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ABSTRACT. A general formulation is given for the concepts of quasi-bounded and

singular functions, thereby extending to a much broader class of functions the concepts

initially formulated by Parreau in the harmonic case. Let ß be a bounded Euclidean region.

With the underlying space taken as the class cM of all nonnegative functions u on ß

admitting superharmonic majorants, an operator S is introduced by setting Su equal to the

regularization of the infimum over A > 0 of the regularized reduced functions for (u — X)*.

Quasi-bounded and singular functions are then defined as those u for which Su = 0 and

Su = u, respectively. A development based on properties of the operator S leads to a

unified theory of quasi-bounded and singular functions, correlating earlier work of Parreau

(1951), Brelot (1967), Yamashita(1968), Heins (1969), and others. It is shown, for example,
that a nonnegative function u on ß is quasi-bounded if and only if there exists a

nonnegative, increasing, convex function <p on [0,oo] such that <p(x)/x -» +oo as x -» oo

and <p » « admits a superharmonic majorant. Extensions of the theory are made to the

vector lattice generated by the positive cone of functions u in <A\ satisfying Su < u.

1. Introduction. Quasi-bounded and singular harmonic functions were first

defined and studied by M. Parreau [7] in 1951, and the subject has since attracted

considerable interest in connection with its applications to complex function

theory and potential theory. Some recent developments and extensions, including

applications to Hardy spaces, are detailed in the monograph of M. H. Heins [5].

The concept of a quasi-bounded function has been further generalized by the

present authors so as to avoid the harmonicity requirement. This generalization,

which arose naturally in the process of extending the Phragmén-Lindelof

maximum principle in [2], serves as a backdrop for the present work.

We start by refining the notions of quasi-bounded and singular functions and

proceed to develop basic elements of the theory of such functions. Our approach

involves introduction of an operator S on a class J\\ of functions. The quasi-

bounded and singular functions are then those functions u in J\l{ for which

Su = 0 and Su — u, respectively. Many of the classical results for the harmonic

case are shown to hold in this general setting or to admit appropriate generaliza-

tions. Moreover, a very concise treatment of the harmonic case can be given in

terms of the operator S, and we include this for the sake of completeness.

Although the theory adapts at once to hyperbolic Riemann surfaces, the

present treatment will be restricted to the case of bounded regions in Euclidean
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space. For purposes of notation and examples we shall visualize these regions as

lying in the plane. Throughout the sequel, the underlying bounded region will be

denoted by ñ, and the class of all nonnegative functions on 8 admitting

superharmonic majorants will be denoted by JW. Suppose that m is a function in

the class J\\. Then for each real number A > 0 the function (u - A)+ will likewise

belong to the class <=4f, and we can form the reduced function

(1.1) Rxu = R(u - \)+.

This is defined as the infimum of the class of all superharmonic majorants of

(u — \)+. (See M. Brelot [3] or L. L. Helms [6] for a discussion of reduced

functions.)

As is well known, the reduced functions Rx u are quasi superharmonic. That is,

each Rx u coincides quasi everywhere (i.e. with the possible exception of a polar

set) with a function superharmonic on Q. Moreover, this superharmonic function

is unique, since it appears as the lower regularization (pointwise limit inferior) of

the given quasi superharmonic function. The lower regularization of a quasi

superharmonic function v will be denoted by v. We put

(1.2) Sxu = Axu.

We next note that the family of functions Sxu (\ > 0) is decreasing, and we

write

(1.3) Sxu = lim Sxu.
A—^00

Of course, in view of the monotonicity in A we could just as well take \ = n

in = 1,2,... ) and define SKu as the limit of the sequence {Snu}. The function

Sx u is quasi superharmonic on ß, and we denote by Su the lower regularization

of Sx u, i.e.

(1.4) Su = Sxu.

The resulting operator S assigns to each function u in <=M. a corresponding

nonnegative superharmonic function Su on fl. It is clear also that the operator S

is conformally invariant.

According to the classical definition, a harmonic function A on Q is called

quasi-bounded if it is the limit of an increasing sequence of nonnegative bounded

harmonic functions. Similarly, a nonnegative harmonic function A on Q is called

singular if the only nonnegative bounded harmonic function on 0 majorized by

A is the function identically zero. We shall show that the quasi-bounded and

singular harmonic functions on fi can be characterized as those nonnegative

harmonic functions A on ß for which Sh = 0 and SA = A, respectively.
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On these grounds we are led to introduce general quasi-bounded and singular

functions based on analogous definitions. That is, we shall call a function u on Q

quasi-bounded if m is a function in JV{ for which

(1.5) Su = 0,

and we shall call u singular if u is a function in J\\ for which

(1.6) Su = u.

General quasi-bounded functions are shown to admit the following characteriza-

tion, extending results of M. Parreau [7] and S. Yamashita [8] for the harmonic

case. A function u > 0 on Q is quasi-bounded if and only if there exists a

nonnegative, increasing, convex function tp on [—oo,+oo] such that

lim xf = +00

and the composite function qp ° u belongs to the class JW.. Various closure

properties and convergence theorems are shown to hold for quasi-bounded and

singular functions.

With regard to the general behavior of Su, the most significant results occur

when the functions u are superharmonic. An explicit formula is at hand for Su

in the case of u the Green's potential of a positive mass distribution p, namely

Su(z)=f^Gz(ndp(n       (z£ß),

where GZ(Ç) is the Green's function and EM is the set on which u is +oo. This

leads to the decomposition of a nonnegative superharmonic function u as

u = q + s, where q is quasi-bounded and 5 singular, thus extending the classical

Parreau decomposition theorem for harmonic functions. Monotone convergence

theorems are also established for S applied to sequences of nonnegative

superharmonic functions.

We conclude by considering the positive cone <P of functions u (E^M)

satisfying Su < u. It is shown that £P consists precisely of those u which can be

decomposed as a sum of quasi-bounded and singular functions. Moreover, the

linear space Q = <P - <P generated by iP is a vector lattice, and S admits an

extension as a positive linear operator on Q.

As might be expected, the concepts of quasi-bounded and singular functions,

as well as the general theory of the operators Sx and S, can be carried over to an

axiomatic setting. This has been done by the present authors for a particularly

simple set of axioms, and the results will appear in a forthcoming paper dealing

at greater length with the operators Sx.

It should be noted that quasi-bounded potentials are the same as the semi-

bounded potentials defined by M. Brelot in 1965 (see [4]). Let xe denote the
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characteristic function of a set E. Brelot calls a potential u on ß "semibounded"

if

(1.7) mf ¿(irxtex]) = 0

quasi everywhere on ß. This approach can be taken as the basis for defining

operators Bx and B analogous to S* and S, respectively. That is, for u any

function in <sM. and A any nonnegative real number, we put

(1-8) Bxu = /?(«X[u>a])

and define Bu as the lower regularization of

(1.9) Bnu= lim Bxu.
A—* 00

(That Bx u is quasi superharmonic follows by monotonicity, as in the case of S«,.)

Although the operators Bx are, in general, distinct from Sx, we show that B = S

(see the end of §2). In particular, this implies that quasi-bounded potentials are

the same as semibounded potentials. The latter result is also implicit in recent

work of B. Fuglede (see the remarks appended in §10 of the present paper).

2. Basic properties of the operator 5. In studying the operator 5, repeated use

is made of certain elementary properties, which we proceed to collect.

Lemma 2.1. For u and v functions in J\\ and a any nonnegative real number

(1) Siau) = aSu,

(2) S(u + v) <Su + Sv,

(3) u < v implies Su < Sv,

(4) Siu A v) < iSu) A (Sv), where A denotes the lower envelope.

