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SUBGROUPS OF GROUPS OF CENTRAL TYPE

BY

KATHLEEN M. TIMMER

ABSTRACT. Let A be a linear character on the center Z of a finite group Z of a finite
group H, such that

(1) X" = 2f-i <f>,(l)<>( where the <j>,-'s are inequivalent irreducible characters on H of the
same degree, and

(2) if 2'-i mi$,(x) = 0 for some x e H and nonnegative integers m„ then either
<pi(x) = 0 for all /' or m, = m¡ for all i,j.

The object of the paper is to describe finite groups which satisfy conditions (1) and (2)

in terms of the multiplication of the group. If 5 is a p Sylow subgroup of the group H, and

R = S ■ Z, then H satisfies conditions (1) and (2) if and only if

(a) {x G H: x'lh'[xh G Z =» A(jr'AHxA) - 1,A G H)/Z consists of elements of
order a power of p in H/Z, and these elements form p conjugacy classes of H/Z, and

(b) the elements of [x G R: x~'r-'xr G Z =* X(x-[r~'xr) = \,r G R}/Z form p con-

jugacy classes of R/Z.

Introduction. Let G be a finite group with center Z. In [3] F. R. DeMeyer and

G. J. Janusz called G a group of central type if there is an irreducible (complex)

character x on G such that xO)2 = [G: Z\. Groups of central type arise in

Schur's theory of projective representations [5, pp. 628-655] and the general

Galois theory of rings [1].

We study groups which appear as normal subgroups of index p for some prime

p in groups of central type. Let 77 be a finite group with center Z, and let p be a

prime. Let X be a linear character on the center Z of a finite group 77, such that

X" = 2/11 </>¡(l)<í>, where the <>('s are inequivalent irreducible characters on H of

the same degree. Assume that if 2£-i "^¡(x) = 0 for nonnegative integers m„

then either <p¡(x) = 0 for all /' or m¡ = m, for all i,j. We call a group satisfying

these conditions p-special with respect to X.

We show that if 77 is a normal subgroup of index p in a group G of central

type, then either 77 is of central type or 77 is p-special (Theorem 2.1). We next

give necessary and sufficient conditions on a p-special group 77 that it be a

normal subgroup of index p in a group of central type (Theorem 2.2).

We then examine some properties of /»-special groups. For a group 77, let

C\H(x) be the conjugacy class in 77 containing x. Let Z be the center of 77 and

let X be a linear character on Z. Define

T(H,X) = {xE H: x"1 Cltf(x) HZÇ kernel(A)}.
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If S is a p Sylow subgroup of H, let R = S • Z and define

T(R,X) = [x G R: x"1 C1ä(jc) n Z Q kernel(X)}.

We show (Corollary 2.26) that if H is a finite group with center Z, then H is p-

special with respect to X if and only if

(1) every element of T(H,X)/Z has order a power of p and T(H,X)/Z consists

of p conjugacy classes of H/Z, and

(2) T(R,X)/Z consists of p conjugacy classes of R/Z.

Additional information is given concerning the set of elements T(H,X) and

how it relates to the character on H.

Throughout this paper, all groups are finite and all characters are complex. If

H is a group, Z(H) denotes the center of H. If x G H, <x> denotes the subgroup

of H, generated by x. The conjugacy class of x is denoted by C\H(x) or simply

by Cl(x) if there can be no confusion. If A is a subset of H, [A : 1] denotes the

number of elements in A and if A and 5 are two subsets, [A : B] = [A : l]/[5: 1].

A p element is an element whose order is a power of p and a p group is a group

in which every element is a p element. If t» is any integer and q is any prime nq

denotes the q part (or q factor) of n. All unexplained terminology and notation

is as in Huppert [5].

This paper is the author's doctoral thesis at Colorado State University written

under the direction of Professor Frank R. DeMeyer. The author extends her

heartfelt thanks to Dr. DeMeyer for his advice and encouragement. She also

wishes to express her appreciation to Dr. Gerald J. Janusz of the University of

Illinois for his careful reading of the text and for offering many corrections and

suggestions.

1. F. R. DeMeyer and G. J. Janusz [3] defined a finite group G with center Z

to be of central type if there is an irreducible character x on C so that

x(l)2 = [G: Z\. They proved the following: If G is a group of central type then

there is a 2-cocycle a on G = G/Z so that K(G )a has center A', where A' denotes

the set of complex numbers. Herbert Pahling [6] showed that if G is a group of

central type with center Z, then for every x G G, x G Z, there is an element

g G G so that 1 ^ x~xg~lxg G Z; and conversely, if [G,G] n Z is cyclic and

for every x G G, x G Z, there is an element g G G so that 1 =£ Jc_1g_1 xg G Z,

then G is a group of central type. In this section, results will be proved which

connect the above results.

Let G be a group with center Z and let C1(jc) be the conjugacy class in G

containing jc. The condition in Pahling's results suggests the study of the elements

x G G, for which jc-1 C1(x) n Z = (1). In order to make the results of this

section as general as later applications require, we study a larger set.

Definition. Let A be a subgroup of the center Z of a group G and let X be a

linear character on A. Define

T(G,X) = [x E G: x~x Cl(;c) n A Q kernel(X)}.
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If x E T(G,X), then Cl(x) £ T(G,X) and x • a G T(G,X) for all a E A. The

results of this section give relationships between the irreducible constituents of XG

and the elements of the set T(G. X).

Lemma 1.1. Let G be a group with center Z and let A be a subgroup of Z. IfX is

a linear character on A, then there ii a 2-cocycle a on G/Z so that the center of the

projective group algebra K(G/A)a has dimension t over K where t is the number of

conjugacy classes of G/A contained in T(G)/A. Moreover, a basis of the center of

K(G/A)a consists of elements of the form 2*ec Ux< where C is the natural image in

G/A of a conjugacy class of G contained in T(G, X).

We prove Lemma 1.1 first in the case that X restricted to [G, G] n A is faithful.

We carry out the proof of Lemma 1.1 by a sequence of assertions.

(1.2) If y G G = G/A, let y* be an element of G, chosen to represent the coset

y. It is possible to choose the coset representatives in such a way that if ß, y G G

with ß the natural image of an element of T(G,X), then (y"1/??)* = (y*)~lß*y*.

Proof. Let C,, ..., C, be distinct conjugacy classes in G, contained in

T(G,X)/A, where Cx = {T}. Choose (T)* = 1. For each 2 < / < t, fix an element

ß E C¡ and choose ß*. For every y E G, define (y~'/3y)* = (g)~lß*g, where f

= y. We must show that (y'/fy)* is well defined.

First of all it is clear that the definition of (y-i/?y)* is independent of the choice

of g, since A Q Z. Suppose 8~]ß8 = Y_lßy for some 8 E G. Let d G G, so that

d = 8. Then d~lß*d = g~'/3*g • a for some a E A, and

a-i = (ß*y\gd-]rlß*gd~> E A n [G,G).

Since ß G C„ ß* G T(G,X) and (ySTHg/rT'ß*gh~l = a G kernel(A). Since
X restricted to [G, G] n A is assumed to be faithful, «7=1, and d~lß*d

— 8~lß*g- Hence (y-l/fy)* is well defined. Choose the representatives of other

elements of G arbitrarily. This completes the proof of (1.2).

Choose coset representatives of the elements of G as described in (1.2). We

define a 2-cocycle a on G by

a(5,V) = X(((5Yr)-1ÔV).

We isolate the following computation.

(1.3) If ß is in the image of an element in T(G,X), then for every y E G,

a(Y-,,/5)a(Y-1/3,Y) = A((y-1)V).

Proof. By (1.2), (y-'jSy)* = (y*)"'/3*y*. Then

a(y-\ß)a(y->ß,y) = X(((y-ißT)-](y->yß*) ■ Wír'lWT'fr-^yY)

= M((Y-1/3rr,(Y-,r/5*(/3*)-,Y*(Y-1/5)*)

= M(y-')V).
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(1.4) Suppose that 2Tec cy Uy IS *n tne center °f K(G)a where cy G K. If y is

not an element of the image of T(G,X) in G, then cT = 0. If y is in the image of

T(G,X), then cs-irS = cY for every 8 E G.

Proof. 2yer cy £Ç is m me center of K(G)a if and only if for every 8 E G,

l/«-.( 2 c,i/T)l/4 = US-XUÁ 2 crf7T)

= x(ô*(«-,)*)(2_cït/A

Computing, we have

ty-i f 2_ cT t/T)r/, = 2_ cY«(«-', 7)a(fi-' y, 8)Ua-iyS
\yeG / yen

= 2 (c^-.Mr^s-'WYS-'.ö-)^.
TeC"

Hence, for every 8 and y in G,

(1.5) (^-.MS-'.SYr'MYfi-'.ó-) = X(8*(8-X)*)c1.

If y is not in the image of T(G,X), there is an element g G G, so that

gy*g-i = y*a for some a =# 1 in A. Let 8 = g. Then

a(5-|,5y5-1)«(Y«-1,5) = X(((y«-'r)-1(r')*(M-,r(Y*r,(Y«-irS*)

= x(((Yr'r)-1(r')*Y*(Y*r1(YS-')*e*)

= X((S"')*ô* • a)

* X((5-')*5*).

