.7, yZ is a p element in H/Z, and since
all p Sylow subgroups of H are conjugates, Cl(y) N R # &. Let y’ € Cl(y)
N R.Theny € T(H,A\) N Randy’ € T(R,\). Theny’ € Cly(x’) - Z for some
1<i<p-1.Hencey =r'x'r-zforsomer € R,z € Z,and Cl,(y')- Z
= Cl (x')- Z. But y € Cl,(y’) and hence y € Cl,(x') - Z. Thus for every
Yy €TMA),y & Z,y € Cl(x') - Z for some i. Therefore

P .
T(HN € U Cl(x)- 2.

Since A¥ has p inequivalent irreducible constituents, by Theorem 1.8, T(H,\)/Z
consists of exactly p distinct conjugacy classes of H/Z. Therefore
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-1 ‘
T(HN) = U Cly(x) - Z
and
Cl,(x)-Z#Cl(x)-Z

for i # j,0 < i,j < p— 1. Since for i # 0 (modulo p), Cl(x') - Z = Cl(x/)
- Z if i = j (modulo p), then Cl,(x') - Z = Cl(x/) - Z for i = j (modulo p),
i # 0 (modulo p). Hence, for i # 0 (modulo p), Cl,(x) - Z = Cl,(x’) - Z if and
only if i = j (modulo p). This completes the proof of Theorem 2.8 in the case that
A is faithful on [H,H] N Z.

If A is not faithful on [H,H] N Z,let N = [H,H] N kernel(A). Let H = H/N,
Z = Z/N, and X be a linear character on Z defined by A(zN) = A(z) for any
z € ZN.IIM = e(¢y + -+ + ¢,), define §;(AN) = «p,(h) forany A € AN. Then
P15 ..., B, are mequlvalent irreducible constituents of A”, each of degree e. Let
S be any p Sylow subgroup of H,andlet R = § - Z.

If Z(H) # Z, let

% |2(H) = (1), = eo

where g, is a linear character on Z(H ). Then

Moy = [H: Z(H)E®
= e®1 lzay + + & lzan)
=eXo+--+a)
Hence
N0 =g +---+q, [ZH):Z]=p, and & =[H: Z(H)]

Hence H is of central type. By Theorem 2 of [3], § is of central type and
Z(S) = Z(H) n §S. Since [Z(H): Z] = p,

(Z28):ZNnSl=[2ZH)NS:ZN S]=p.

Let x € Z(S), x & Z. Since § is of central type, R = § - Z is of central type
and Z(R) = Z(H). Now Z(R) C T(R,\) and since T(R,\)/Z contains p
conjugacy classes of R/ Z by Theorem 1.8 and [Z(R): Z] = p, Z(R) = T(R,N)
and T(R N = UL Clyx)-Z. Also THMN =Z(H) and T(HDN)
= UL) Clg(x") - Z Moreover Cly(®')-Z = Clg(x/) - Z if and only if i = j
(modulo p).
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If Z(H) = Z and 3., m;$;(xN) = 0for some xN € H and some nonnega-
tive integers m,, then >’., m;¢,(x) = 0 for some x € H. Since H is p-special,
cither ¢;(x) = 0 for all i, or m; = m; for all i, j. Hence H is p-special. Since As
faithful on [H, H] N Z, for any p Sylow subgroup S of H, there is an X € § so
that

(@) TRA) = .-o ) Clg(x') - Zwhere R = § - Z.

() T(H) = UL} Cly(x') - Z.

(c) For i # 0 (modulo p), Clp(x™") - Z = Clg(x’/) - Z if and only if i =j
(modulo p). Hence, regardless of whether Z(H) = Z or not, for any p Sylow
subgroup § of H, there is an X € §, so that conditions (a), (b), and (c) are
satisfied.

Let S be a p Sylow subgroup of H. If S is the natural image of S in H, then §
is a p Sylow subgroup of H.Let R = S- Zand R = § - Z. Since N C kernel(\),
it can be easily verified that

T(H,A) = THA) and T(R,A) = T(R,)).

Let x € S, such that xN = X and X € §, satisfying conditions (a), (b), and (c).
Then

@ T®RY) = UZ) i) - 2

(b) T(H,A) = U Cl(x) - Z.

(c) For i # 0 (modulo p), Cl(x')- Z = Cl(x/) - Z. if and only if i =j
(modulo p).

This completes the proof of Theorem 2.8.

Let H be p-special with respect to A and let A¥ = e(¢q + -+ - + ¢,). In the
previous proofs, the condition

(b) if 2., m;¢,(x) = 0 for some nonnegative integers m; and some x € H,
then either ¢;(x) = 0 for all i, or m; = m; for all i, j is used often. The following
example shows that this condition is necessary in Theorem 2.5.