Proof. Conclusion (3) is immediate, and (4) follows from (3). To prove (1), we

start with a nonnegative superharmonic function m on ß such that, for given

A > 0, u < q> + X. Then au < a<p + a\, so that S^au) < ay. Taking the

infimum over <p leads to S^au) < aSxu, and in the limit as A -* oo there results

S(au) < aSu.

To establish equality, all that remains is to set aside the trivial case of a = 0 and

observe that 5m = S(au/a) < S(au)/a.

We apply a similar argument to prove (2). Given X > 0, let <p and ^ be

nonnegative superharmonic functions on ß such that u < <p + X and v < \p + X.

Then, u + v < <p + if/ + 2X, and this inequality shows that

Sn(u + ") <Sxu + Sxv.

Conclusion (2) follows by letting X -* oo.



QUASI-BOUNDED AND SINGULAR FUNCTIONS 279

It is a trivial matter to exhibit quasi-bounded functions, since all nonnegative

bounded functions are obviously quasi-bounded. We note also that inequality (2)

of Lemma 2.1 implies that the sum of two quasi-bounded functions is quasi-

bounded. To exhibit a class of singular functions, we make use of Green's

potentials.

Lemma 2.2. Let u be the Green's potential of a positive mass distribution p on Q.

If the support of p has capacity zero, then u is singular.

Proof. With X > 0 fixed, let <p be a nonnegative superharmonic function on Q

such that u < <p + X. Then, denoting the support of p by F, we take {E,} as an

exhaustion of F by compact sets and define un as the Green's potential of

p | F„ (n = 1,2,... ). Since, for each ti, un — <p is a subharmonic function on

Q — Fn bounded above by X and u„ tends to zero at the regular boundary points

of ñ, the Phragmen-Lindelöf maximum principle ensures that un < <p (n

= 1,2,... ) on fi - F„ and hence on ñ. This results in un < St» and consequently

i< < Su. On the other hand, since u is superharmonic and nonnegative, the

obvious inequality u < u + X implies Su < u, establishing Su = u as claimed.

Strict inequality can actually hold in (2) and (4) of Lemma 2.1. The example

which we shall give to show this for (2) uses the following domination property.

Lemma 23. Let Q be the unit disc and u any function in &M such that, for all z on

some open segment o issuing from the origin,

u(z) > \og(\/\z\).

Then, for all z on Q,

Su(z) > log(l/\z\).

Proof. Again we fix X > 0 and take ñ as any nonnegative superharmonic

function on Í2 such that u < <p + X. It is convenient next to introduce the

subharmonic function i;on8- {0} defined by

v(z) = log(l/M) - rtz) - X

and to consider the region « = Q - 5. Then, for z on a we have

lim sup v(z) < 0      (f £ 3w),

except perhaps at the end points of a, and also

(2.1) v(z) < log(l/U|).

These two inequalities allow us to apply the generalized Phragmen-Lindelöf

maximum principle given in Theorem 2.1 of [2], it being noted that quasi-
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boundedness of the right-hand member in (2.1) follows from Theorem 3.4 of [2].

There results

log(l/|z|) < tpiz) + X

for z on « and hence for z on ß. The lemma follows.

That strict inequality can occur in (4) of Lemma 2.1 is easily seen, for instance,

by taking u and v as Green's potentials of unit masses concentrated at distinct

points of ß. Indeed, Lemma 2.2 yields Su = u and Sv = v, whereas the evident

boundedness of« An results in S(u A v) — 0.

To arrive at strict inequality in (2) of Lemma 2.1, we take ß as the unit disc, put

(2.2) w(z) = log(l/|z|)       (z G ß),

and define u and v as the functions on ß equal to w on the open right half-disc

and open left half-disc, respectively, and to zero elsewhere. Then u + v < w, so

that Siu + v) < Sw = w by Lemma 2.2. Since Lemma 2.3 shows that Su = Sv

= w, we conclude that S(u + v) < Su + Sv on ß - {0}.

An argument based on Lemma 2.3 shows also that Su > 0 can hold even when

u = 0 almost everywhere. For this we have only to take u equal to the function

w in (2.2) on some open segment o issuing from the origin and to zero elsewhere

on the disc ß.

We note, however, that the condition u = 0 quasi everywhere on ß forces

Su = 0, in view of the following general property.

Lemma 2.4. // u and v are functions in J\\ such thai u = v [u < v] quasi

everywhere on fi, then Su = Sv   [Su < Sv] on ß.

Proof. It suffices to prove the inequality case, and we thus suppose that u < v

holds except on a polar subset E of ß. By the nature of E, there exists a

nonnegative superharmonic function if on ß assuming the value +oo at all points

of E. For each e > 0, the inequality u < v + etp holds throughout ß, so that

Su < Sv + eS\}/.

Letting e -* 0 yields 5m < Sv quasi everywhere on ß, and superharmonicity

ensures that this inequality actually holds everywhere on ß.

There are certain conditions under which equality can be shown to hold in (2)

of Lemma 2.1. This turns out to be the case for harmonic functions, and we shall

prove, more generally, in §7 that equality holds in the case of superharmonic

functions. For the moment let us simply observe that equality holds whenever

one of the functions is quasi-bounded.

Lemma 2.5. If u is any function in J\K and q is quasi-bounded on ß, then

S(u + q) - Su.
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Proof. Immediate from the fact that u < u + q implies Su < S(u + q)

< Su + Sq = Su.

Although the behavior of Su for superharmonic functions u will be treated

systematically in §7, one important aspect of this behavior is worth citing at this

stage.

Lemma 2.6. If u is any nonnegative superharmonic function on ß, then Su < u.

Proof. As already noted in the proof of Lemma 2.2, the inequality u < u + X

leads to Sxu < u and hence Su < u.

In turn, Lemma 2.6 shows that the inequality

(2.3) S2u < Su

holds for all u in J\\.

Finally, we show that the operator B (introduced at the end of § 1) coincides

with S. For any function u in J\\, the inequality Bu > Su follows at once from

the evident inequality

uX[u>\] > (« - A)+-

To proceed in the reverse direction, we first observe that the inequality

«Xiu>A] < (1 + e)(u - eA/(l + e))+

holds for all positive numbers X and e. There results

Bxu < (I + e)SlX/(x+t)u,

and, in the limit as X -* co and e -» 0, this yields Bu < Su. Hence, Bu = Su for

all m in JW,.

3. The harmonic case. It is essential to correlate the present definitions of quasi-

bounded and singular functions with those given by Parreau in the harmonic

case. Although this can be done by using lattice methods, as is implicit in S.

Yamashita [8], we shall give arguments based directly on the operators Sx and S.

The following preliminary observations are useful. Suppose that A is a

nonnegative harmonic function on Q. Then, for all X > 0, Sxh is likewise a

nonnegative harmonic function. It is, in fact, the least harmonic majorant of the

subharmonic function (h - X)+. Applying the Harnack theorem, we infer that Sh

is a nonnegative harmonic function on Q. Moreover, the function

(3.1) h - Sxh       (X > 0)

is a bounded nonnegative harmonic function on fl, in view of the inequalities

h < Sxh + X and Sxh < h.
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It is now an easy matter to correlate our definition of quasi-boundedness with

the classical one for harmonic functions.

Theorem 3.1. Let h be a nonnegative harmonic function on ß. Then Sh = 0 if and

only if A is the limit of an increasing sequence of bounded nonnegative harmonic

functions on ß.