Since equation (1.5) must hold, cy — 0 for every 7 not in the image of T(G,X).

If y is in the image of T(G,X), then 8y8~x is also and by (1.3), for every 8 E G,

a(8~x.oyS-'HYO"-1,8) - X((r')*5*).

Thus c^g-i = cY for every 8 E G.

If Ci, ..., C, are distinct conjugacy classes in G contained in T(G,\)/A, then

the elements 2Tec ^r ^or ^ = ^ for 1 < » < » form a linearly independent set

of elements in the center of K(G)a. By (1.4) these elements form a basis of the

center of K(G)a. This completes the proof of Lemma 1.1 when X restricted to

[G, G] D A is faithful.
If X restricted to [G,G] n A is not faithful, let A' = [G,G] n kernel(X). Let

G' = G/AT, /4' = A/N and let X' be a linear character on G' defined by

X'(oA0 = X(a) for any a E aN. Then T(G',X') in G is the natural image of

T(G,X) and the number of conjugacy classes of G'/A' contained in T(G',X')/A'

is the same as the number of classes of G/A in T(G,X)/A. Since G/A is

isomorphic to G'/A', if a' is a 2-cocycle on G'/A' as defined in the previous case.
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then there is a corresponding 2-cocycle a on G/A, so that K(G/A)a and K(G'/A')a.

are isomorphic iV-algebras. This completes the proof of Lemma 1.1.

Lemma 1.1 allows us to count the number of inequivalent irreducible constit-

uents of Xe, where X is a linear character on a subgroup A of the center of G.

(1.6) The number of inequivalent irreducible constituents of XG is t, the number

of conjugacy classes of G/A contained in T(G,X)/A.

Proof. Let a be a 2-cocycle on G/A as defined in the proof of Lemma 1.1. By

[4, pp. 163-179], K(G/A)a is isomorphic to 2'-i Homx(A/,, Jl/,) where M¡ is an

irreducible left K(G/A)a module.

For each i, let Tf be a projective representation of G/A corresponding to M¡.

If g G G and g is its image in G/A, then g = (g)*a(g) for some element

«7(g) G A. Define 77(g) = X(a(g))T*(g). Let g and d be elements of G. Then

g = (g)*a(g), d = (d)*a(d), gd = (gd)*a(gd) and

T,ig)lHá) = X(a(g))Tf (g)X(a(d))Tf (S)

= K<teWM&2)TTig3)

= X(a(g)a(d))X(((g-d)*)-l(E)*(dr)THg-d-)

= mgd))T¡ÍM3) = !,(*</).

Hence 7/ is an ordinary representation of G. If «f>,(g) = trace(7J(g)) for g G G,

then «pi is an irreducible character on G for 1 < i < t, and <p, |¿ = <f>,(l)X.

Let f be an irreducible constituent of XG and let M be a corresponding ÄG

module. Since £ |¿ = ?(1)X, M is an irreducible left K(G/A)a module. By [4,

Theorem 25.10, p. 166], M is isomorphic to a minimal left ideal of K(G/A)a and

M is isomorphic to M¡ for some 1 < / < t. Thus if f is an irreducible constituent

of Xe, then £ = <f>, for some /'.

Let «p!, ..., <bu be a maximum number of inequivalent characters from the set

0, I 1 < i < í}.Since(«p, L,,X) - (XG,«p,.) = «J>,(1),[G: ¿] = Xc(l) = 2,-. <í»,(l)2
= 2?«i d}. However [G: A] = 2'-i df and hence u = / and «ft, ..., «p, are

inequivalent irreducible constituents of XG.

Let G be a group with center Z. If x is an irreducible character on G such that

x(l)2 = [G: Z], then x Iz = x0)^ and Xe = x0)x f°r some linear character X

on Z. Conversely, if X is a linear character on Z such that Xe = x0)x f°r some

irreducible character x on G, then x(l)2 = [G: Z]. Hence G is a group of central

type if and only if there is a linear character X on Z such that t = 1 where t is

the number in (1.6). Since t is the number of conjugacy classes of G/Z contained

in T(G,X), then / = 1 if and only if T(G,X) = Z. These remarks verify the results

in § 1 of [6]. Since for every linear character on Z one can define a 2-cocycle on

G/Z as in the proof of Lemma 1.1, Theorem 1 of [3] follows from Lemma 1.1 and

the above remarks.

There is another relationship which exists between the elements of the set

T(G,X) and the irreducible constituents of XG which will be useful later.
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(1.7) If jc G T(G,X) and <í> is any irreducible constituent of XG, then <¡>(x) = 0.

If x G T(G, X) then there is an irreducible constituent of Xe for which <j>(x) ¥= 0.

Proof. Suppose jc G 7XG,X). Then there is an element g G G, such that

g~'jcg = xa,a E A, X(a) ¥= 1. Then <í>(jc) = <f>(g~'jcg) = <t>(xa) = X(a)<¡>(x).

Since X(a) ¥= \, <t>(x) = 0.

Let Xe = 2'=i «/»¿(l)^/ and let T¡, 1 < » < t, be inequivalent irreducible

representations of G, T¡ corresponding to fa. For each i and each conjugacy class

C of G, 2*ec "P¡(x) is a scalar matrix by Schur's lemma [4, 27.3, p. 181]. Let

Ixec T¡(x) = k ■ %({), k E K. The trace of k ■ T¡(\) is k • fa(\), and

k ■ fa(\) = 2 trace(7;(jc)) = 2 <#>,(*) = « • <í>,(*o),
xec xec

where ti is the number of elements in C and jc0 is any element of C. Thus if

<t>i(xo) — 0 for any x0 G C, then 2*ec íM 's tne zero matrix.

Let T be a representation of /I corresponding to X. Then for every g G G,

7e (g) is similar to 0 2,'=i fa(l)T¡(g). Let x G r(G,X) and suppose that

<Í>,(jc) = 0 for all 1 < i < t. If C is the conjugacy class of G containing jc, then

2>6C T¡(y) is the zero matrix for every i, and hence 2yec 7*c(.y) is the zero

matrix. For all g, h E G, there is i,j so that (2>.ec Tc(y))¡j = 2^ec M^-1^).

and thus 2^ec Mg"1^) = 0 for all g, A in G. In particular 2yec X(jc~' v) = 0.

If jc"V 6 ^1 for any / G C, then jc-1/ G x_l C1(jc) n A. Since jc G T(G,X),

jc-1 C1(jc) n /4 Q kernel(X). If n is the number of /s in C for which jc-1.y G A,

then 2.vecMJC~l.v) = ti • 1 = 0. Since x G C, » > 1, contradicting the state-

ment that ti = 0. Hence for some », <í>,(jc) ^ 0.

We can summarize the results of this section in the following theorem.

Theorem 1.8. Let Xbe a linear character defined on a subgroup A of the center of

a finite group G. Let

T(G,X) = {x EG: Jc-'g-'jcg G kernel(X) ifx~xg~xxg E [G,G] D A)

and let t be the number of conjugacy classes of G/A contained in T(G,X)/A. Then Xa

has t inequivalent irreducible constituents. If<i> is an irreducible constituent of Xa and

x & T(G,X), then <¡>(x) = 0.Ifx E T(G,X), then there is an irreducible constituent

<b of Xe for which <í>(jc) ¥= 0.

2. In this section we study groups which are not of central type but share

properties with normal subgroups of index p of groups of central type.

Definition. Let H be a group with center Z. We call H /»-special if there is a

linear character X on Z, such that

(a) X" has p inequivalent irreducible constituents «ft, ...,<i>p all of the same

degree, and

(b) if 2?-i m¡fa(x) = 0 for nonnegative integers m¡ and some x E H, then

either <#>,(jc) = 0 for all » or m¡ = m¡ for all /,/

We will also say H is /»-special with respect to X.
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Note. Let H be /^-special with respect to X and X" = e(fa + • • • + fa,). If

x E H, such that <f»¡(jc) = 0 for some », then by condition (b), <?>;(jc) = 0 for all

j. If T(H,X) = {x E H: jc"1 C1w(j:) OZÇ kernel(X)} then <i>,(x) #0, 1 < »

< p, if and only if jc G T(H,X) by Theorem 1.8.

Theorem 2.1. If G is a group of central type with center Z(G) and H is a normal

subgroup of G of index p, then H is of central type if Z(H) ¥" Z(G) and H is p-

special if Z(H) = Z(G).

Proof. Suppose x is an irreducible character on G, so that x(l)2 = [G: Z(G)].

If Z(G) $ H, then x I« is irreducible since elements of Z(G) are represented by

scalar matrices by Schur's lemma. Hence (x \h 0))2 = x0)2 = [G: Z(G)\ <

[//: Z(H)\. Therefore, \Z(G): Z(H)] = p and H is of central type. If Z(G)

C H, then Z(G) Q Z(H) and [H: Z(H)] < [G: Z(G)\ Hence x \h cannot be

irreducible. Since //isa normal subgroup of G of index p, by Clifford's theorem

[4, Theorem 49.2, p. 343] either x \h — P<¡> where $ is irreducible on H or

X I h = 4>i + " ' + §p where fa, .. .,fa &xt conjugate irreducible characters on

H- If X \h = P<t>> then, by Frobenius reciprocity [4, Theorem 38.8, p. 271],

<¡>c = PX + " ' " an<i ̂ c0) = /"Kl) > Px(l) which is impossible. If x \h ~ 'h

+ • • ■ + fa, then H has an irreducible character of degree ([G: Z(G)]/p2)1^2 and

[//: Z(H)} > [G: Z(G)]/p2 = [//: Z(H)) ■ [Z(H): Z(G)]/p.