Example 29. Let H={x,p,w|x* =y =w2= LLwlyw =)} ylxy = x,
wlxw = x*>. Then Z(H) = {)*>and [H: Z] = 20. Let Y = {xy), letwybe a
10th root of —1, and let w be a primitive 10th root of 1. Let 6,((xy)’) = wjw*.
If A is defined on Z(H) by A()?) = —1, then N = 3}y 0. Let ¢, ..., ¢s be
defined on H by the following: ¢y|y = 0, + 64, &, |y = 6, + 03, &3 |y = 07 + 03,
dsly =06+ 09, &5 ly =09+ 05, and ¢;(h) =0 forall h& Yand 1 <i<5.
Then ¢, ..., ¢5 are inequivalent irreducible characters on H, each of degree 2,
and A¥ = 2(¢, + - - + ¢5). Notice that ¢s(x*y) = 0 while ¢;(x*y) # 0 for
i # 5. Hence condition (b) is not satisfied.

Throughout the remainder of this section we will be working toward a converse
of Theorem 2.8. We will need the following algebraic facts [4, Example 1, p. 13]:

(2.10) If p is a prime, p # 2, and a is a positive integer, then

(@) (p + 1) = ap® + 1 where a = 1 (modulo p).

(b) for every 0 < a < p*! — 1, there is a unique 0 < ¢t < p*! — 1 so that
(p + 1) = ap + 1 (modulo p%).
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Lemma 2.11. If H is a group with center Z and

T(H) = {x € H: "' Cl(x) N Z = {1}} = ’Q) C)-z

Jor some x which has order a power of p, then for all 1 < i < p — 1 and all positive
integers a

Cl(x@+) . Z = Cl(x') - Z.

Proof. Let s be any number relatively prime to p. If x* & T(H) then there is
an element & € H, so that h~'x’h = x°- z where z # 1. Since s is relatively
prime to p, there is an integer a so that x** = x, and

h'x*h = h~'xh = x - 2°.

Since z # 1, z° # 1. But this implies that x € T(H), which is a contradiction.
Therefore x* € T(H ) for all s relatively prime to p.

Assume p # 2. Let a be the minimum number so that x»* € Z. Let 4 be the
multiplicative group of integers, modulo p®. Let 4, = {a € 4: x € Cl(x?) - Z}.
Then

(2.12) A, is a subgroup of A4 and [4: A4,] divides p — 1.

Proof. Suppose a, b € A;,. Then there are h, h, € H, 2, 2z, € Z that
x = h'x°hyz, and x = h3'xbhyz,. Then

x4 = (hi xhyzf')’ = b7V xPhy 2870
= hi''(hyxhy' 23" )by 267"
= (3" W) " xhi by 23! 2
or
x = hy'hy xe'o(h ) 2y 2ot

Thus a~'b € 4, and 4, is a subgroup of 4.

If A, ={a € A: X' € Cl(x*) - Z}, then the mapping a — ai is a one-to-one
mapping of 4, onto A, for 1 <i < p— 1. For every a € 4, x* € T(H) and
x* & Z. Therefore

x € :L:J: Clix)-2Z, A= @:A,, and [4:1] < (p-D[4;: 1]

Therefore [4: 4,] < p — 1. Since [4: 1] = (p — 1)p*}, [4: 4,] divides p — 1.
This completes the proof of (2.12).
Since [A4: A,] divides p — 1, for every a € 4, aP! € A,. Since

{(p+yro<t<p' - ={(p+1):0< e <p' -1},
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for every ¢, there is ¢, so that (p + 1)’ = (p + 1)4®V, Therefore (p + 1)’ € 4,
for 0 <t < p!'—1. By (2.10)(b) forevery 0 < a < p*'—1l,ap+ 1 € 4,
Hence x € Cl(x#*!) - Z and Cl(x) - Z = Cl(x#*') - Z. Since (ap + 1) € 4,,
(ap + 1)i € A,. Hence x' € Cl(xt@*V) - Z or Cl(x) - Z = Cl(xl@+!¥) . Z,

If p = 2, then CI(x°) - Z N Cl(x') - Z = &. For any a, since x%*! € T(H),
x%*! € Cl(x) - Z. Therefore

Cl(x) - Z = Cl(x**) - Z.

We now prove the following crucial lemma:

Lemma 2.13. Let H be a group with center Z and assume [H,H] N Z is cyclic.
Let \ be a linear character on Z, with N\ faithful on [H,H] N Z. Assume
M = e(¢) + -+ + ¢,) where ¢y, ..., &, are inequivalent irreducible characters on
H and T(H,\) = UF} Cl(x') - Z for some x € H, where xZ has order a power of
p. Then H is p-special.

Proof. By Schur’s lemma, ¢, |; = ¢,(1)A and since (¢;,A”) = ¢, ¢;(1) = ¢,
1<i<p If p=2, assume m ¢;(y) + mydp(y) = 0 for some y € H and
nonnegative integers m; and my. If y & T(H,A), then ¢;(y) =0, i =1, 2, by
Theorem 1.8. If y € Z, then ¢;(y) = eA(y) and 0 = m, ¢,(») + mydy(y) =
e(m, + my))N(»). Thus m; = my = 0.If y € T(H,)),y & Z, then ¢;(y) # O for
i=1lori=2.Since

0 = A (y) = e(t1 () + $:(»),
$2(y) = —¢1(»). Then

0 = m ¢ (y) + may(y) = (m — m)d ().