Proof. If 5A = 0, then the functions hn = h - S„h (n = 1,2,... ) are bound-

ed nonnegative harmonic functions on ß with A„ Î A. Conversely, let {A„} be any

sequence of bounded, nonnegative, harmonic functions on ß with hn Î A. By

Lemmas 2.5 and 2.6, we have 5A = 5(A - h„) < A - A„, forcing 5A = 0, and

the proof is complete.

We next start with the functions (3.1) and let X tend to oo through integral

values to obtain

Theorem 3.2. If h is a nonnegative harmonic function on ß, then h — Sh is a quasi-

bounded harmonic function on ß.

To correlate our definition of singular functions with the classical one for the

harmonic case, we proceed as follows.

Theorem 33. Let h be a nonnegative harmonic function on ß. Then S h = A if and

only if the only bounded nonnegative harmonic function on ß majorized by A is the

function identically zero.

Proof. Suppose first that 5A = A and that m is a bounded nonnegative

harmonic function on ß with u < h. Then, by Lemmas 2.5 and 2.6 we have

Sh = S(h - u) < h - u.

Hence, u < A — 5A = 0, proving that u must be identically zero. Conversely, if

the only bounded nonnegative harmonic function u on ß majorized by A is the

function identically zero, then taking u as (3.1) yields Sxh = A (X > 0) and

therefore 5A = A. This completes the proof.

The Parreau decomposition theorem falls directly out of the above considera-

tions.

Theorem 3.4. Every nonnegative harmonic function A on ß admits a unique

decomposition as

(3.2) h = q + s,

where q and s are, respectively, quasi-bounded and singular harmonic functions on ß.

These functions are determined by A according to the formulas

(3.3) í = 5A   and   q = h- Sh.

Proof. First, let s and q be defined by (3.3), so that (3.2) is immediate. Theorem

3.2 guarantees that q is quasi-bounded, and an application of Lemma 2.5 to (3.2)
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shows that s = Sis, i.e. that s is singular. Formulas (3.3) follow generally from the

decomposition (3.2) by a similar argument, and this proves uniqueness of s and q.

In addition to the characterization of singular harmonic functions given in

(3.3), a characterization in terms of majorization by functions Su can be

formulated as follows.

Theorem 3.5. A nonnegative harmonic function h on Q is singular if and only if

h < Su holds for some u in JV(.

Proof. Assuming h < Su, we take A > 0 and let <p be any nonnegative

superharmonic function on Q such that u < <p + X. Consequently, Su < tp and

<p — h > 0. From the inequality

(u - hf < <p - h + X

we then infer that Sx(u — h)+ < Sxu — h and hence that S(»< - h)+ < Su — h.

Moreover, u < (u - h)+ + h implies Si» < S(t< - h)+ + Sh, which leads at once

to h < Sh. Since the reverse inequality is contained in Lemma 2.6, equality must

hold, proving that h is singular. The converse holds trivially with u = h, and the

proof is complete.

An immediate corollary of Theorem 3.5 is that a nonnegative harmonic

function on £2 is singular if and only if it is majorized by a singular function. This

statement actually turns out to be equivalent to that of Theorem 3.5, since we

show later (in §7) that all functions of the form Su (u E JIA) are singular. We

note further that Theorem 3.5 leads easily to the fact, already established in

Theorem 3.3, that the nonnegative harmonic functions h for which Sh = h are

singular in the classical sense. Indeed, every bounded harmonic function hx

satisfying 0 < hx < h then satisfies hx < Sh and therefore hx = Shx = 0.

The following monotonicity property holds in the harmonic case.

Theorem 3.6. If{h„) is a monotone decreasing sequence of harmonic functions on

Q with limit h, then Sh„ i Sh.

Proof. Obvious from the inequalities

Sh„ <Sh + S(h„ -h)<Sh + hn-h      (n = 1,2,... ).

4. Quasi-boundedness conditions. Combined results of Yamashita [8] and

Parreau [7] serve to characterize quasi-bounded harmonic functions as those

nonnegative harmonic functions for which the composites with certain nonnega-

tive increasing convex functions admit harmonic majorants. Alternative deriva-

tions, using only internal arguments, are presented in Chapter II of Heins [5].

Our central result here is the following extension of this quasi-boundedness

criterion to the general case of functions which are not assumed harmonic.
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Theorem 4.1. Let u be a function on ß. Then u+ is quasi-bounded if and only if

there exists a nonnegative increasing convex function <p on [—00, +00] such that

(4-0 lim î« = +00
/-»OO       I

and

(4.2) <p ° m   admits a superharmonic majorant.

Before we proceed to the proof, some comments on the content of the theorem

are in order. It obviously characterizes quasi-bounded functions as those

nonnegative functions u which satisfy (4.1) and (4.2). More generally, however, it

serves to characterize those functions u admitting quasi-bounded majorants

(since such majorants exist if and only if u* is quasi-bounded). By convexity of <p

on an infinite interval we mean convexity in the usual sense on the finite part of

the interval, together with continuity in the extended sense on the infinite

interval. Since we need to form composites of <p with extended real-valued

functions m, it is, of course, essential to have <p defined on the extended real axis

in Theorem 4.1.

Let us denote by $ the class of all nonnegative increasing convex functions <p

on [—00, +00] satisfying (4.1). Suppose now that m is a subharmonic function on

ß and that <p is in $. Under these conditions, the composite function <p ° u is

subharmonic, and hence the existence of a superharmonic majorant is equivalent

to the existence of a harmonic majorant. These observations furnish the following

specialization of Theorem 4.1 to the case of subharmonic functions.

Corollary 4.2. Let u be a subharmonic function on ß. Then m+ is quasi-bounded if

and only if there exists a function <p in 4» jmcA that œ ° u admits a harmonic

majorant.

It is easily seen that Corollary 4.2 contains results of Yamashita [8, p. 61],

Parreau [7], and Heins [5, p. 17]. Note, however, that one important part of

Theorem 2, p. 17, of Heins [5] does not extend to the general setting of Theorem

4.1. This is the conclusion that <p ° u+ is quasi-bounded whenever u is subhar-

monic and <p o u admits a harmonic majorant. The following simple example

shows that this conclusion does not even extend to superharmonic functions. Let

ß be the unit disc, and put

(4.3) m(z) = [R(e»))y2       (z G ß)

for fixed 9, where ^(e") denotes the Poisson kernel. Superharmonicity of u is

immediate from the harmonicity of the Poisson kernel. Moreover, the function <p

defined by
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w(t) = t2       for / > 0,

(4.4)
= 0        for t < 0,

belongs to the class $, but the composite function

(<p o u)(z) = Re»)       (z E Q)

is not quasi-bounded.

Turning now to the proof of Theorem 4.1, we adopt Heins' viewpoint of relying

on internal arguments. Thanks to the elementary properties already at hand for

the operator 5, these arguments can be made rather concise, and we split the

derivation into the "if" and "only if" parts. Proof of the former can be

strengthened by noting that it does not depend on monotonicity or convexity of

<p, and we state this generalized result explicitly as

Theorem 4.3. Let <p be a nonnegative function on [—oo,+oo] satisfying (4.1) and

the condition <p(+oo) = +oo. If u is any function on ß such that <p ° u admits a

superharmonic majorant, then u+ is quasi-bounded.

Proof. Condition (4.1) guarantees that, for each e > 0, there exists a positive

real number N such that / < etpit) for t > N. Thus, t < e<p(t) + N holds for all

t. Replacing / by m(z) leads at once to

m+ < erjp ° m + N.

Since tp » m is in J\l{, we can apply the operator 5 to obtain Su+ < e5(<p ° m), and

the theorem follows by letting e -* 0.