If [Z(H): Z(G)] = p, then H has an irreducible character of degree [H: Z(H)\

and H is of central type.

If Z(H) = Z(G), H is not of central type. Let Z = Z(G) = Z(H), and

X \z — xO)X where X is a linear character on Z. Then X" = <>i(l)<i>i + • • • +

^(1)^ and since the fa, ..., fa are conjugate characters, they all have the same

degree. Suppose 2'=i m¡<S>i(x) = 0 for nonnegative integers ttj, and some x E H.

If jc G T(H,X) then, by Theorem 1.8, fa(x) = 0 for every ». If jc G Z then

*,(*) - *»(1)M*) and 0 = SL, mtfa(x) = 2f=. mifa(\)X(x). Hence 2f-i m,
= 0 or Tn, = 0 for each ». Now suppose jc G T(H,X), x G Z. Since G is of

central type, 7(G, X) = Z and since jc G Z, there is an element g G G such that

x~]g~]xg = z and X(z) # 1. Since x G T(H,X), g & H and by relabeling if

necessary, we can assume that fa = <f>|' and fa(x) # 0. Since gp E H, and

x-xg~pxgp = zp, X(zp) = 1, and X(z') is a primitive /rth root of 1 if < # 0

(modulo />). Then

0=2 m»*»(x)
f=i

= 2 w,</> (g-'xg')

=   2 TTI.XÍX-'g-'xg'^/x)
1—1

- ( Í m,A(^))*,W-
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Since <bp(x) ¥= 0, 2?=i mM^) — 0 and since X(z'), 0 < i < p - 1, arep distinct

pûi roots of 1, m, = trij for all i and/ This completes the proof of Theorem 2.1.

Note. If 77 is a p-special group and 77 is a normal subgroup of index p in a

group of central type and x G T(H,X) then there is an element g G G, so that

x~xg~xxg = z G Z and X(z) ̂  1. If we define an automorphism o on 77 by

a(h) = g~xhg, then

(a) o^ is an inner automorphism of H;

(b) o(z) = z for all z G Z;

(c) o(x) = x • z where z G Z, X(z) ¥= 1 for some x G 7X77, X).

Thus if ap-special group 77 is a normal subgroup of index p of a group of central

type, then there must be an automorphism of 77 satisfying conditions (a), (b), and

(c). We next show these conditions are sufficient.

Theorem 2.2. Let H be a finite group with center Z and let Xbea linear character

on Z such that H is p-special with respect to X. Suppose there is an automorphism a

of H,so that

(a) op is an inner automorphism of 77;

(b) o(z) = zfor all z G Z;

(c) a(x) = x • z where z E Z, X(z) # 1 for some x G 7X77, X) where T(H,X)

= {x G 77: x-'A-'xA G Ziffx~xh~xxh E kernel(X)}.

Then H is a normal subgroup of index p of a group of central type.

Proof. Let G be the group generated by elements A G 77 and an element g

where hg" = g"o"(h) for any integer n. Then Z(G) = Z and since op is an inner

automorphism of 77, 77 is a normal subgroup of index p of G.

Since 77 is p-special with respect to X, XH = *?(</>, + ••• + <f>p) where the «p/s are

inequivalent irreducible characters on 77 and <p,(l) = e for all /. Let x be an

irreducible constituent of Xe. By Theorem 1.8, xXjO *= 0 only if y E T(G,X). If x

is the element given in part (c) of Theorem 2.2, x G T(G, X) and hence x(x) = 0.

Since x is a constituent of Xe, x \h ~ 2i*-i "«,«>,■ where the mi's are nonnegative

integers. Then x(x) = 0 = 2í°-i "»/«h-M- Since 77 is p-special and x G 7/(77, X),

m¡ = mp for all /'. Hence x\h = mP 2£-i & and x(0 = mp- p • eor

x(l)2 = m2-p2-e2 = m2-p2-[H:Z]/p

= m2pp[H:Z] = m2[G:Z].

Since x(l)2 < [G: Z], mp = 1, xO)2 = [G: Z] and G is a group of central type.

Example 23. Let 77 = (x,y \ x8 = y2 = \,y~xxy = x"'>; 77 is the dihedral

group of order 16 and 77 is 2-special. Z(77) = {l,x4}. Let X be defined on Z(H)

by X(x4) = -1. If to is a primitive 8th root of 1, define o,(x) = uf for 0 < i < 7.

Let X = <x>. Let «p, |* = o, + o7 with <*>,(/») = 0 for all A £ Ä" and let «fc |*
= o3 + a5 with <p2(A) = 0 for all h G X. Then «p, and «fe are inequivalent
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irreducible characters on H and are constituents of X". T(H,X) = (l,x,x3,x4,x5,

x7}. If we define o by o(x) = x5 and o(y) = y, then o satisfies the hypothesis of

Theorem 2.2.

Example 2.4. Let p be any prime, and let H = <a,b,c,d,e \ ap = bp = cp

= d" = e" = 1, b~xab = ad, c~lac = a, c~xbc = be, d E Z(H),e G Z(H)>.

Then Z(H) = <o",e>. Let X be a linear character on Z(>7), defined by X(d) = a,

X(e) = 1, where w is a primitive pth root of 1. Let C = <c,i/,e>. Let o¡(c' • z)

= u"X(z). Then Xe = 2f«i o> Define fa on // by & |c = pa¡ and <£,(/») = 0 for
all h G C, 1 < » < o. Then <jj, ,..., «^ are inequivalent irreducible constituents

of X" and H is/»-special with respect to X. T(H,X) = (c,d,e}. If a is defined by

o(o) = a, a(b) = o, a(c) = co", a(d) = d, a(e) = e, then a satisfies the hypothesis

of Theorem 2.2.

Example 23. Let p be any prime, p # 2 and let // = <x,^,m,i»,z | x*2 = z*2

= yp = up = vp = 1, z G Z(//), jv-'jcv = x**"1, M"1 xi» = xyz, m~'.vm = yzp,

v~xxv = x, v~xyv = y, v~x uv = uzp}. The center of H is <z>. Let X be a faithful

linear character on Z(H). Let X = <x> • <z) and let w be a primitive p2 root of

1. If a¡(xs • z) = u"X(z), then X* = 2/¿, o> Define fa on // by

p  p-i
«h Ix = pq» + 2 2 »}»,+!/

a—1 i/— I

and <i>((A) = 0 for all A £ .¥, 1 < »' < p. Then fa¡,..., fa^_x are inequivalent
irreducible constituents of XH, and // is p-special with respect to X. T(H,X)

= [x'z' : 0 < i < p2 - l,s relatively prime top). If o is defined by a(x) = x ■ zp,

<Ky) — >"> °(M) = M> <K") = "» °iz) = z> tnen ° satisfies the hypothesis of

Theorem 2.2.

We will study p-special groups by studying the set T(H, X).

Lemma 2.6. Let H be a p-special group with respect to X on the center Z, 0710*

suppose [H, H] n kernel(X) = {1}. Let x E T(H,X),x G Z andn be the minimum

number so that x" E Z. Then y G T(H,X) if and only if either y E Z or y is

conjugate to x' ■ z for some s relatively prime to n and some z E Z.

Proof. If x G if, let <x) denote the subgroup of H generated by x. Let

x G T(H,X), x G Z, X = <x> • Z and 7» = [X: Z\. Let XH = e(fa + ■ • • + fa),
Xx = a, + • • • + os, and of = 2'-i kßfa.

Suppose^ g T(H,X),y g Z, andáis not conjugate to any element of X. Then

<j¡H(y) = 0=ÍkJifa(y).

Since y G T(H,X) and H is p-special, kJt = k^ for ally. Hence of = k^ 2jLi fa

and af(\) = [H: X] = k^-p- e. Hence tc^ = kpp for all » and fa \x
= 27—1 kjiOt = tVw 2"-i Oj = fc^X*. Hence fy(x) = 0 for all 1 <j < p and
x G T(H,X) by Theorem 1.8, which contradicts our choice of x. Thus if

y G T(H,X),y $ Z, then y is conjugate to some element of X.
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Suppose x1 G 7(77, X) and s and n are not relatively prime. By the same

argument as in the preceding paragraph, x is conjugage to some element of

<x*> • Z. However, this is impossible since [<xJ> • Z: Z] < [<x> • Z: Z]. There-

fore xs G 7(77, X) only if j and n are relatively prime.