Since ¢,(y) # 0, m; = m,. Thus H is p-special if p = 2.

Assume p # 2. Let a be the minimum number so that x?* € Z. Let w, be any
pth root of A(x?") and let w be a primitive p°th root of 1. Define o;(x* - 2)
= wyA(2) - " If X = {(x) - Z, then g, is independent of the way elements of X
are represented, and o, 0 < i < p*— 1, is a linear character on X. Since
0;(z) = Az) for all z € Z, (0;,A%) = 1. Hence

-1
M=3o,.

v=0

We show the following:
(2.14) For a suitable w, there are integers K and k,, 0 <u<p-1,
1 < j £ p, such that

p-1 p-1
¢j Ix = ugo k,‘jop..-n,, + K ,,go o,.
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Moreover, K = e/p*if a # 1.
Proof. If « = 1, then \* = gy + -+ - + o,_,. Since

M1y = 1 X = o § 1) = 12: x1(F o),

then ¢; |y = JF} k,;q, for integers k,;. If K = 0, then (2.14) follows if a« = 1.
If « > 2, by Lemma 2.11, x?*! € Cl(x) - Z. Hence thereish € H, zy, € Z, s0
that

(2.15) h'xh = xptiz,.

We wish to compute h~*xh'.
(2.16) If A" xh = xB - z for any integer 8 and z € Z, then

h~*xh = xP'z40

where e(f) = (' - 1)/(B - 1).
Proof. If 1 = 1, the assertion follows by hypothesis. Suppose the assertion is
true for ¢ = k. Then

h—k+) x plk+l) = p—-1 h"‘xh"h

= b xB*hze®) = (h~) x h)B* ze®)

= (xBz)P 7o) = xBt*! zBr+elk)
and B* + e(k) = B+ (B - D/(B—1) = (B**' - 1)/(B— 1) = ek + 1). By
induction the assertion holds for all positive integers ¢.

By (2.10), (p + 1) = ap® + 1 where @ = 1 (modulo p). From equation
(2.15) we get

P xhp = X 8P
= x@""l . zgr-l
= x(quzr—l)d.
Since x € T(H,N), (x”zf')" = 1. Since a =1 (modulo p), x#zf" = 1.
Choose wy such that A(zg) = wp?.
If s = 0 (modulo p) and g~'x°g € X, theng~'xg € X and g~'xg = x'z for

some z € Z. Since A¥ has p inequivalent irreducible constituents, by Theorem
1.8, T(H,\)/Z consists of p distinct conjugacy classes of H/Z. Since

Pl
THN = U Q) - 2,
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Cl(x)-Z#Cl(x/)-Zifi#j,0<ij<p-LThusCl(x)-Z N Cl(x’)-Z
=@ifi #,0<ij<p-—1Sinceg~'xg = x'z,i = 1 (modulo p) by Lemma
2.11. Then i = ap + 1 for some 0 < a < p*! — 1 and by (2.10) there is an
integer ¢ such that

i=(p+1) (modulop*).

By (2.15) and (2.16), h7'xh' = x(r*)' . z60 and g~'xg = x'z = x(P*)'. 7
= h™'xh'z;*® - ', for some 2’ € Z. Hence

Kglxgh™ = xz5" - 2.
Since x € T(H,\), 2,9z’ = 1 and
gh? € C={h € H: hx = xh}.

Thus if g~'x’g € X for any s # 0 (modulo p) then g = ch’ for some ¢ € C and
0 <t < p*! - 1. Then for s = 0 (modulo p)

of (') = (V[X: 1)) 3 ai(g~'x’g)
SEH
P
=X 1) 373, olh e xch)
Pl
= [C; X] ‘go o; x(p+1)'s . z&(l)':)
= [C: X] 7S 2'_' wswl)'-:a,‘;ﬂ(mwi(m)'s
=0
e
= [C: X] 20 Wi wieD's,
=

By (2.10) as ¢ goes from 0 to p*' — 1, if (p + 1) = ap + 1, a varies from 0 to
p*' — 1 (modulo p*~!). Thus

s
of(x) = C: X1 3, wfurtrevs
=
P
= [C: Xy 3w
Pi-l
= [C: X]wjw" 20 (w'?)".
=
If i # 0 (modulo p=~!), since s # 0 (modulo p) and a > 2, w'? # 1. Then

"3 @ = (1 - ")/ - ) = 0

since w is a p"th root of 1.
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Since A" = 35" off = elpr + - + 4,),

P
OJH = 121 nij ¢j

for some nonnegative integers n;. Consider o/, for i # 0 (modulo p*-!). If
y € Holl(y) =0forally ¢ T(H A) since each ¢;(») = 0 by Theorem 1.8. If
y € T(H,)A), y & Z, then y is conjugate to x* -z forsome ] < s < p—1and
some z € Z. However

of (x*- 2) = off(x") - Mz) = 0.