There remains the "only if" part of the proof of Theorem 4.1, and this is

established as follows. Let m be a function on ß with the property that u+ is quasi-

bounded. Using the notation of (1.1), we see that, quasi everywhere on ß,

(4.5) 5m+ = lim S„u+ = lim R„u+ = 0.
n-»oo n-»oo

Hence, there exists a point of ß at which all of these equalities hold, and we shall

fix z0 as such a point. We can then find a strictly increasing sequence {nk} of

positive integers such that

(4.6) Rntu+(z0) < 1/2*       (k -1,2,...).

By definition of the reduced functions R„ku+, this implies the existence of a

sequence {vk} of nonnegative superharmonic functions on ß satisfying

(4.7) (m - nkf < vk   and   vk(z0) < 1/2*

for all k.
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The function <p will now be defined by setting

rff) = i (/ - 7»,)+       (-00 < t < +00).
t-i

Here we note that the infinite series actually reduces to a finite sum whenever

/ < +00 and that <p(») = 0 for t < nx. It is apparent, moreover, that <p is a

piecewise linear function with slope k on the interval [T»*,7it+1], so that <p is an

increasing convex function on [—00, +00]. For 7»m < t < +00 we have

and hence

<p(t) > 2 ('-«*) = mt - 2 nk,
k~\ k=\

liminf^>77i.
i-»»     t

This proves (4.1). Since the composite function <p ° k is given by <p ° i<

= 2*°=i (w - nk)+, we see from (4.7) that <p o u has 2 "t as a superharmonic

majorant, and the proof is complete.

Whenever <p admits an inverse function, an evident variant of Theorem 4.3 can

be formulated in terms of tp = tp~l. This leads to the following result, which we

proceed to establish by direct methods, not requiring the existence of qp-1.

Theorem 4.4. Let yp be a locally bounded, nonnegative function on [0,+co]

satisfying the condition

(4-8) hm^ = 0.
/-»oo     t

If u is any function in J\l[, then \p ° u is quasi-bounded.

Proof. To each e > 0 there corresponds a positive real number N such that

N < / < +00 implies ^(») < et. Since, by hypothesis, ip has a finite upper bound

Af on [0,N], we see that \p(t) < et + M holds for all / on [0,+co]. Thus,

\p o u < m + M on Q. Application of the operator S results in S(ip ° u) < eSu,

and the theorem follows by letting e -» 0.

Corollary 4.5. If u is any function in <=/K and a any real number satisfying

0 < a < 1, then the functions u", log+M, and M°log+M are quasi-bounded.

5. Further properties of the operator S. The general behavior of S, as an

operator on eM, will be examined more closely, particularly as applied to

sequences and series of functions. Discussion of S« for the case of u superhar-

monic will, however, be deferred until §7, since it is based on the results for

Green's potentials developed in §6. It turns out that the superharmonic case is

central to the entire theory. The reason for this, as noted in the following

theorem, is that St», for any function u in JlK, can always be calculated by

applying S to the superharmonic function Ru.
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Theorem 5.1. For any function u in *M, the reduced function Ru and its lower

regularization Ru satisfy

SRu = SÑu = 5m.

Proof. Inasmuch as Ru = Ru quasi everywhere, Lemma 2.4 guarantees that

Sñu = 5Am. The proof thus reduces to showing that SRu = 5m, and for this we

proceed as follows. Let X be any nonnegative real number and <p any nonnegative

superharmonic function on ß such that u < <p + X. Clearly, Am < <p + A, so that

5x Am < <p. This yields 5XRu < Sxu and hence SRu < Su. On the other hand,

it is evident from u < Ru that Su < SRu, proving that SRu = 5m.

Since Ñu = 50m, we can state the essential content of Theorem 5.1 as

SS0u = 5m. A stronger result can actually be established, namely that SSxu

= Su for all X > 0, but we shall not have use for it here.

Turning our attention now to the application of 5 to sequences of functions in

<sK, we have the following restricted convergence property.

Theorem 5.2. Let u and u„ (n = 1,2,...) be functions in JW such that

un > u (n = 1,2,...) and u„-+ u quasi everywhere on ß. If the differences

uH — u (n = 1,2,... ) are quasi superharmonic, then Su„ —* Su quasi everywhere on

ß.

Proof. In view of the quasi superharmonicity of u„ - u, we have

Sun < Su + S(u„ - u) < Su + u„ - u -» Su

quasi everywhere on ß. The inequality Su„ > Su (n = \,2,...) then forces

5mm -* Su quasi everywhere on ß.

Note that the conclusion is false, in general, if the functions uH — u are not

assumed quasi superharmonic. For example, in the case of the unit disc we can

take u„(z) as the product of log(l/|z|) and the characteristic function of the open

sector from angle 0 to angle \/n. Then u„ i 0 but, by Lemma 2.3, we have

5MB(z)>log(l/|z|)foralln.

As an application of Theorem 5.2, a simple derivation shows that the present

definition of quasi-boundedness is equivalent to that given in [2].

Corollary 53. Let u be a nonnegative function on ß. Then u is quasi-bounded if

and only if there exist sequences {vn} and {Mn), in which each v„ is a nonnegative

superharmonic function on ß and each M„ is a real number, such that

(5.1) u<vn + MH       in =1,2,...)

and v„ -* 0 quasi everywhere on ß.

Proof. If (5.1) holds, then clearly 5m < Sv„ for all n, and Theorem 5.2 ensures

that Svn -* 0 quasi everywhere on ß. This forces 5m = 0 quasi everywhere, hence
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everywhere, on ß, proving that u must be quasi-bounded. Conversely, if u is

quasi-bounded, then S„u —» 0 quasi everywhere on ß as n —» oo, and we note

that the inequalities u < S„u + n (n = 1,2,...) hold quasi everywhere on ß.

Taking yp as a nonnegative superharmonic function on ß assuming the value +oo

on the union of the exceptional polar sets, we see that (5.1) holds with

v„ = Snu + ip/n and Mn = n. This completes the proof.

From these concluding remarks it is plain that Corollary 5.3 remains in force

if the inequalities (5.1) are only required to hold quasi everywhere on ß. Also, as

pointed out in Lemma 3.1 of [2], a nonnegative subharmonic function on ß is

quasi-bounded if and only if it admits a quasi-bounded harmonic majorant. This

fact appears as a special case of Theorem 5.1, since when u is subharmonic, the

function Ru is just the least harmonic majorant of u.

Of course, Theorem 5.2 has direct applications to sequences {u„} which are

monotone decreasing. In looking at what can happen in the case of increasing

sequences, we perceive at once that u„ T u does not generally imply St»„ T Su.

This is obvious, for example, by taking u„ (n = 1,2,... ) as the truncate at n of

any nonzero singular function u, so that Su„ = 0 and St» = u. Thus, the

convergence property fails for increasing sequences even when u and all u„ are

assumed superharmonic.

Nevertheless, we again have access to a restricted convergence theorem for

increasing sequences, and it turns out that this is most conveniently formulated

in terms of infinite series. Although the actual convergence property depends on

properties of Su for the case of u superharmonic, and will therefore be dealt with

in §7, we proceed to show that a corresponding inequality holds in the general

case.

Theorem 5.4. Let {un} be a sequence of functions in <=M. If there exists a sequence

{v„) of superharmonic functions on ß such that un < v„ (n = 1,2,... ) and 2 vn is

not identically +oo, then

(5.2) s(5 "„) < 2 SuH.
\n=-l       / ii-1

Proof. Let us put u = 2¡T=i u» ana recall the notation introduced in (1.3).

Since the conditions Sxu„ = St», (ti = 1,2,...), Sxu = Su, and 2 "» < +<»

all hold quasi everywhere, these conditions hold simultaneously except on some

polar set E ( C ß). Let us fix z0 as any point of ß — E and take e as any positive

number. There then exists a sequence {X„) of positive integers such that

SK un(z0) < Sun(z0) + e/2"       (ti = 1,2,... ).