Suppose j and n are relatively prime and x' G T(H,X). Then there is an

element h E H such that x~'h~xx'h = z G Z and z ^ 1. Since s and n are

relatively prime, there is an integer t so that st = 1 (modulo n) and x" = x • zx

for some z, G Z. Since x^/r'x'/i = z, z' = (x^A-'x'A)' = x^'/rVA

= x~xh'xxh. If z' = 1, then z = x~5h~xxsh = (x-'A-'xA)1 = 1, which contra-

dicts the choice of h. Hence x G T(H,X), which contradicts our choice of x.

Therefore if 5 and n are relatively prime, then xs G T(H,X). Ifx1 G 7X77, X) then

x1 • z G T(H,X) for all z G Z, and any conjugate of x* • z is an element of

7X7/, A).

Lemma 2.7. Let H be a p-special group with respect to X on the center Z and

assume [77,77] n kernel(X) = {1}. Then every element of T(H,X)/Z has order a

power of p in H/Z.

Proof. Let XH = e(<px + ■■■ + <pp). Let Sp be a p Sylow subgroup of 77,

R = Sp- Z and let y be an irreducible constituent of X". By Schur's lemma,

elements of Z are represented by scalar matrices, and hence y restricted to Sp is

irreducible and y(l) is a power of p. Since yH is a constituent of X", yH

= 2?-i Wjtp, for some nonnegative integers m¡. Now

Y"(l) = [77: R]y(\) = 2 m,e

and

[77: R]2y(l)2 = ( £ w,)V = ( £ *)'[*: Z]/p.

By taking p-parts, we get the equation

Y(l)2 = ( £ m¡f[R: Z]/p.

Since y(l)2 < [R: Z], y(l)2 = [R: Z]/p. Thus Xa = ep(yx + •••+%) where

Yj, ...,T^ are inequivalent irreducible characters on R and y,(l) — ej =

[/?: Z]/p for all f.
Suppose x G T(H,X) and x is not conjugate to any element of R. Then

Y/*(x) = 0 for all /. Let yf = 2;-i kufy Then

y?(x) = 0 =   £  fcry^t».
7-1
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Since x G T(H,X), <f>,(x) # 0 for some y and since 77 isp-special, ku — kip for all

j. Hence

yf = *„(*. + • • • + *,)   and   y/'il) = [77: %,(1) = kip-p-e.

By taking p-parts, we have e^ = y,(1) = (kip)p ■ p • ep which is clearly impossible.

Thus if x G T(H,X), x is conjugate to an element of R. Since R = Sp- Z, the

order of xZ in 77/Z is a power of p.

Theorem 2.8. Let H be a group with center Z, and let X be a linear character on

Z.Let

7(77,X) = {x G 77: x~' Clw(x) n Z £ kernel(X)).

If H is p-special with respect to X then for any p Sylow subgroup S of 77, there is an

x E S such that

(a) T(R,X) U.Crj C1Ä (x1) • Z where R « S • Z;

(b)7(77,X)= U,Co'Clw (x') • Z;
(c)for i # 0 (modulo p), C\H(x') • Z = Clw (xJ) • Z if and only if i = j (modulo

P).

Proof. We prove the theorem first in the case that [H,H] D kernel(X) = {1}.

Let S be a p Sylow subgroup and let R = S • Z. As in the proof of Lemma 2.7,

Xa has p inequivalent irreducible constituents. By Theorem 1.8, T(R,X)/Z

consists of p distinct conjugacy classes of R/Z. Let x G T(R, X), x & Z. Since

R = S • Z, we can choose x G 5 D T(R, X). As in the proof of Lemma 2.6,

C1Ä (x') • Z £ T(R,X) for all i relatively prime to p. Since R/Z is a p group,

xr • Z and x' • Z are conjugate in R/Z only if r = s (modulo p). Since T(R, X)/Z

consists of exactly p distinct conjugacy classes of H/Z,

T(R,X) = U Cl (x') • Z.

Moreover, for /' # 0 (modulo p), ClÄ(x') • Z = ClÄ(x-') • Z if and only if /' ■ j

(modulo p).

Let y E T(H, X), y G Z. By Lemma 2.7, yZ is a p element in 77/Z, and since

all p Sylow subgroups of H are conjugates, C\,J(y) n R =£ 0. Let / E Clw(.y)

n R. Then/ G 7(77,X) n Äand/ G T(R,X). Then/ G Clfi(x') • Z for some
1 < i < p - 1. Hence/ = r-lx'V • z for some r G R, z E Z, and ClH(y) • Z

= Clj/x') • Z. But ^ G ClH(y') and hence .y G Clw(x') • Z. Thus for every

y G r(A,X),^ G Z,y E Clw(x') • Z for some i. Therefore

7X77, A) £ u' Cl„(x') • Z.

Since X" hasp inequivalent irreducible constituents, by Theorem 1.8, T(H,X)/Z

consists of exactly p distinct conjugacy classes of H/Z. Therefore
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T(H,X) = U Cl„(xf) • Z

and

Clw (x') • Z * Cl^x') • Z

for » ¥*j,0< i,j < p - 1. Since for » 5= 0 (modulo p), ClÄ(x') • Z = ClA(x-0

• Z if » =s7 (modulo p), then Cl^x') • Z = Cl^x-O • Z for 1 =; (modulo p),

» & 0 (modulo p). Hence, for i # 0 (modulo p), Cl^x') • Z = Cl^x-O • Z if and

only if i m j (modulo p). This completes the proof of Theorem 2.8 in the case that

X is faithful on [H, H] n Z.

If X is not faithful on [H, H] D Z, let N = [H, H] n kernel(X). Let B = #/JV,
Z = Z/Af, and X be a linear character on Z defined by X(zAO = X(z) for any

z E zN.UXH = e(fa + • • • + fa), define $¿(AN) = <f>,(A) for any h E hN. Then
ft,..., fa are inequivalent irreducible constituents of Xff, each of degree e. Let

S be any p Sylow subgroup of H, and let R = S • Z.

If Z(H) * Z, let

?» Iz(ff) = $»0)°j = «°V

where a, is a linear character on Z(/T). Then

Xff|z(F) = [F:Z(F)]Xz<*>

= <K<h lz(F) + ••• + $», Iz(ff))

= ^(a, + • • • + o>)

Hence

\z<ff) = 0l + ... + ^   [z(H): Z]=p,   and   e2 = [Î7: Z(F)].

Hence F is of central type. By Theorem 2 of [3], S is of central type and

Z(S) = Z(H) n 5. Since \Z(H): Z] = p,

[Z(5): ZflS] = [Z(F) n S: Z D 5] = p.

Let X G Z(S), x G Z". Since S is of central type, 5T = S • Z is of central type

and Z(R) = Z(/7). Now Z(R) Q T(R,X) and since T(R,X)/Z contains p

conjugacy classes of R/Z by Theorem 1.8 and [Z(R): Z] = p, Z(R) = 7"(5,X)

and T(R,X) = Ufi} Cl^x') • Z. Also_ T(F,X) = Z_(F) and T(H,X)
= U.Co1 Clgix') • Z. Moreover Clff(j?') ■ Z = ClH(x-') • Z if and only if » ==y

(modulo p).
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If Z(77) = Zand2f=i m¡fa(xN) = 0 for some xN E 77and some nonnega-

tive integers m¡, then 2f-i m¡fa(x) = 0 for some x G 77. Since 77 is p-special,

either fa(x) = 0 for all /', or m¡ = m¡ for all i,j. Hence 77 is p-special. Since X is

faithful on [7/777] D Z, for any p Sylow subgroup S of 77, there is an x G S so

that

(a) 7X7?, X) = U,Co' Cljjix') • Z where ~K=S2.
(b) 7/(77,X)= U,q} Cl,,(xO • Z.
(c) For / # 0 (modulo p), Cl^x-') • Z = CljOrV) • Z if and only if / =j

(modulo p). Hence, regardless of whether Z(77) = Z or not, for any p Sylow

subgroup S of 77, there is an x G S, so that conditions (a), (b), and (c) are

satisfied.

Let S be a p Sylow subgroup of 77. If S is the natural image of S in 77, then S

is ap Sylow subgroup of 77. Let R — S • Z and R = S -Z. Since N £ kerael(X),

it can be easily verified that

7/(7/,X) = 7/(77,X)   and   TW) = T(R,X).

Let x G S, such that xN = x and X G S, satisfying conditions (a), (b), and (c).

Then

(a) T(R,X) = Up* ClÄ(x') • Z.

(b) 7/(T7,X) = U.qj Cl^x') • Z.
(c) For i # 0 (modulo p), Cl^x') • Z = Cl^) • Z. if and only if i =J

(modulo p).

This completes the proof of Theorem 2.8.

Let 77 be p-special with respect to X and let XH = e(fa + • • • + fa). In the
previous proofs, the condition

(b) if 2/-1 Bi,$i(x) — 0 for some nonnegative integers m¡ and some x G 77,

then either <p,(x) = 0 for all i, or m¡ = m} for all i,j is used often. The following

example shows that this condition is necessary in Theorem 2.5.

Example 2.9. Let 77 = (x,y,w | x5 = y* = w2 = \,w~xyw = y*,y~xxy = x,

w~xxw = x*>. Then Z(H) = <^> and [H: Z] = 20. Let Y = <xy>, let w0 be a

10th root of — 1, and let <o be a primitive 10th root of 1. Let o-,((x.y),) = uqu11.