Since o/ is a class functlon, of(y)=0forall ye H, ye Z. If y € Z,
o/ (y) = [H: X]A\(y). Hence o is a multiple of A¥ or

=)+ + &)

Thus n; = e¢/p” for all 1 S Jj < p and all i # 0(modulo p*!). Let K = ¢/p*.
Since A" |y = ey [x + - + ¢, |x) = [H: X]\* = [H: X] 225" o, we have

¢j |X= 2 nljol

i=0
-l -l
=3 2 (nup"|+ul)aup"|+v

u=0 v=0
p-1 p—1 pr-i-l
= qu (nup"l )oup‘" + 2 2 (nup"'|+u /)oup«-l-o-u
p-1 Ip‘" -1
= 2 (nupa-l,j)aupa-l + K 2 2 oupa-l.ﬂ,
u=0 u=0 v=]
p-1 -l
= go (npe1 j = K)Opamt + K ‘go g,.

Let k,; = (1,1 ;) — K. Then (2.14) follows.
To show H is p-special, suppose 3., m;¢;,(y) = 0 for some y € H and

nonnegative integers m;. If y & T(H,}), ¢;(y) = O for all j by Theorem 1.8. If
y € Z, then

0= jg mj‘l’j()’) = jél m; - eA().

Thusm; = Oforalll <j < p.Ify € T(H),y & Z, then y is conjugate to x* - z
forsome | < s < p-1,andz € Z. Then

p
jgl m;¢;(x* - 2) = 0.
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Using (2.14), we find
L2 s
0= 2 m;d;(x* - 2)
-1
ng m; (..2 Kyj Gpe £X° z)) + K(,E mj) 2, ot - 2)

Sincel <s<p-—-1,

P
3 ox'2) = M(x*-2) =0

Hence
lr7e
0 = 20 (,2| mjk,,j)op.-l,,(x’ M 2)
1
= péo (iél mjkuj)wﬁ’\(z) - P
and

0="% $m k,,,)wﬁ'"'"

u=0

Since each w?"'** is a pth root of 1, the above equation implies that 37_, m;k,;
= zf-l mjk()j forall0 < u < p- L Then

() (Er) - 53 )

For all 1<s<p-1 and z € Z 3II_,m¢(x*-z) =0. Since T(H,\)
Urs Cix) - Z, 3Py mi¢;(y) =0 for all y & Z. Thus )., my¢; is a
multlple of A or

P P
S mo = (5 mip) o+ -+ 0
Thus m; = (Z=) m;)/p or m; = m, for all i, j. Hence H is p-special.

We can describe the Sylow subgroups of p-special groups.

Theorem 2.17. Let H be a p-special group. Then
(a) for any prime q # p, and any q Sylow subgroup S, of H, S, is of central type
with Z(S,) = Z A S,
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(b) If S, is any p Sylow subgroup of H, then either S, is of central type with
[2(S,): Z N S,] = p or S, is p-special with Z(S,) = Z N S,

Proof. Let A be a linear character on Z, such that H is p-special with respect
to A. Let A¥ = e(¢y + - -+ + ¢,) where ¢, ..., ¢, are inequivalent irreducible
characters on H. Let g be any prime, let S, be a g Sylow subgroup of H, and let
R, =S,-Z Let

Mo=y(Dy+ -+ w(Dy

where vy, ..., ¥ are inequivalent irreducible characters on R,. Since v, |s. is
irreducible, y;(1) is a power of q. Since v, is a constituent of A%,

P
i = El ki,

for some integers k;. Then

V(0 = 18: R = 5 k) = o $ 1,).

By taking ¢ parts we get

y(1) = e,,(é:I k,,)q.

If ¢ # p, since €2 = [H: Z]/p, we get
e2 = (H: Z]/p), = [H: Z], = [R,: Z].
Hence v,(1)* > [R,: Z]. However
Yi(l)z -<- [Rq: Z(Rq)] S [Rq: Z]'

Hence v,(1)* = [R,: Z(R,)}, Z(R,) = Z, and R, is of central type. Thus S, is of
central type and Z(S,) = Z N §,.
If g = p, then

¢ = (H: Z]/p), = (H: Z],)/p = [R,: Z]/p.
Since v,(1)* < [R,: Z(R,)] < [R,: Z] and

w02 = 6% k) = s 2§ 4) .

we have that (52, k;;)? = 1. Hence

v:(1* = [R,: Z)/p for alli.
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Let €2 = [R,: Z]/p. Then A® = g,(y, + -+ + 3,). If Z(R,) # Z, [Z(R,)): Z]
must be a power of p. Since v;(1)* = [R,: Z]/p, [Z(R,): Z] = p. Then yi(1)? =
[R,: Z(R,)] for each i and R, is of central type. Hence in the case that
Z(R,) # Z, S, is of central type with [Z(S,): Z N §,] = p.