Since the inequalities

un<Sx,un + Xn       (»-1,2,...)
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hold quasi everywhere on ß, we see that for each m (= 1,2,... )

« = 2 «, +  2  «» < 2 iSx.»n + K) +  2  vn
n=l n—m+1 #i»l n—m+1

quasi everywhere on ß. Hence, setting o„ = 2¡T-i K im — 1,2,... ) results in

5„.«< 2 SKuH+   2   vn,
n=\ H—m+1

and this holds everywhere on ß. (Note that the hypothesis on 2 "« ensures

superharmonicity of the series and its remainders.) In the limit as m -* oo this

yields

5m(z0) - S^uizo) < 2 SKun(z0) < 2 Su„iz0) + e,
«=•1 »—i

hence

5m(z0) < 2 5ms(z0).
»—i

Consequently, (5.2) holds quasi everywhere on ß. That it must actually hold

throughout ß then follows by superharmonicity of 2 Su„ (which is dominated by

2 vn). This completes the proof.

Obviously, strict inequality can occur in (5.2), since we have already observed

that it can occur for finite sums. We remark also that (5.2) fails, in general, when

the domination hypotheses are dropped. To see this, one has only to take m as a

singular function and define u„ as the function equal to u on the set

[n - 1 < m < n] (n = 1,2,...) and to zero elsewhere on ß. Indeed, it is then

apparent that u = 2 "* and 5m = u > 0 = 2 Su„.

When the functions uH in Theorem 5.4 are all quasi-bounded, so that 5mb = 0,

equality plainly holds in (5.2). We thus have the following convergence theorem

for quasi-bounded functions.

Corollary 5.5. Suppose that {m„} is a sequence of quasi-bounded functions on Qfor

which there exists a sequence {v„) of corresponding superharmonic majorants with

2 v„ not identically +oo. Then 2 "» is quasi-bounded on ß.

6. Characterization of Su for Green's potentials. It will be shown that the

operator 5 takes Green's potentials into Green's potentials and that this mapping

admits a very simple representation. Basically, when u is the Green's potential of

a positive mass distribution />, then Su is just the Green's potential of the mass

distribution obtained by restricting/» to the Gs set [m = +co]. This, and similar

results, enable us to deal effectively with superharmonic functions.

A familiar result in potential theory asserts that if u and v are Green's

potentials satisfying u < v, then the concentrated mass of u at any point z0

cannot exceed that of v at the same point. This can be proved, for example, by
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using the fact that the concentrated mass at z0 is the limit as r -* 0 of the

circumferential mean of the potential over \z — z0\ = r divided by log(l/r).

Essential use will be made of the following generalization of this domination

principle.

Lemma 6.1. Let wx and w2 be 8-subharmonic functions on ß with mass

distributions mx and m2, respectively. If wx < w2 quasi everywhere on ß, then

mx(E) < m2(E) holds for every polar set E (C ß).

Proof. Since we are dealing here with differences of subharmonic functions,

there is no loss of generality in assuming that w2 is identically zero. We shall

make this assumption and discard the subscripts on wx and ttj, . Thus, w is taken

as any 5-subharmonic function satisfying w < 0 quasi everywhere on ß, and the

object is to show that its mass distribution m satisfies t7»(£) < 0 for every polar

set E. This will be done by showing that tti(A0 < 0 holds for all compact subsets

K of E. Let us therefore fix A' as a compact polar set and consider regions a

containing K and having closure in ß. Without loss of generality we shall

presume w to be a Green's potential.

The key step is to sweep out the mass m, in the classical sense, from the region

w — K. This yields a swept-out mass distribution m* on ß, for which the Green's

potential w* is harmonic on <o - K. Since w* is given on w - K as the Wiener

function obtained by using w as the boundary function, the hypothesis w < 0

quasi everywhere on ß ensures that w* < 0 holds on a - K. The fact that K is

a polar set then allows us to extend w* from a harmonic function on to - A' to a

subharmonic function on w. Moreover, the mass distribution m* for w* coincides

on u with that for the extended subharmonic function, so that, in particular,

m*(K) < 0.

Recalling that the swept-out mass m*(K) consists of the original mass m(K)

together with that fraction of m(u - K) swept onto K, we infer that

m(K) < \m\(u - A-).

A suitable choice of w renders the right-hand member arbitrarily small, and this

forces m(K) < 0, completing the proof.

We are now in a position to prove the fundamental representation theorem for

St» as a Green's potential when u is a Green's potential.

Theorem 6.2. //1< is the Green's potential of a positive mass distribution p on ß,

then Su is the Green's potential of p confined to £„, = [« = +co], i.e.

(6.1) Su(z) = ¡^ GM)dp(S)      (zEQ).

Proof. We first establish two special cases:

(i) if p does not charge £«,, then Si» = 0; and

(ii) if p is supported by a polar set, then Si» = u.
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Assertion (i) is immediate from Corollary (5.5), since here u = 2^Li «»» where

u„ is the bounded Green's potential obtained by confining /» to the set

[n- 1 < u<n] (n = 1,2,...).

To prove (ii), we take A as any positive number and q> as any nonnegative

superharmonic function on ß such that u < <p + X. An application of Lemma 6.1

shows that /» is dominated by the mass distribution for <p, and this implies that

m < <p on ß. It follows that u < Sxu for all À > 0, so that u < Su. Since the

reverse inequality automatically holds for nonnegative superharmonic functions,

this shows that 5m = u, as asserted.

Having verified (i) and (ii), we turn to the general case and decompose u as

u = u0 + ux, where m0 is the Green's potential of p confined to Ex and ux is the

Green's potential of p confined to ß — Ex. Property (i) ensures that ux is quasi-

bounded, and property (ii) ensures that mq is singular. Hence, 5m = 5m0 = mq,

completing the proof.

It is now an easy matter to characterize quasi-bounded and singular Green's

potentials.

Corollary 63. Let u be the Green's potential of a positive mass distribution p on

fi. Then

(1) m « quasi-bounded if and only if p does not charge the set[u = +oo];

(2) m is singular if and only if p is supported by the set[u = +00] (or, equivalently,

by any set of capacity zero).

The parenthetical portion of (2) uses the following elementary property of mass

distributions on sets of capacity zero.

Lemma 6.4. Let u be the potential of a positive mass distribution p supported by a

Borel set B. If B has capacity zero, then p is, in fact, supported by B D [m = +00].

Proof. It suffices to observe that the restriction of /» to each of the sets

BO [n < u <C n + 1] (n = 1,2,...) yields a bounded potential. Since these

sets have capacity zero, the mass on each one must vanish, leaving all of the mass

on B D [m = +00] as asserted.

It should be noted that property (1) of Corollary 6.3 has been stated by Brelot

for the case of semibounded potentials (see [4, p. 41]), and we have shown in §2

that these are the same as quasi-bounded potentials.

A fundamental consequence of Theorem 6.2 is that it ensures the following

decomposition of Green's potentials into quasi-bounded and singular parts.

Theorem 6.5. Let u be the Green's potential of a positive mass distribution p on ß.

Then u admits a unique decomposition asu = q + s, where q and s are, respectively,

quasi-bounded and singular Green's potentials on ß. Moreover, the mass distributions

for q and s are obtained by restricting p to the sets [u < +00] and [u = +00],

respectively.
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Proof. The existence of the decomposition is evident by defining q and s as the

respective Green's potentials and applying Corollary 6.3. To verify uniqueness,

we then start with the decomposition u = q + s and apply the operator S to

conclude that s = Su and hence that q = u — Su quasi everywhere.