If X is defined on Z(H) by X(.y2) = -1, then X'' = 2'-o o,. Let «p,,..., <p5 be
defined on H by the following: <p, |y = ox + o4, fa \Y = o2 + o3, fa \Y = o7 + o6,

^4 \r — a6 + °* ^5 \y = ao + CT5> and fa(h) = 0 for all h G y and 1 < /' < 5.

Then <p|, ..., fa are inequivalent irreducible characters on 77, each of degree 2,

and XH = 2(fa + •'■+ fa). Notice that fa(x'y) = 0 while fa(xsy) ¥* 0 for
/ # 5. Hence condition (b) is not satisfied.

Throughout the remainder of this section we will be working toward a converse

of Theorem 2.8. We will need the following algebraic facts [4, Example 1, p. 13]:

(2.10) If p is a prime, p ¥= 2, and a is a positive integer, then

(a) (p + l)^"1 = ap" + \ where a — 1 (modulo p).

(b) for every 0 < «7 < p"~x — 1, there is a unique 0 < t < p°~x — 1 so that

(p + l)' m ap + 1 (modulo p°).
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Lemma 2.11. // H is a group with center Z and

T(H) = {x G H: x~x Cl(x) n Z = {1}} = u' Cl (x') • Z
i=0

for some x which has order a power ofp, then for all 1 < » < p - 1 otio" all positive

integers a

CKx^'V) • Z = Cl(x') • z.

Proof. Let s be any number relatively prime to p. If x' G T(H ) then there is

an element h E H, so that h~xxsh = x' • z where z ¥= 1. Since s is relatively

prime to p, there is an integer a so that x" = x, and

h-xx"h = A-'xA = x-za.

Since z # 1, za # 1. But this implies that x G 7X//), which is a contradiction.

Therefore x1 G T(H) for all s relatively prime to p.

Assume p # 2. Let a be the minimum number so that xp' E Z. Let A be the

multiplicative group of integers, modulop". Let ,4, = {a E A: x E Cl(xa) • Z).

Then

(2.12) Ax is a subgroup of ,4 and [/I: /!,] dividesp — 1.

Proof. Suppose a, b E Ax. Then there are hx, h2 E H, zx, z2E Z that

x = hxxx"hxzx and x = h2lxbh2z2. Then

*«-'* = (Af'xTVr')* = hx-ixbhxzfib

= hrx(h2xh2-xz2x)hxzf">

= (A2-'A1)-,xA2-'A1z2-'zr14

or

x = h2]hxxa-'b(h2xhx)-xz2zx-'-,b.

Thus a~xb G /1| and /4, is a subgroup of A.

If A¡ = {a G A: x' E Cl(x") • Z), then the mapping a -» a» is a one-to-one

mapping of Ax onto ^4,, for 1 < » < p - 1. For every a E A, Xa E T(H) and

xfl G Z. Therefore

xa G u' Cl(x')   Z,   A = LM,,   and   [/4: 1] < (p - \)\AX: 1].
i— 1 I— I

Therefore [A: Ax] < p - 1. Since [^: 1] = (p - l)p"-', [.4: /!,] divides p - 1.

This completes the proof of (2.12).

Since [A: Ax] dividesp — 1, for every a G A, ap~x G Ax. Since

{(/> + l)'^'); 0 < t < p"~x - 1) = {(p + 1)': 0 < t < pa~l - 1},
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for every t, there is », so that (p + 1)' = (p + l)''(^n. Therefore (p + 1)' G Ax

for 0 < t < pa~l - 1. By (2.10)(b) for every 0 < a < pa~x - 1, ap + 1 G Ax.

Hence x G Cl(xa'+1) • Z and Cl(x) • Z = Cl(xa',+1) • Z. Since (ap + 1) G /!„

(ap + 1)» G yí,, Hence x' G Cl(xto*») ■ Z or Cl(x') • Z = CKx^») • Z.

If p = 2, then Cl(x°) • Z n Cl(x') • Z = 0. For any a, since x2"*1 G T(H),

x2a+1 G Cl(x) • Z. Therefore

Cl(x)-Z = Cl(x2a+1)-Z.

We now prove the following crucial lemma:

Lemma 2.13. Let H be a group with center Z and assume [H, H] D Z is cyclic.

Let X be a linear character on Z, with X faithful on [H,H] D Z. Assume

XH = e(fa + • ■ ■ + fa) where fa, ..., fa are inequivalent irreducible characters on

H and T(H, X) = U,C0' Cl(x') • Zfor some x E H, where xZ has order a power of

p. Then H is p-special.

Proof. By Schur's lemma, fa |z = <i>,(l)X and since (fa,XH) = e, fa(l) = e,

1 < » < p. If p = 2, assume mx fa (y) + m2 fa->(y) = 0 for some y E H and

nonnegative integers tt»! and 77i2. If y G T(H,X), then fa(y) = 0, » = 1, 2, by

Theorem 1.8. If y E Z, then <¡>,(.y) = eX(y) and 0 = mxfa(y) + m2fa,(y) =

e(mx + m2)X(y). Thus ttj, = m2 = 0. If y E T(H,X),y G Z, then fa(y) * 0 for
» = 1 or » = 2. Since

0 = X"(y) = e(fa(y) + fa(y)),

<t>2(y) = -fa(y).Thcn

0 = m, fa(y) + m2<¡>2(y) = (ttj, - m2)fa(y).

Since <i>, (y) ^ 0, ttj, = m2. Thus H is p-special if p = 2.

Assume p ¥= 2. Let a be the minimum number so that xp' G Z. Let uq be any

p°th root of X^") and let w be a primitive p"th root of 1. Define o¡(x' • z)

= w¿X(z) • w'J. If X = <x> • Z, then o, is independent of the way elements of X

are represented, and a,, 0 < i < p" — 1, is a linear character on X. Since

o¡(z) = X(z) for all z G Z,(o¡,Xx) = 1. Hence

p*-i
X* =  2 ov.

We show the following:

(2.14) For a suitable w0, there are integers K and kuj, 0 < u < p — 1,

1 <j<p, such that

p-\ p"-\
fa \x = 2 ^u> V-'« + ^ 2 o„.

u=0 ' f-0
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Moreover, K = e/p" if a ¥= 1.

Proof. If a = 1, then Xx = o0 + ••■ + (£_,. Since

X" |, = [77: *]X* = e(£ fa |,) = [77: *]( 2 o,),

then fa \x = 2£o kuj% for integers kuj. If K = 0, then (2.14) follows if a = 1.

If a > 2, by Lemma 2.11, x'*1 G Cl(x) • Z. Hence there is A G 77, z0 G Z, so

that

(2.15) A-'xA = x^'zq.

We wish to compute hr'xh'.

(2.16) If A~'xA = xß ■ z for any integer ß and z G Z, then

A-'xA' = x?*®

where e(t) = (ß1 - \)/(ß - 1).

Proof. If t = 1, the assertion follows by hypothesis. Suppose the assertion is

true for t = k. Then

A-i*+1)xA(*+1> = h-xh~kxhkh

= A-'x^Az^*) = (h-xxh)ßkz*Q

= (*'*)**«*> = x/»*+lz**+<<*>

and ,3* + e(rc) = 0* + (0* - l)/(/3 - 1) = (ßk+x - l)/iß -l) = e(k+ 1). By
induction the assertion holds for all positive integers t.

By (2.10), (p + l)*"-1 = «7p° + 1 where «7 = 1 (modulo p). From equation

(2.15) we get

A-"-'xA^' = xW-'z^

= x^+1 • zr"

= x(xp-zfy.

Since x G 7X77.X), (x^zf)" = 1. Since a = 1 (modulo p), x^zf = 1.
Choose coq such that X(z0) = coq"*.

If j # 0 (modulo p) and g"'xJg G A", then g~'xg G X and g"'xg = x*z for

some z G Z. Since X" has p inequivalent irreducible constituents, by Theorem

1.8, T(H,X)/Z consists of p distinct conjugacy classes of 77/Z. Since

7/(77,X) = U Cl(x') • Z,
i'=0



SUBGROUPS OF GROUPS OF CENTRAL TYPE 149

Cl(x') • Z ¥= Cl(x') • Z if i * y, 0 < i,j < p - 1. Thus Cl(x') • Z n Cl(x>) • Z
= 0 if i =/= y, 0 < i,j < p - 1. Since g~'xg = x'z, j = 1 (modulop) by Lemma

2.11. Then i = ap + I for some 0 < a < p"-1 - 1 and by (2.10) there is an

integer t such that

/ = (p+l)'      (modulo p°).

By (2.15) and (2.16), A"'xA' = x<>+»' • zgW and g~xxg = x'z = x^O'-z'

= hT'xh'z^ • z', for some z' G Z. Hence

A'g-'xgA"' = xzô^ • z'.

Since x G 7/(77, X), z^z' = 1 and

gA"' G C = {A G 77: Ax = xA}.