Assume Z(R,) = Z. As in the proof of Theorem 2.8, there is an x € S, such
that T(R,,A) = UZ; Cl R’(x‘) - Z. Since A® = e,(y; + -+ + v,), if A is faithful
on [R,,R,] N Z, by Lemma 2.13, R, is p-special. If A is not faithful on
[R,,R,] N Z, let N = [R,,R,] N kernel(A). Let R, = R,/N, Z = Z/N, AzN)
= A(z) for any z € zN, and ¥;(rN) = v,(r) for any r € rN. Then

W+ +y) and TN =" Cyg(x) Z

By Lemma 2.13, R, is p-special. Suppose 3.7, m;y;(y) = 0for somey € R,and
nonnegative integers m;. Then

0= jé] m;y;()

and since R, is p-special, either y,(y) = 0 for all j, or m; = m; for all i, j. Hence,
either y,(y) = O for all j, or m; = m; for all i, j and R, is p-special. Thus, if
Z(R,) = Z, then R, is p-special. Hence, S, is p-special with Z(S,) = Z N &,

We can describe simply which of the two possibilities in (b) occurs in the case
that p # 2. Example 2.3 shows that this characterization does not hold when
p=2

Corollary 2.18. Let H be a group with center Z. Assume [H,H] N Z is cyclic and
A is a linear character on Z, faithful on [HH] N Z. Let T(H) = T(H,\)
={h € H: 1! Cl,(h) N Z = {1}}. Assume H is p-special with respect to \ for
some primep # 2. If x € T(H), x & Z,and X = {x) - Z, then X is not normal
inH.If S is a p Sylow subgroup of H,R = S - Z, Let

T(R)=TRAN) ={re R:r ' Cl(n n Z = {1}}.

Let x € T(R), x & Z. Then R is of central type if and only if X = {x) - Z is
normal in R.

Proof. Since H is p-special with respect to A, by Theorem 2.8 there is xo, € §
so that

(@) T(R) = U Cli(x) - Z;

(b) T(H) = UL Clyxp) - Z.
By Lemma 2.10, for all integersaandall 1 <i<p-1,

CLEFY) - Z = Cl(x) - Z
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and
Cl (V) - Z = Cl(xh) - Z.

Also M = e(¢; + -++ + ¢,) where ¢, ..., ¢, are inequivalent irreducible char-
acters on H and A = ¢,(y, +--- + y,) where v,...,7, are inequivalent
irreducible characters on R.

Let a be the minimum number such that x{° € Z. If x € T(R), x & Z, then
x =r"'xjrzforsomer € R,z € Z,1 < i < p* — 1, with i relatively prime to
p. Let Xy = <{xo)+2Z. If X is normal in R, then X = X,, and for each i,
Cl, (x§) € X,. Hence

T(R) C X, = X.

Similarly, if there is an x € T(H), x & Z, such that X = (x> - Z is normal in
H, then

T(H) C X.

Since AR has p inequivalent irreducible constituents, T(R)/Z contains p distinct
conjugacy classes. Hence Cly(x) - Z = Cl (x') - Z only if i = 1(modulo p).
Similarly Cl,(x) - Z = Cl(x) - Z only if i = 1(modulo p). To avoid doing the
same argument twice, we prove the following:

(2.19) Let G be a group with center Z. Assume [G,G] N Zis cyclicand Ais a
linear character on Z, faithful on [G,G] N Z. Suppose A® = e(§; + -+ + §,)
where §, ..., {, are inequivalent irreducible characters on G. Let

T(G)={g € G:g7' Cl(g) N Z = {1}}

and assume T(G) # Z. If x € T(G), such that Cl(x) - Z = Cl(x’) - Z if and
only if j = 1(modulo p), then T(G) ¢ <{x) - Z.

Proof. Suppose there is an x € T(G) so that T(G) C <{x)+ Z = X, and
Cly(x) - Z = Cl{x/) - Z if and only if j = 1(modulo p).

By Theorem 1.8, T(G)/Z contains p conjugacy classes and thus

7(G) = ’Q; Cl(x) - Z.

Let a be the minimum number so that x”* € Z. Let w, be a p°th root of A(x”*)
and let w be a primitive p°th root of 1. Define g;(x° - z) = wjw*A(z). As in the
proof of Lemma 2.12, \¥ = 37! o,. Since p # 2, by (2.14) there are integers K
and k,,; 0 <u <p-1,1<j < p, such that

-1 -1
$lx = “go kyjGpu1, + K ”go G,.
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Ifa # 1, K = e/p® and

G1)=e= (’i k,,,) + Kp* = (’g‘o k,,,) +e

Hence 372k, = 0. Since T(G) = U Cl(x')-Z C X, g~'x'g € X for
every g € G and every i. Therefore X is normal in G. By Clifford’s theorem [4,
Theorem 49.2, p. 343] since

p-1 -1
g} 'x = “go k"jopa-l" + K ugo g,

for every 0 < u < p — 1, either k,; + K = 0 or k,; = 0. Since 3224 k,; = 0,
k,; = 0 for every u, and every j. Then

-1
f =K
gj lX Eo 0y

and §;(x) = 0 for every j. By Theorem 1.8, x @ T(G) which is a contradiction.
Thereforea = 1.1f g € G,g 'xg € X and hence g~'xg = x' - z. Since Cl; (x)
+Z = Cl; (x/) - Z only if j = 1(modulo p), i = 1(modulo p). Since a = 1, we
can assume i = 1. Since x € T(G), and g7'xg = x - z, z = 1. Therefore for all
8E€ G g'xg=xand x € Z(G).Since Z C T(G) C X C Z(G) = Z, T(G)
= Z, which contradicts the hypothesis. This completes the proof of (2.19).