Note that if we discard the requirement that q be a Green's potential, then q

is determined uniquely only to within a polar set. For example, the decomposi-

tion would still hold when q is assigned values arbitrarily at points where j is +co.

7. The superharmonic case. Information obtained from the above representa-

tion of Si» for Green's potentials can be combined with the classical results for

harmonic functions to yield general results for the case of nonnegative superhar-

monic functions. A preliminary lemma is needed here to show how S operates on

functions of the form u + h, where « and h are in <M and h is harmonic, and we

have

Lemma 7.1. Ifuis a function in JV( and h any nonnegative harmonic function on

ß, then S(u + h) = Su + Sh.

Proof. Drawing on the classical Parreau decomposition theorem for harmonic

functions (Theorem 3.4), we have h = q + s with q and s nonnegative quasi-

bounded and singular harmonic functions, respectively. Since plainly

S(i» + h) = S(u + s + q) = S(i» + s),

the conclusion of the lemma amounts just to the assertion that

(7.1) S(u + s) = Su + s

for all singular harmonic functions s on ß.

To prove (7.1), we fix s and take X as any positive number and <p as any

nonnegative superharmonic function on ß satisfying u + s < <p + \. In particu-

lar, s < <p + X and therefore s = Ss < <p, so that <p - s is a nonnegative

superharmonic function on ß. The inequality u < rp — s + X then implies

Sxu < <p — s and hence St» + s < <p. Taking the infimum over the class of all

admitted <p yields Su + s < Sx(u + s) and finally Su + s < S(u + s). The de-

sired equality (7.1) then follows from the fact that

S(u + s) < Su + Ss = Su + s.

This completes the proof.

In particular, Lemma 7.1 shows that S is additive over the class of nonnegative

harmonic functions on ß. It is easy to see also from the discussion in §6 that S

is additive over the class of Green's potentials of positive mass distributions.

Indeed, suppose that u and v are Green's potentials of positive mass distributions

p and q, respectively. Then the integral for S(u + v), expressed according to

formula (6.1), can be written as the sum of integrals over [u + v = +oo] taken
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with respect to p and q. By Lemma 6.4 the latter integrals reduce to integrals over

[m = +00] and [v — +00], respectively, and it follows from Theorem 6.2 that

5(m + v) = Su + Sv.

Starting with the Riesz decomposition theorem and applying Lemma 7.1, we

can combine the additivity properties of 5 noted above for harmonic functions

and Green's potentials to get

Lemma 7.2. If u and v are nonnegative superharmonic functions on ß, then

S(u + v) = Su + Sv.

We recall that the sum of any two quasi-bounded functions is again quasi-

bounded, in view of the subadditivity of 5. Lemma 7.2 now shows that the sum

of any two singular functions is singular. Indeed, if sx and s2 are singular

functions on ß, then they are obviously nonnegative superharmonic functions

satisfying S(sx + s2) = sx + s2.

The finite additivity property expressed in Lemma 7.2 extends at once to the

following general additivity property.

Theorem 73. Let un (n = 1,2,... ) be nonnegative superharmonic functions on

ß. y/2 «u 's not identically +00, then

COO \ X
2 «„) = b2 5m„.

Proof. From Lemma 7.2 we have

m / m        \ / 00        V

2 5m„ = 5(2 «„)<5(2 uA
n=l \n=I       / Vi-1       /

and in the limit as m -* 00 this yields 2 Sun < 5 2 u„. Since the reverse

inequality is already at hand in Theorem 5.4, equality must hold.

Supplementing the convergence property of quasi-bounded functions given in

Corollary 5.5 we now have the following counterpart for singular functions.

Corollary 7.4. If s„ (n = 1,2,... ) are singular functions on üfor which 2 s„ is

not identically +00, then 2 s„ is singular.

These convergence results for general quasi-bounded and singular functions

are evident direct generalizations of classical convergence properties of quasi-

bounded and singular harmonic functions (see Heins [5, p. 8]). They can, of

course, be stated also as convergence properties of monotone increasing sequenc-

es. From this viewpoint we are led to investigate corresponding convergence

properties for monotone decreasing sequences. Some information in this direc-

tion has been noted for harmonic functions in Theorem 3.6 and for more general

functions in Theorem 5.2. More can be said about the monotone decreasing case,

however, and we shall return to this presently with more powerful tools at our

disposal.
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A fundamental property, which is now easily established, is that the theorem

on decomposition into quasi-bounded and singular functions is valid for arbi-

trary nonnegative superharmonic functions. Specifically, we have

Theorem 7.5. Let u be a nonnegative superharmonic function on ß. Then u admits

a unique decomposition as

(7.2) k = q + s,

where q and s are, respectively, quasi-bounded and singular superharmonic functions

on ß. These functions are given by

(7.3) s — Su   and   q = u - Su,

with the latter formula holding quasi everywhere on ß.

Further, if u = ux + u2 is the Riesz decomposition of u as the sum of a Green's

potential ux and a harmonic function u2, then

(7.4) q = qx + q2   and   s = sx + s2,

where qx and q2 are the quasi-bounded parts of ux andu2, respectively, andsx ands2

are their singular parts.

Proof. By Lemma 7.1 we see from the Riesz decomposition of « that

Si» = S(ux + u2) = sx + s2

and hence that

u - Su = ux - Sux + u2 — Su2 = qx + q2

quasi everywhere. Thus, the functions s and q defined by (7.3) (with q extended

by removing its removable singularities) are nonnegative superharmonic func-

tions on fi. It is obvious also that s is singular and q quasi-bounded, and that

together they yield the desired decomposition (7.2). Uniqueness is then apparent

from the fact that an application of S to (7.2) yields (7.3). This completes the

proof.

We now know that, for any function t» in J\\, the function Su (= SRu) is

singular. Equivalently, a function s on fi is singular if and only if 5 = Su for

some u in J\\. As a property of the operator S, this result can be phrased as

Corollary 7.6. The operator S is idempotent, i.e. S2u = Su for all u in ¿M,.

We turn our attention next to some observations concerning singular func-

tions.

Lemma 7.7. If u and v are nonnegative superharmonic functions on fi such that

u + v is singular, then both u and v must be singular.
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Proof. Although this follows easily by decomposing u and v into their quasi-

bounded and singular parts, we give a simple argument independent of the

decomposition theorem. All that is needed is to combine the inequality u + v

= 5(m + v) < Su + Sv with the inequalities Su < u and Sv < v. This forces

5m = m and Sv = v, and the lemma is proved.

Suppose now that s is any singular function on ß. Since s is superharmonic, it

can be decomposed according to the Riesz theorem as the sum of a Green's

potential and a nonnegative harmonic function. As is evident from Lemma 7.7,

both the potential part and the harmonic part of s must be singular. Applying

Corollary 6.3 to the potential part results in

Lemma 7.8. If s is any singular function on ß, then the mass distribution for s is

supported by the polar set [s = +oo].

Combining this with Lemma 6.1 yields

Lemma 7.9. If s and o are singular functions on ß with s > o, then there exists a

singular function œ on ß such that s = o + <p.

Proof. The role of Lemma 6.1 is to ensure that there exists a nonnegative

superharmonic function <p on ß for which s = o + <p, and the singularity of <p is

then immediate from Lemma 7.7.

With this information in hand, we return to the question of convergence

properties of monotone sequences of singular functions.

Theorem 7.10. Let {sn} be a sequence of singular functions on ß. Then

(1) if{s„) is increasing to a function s not identically +<x>, the function s must be

singular, and

(2) if {s„) is decreasing to a function s, the function s must coincide quasi

everywhere on ß with a singular function.