Thus if g~xx'g E X for any s # 0 (modulop) then g = cA' for some c E C and

0 < / < pa_1 - 1. Then for s # 0 (modulo p)

o»(x>) = (l/[X: 1]) 2 *,(g-'*'g)

= (\/[X: 1]) 2 'S ' o.XA-'c-'x'cA')
cec   i-O

= [C:A]r2"1a,(x^|)'i.Zo^)
(-0

= [C: *]'2~ ' ^''''a^V^')''
»-0

= [C: À"]   2   <ou<ö,(',+1>',.
1-0

By (2.10) as / goes from 0 to p"~x - 1, if (p + 1)' = ap + \, a varies from 0 to

p"-1 - 1 (modulo p"-'). Thus

of(xs) = [C: A'l'VwóV0*1)'»
/-o

,-'-1
= [C: *]«$   2   «**+I)*

o-O

= [C:Ar]wuw"   2   (""")"•
a-0

If / * 0 (modulo p"-1). since s # 0 (modulo p) and a > 2, to'3*' ^ 1. Then

2   (w**)' = (1 - ui,p°)/(\ - uisp) = 0
a=0

since u is apath root of 1.
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Since X" = 2&1 a," = e(fa + ■ • • + fa),

or^îriijfa

for some nonnegative integers n¡j. Consider of, for » ̂  0 (modulo p"-1)- If

y E H, o!*(y) = 0 for all^ G T(H,X) since each fa(y) = 0 by Theorem 1.8. If

y E T(H, X), y G Z, then >> is conjugate to x* • z for some 1 < s < p — 1 and

some z E Z. However

o/V • z) = o,"(xJ) • X(z) = 0.

Since a" is a class function, o"(y) = 0 for all y E H, y G Z. If _y G Z,

"»"(.y) = [F: X]X(y). Hence o/* is a multiple of XH or

a," = (e/pa)(fa + ■■■+ fa).

Thus 7»,7 = e/pa for ail 1 <j<p and all » ̂  0 (modulo p"-1). Let K = e/p°.

Since X"\x = e(fa\x + ----r fa \x) = [H: X]XX = [//: X] 2£o_1 a,, we have

fa \x =   2  ByOj
i=0

p-\ p"l-\

=    2j       2a      \nup°-,+lij)Oup"-<+v
u=0    v=0

p-\ p-\ p'-'-l

=   2   (nup°-l.jfiup'-l +2      2     (nup«-l+v,j)aup°-l+ti
u=0 u=0    0=1

p-\ p-\ p»-'-l

= 2 («u^-i./Vud«-1 + xr 2   2  «w-i+n
u=0 u=0   t=l

p-l p°-l

=   2  (nup'-'J ~ K)%°-< + % 2  <V
u=0 0=0

Let kuj = (nup.-xj) - K. Then (2.14) follows.

To show H is p-special, suppose 2>=i ntjfa(y) = 0 for some y E H and

nonnegative integers m¡. If y G T(H,X), fa(y) = 0 for ally by Theorem 1.8. If

;EZ, then

0=2 mjfa(y) = 2 mj ■ eX(y).
j~ 1 y= I

Thus T«, = 0 for all 1 <j<p. If y E T(H),y G Z, then y is conjugate to xs ■ z

for some 1 < s < p — 1, and z G Z. Then

2 mj4>j(x' ■ z) = 0.
j=i
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Using (2.14), we find

0=2 mjfa(xs ■ z)
7-1

= .2 mj{ 2o kujo^u{xs ■ z)J + A-^2 ntjj JS o„(x' ■ z).

Since 1 < í < p - 1,

Hence

2 ov(x* ■ z) = x-V • z) = 0.
t>=0

o = 2o (£ mjk^o^x' • z)

= S (£ m,*„y)woA(z) • (op°~'us

and

0= 2 (£^0^-'-.
u=0 v-i /

Since each ù)P°~'us is apth root of 1, the above equation implies that 2.?-i mjk^

= 2j=i /w,-Ar0j- for all 0 < u < p - 1. Then

p p-1 t p \ / p      \ /p°-\    \

=CI^)(ll°-,0+<l^)C?o4
For all 1 < i < p - 1 and z G Z, 2;-i >",<>,(•*' • z) = 0. Since T(H,X)

= U.Co1 Cl(x') • Z, 2/-1 mjfa(y) = 0 for all y g Z. Thus 2j-i »M is a
multiple of Xw or

£ mjfa = (£ »<>)(<#>, + •■•+ fa).

Thus »j, = (2j-i "v)/P or /«, = w, for all i,j. Hence 77 is p-special.

We can describe the Sylow subgroups of p-special groups.

Theorem 2.17. Let H be a p-special group. Then

(a) for any prime q # p, and any q Sylow subgroup Sq of H, Sq is of central type

with Z(S„) - Z h Sr
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(b) // Sp is any p Sylow subgroup of H, then either Sp is of central type with

[Z(SP): Z n Sp] = p or Sp is p-special with Z(SP) = Z D Sr

Proof. Let X be a linear character on Z, such that H is p-special with respect

to X. Let XH = e(fa + • • • + fa) where ft,..., fa are inequivalent irreducible
characters on H. Let o be any prime, let Sq be a o Sylow subgroup of H, and let

Rq = Sq ■ Z. Let

Xs« = y.(Dyi + ••• +y.U)y,

where Yi > ■ • • > Yj are inequivalent irreducible characters on Rq. Since y, |s< is

irreducible, y¡(í) is a power of q. Since y, is a constituent of Xs«,

Y," = 2 ktJfa

for some integers ktJ. Then

Tf*(D = [H- RM\) =Í k^j(\) = <-(£ *,;)•

By taking q parts we get

Y,(D = *,(í */;) •

If q =£ p, since e2 = [//: Z]/p, we get

e» = ([//: Z]/p)q = [//: Z], = [Rq: Z).

Hence y,(l)2 > [Rq: Z]. However

Y,(D2 < [Rq: Z(Rq)\ < [Rq: Z\.

Hence y,(1)2 = \Rq- Z(Rq)], Z(Rq) = Z, and 5, is of central type. Thus Sq is of

central type and Z(Sq) = Z n Sr

If o = p, then

** = ([H: Z]/p), = ([/Y: ZL,)/p = [Rp: Z]/p.

Since y,(1)2 < [RP: Z(R,)] < [Rp: Z] and

Y,(02 = ^(S k^ = ([RP: Z]/p)(±x *„)',

we have that (2^=1 *</)£ = I. Hence

Y,(l)2 = [Rp: Z]/p   for all».
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Let 4 = [Rp: Z]/p. Then X*' = ep(yx + • • • + yp). If Z(Rp) ¥= Z, [Z(Rp): Z]
must be a power of p. Since y,(l)2 = [Rp: Z]/p, [Z(RP): Z] = p. Then y,(l)2 =

[Rp: Z(Rp)] for each /' and Rp is of central type. Hence in the case that

Z(RP) * Z, Sp is of central type with [Z(SP): Z n Sp] = p.

Assume Z(Rp) = Z. As in the proof of Theorem 2.8, there is an x G Sp such

that T(Rp,X) = U,Co' ClR(x1) • Z. Since X"' = ep(yx + • • • + yp), if X is faithful
on [Rp,Rp] n Z, by Lemma 2.13, Rp is p-special. If X is not faithful on

[RP,RP] n Z, let yV = [Rp,Rp] n kernel(X). Let Rp = Rp/N, Z = Z/N, X(zN)

= X(z) for any z E zN, and y¡(rN) = y,(r) for any r E rN. Then

A* -e,fo + •••+%)   and   r(^,A) = Ü Cl^x') • Z.

By Lemma 2.13, Rp is p-special. Suppose 2j=i mjljiy) = 0 for some.y G Rp and

nonnegative integers m¡. Then

0 = £ m^y/j)
7-1

and since Ä, is p-special, either fj(y) = 0 for ally, or m¡ = m, for all i,j. Hence,

either yj(y) = 0 for all y, or m, = w, for all /, j and Rp is p-special. Thus, if

Z(Rp) = Z, then /?p is p-special. Hence, Sp is p-special with Z(Sp) = Z O Sp.

We can describe simply which of the two possibilities in (b) occurs in the case

that p # 2. Example 2.3 shows that this characterization does not hold when

p = 2.

Corollary 2.18. Let H be a group with center Z. Assume [H, 77] n Z is cyclic and

X is a linear character on Z, faithful on [77,7/] n Z. Let T(H) = T(H,X)

= (A G 77: A-1 C1W(A) HZ = {1}}. Assume 77 is p-special with respect to X for

some prime p # 2. 7/x G 7/(77), x £ Z, and X = <x> • Z, then X is not normal

in H. If S is a p Sylow subgroup of H, R = S ■ Z, Let

T(R) = T(R,X) = {r E R: r~x ClR(r) HZ = {1}}.

Let x E T(R), x$lZ. Then R is of central type if and only if X = <x> • Z is

normal in R.

Proof. Since 77 is p-special with respect to X, by Theorem 2.8 there is Xq G S

so that

(a) T(R) = U.Co1 ClÄ(x0) • Z;

(b) 7/(77) = Ufi} Cl^xb) • Z.
By Lemma 2.10, for all integers a and all 1 < /' < p - 1,

Cl/xír1») • Z = Cl„(x0) • Z
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and

ciw(x^+l)i) • z = a¿4) ■z-

Also X" = e(fa + • • • + fa) where fa, ...,faare inequivalent irreducible char-

acters on H and XR = ep(yx + • • • + yp) where yx, ...,yp are inequivalent

irreducible characters on R.