Returning to the proof of Corollary 2.18, we have that if thereis an x € T(H),
x & Z such that {x) - Z is normal in H, then T(H) C <{x) - Z and by (2.19),
T(H) = Z(H) which is impossible, since x & Z = Z(H). If there is an
x € T(R), x & Z, such that {x) - Z is normal in H, then T(R) C {x) - Z and
by (2.19), T(R) = Z(R). If T(R) = Z(R), then Z(R) # Z and R is of central
type with [Z(R): Z] = p.

If R is of central type, then [Z(R): Z] = p. Since AR has p inequivalent
irreducible constituents, by Theorem 1.8, T(R)/Z contains p conjugacy classes of
R/Z. Clearly, Z(R) C T(R). Thus Z(R) = T(R). If x € T(R), x & Z, then
X = <{(x)+Z = Z(R) and X is normal in R.

There is a close relationship between the structure of T(H,A) and the structure
of the Sylow subgroups of H.

Theorem 2.20. Let H be a group with center Z and assume that [H,H] N Z is
cyclic. Let

T(H) ={x € H: x'Cl,(x) n Z = {1}}.

Let q be any prime and let S be any q Sylow subgroup of H. Then S is of central
type with Z(S) = S N Z if and only if T(H)/Z contains no element of order a
power of q.
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Proof. Let S be a g Sylow subgroup of H, and suppose S is of central type with
Z(S)=SN Z.If R=S-Z, then R is of central type and Z(R) = Z. Let x
be any element of H, x &€ Z so that xZ has order a power of g. Since all g Sylow
subgroups of H are conjugates, there is a conjugate R’ of R so that x € R'. Since
[H,H] N Z is cyclic, [R',R’] N Z is cyclic. Since R’ is isomorphic to R, R’ is of
central type. By Theorem 4 of [6], T(R’) = Z(R’). Since Z(R') = Zand x & Z,
thereisanr € R'sothatr-lxr =x-2,z# 1,z € Z. Thus x & T(H).

Conversely, suppose T(H)/Z contains no element of order a power of g. Let
A be a linear character on Z, such that A is faithful on [H,H] N Z. Let
A = ¢, (1), + -+ + ¢,(1)¢, where ¢y, . .., ¢, are inequivalent irreducible char-
acters on H. Let S be any ¢ Sylow subgroup of H, R=S-Z and let
AR = 4, (I)y; + - -+ + y(1)y, where y,, ..., ¥, are inequivalent irreducible char-
acters on R. Since v; is a constituent of A® and A¥ | = [H: R]AR,

1]
(2'21) ‘/JH = Igl kij¢l9 1 S.’ S S,
and
222) dle=Zkyy, 15ist

for some nonnegative integers k;;. Let K be the greatest common divisor of k,,
1 <j <s, and let k; = K;kj;. Let M be the least common multiple of ¢;(1),
1<i<t

Since T(H )/Z does not contain a g element, if r € R,r & Z,thenr & T(H)
and hence, by Theorem 1.8, ¢;(r) = 0 for all i. Thus for all »r € R, and all i, »

(M/(D)i(r) = (M/9.(1)) ()
or
(M/¢i(l))¢n |R = (M/¢u(l))¢u |R .

Thus, by equation (221), (M/$:(1))k; = (M/p,())k,; for all i, j, u, or
(M/$;(1)K;kj; = (M/$,(1))K, ki Thus

ki = (6:(D) K /o, (DK)k,,.

Since ki, 1 <j < 5, have no common divisors, and k;;, 1 <j <'s, have no
common divisors

(DK, = ¢ ()K; or ¢,(1)/K, = ¢,(1)/K, for all i, u.
From equation (2.22), we have

£
¢ lr =K ugl ki
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and hence K; divides ¢;(1). Thus
(2.23) o()/K; =L

for all i where L is an integer independent of i. For every i,

Skiy() =0 ifrez
J‘

and
él Ky = LX) ifr € Z.
j-

Hence 3/, kj;v, is a multiple of AR or

3 Ky = (WIR: ZDn = (py + -+ + 30w,

Thus kj; = (L/[R: Z])y/(1) for all i, j. Let ¢* be the minimum value of (1),
1 <j < s.Then ¢°L/[R: Z] is an integer. If [R: Z] = g?, then L is divisible by
q#-*. By equation (2.23), ¢(1) is divisible by ¢ for all i. By equation (2.21),
!
(1) = [H: Rly,(1) = 'gl ko (1), 1<j<s.