Proof. In the case of {s„} increasing, we see from Lemma 7.9 that there exists

a sequence {<p„} of singular functions on ß such that sn+x = sn + <pn(n = 1,2,

... ). There results s = sx + 2^-1 <fV and Corollary 7.4 guarantees that s must

be singular. This proves conclusion (1).

In the case of {sn} decreasing, we again draw on Lemma 7.9, but this time to

obtain a sequence {<p„} of singular functions on ß such that sx = sñ + <p„

(n = 1,2,... ). Here the sequence {<p„} is clearly increasing to some nonnegative

superharmonic (in fact, singular) function <p, and we have 5! = s + <p on ß. By

the convergence theorem for decreasing sequences of superharmonic functions

(see e.g. Brelot [3, p. 77]) there exists a superharmonic function í on fi such that

s = s quasi everywhere. Hence, sx = s + <p on ß, and singularity of f is

immediate from Lemma 7.7. Conclusion (2) is thus established, and the proof is

complete.

Let us look, finally, at the behavior of {Sun} for monotone sequences {m„} of

nonnegative superharmonic functions. As noted earlier, the use of truncates



296 MAYNARD ARSOVE AND HEINZ LEUTWILER

makes it plain that {Sh„} does not generally converge to Su anywhere on fi in the

case when {«„} increases to »». However, we do have a convergence property for

increasing sequences in which the successive differences un — i»,., are superhar-

monic. Roughly analogous to Theorem 5.2, but for increasing sequences, this

result can be stated as

Theorem 7.11. Let {un} be an increasing sequence of superharmonic functions on

fi for which the limit function u is not identically +oo. If the successive differences

u„ — t»n_!  (t» = 2,3,... ) are quasi superharmonic on fi, then Sun -» Su on fi.

Proof. As a convenience, we introduce the function u0 = 0 on fi. There is no

loss of generality in assuming, as we shall, that the functions t», — u„_x

(n = 1,2,... ) are actually superharmonic on fi, since the exceptional polar sets

which would otherwise be present are ignored by the operator S. Since u then

appears as

" = 2 ("„- "„-i),

Theorem 7.3 yields

(7-5) Su = 2 S(un - «„_,)•
n=l

Superharmonicity permits us to write

St»„ = Sh„_, + S(un - h„_,)       (ti = 1,2,... ),

so that the right-hand member of (7.5) is just the limit quasi everywhere of {Sh,,}.

Inasmuch as Sh and all Sh„ are superharmonic, the fact that {Sh„} is monotone

increasing forces it to converge to Sh everywhere on fi. This completes the proof.

Turning next to the case of monotone decreasing sequences of nonnegative

superharmonic functions, we show that the result implicit in Theorem 5.2 can be

considerably strengthened for such sequences.

Theorem 7.12. If{un) is a sequence of nonnegative superharmonic functions on Q

with un i u quasi everywhere, then Su„ i Su quasi everywhere.

Proof. Here we make use of the decomposition of u„ as h„ = q„ + s„

(ti = 1,2,... ), where q„ is quasi-bounded and sn singular. From the expression

for s„ as sn = Su„ (n = 1,2,... ) it is clear that the sequence [s„] is decreasing.

Thus, by Theorem 7.10 there exists a singular function s on fi such that s„ i s

quasi everywhere on fi. Invoking the hypothesis that u„ —» u quasi everywhere

and using the fact that the functions q„ are nonnegative, we conclude that there

exists a nonnegative function q on fi such that u = q + s quasi everywhere on fi.

There results Su > Ss = s. On the other hand, the inequalities u < uH quasi

everywhere (t? = 1,2,... ) imply Sh < Su„ = sn and consequently Sh < s. This
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establishes 5m = s, and the convergence property s„ i s quasi everywhere can be

rewritten as 5m„ | 5m quasi everywhere, completing the proof.

Even when uni u everywhere on ß, the conclusion that Su„ i Su only quasi

everywhere is best possible. This is obvious, for instance, by considering the

functions u„ = q + s/n, where s is the potential of a positive unit mass at the

origin and q is a quasi-bounded potential with q(0) = +00.

8. The positive cone <P. Let £P be the class of all functions u in <=4f satisfying

the inequality

(8.1) Su < u.

This class is evidently closed under the operations of addition and multiplication

by nonnegative constants, and hence forms a positive cone. The cone £P has a

number of interesting properties, which we proceed to examine.

For example, we know that <P contains all nonnegative superharmonic

functions and, in fact, all functions u of the form u = <p + q, where <p is a

nonnegative superharmonic function and q a quasi-bounded function. (Functions

of the latter form will be shown subsequently to exhaust <P.) Further, <P has the

lattice closure property

(8.2) m, i>GíP=»mAi/GíP

(immediate from (4) of Lemma 2.1), and, more generally, for any nonempty

family of functions ua (a E A)

(8.3) ua E <P^ AaeÀua E <P

(immediate from 5m < Sua < ua).

We turn now to the fundamental characterization of £P as the largest subclass

of ¿M for which the decomposition theorem holds.

Theorem 8.1. The class <P consists of precisely those functions u on ß which can

be expressed as

(8.4) m = q + s,

where q is quasi-bounded and s singular. Here s is uniquely determined by u as

s = Su, and q is determined uniquely quasi everywhere as q = u — Su.

Proof. Functions u of the form (8.4) are obviously in <P, since Su = s < u. For

the converse we start with an arbitrary function u in £P and put i = 5m, so that

m - s > 0 quasi everywhere on ß. From the relations s = Sßu and u < Ru

quasi everywhere, there results

(8.5) u-s < Ru- Sßu
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quasi everywhere on fi. Since ah is a nonnegative superharmonic function,

Theorem 7.5 ensures that the right-hand member in (8.5) coincides quasi

everywhere with a quasi-bounded function. The same must therefore be true of

the left-hand member, and the representation (8.4) follows. An application of S

to (8.4) yields the asserted uniqueness properties, completing the proof.

In view of the decomposition theorem for nonnegative superharmonic func-

tions, the class <P can also be characterized in terms of these functions.

Corollary 8.2. The class <P consists of precisely those functions u on fi which can

be expressed as

(8.6) h = <p + q,

where <p is a nonnegative superharmonic function and q is quasi-bounded.

The operator S was shown, in Lemma 7.2, to be additive over the class of

nonnegative superharmonic functions. On the basis of what happens in the

harmonic case (Lemma 7.1), it is natural to expect that additivity will still hold

when only one of the functions is required to be superharmonic. We prove the

stronger result that additivity holds when one of the functions belongs to the class
<P.

Theorem 83. If u is a function in ^M and v any function in <P, then S(u + v)

= Sh + Sv.

Although the proof can be carried out along the lines of that already given for

Lemma 7.1, by bringing into play Theorem 7.5 and Lemma 6.1, we prefer the

following slightly different approach. The key lies in an additivity property of

reduced functions, namely

Lemma 8.4. If u is a function in JW and s any singular function on fi, then

R(u + s) = Ru + s.

Proof. Since A is subadditive, so that R(u + s) < Ru + s, our task reduces to

proving the reverse inequality. Thus, let <p be a superharmonic function on fi

satisfying <p > u + s. Using the fact that <p dominates s, we infer from Lemma

6.1 that there exists a nonnegative superharmonic function yp on fi such that

<p = \p + s. Then \p > u holds quasi everywhere on fi, so that <p > Ru + s and

hence Ê(u + s) > Ru + s. This completes the proof.