Let a be the minimum number such that xf E Z. If x G T(R), x G Z, then

x = r~xx'0rz for some r E R, z E Z, 1 < » < p" — 1, with » relatively prime to

p. Let X0 = <x0> • Z. If A' is normal in R, then .Y = Xq, and for each »,

C1R (x0) Ç Xo- Hence

T(R) QXQ = X.

Similarly, if there is an x G T(H ), x G Z, such that X = <x> • Z is normal in

#, then

T(H) ç X.

Since X" hasp inequivalent irreducible constituents, T(R)/Z containsp distinct

conjugacy classes. Hence ClÄ(x) • Z = ClÄ(x') • Z only if » = 1 (modulo p).

Similarly Clw(x) • Z = Clw(x') • Z only if » = 1 (modulo p). To avoid doing the

same argument twice, we prove the following:

(2.19) Let G be a group with center Z. Assume [G, G] D Z is cyclic and X is a

linear character on Z, faithful on [G, G] n Z. Suppose Xe = e($x + • • • + §,)

where f,, ..., fp are inequivalent irreducible characters on G. Let

T(G) = {g G G: g"1 Clc(g) n Z = {1}}

and assume 7XG) # Z. If x G T(G), such that Clc(x) • Z = Clc(x-') • Z if and

only if y = 1 (modulo p), then T(G) $ <x> • Z.

Proof. Suppose there is an x G 7;(G) so that T(G) Ç <x> • Z = X, and

Clc(x) • Z = Clc(x>) • Z if and only if y = 1 (modulo p).

By Theorem 1.8, T(G)/Z containsp conjugacy classes and thus

7(G) = Lmc(x')-Z.

Let a be the minimum number so that x^ G Z. Let w0 be a p^th root of X(x^)

and let w be a primitive p"th root of 1. Define a¡(x' • z) = uqu"X(z). As in the

proof of Lemma 2.12, X* = 2£o~' °V Sincep ¥= 2, by (2.14) there are integers K

and kuj, 0 < u < p - 1, 1 < j < p, such that

p-i p*-\
$j \x = 2 kujOf-\u + K 2 o„.
J u-0 ' K=0
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If a ¥> \,K= e/p'and

Hence 2£o K} = 0. Since T(G) = U,C<j ClG(x') ■ Z ç X, g-^g E X for
every g G G and every ». Therefore X is normal in G. By Clifford's theorem [4,

Theorem 49.2, p. 343] since

p-\ p"-\
tj\x  —    2   kujOpa-l,, + K   2    °v

11=0 i/=0

for every 0 < u < p - I, either kuj + K = 0 or kuj = 0. Since 2„C¿ kuj = 0,

kuj = 0 for every u, and every y. Then

?'-i
fy Ix = K  2   00

ii-O

and {¡¡(x) = 0 for every y. By Theorem 1.8, x G 7"(G) which is a contradiction.

Therefore a = 1. If g G G, g~xxg G X" and hence g~xxg = x' • z. Since Clc (x)

• Z = Clc (xj) • Z only if j m 1 (modulo p), »' = 1 (modulo p). Since a = 1, we

can assume » = 1. Since x G T(G), and g~'xg = x • z, z = 1. Therefore for all

g G G, g-'xg = x and x G Z(G). Since Z ç T(G) CJfC Z(G) = Z, 7(G)

= Z, which contradicts the hypothesis. This completes the proof of (2.19).

Returning to the proof of Corollary 2.18, we have that if there is an x G T(H),

x G Z such that <x> • Z is normal in H, then T(H) Q <x> • Z and by (2.19),

T(H) = Z(H) which is impossible, since x G Z = Z(H). If there is an

x G T(R), x G Z, such that <x> • Z is normal in H, then T(5) Ç <x> • Z and

by (2.19), T(R) = Z(R). If 7(5) = Z(5), then Z(R) * Z and R is of central
type with \Z(R): Z] = p.

If R is of central type, then [Z(R): Z] = p. Since X" has p inequivalent

irreducible constituents, by Theorem 1.8, T(R)/Z contains p conjugacy classes of

R/Z. Clearly, Z(R) Q T(R). Thus Z(R) = T(R). If x G T(R), x G Z, then
X = <x> • Z = Z(5) and X" is normal in 5.

There is a close relationship between the structure of T(H, X) and the structure

of the Sylow subgroups of H.

Theorem 2.20. Let H be a group with center Z and assume that [H, H] (~l Z is

cyclic. Let

T(H) = {x G H: x"1 C\H(x) D Z = {1}}.

Let q be any prime and let S be any q Sylow subgroup of H. Then S is of central

type with Z(S) = S n Z if and only if T(H)/Z contains no element of order a

power of q.
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Proof. Let S be a q Sylow subgroup of 77, and suppose S is of central type with

Z(S) = S n Z. If R = S ■ Z, then R is of central type and Z(R) = Z. Let x

be any element of 77, x £ Z so that xZ has order a power of q. Since all «7 Sylow

subgroups of 77 are conjugates, there is a conjugate R' of R so that x G /?'. Since

[77,77] n Z is cyclic, [/?', /?'] n Z is cyclic. Since R' is isomorphic to /?, R' is of

central type. By Theorem 4 of [6], T(R') = Z(/?')- Since Z(Ä') = Z and x g Z,

there is an r G /?' so that r~x xr = x • z, z =£ \,z G Z. Thus x g 7/(77).

Conversely, suppose T(H)/Z contains no element of order a power of q. Let

X be a linear character on Z, such that X is faithful on [77,77] n Z. Let

XH = fa(l)fa + ••• + tp,(l)tpr where c^, ..., fa are inequivalent irreducible char-

acters on 77. Let S be any q Sylow subgroup of 77, R = S • Z and let

X* = YiO/Y! + • • • + 7,(1)7, where 71,..., y, are inequivalent irreducible char-

acters on R. Since yy is a constituent of Xa and X" \R = [77: R]XR,

<2-21) Tf-SM».       1<7<*,J       i-i

and

(2-22) * I* - 2 *c/Y>.       1 < '" < '.
7--1

for some nonnegative integers A:,-,. Let K¡ be the greatest common divisor of kip

1 <j<s, and let A:,y = K¡k'¡j. Let A/ be the least common multiple of <p,(l),

1 < i < t.
Since T(H)/Z does not contain a q element, if r G R, r G Z, then r g r(77)

and hence, by Theorem 1.8, fa(r) = 0 for all /. Thus for all r E R, and all 1, u

(M/fa(lM(r) = (M/fa(l))*u(r)

or

(M/tp.Xl))*, |* = (M/fcO))*, I« -

Thus, by equation (2.21), (M/fa(\))k¡j = (M/fa(\))kaJ for all 1, y, «, or

(M/^Xl))*;*;, = (M/fa(\))Kuk'uj. Thus

fcj, = (*(W*.(i)4)fc^

Since k'jj, 1 < y < s, have no common divisors, and k'uJ, I <j<s, have no

common divisors

«fc(l)A, - faii)Kt   or   «fc,(l)/*. = fail)/K,   for all/,«.

From equation (2.22), we have

«i»/ l/t — *i 2 Ä(/Ty
u—1
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and hence K¡ divides <f>,(l). Thus

(2.23) fa(\)/Kt = L

for all i where L is an integer independent of /. For every i,

£ k'uyXr) = 0   if r G Z
7=1

and

£ *,,7/W = LX(r)   if r G Z.

Hence 2j-i ^i/Y> is a multiple of XR or

£ k'vyj = (L/[R: Z])(yx = (1)y, + • • • + y,(1)y,).
7-1

Thus k\j = (L/[R: Z])y,(l) for all /', j. Let q" be the minimum value of y,(l),
1 <j<s. Then qaL/[R: Z] is an integer. If [R: Z] = qt, then L is divisible by

«7*-°. By equation (2.23), fp¡(l) is divisible by qB~" for all I. By equation (2.21),

y/(l) = [77: R]yj(\) = £ *,y<fc0),       l<j<s.
/-i

Since [77: R] is relatively prime to «7, and each fa(l) is divisible by «7"""°, each y/1)

is divisible by «7^""°. For somey, «7" = y,(l), and hence a > ß — a or 2a > ß.

However

Y>(1)2 < [R: Z(R)] < [R: Z] = qK

Therefore 2a < ß, ß = 2a,

Yy(l)2 = [R: z(R)\   and   Z(R) = Z.

Hence R is of central type and Z(R) = Z. Thus S is also of central type with

Z(S) = S n Z.
We can now characterize p-special groups in terms of the structure of the

group. Notice that this theorem is the converse of Theorem 2.8, in the case that

X is faithful on [77,77] n Z.

Theorem 2.24. Let H be a group with center Z and assume that [77,77] D Z is

cyclic. Let

T(H) = (x G 77: x"1 Cl„(x) HZ = {1}}.

Let S be any p Sylow subgroup of 77, R = S • Z, and let

T(R) = {x G R: x"1 ClÄ(x) nZ = {!}}.
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Assume there is an x E S such that

(a) T(R) = U£j Clfi(x') • Z.