Since [H: R] is relatively prime to ¢, and each ¢,(1) is divisible by ¢#~2, each ,(1)
is divisible by gf-*. For some j, ¢* = y;(1), and hence « > B — a or 2a > B.
However

(1) < [R: ZR)] < [R: Z] = ¢°.
Therefore 2a < B, B = 2a,
v,(1)* = [R: Z(R)] and Z(R) = Z.

Hence R is of central type and Z(R) = Z. Thus S is also of central type with
Z(S)=SnNn2Z

We can now characterize p-special groups in terms of the structure of the
group. Notice that this theorem is the converse of Theorem 2.8, in the case that
A is faithful on [H,H] N Z.

Theorem 2.24. Let H be a group with center Z and assume that [H,H] N Z is
cyclic. Let

TH)={x € H:x'Clfx) n Z ={1}}.
Let S be any p Sylow subgroup of H, R = S - Z, and let
T(R) ={x € R:x'Cl(x) N Z ={1}}.
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Assume there is an x € S such that

(a) T(R) = U2} Cl(x) - Z.

(b) T(H) = U, Cl(x) - Z.

(c) For i # 0 (modulo p), Cl,(x') - Z = Cl,(x’) - Z if and only if i = j (modulo
p)-

Then H is p-special.

Proof. Let A be a linear character on Z, with A faithful on [H,H] N Z, Let
A = ¢ (I)¢y + -+ + ¢,(1)p, where ¢y, ..., ¢, are inequivalent irreducible char-
acters on H.

Let g be a prime, ¢ # p, let S, be a g Sylow subgroup of H, and let
R, = S, Z. By Theorem 2.20, S, and R, are of central type since (b) implies that
T(H)/Z contains no g elements. Also T(R,) = Z. Since T(R,)/Z contains only
one conjugacy class, by Theorem 1.8, A®¢ has only one irreducible constituent.
Let AR = ¢ (1), Then

M =L = oy(Dgy + -+ + ¢,(1)y.

Thus & (1) divides ¢;(1) for each i. Since §,(1)* = [R,: Z], each ¢:(1)? is divisible
by [R,: Z] = [H: Z],, where [H: Z], denotes the q factor of [H: Z].

Let S be any p Sylow subgroup of H and let R = S - Z. Since T(R)/Z
contains p conjugacy classes, AR has p inequivalent irreducible constituents by
Theorem 1.8. Since each irreducible constituent of AR has degree a power of p,
and their squares add up to [R: Z] which is also a power of p, all irreducible
constituents of A® must have the same degree. Let e, be this common degree.
Then AR = ¢,(y; + - - + y,) where v, ..., v, are inequivalent irreducible char-
acters on R. Then

AH — ep(Yl”-‘. coe Yp”) = ¢l(l)¢l + o0+ ¢,(l)¢,-

Thus e, divides each ¢;(1). Since €2 = [R: Z]/p, each ¢}(1) is divisible by
[R: Z)/p = [H: Z],/p, where [H: Z], denotes the p part of [H: Z]. Then each
¢;(1)? is divisible by [H: Z], for all primes g # p and by [H: Z],/p or ¢ (1)% is
divisible by [H: Z]/p. Since

t
[H: Z] = lgl ¢i(l)2’
t < p.Since t(H) = U Cl(x') - Zand Cl(x) - Z # Cl(x/) - Zfor 1 <,

:
Jj < p—1by(c), T(H)/Z contains p conjugacy classes. Hence, by Theorem 1.8,
A¥ has p inequivalent irreducible constituents. Hence ¢ = p, and if e = [H:

Z)/p, then ¢;(1) = e for all i and

M=o+t ¢)
By Lemma 2.13 H is p-special.
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The condition on [H,H] N Z can be dropped and we have the following
theorem, which is the converse of Theorem 2.8 in all cases.

Theorem 2.25. Let H be a group with center Z. Let X be a linear character on Z
and let

T(H,\) = {x € H: x7' Cl(x) N Z C kernel\)}.
Let S be any p Sylow subgroup of Hand let R = S - Z. Let
T(RA) = {x € R: x7' Cl(x) N Z C kernel(N)}.

Assume there is x € S such that

(@) T(R,A) = U] Cl(x') - Z.

(b) T(H,\) = UEL Cl(x) - Z.

(c) For i % 0 (modulo p), Cl,(x') - Z = Cl,(x’) - Z if and only if i = j (modulo
p)-

Then H is p-special with respect to A.

Proof. Let N = [H,H] N kernel(A). Let H = H/N, R = R/N, X = xN, and
A(zN) = Az) for any z € zN. Then

@) T(R,A) = T(RN) = U Clgx) - Z.

() T(H,A) = T(H)) = UL Clg(x) - Z.

(¢’) For i # 0 (modulo p), Cly(x)-Z =
(modulo p).