Returning now to Theorem 8.3, we begin by decomposing v according to

Theorem 8.1 as v = q + s, where q is quasi-bounded and s singular. Lemmas 8.4

and 7.2 can then be used to arrive at the chain of equalities

S(u + v) = S(h + s) = SR(u + s)

= S(Ru + s) = SRu + s = Su + Sv,

completing the proof.
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Theorem 8.3, of course, implies that 5 is finitely additive over <P. The question

as to whether 5 is actually countably additive, i.e. whether Theorem 7.3 has an

analogue for functions in <P, can be dealt with as follows.

Theorem 83. Let u„ (n = 1,2,... ) be functions in <P for which there exist

superharmonic majorants v„ (n = 1,2,... ) with 2 H, not identically +oo. Then the

function

(8.7) u = 2 «.
i=i

is also in £P and satisfies

(8.8) 5m - 2 5m„.

Proof. To deduce that u is in <P, we can use either (i) the decomposition of the

functions un into quasi-bounded and singular parts, or (ii) the relations

Su < 2 Su„ < 2 U„ = M.
n-1 n=l

The proof is then completed just as in the superharmonic case.

A further result which generalizes at once to the class <P is Theorem 7.12.

Indeed, superharmonicity enters the original proof merely as a device for

ensuring the decompositions u„ = q„ + s„. The theorem therefore holds when the

functions un are only assumed to belong to <P, and in this case the limit function

is likewise in £P, in view of (8.3).

One important application of positive cones is in defining orderings. In

particular, the cone £P generates an ordering <, which we shall refer to as the

^-ordering. In this ordering, the inequality u < v means simply that there exists

a function ip in <P such that v = u + i/>. In certain respects the <P-ordering

resembles the specific ordering, which is defined analogously but with \p allowed

to lie in the cone of nonnegative superharmonic functions. For singular func-

tions, both the specific ordering and the iP-ordering are equivalent to the natural

ordering.

Specific ordering is implicit in Theorems 5.2 and 7.11, which could have been

stated somewhat more concisely in this language. We note also that the argument

used in establishing Theorem 5.2 proves the following counterpart for the <P-

ordering.

Theorem 8.6. If u and u„ (n = 1,2,...) are functions in £P with u < un

(n = 1,2,... ) and m„ —> u quasi everywhere on fi, then Su„ —» 5m quasi everywhere

on ß.

9. Linear extension of the operator 5. Although the domain of definition of 5

is the class <=i\/[, Theorem 5.1 makes evident the fact that 5 is completely
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determined by its behavior on the class of nonnegative superharmonic functions.

There is thus no loss of information in restricting attention to the latter class. It

is just as easy, however, to deal with the slightly larger class <P, and we shall take

this as our starting point. We then form the linear space Q = £P - <P and

observe that S can be extended to a linear operator on Q.

More specifically, Q consists of all functions h on fi which can be expressed

quasi everywhere as

(9.1) h = h, - u2

for a suitable choice of functions ux and u2 in <P. Since such differences are only

defined quasi everywhere, in general, we shall interpret equality of functions in

Q as meaning equality quasi everywhere on fi. To extend S from <P to Q, we put

(9.2) Sh = Sh,-Sh2.

Of course, we are obligated to show that the resulting function Su is independent

of the choice of h, and u2 admitted in (9.1), but this is an easy consequence of

the additivity of S over <P. Indeed, if u — u\ - u'2 is another admitted decompo-

sition, so that h¡ + u2 = h, + h2 quasi everywhere on fi, then Su\ + Sh2 = Sux

+ Su'2 and hence Su'x - Su2 = Sh, - Sh2 quasi everywhere.

We shall make the convention in what follows that S is extended to Q

according to (9.2). The resulting operator is readily seen to be linear. That is, for

all functions u and v in Q and real numbers a, we have

(9.3) S (an) = aSu   and   S(u + v) = Sh + Sv.

Under the natural ordering on Q, but with the inequality u < v interpreted as

meaning that the pointwise inequality holds quasi everywhere, the operator S is

easily seen also to be positive. Indeed, from the inequality u = h, — u2 > 0 quasi

everywhere there results Sh, > Sh2 and hence Sh = Sh, — Sh2 > 0.

We note, further, that the ordered space Q is actually a vector lattice. For this

it is enough to know that h in Q implies u+ in Q, and this is evident at once from

the identity h+ = h, - h, A h2 coupled with the lattice closure property (8.2). In

view of (4) of Lemma 2.1, this expression for h+ also leads to the inequalities

(9.4) (Sh)+ < Sh+    and   (Sh)" < Sh".

From the above observations we infer

Theorem 9.1. Under the natural ordering, Qis a vector lattice and S (extended) a

positive linear operator on Q satisfying (9.4) and hence \Su\ < S\u\.

At this point it is convenient to extend the earlier terminology by calling a

function in Q quasi-bounded if it can be expressed quasi everywhere as the

difference of two quasi-bounded functions in <JW, and singular if it can be
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expressed quasi everywhere as the difference of two singular functions in «tf. In

the case of functions in Q which are already in &M. these definitions differ slightly

from the earlier ones by allowing exceptional polar sets. This is not a matter of

great concern, since the operator 5 ignores polar sets anyway, but, if necessary,

we can refer to the earlier functions as quasi-bounded and singular in the strict

sense.

Let m be a function in Q, represented according to (9.1). Writing m, and u2 in

terms of their quasi-bounded and singular parts as ux = qx + sx and u2 = q2

+ s2, we have

(9.5) M = q + s,

where q = qx — q2 and s = sx — s2 quasi everywhere. Moreover, the functions q

and j are uniquely determined quasi everywhere as

(9.6) s = Su   and   q = u - Su.

Formula (9.5) thus furnishes the decomposition property for functions in Q,

extending the result given for superharmonic functions in Theorem 7.5. It is clear

also from (9.6) that 5 is a projection of Q onto the space of general singular

functions, and that the operator Q = / - 5, where / is the identity mapping, is

a projection of Q onto the space of general quasi-bounded functions.

We conclude with a few remarks concerning general quasi-bounded and

singular functions. First, as a direct corollary of Lemma 7.9, we have

,q -,  the condition s > 0 on ß is necessary and sufficient for a singular

function s in Q to be singular in the strict sense.

In particular, the nonnegative singular functions in Q must be superharmonic. It

follows that 5 is a positive operator relative to the specific ordering in the range

space; i.e.

,     .       if u is a nonnegative function in Q, then Su is a nonnegative

superharmonic function on ß, singular in the strict sense.

For any function u in Q,

(9.9) m is quasi-bounded if and only if \u\ is quasi-bounded.

Indeed, the inequality |5m| < 5|m| shows that quasi-boundedness of u follows

from quasi-boundedness of \u\, and, for the converse, we use the inequality

lMl < <7i + ft» where qx and q2 are quasi-bounded functions in JV( for which

m = qx - q2. On the other hand, given that a function u in Q is singular, one

cannot assert that |m| must be singular. A counterexample is afforded by setting

m = sx — s2 on the unit disc, where sx and s2 are Poisson kernels corresponding
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to distinct boundary points. Plainly, \u\ is subharmonic, but not harmonic. It

therefore cannot be singular, since it would then have to be superharmonic, by

(9.7).

10. Added in proof. Attention should be called to the recent work of B. Fuglede

on semibounded potentials in his monograph Finely harmonic functions (Lecture

Notes in Math., no. 289, Springer-Verlag, Berlin, 1972). In particular, as noted at

the end of § 1 of the present paper, Fuglede's work contains an alternative proof

that quasi-bounded potentials are the same as the semibounded potentials of

Brelot. (See Lemma 6.4, p. 50, of Fuglede's monograph.)
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