(b)T(H) = U,Co' Clw(x') • Z.
(c) For i ^ 0 (modulo p), Clw(x') • Z = C\H(xJ) • Z if and only if i =■ j (modulo

P)-
Then H is p-special.

Proof. Let X be a linear character on Z, with X faithful on [H, H] n Z, Let

X" = <f>i(l)<i>i + • • • + <i>,(l)<f>, where fa, ..., fa are inequivalent irreducible char-

acters on H.

Let q be a prime, q # p, let Sq be a q Sylow subgroup of H, and let

Rq = Sq- Z. By Theorem 2.20, Sq and 5, are of central type since (b) implies that

T(H)/Z contains no q elements. Also T(Rq) = Z. Since T(Rq)/Z contains only

one conjugacy class, by Theorem 1.8, X"« has only one irreducible constituent.

Let Xa'= £,(!)£,. Then

X" = W = *iU)*i + --- + *»(>)*» •

Thus ̂ (1) divides fa(\) for each ». Since £,(1)2 = [Rq: Z], each fa(\)2 is divisible

by [Rq: Z] = [H: Z\, where [//: Z], denotes the 0 factor of [H: Z\

Let S be any p Sylow subgroup of H and let R = S • Z. Since T(R)/Z

contains p conjugacy classes, XR has p inequivalent irreducible constituents by

Theorem 1.8. Since each irreducible constituent of XR has degree a power of p,

and their squares add up to [R: Z] which is also a power of p, all irreducible

constituents of X* must have the same degree. Let ep be this common degree.

Then Xa = ep(yx + ••• + %>) where y,, ..., yp are inequivalent irreducible char-

acters on R. Then

X" = ep(yx" + • • • + yp") = fa(l)fa + ••■ + fa(\)fa.

Thus ep divides each <i>,(l). Since e2 = [R: Z]/p, each <j>2(l) is divisible by

[R: Z]/p = [H: Z]p/p, where [//: Z], denotes the p part of [H: Z\. Then each

<p,(l)2 is divisible by [H: Z\ for all primes q ¥= p and by [H: Z]p/p or <f>,(l)2 is

divisible by [H: Z]/p. Since

[H: Z] = 2 <fc(D2,/=i

r < p. Since t(H) = U.qJ Cl„(x') • Z and ClH(x') • Z # CLjpi) • Z for 1 < »,
y < p — 1 by (c), T(H)/Z containsp conjugacy classes. Hence, by Theorem 1.8,

XH has p inequivalent irreducible constituents. Hence t = p, and if e2 = [//:

Z]/p, then <f>,(l) = e for all » and

X» = e(fa + ---+ <f>p).

By Lemma 2.13 H is p-special.
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The condition on [H, 77] n Z can be dropped and we have the following

theorem, which is the converse of Theorem 2.8 in all cases.

Theorem 2.25. Let H be a group with center Z. Let Xbe a linear character on Z

and let

T(H,X) = {x G 77: x"1 C\H(x) n Z £ kernel(X)).

Let S be any p Sylow subgroup of H and let R = S ■ Z. Let

T(R,X) = {x E R: x~x ClÄ(x) n Z £ kernel(X)}.

Assume there is x E S such that

(&)T(R,X) = U,Co' ClÄ(x') • Z.

(b) 7/(77,X)= U,Co'Clw(x') • Z.
(c) For / # 0 (modulo p), Clw(x') • Z = C\H(xJ) • Z if and only if i = j (modulo

P)-
Then 77 is p-special with respect to X.

_ Proof. Let N = [77,77] n kernel(X). Let 77 = H/N, R = R/N, x = xN, and
X(zN) = X(z) for any z E zN. Then

(a') T(R,X) = 7/(Ja) = U.Co1 Cl^x') • Z
(b') r(77,x) = t(h, x) = u,Co' ci^y Z.
(c') For i # 0 (modulo p), Cl^x') • Z = Cl-(x') • Z if and only if i mj

(modulo p).

By Theorem 2.24, 77 is p-special and

Xff = e«i + ••• + ?,)

where ¿¡, ..., Ç, are inequivalent irreducible characters on 77. Let Xw = «^(ljrp,

+ ' • " + faO)fa where fa, ..., fa are inequivalent irreducible characters on 77. If

x G N, then <i>,(x) = <i>,(l)X(x) = <p,(l). Define fa by fa(xN) = <p,(x) for any
x G xJV. Then

Xff = «h(l)«?, + • • • + «?,(l)t>, -«<& + ...+ $,).

Hence «>,(1) = <f>,(l) = e for every /", í = p, and by relabeling if necessary

<í>/ = S> 1 < ' < '• Suppose 2í'=i m¡fa(y) = 0 for some^ G H and nonnegative

integers m¡. If J = jA/, then 2/=i rn¡fa(y) = 0. Since 77 is p-special, either

SO) = 0 for all /, or m¡ = /My for all /', y. Hence either <pj(.y) = 0 for all i or

m¡ = /m, for all i,j. Hence 7/ is p-special with respect to X.

We can rewrite Theorems 2.8 and 2.25 in a slightly different form.

Corollary 2.26. Let H be a group with center Z. Let Xbe a linear character on Z.

Let

T(H,X) = {x G H: x"1 ClH(x) n Z £ kernel(X)}.
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Let S be any p Sylow subgroup of H, let R = S • Z and let

T(R,X) = {x E R: x~x ClR(x) nZÇ kernel(X)).

Then H is p-special if and only if

(a) every element of T(H,X)/Z has order a power of p and T(H,X)/Z consists of

p conjugacy classes of H/Z, and

(b) T(R,X)/Z consists of p conjugacy classes of R/Z.

Proof. If H is p-special, then conditions (a) and (b) follow at once from

Theorem 2.8.

Suppose conditions (a) and (b) hold. Let x G T(R, X), if Z. Then as in the

proof of Lemma 2.11, x' G T(R,X) for all 1 < i < p - 1. Since R/Z is a p

group, ClÄ(x') • Z * C\R(xi) ■ Z for » *j, 1 < »,y < p - 1. Since U,Co' ClÄ(x')

• Z Q T(R,X) and T(R,X)/Z contains only p conjugacy classes of R/Z, we have

T(R,X)= U ClR(x')-Z.

Let y G T(H,X), y G Z. Since yZ has order a power of p and all p Sylow

subgroups of H are conjugate, Clw(.y) n R # 0. Let y G CI^jO n /?. Since

y G T(#,X) n /?, y G TtÄ.X). Since y g Z, y G C1r(x') • Z for some ».

Then

ClR(y') ■ Z = ClÄ(x') • Z   and   Cl^y) • Z = Cl^ix*) • Z.

Since .y G Clw(y) • Z,.y G Cl^x') • Z. Thus for every .y G T(H,\),y G Z,

, G ¡U Cl^x') • Z.

Hence T(H,X) C U,C0' Cl^x') • Z. Since T(H,X)/Z consists of p conjugacy

classes of H/Z,

T(H,X) = C Cl^ix') • Z

and Cl^x') • Z # Cl^x-O • Z, i # y, 1 < ij < p - 1. By Lemma 2.11 for all
integers a and » # 0 (modulo p),

C1H (x^») • Z = Cyx') • Z.

Hence, for » # 0 (modulo p),

Clw (x') • Z = Cl^x') • Z

if and only if » = (modulo p). Thus # is p-special by Theorem 2.25.
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A word of caution is in order here. One might be tempted to replace (a) of

Theorem 2.25 by the statement that either R is of central type with [Z(R): Z]

= p or R is p-special with Z = Z(R). However, these statements are not

equivalent. If R is p-special with Z = Z(R), then by Theorem 2.8, T(R,X)

= U£o ClÄ(x') • Z for some x G S, the p Sylow subgroup of R. However, if R

is of central type with [Z(R):Z]=p, it does not follow that T(R,X)

— U,Co Cl^x') • Z for some x, or even that T(R, X)/Z consists of p conjugacy

classes of R/Z.
Example 2.27. Let S = (x,y,z0 | x3 = y3 = z„ = \,y~xxy = xz0,y~xz0y

= z0,x~'z0x = z0> and assume S is the p Sylow subgroup of a group 77 with

center Z. Let R = S • Z, and let X be a linear character on Z. Let « be a

primitive cube root of 1, and define o¡(z^ • z) = X(z)usi, where z G Z. It can be

shown that a, is independent of the way elements of Z(R) = <z0> • Z are

represented and

\zw = a0 + ox + o2.

Then

7/(Ä,X) = {x G R: x"1 ClR(x) n Z £ kernel(X)} = R.

However, for i # 0

rfóo,) = {x G R: x~x ClÄ(x) n Z(R) £ kernel(a,)} = Z(R).

Hence, for i = 1 or i = 2, o/ has only one irreducible constituent by Theorem

1.8. If of = £(l)fi, then £(1)2 = [/?: Z(/?)] and R is of central type. However, by

Theorem 1.8, o* has 9 inequivalent irreducible constituents. Therefore Xa has a

total of 11 inequivalent irreducible constituents and T(R,X)/Z consists of 11

conjugacy classes of R/Z.
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