By Theorem 2.24, H is p-special and

M=+ +8)

where §, ..., §, are inequivalent irreducible characters on H. Let A¥ = ¢,(1)¢,
+ «-+ + ¢,(1)¢p, where ¢y, ..., ¢, are inequivalent irreducible characters on H. If
x € N, then ¢;(x) = ¢;(1)A(x) = ¢;(1). Define ¢; by $;(xN) = ¢;(x) for any
x € xN. Then

M=GF+ -+ &M =G+ + &)

Hence ¢;(1) = ¢;(1) = e for every i, t = p, and by relabeling if necessary
¢ = § 1 < i < t. Suppose 27, m;¢;(y) = Ofor somey € H and nonnegative
integers m,. If y = yN, then 3/, m;¢,(y) = 0. Since H is p-special, either
¢i(y) = 0 for all i, or m; = m; for all i, j. Hence either ¢,(y) = 0 for all i or
m; = m; for all i, j. Hence H is p-special with respect to A.

We can rewrite Theorems 2.8 and 2.25 in a slightly different form.

Clg(x/)- Z if and only if i =

Corollary 2.26. Let H be a group with center Z. Let A be a linear character on Z.
Let

T(H,\) = {x € H: x' Cl(x) N Z C kernel(\)}.
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Let S be any p Sylow subgroup of H, let R = S - Z and let
T(RA) = {x € R: x' Cl(x) N Z C kernel(\)}.

Then H is p-special if and only if

(a) every element of T(H,\)/Z has order a power of p and T(H,\)/Z consists of
p conjugacy classes of H/Z, and

(b) T(R,N)/Z consists of p conjugacy classes of R/Z.

Proof. If H is p-special, then conditions (a) and (b) follow at once from
Theorem 2.8.

Suppose conditions (a) and (b) hold. Let x € T(R,A), x & Z. Then as in the
proof of Lemma 2.11, x' € T(R,A) for all 1 < i< p- 1. Since R/Zis ap
group, Cl(x') - Z # Cly(x/) - Zfori # j, 1 < i,j < p— 1. Since UL{ Cl(x')
- Z C T(R,A) and T(R,\)/Z contains only p conjugacy classes of R/Z, we have

1
TRA) = U Cle (x) - Z.

Let y € T(H,\), y & Z. Since yZ has order a power of p and all p Sylow
subgroups of H are conjugate, Cl(y) N R # @. Let y € Cl(y) N R. Since
YETHMNNR R,y €ET(RN). Since y  Z, y € ClR(x‘) - Z for some i.
Then

Cl(y)-Z=Cl(x)-Z and Cl(y)-Z = Cl(x)- Z
Since y € Cl () Z,y € Cl(x') - Z. Thus for every y € T(H,\),y & Z,

1
ye'lax -z

Hence T(H,\) € UZ] Cl,(x') - Z. Since T(H,\)/Z consists of p conjugacy
classes of H/Z,

p-1
T(HN = U Clx) - Z

and Cl(x') - Z # Cl,(x/)- Z,i # j, 1 <i,j < p— 1. By Lemma 2.11 for all
integers a and i 3 0(modulo p),

Cl, (x@+¥) . Z = Cl(x') - Z.
Hence, for i # 0 (modulo p),
Cl,(x)-Z=Cl,(x))-Z
if and only if i = (modulo p). Thus H is p-special by Theorem 2.25.
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A word of caution is in order here. One might be tempted to replace (a) of
Theorem 2.25 by the statement that either R is of central type with [Z(R): Z]
= p or R is p-special with Z = Z(R). However, these statements are not
equivalent. If R is p-special with Z = Z(R), then by Theorem 2.8, T(R,))
= UZ] Cl(x') - Z for some x € S, the p Sylow subgroup of R. However, if R
is of central type with [Z(R): Z] = p, it does not follow that T(R,A)
= UZE] Cli(x') - Z for some x, or even that T(R,\)/Z consists of p conjugacy
classes of R/Z.

Example 227. Let S = {x,y,zy|x® =y’ =z} = Ly 'xy = x20,y7 2oy
= z9,x"'zyx = z,) and assume S is the p Sylow subgroup of a group H with
center Z. Let R =S Z, and let A be a linear character on Z. Let w be a
primitive cube root of 1, and define 6,(z - z) = A(z)w®, where z € Z. It can be
shown that ¢; is independent of the way elements of Z(R) = {z,)+ Z are
represented and

NR®) = gy + 0 + 0,.
Then
T(R,A) = {x € R: x' Cl(x) N Z C kernel\)} = R.
However, fori # 0
T(R,0) = {x € R: x ' Cl(x) N Z(R) C kernel(o;)} = Z(R).

Hence, for i = 1 or i = 2, of has only one irreducible constituent by Theorem
1.8.If o® = &(1)¢, then §(1)> = [R: Z(R)] and R is of central type. However, by
Theorem 1.8, of has 9 inequivalent irreducible constituents. Therefore AX has a
total of 11 inequivalent irreducible constituents and T(R,A)/Z consists of 11
conjugacy classes of R/Z.
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