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ABSTRACT. A function f analytic in the upper half-plane IT* is said to be of class
E,(IT*) (0 < p < o) if there exists a constant C such that {5, |f(x + iy)|’dx < C < o0
for all y > 0. These classes are an extension of the H, spaces of the unit disc U. For f
belonging to E,(I1*) (0 < p < 2), there exists a Fourier transform f with the property
that f(z) = (27)"' £° /(1)e’ds. This makes it possible to give a definition for the
multiplication of E,(TI*) (0 < p < 2)into L,(0, o) that is analogous to the multiplication
of H,(U) into /,. In this paper, we consider the case 0 < p < 1 and p < ¢ and derive a
necessary and sufficient condition for multiplying E,(IT*) into L,(0, c0).

1. Introduction. A function f analytic in the unit disc U is said to be of class
H,(U) if there exists a constant C such that i | f(re?)|?df < C < oo for all
r < 1. For these classes there exists a rich and varied theory which is described
in Duren’s book [2]. Among the concepts studied is that of multipliers from
H,(U)tol,.

Definition 1. A sequence {A,} is said to multiply H,(U) into /, (0 < g < o0),
if for each f(z) = X a,z" belonging to H,(U), I |a,|*|A,|* < o0.

Duren and Shields have shown that a necessary and sufficient condition for
{A,} to multiply H,(U) (0 < p < 1)into [, (p < g < ) is that

S nohf = O 213

It is our aim in this paper to consider classes of functions analytic in the upper
half-plane IT*, which are analogous to the classes H,(U), and to prove a result
similar to that of Duren and Shields.

2. The main result.
Definition 2. A function f analytic in II* is said to be of class E,(IT*)
(0 < p < ) if there exists a constant C such that

M) = {215+ wirax} < € < e

forall 0 <y < oo.
The expression M,(y,f) is called a pth mean of f. Also the expression

M, (5.f) = SUP_p<s<oof(x + )| is a pth mean of f and, if Mg(y.f) is
bounded, f is said to belong to E (IT*).
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Definition 3. If f belongs to E,(IT*) (0 < p < 1), then the Fourier transform
of fis

FO = [T 1 + pleeriax 6],

A proof of the fact that f exists and is independent of y is given in §5. In
addition, the facts f(f) is continuous, f(z) = 0 for t < 0, and

@) = @ [ Fear

are proved there.

Definition 4. Let ¢(7) be a function measurable on (0,00). Then ¢(¢) is said to
multiply E,(IT*) (0 < p < 1) into L,(0,00) (0 < g < ), if for each f(z)
= (2n)' fi° f(1)e*dt belonging to E,(IT*),

-]
7 @1 7@t < oo.
We now state the main result.
Theorem A. Let ¢(f) be a function measurable on (0, 0). Then ¢(t) multiplies
E,(IT*) into L,(0,0) (p < q) if and only if

n Lx talo|p(0)|¥dr < KX,

where K is a positive constant.
The proof of Theorem A requires the use of two other results.

Theorem B. If 0 < p < g < o, f belongs to E,(II*), a = 1/p — 1/q, and
A 2 p, then fi° y= MM y.f )dy < oo.

The second of these results needs some introduction. If f belongs to E,(IT*)
(0 < p < ), then lim, o f(x + iy) = f(x) exists a.e. and

o(f,8) = [ 1f(x) - g,

where f and g belong to E,(IT*), is a translation invariant metric on E,(IT*).
Moreover, under this metric, E,(IT*) (0 < p < o) is a complete topological
vector space. In other words, E,(IT*) (0 < p < oo) is an F-space [1], [2], [5].
Finally, we say that an operator A from E,(IT*) into L,(0, o) is bounded if there
exists a constant K such that |A(f)l, < KlIfll,, where lIfll, = {f5° | f(x)|Pdx}"?.

Theorem C. Let ¢(f) be a function measurable on (0,c0). If $(t) multiplies
E,(IT*) (0 < p < 1) into L (0, o) then the operator A(f)(1) = () 1(2) is bound-
ed.
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We defer, for now, the proofs of Theorem B and Theorem C in order to give
an immediate proof of Theorem A.

Proof of Theorem A. We begin by showing that (1) is necessary. So let us
consider the function

F()) = () = @u)™" [ ther'eear.

Since the Laplace transform of t*-! (u > 0) is I'(u)/s*, where s is a complex
number with Re s > 0, we see that settingu = 1 + 1/p and s = —iz + p gives

F(Z) = r(l + l/p)/(p - ,’z)l+l/p.

From this it follows that F(z) belongs to E,(II*) and ||Fl|, = M/p. But by
Theorem C there exists a constant K such that

AN < KIIFl,,

so |F(¢()ll, < KM/p. Thus, our next step is to find £(z). However, F(x + iy)
= E(x) is in Ly(—o0, o0) and is the Fourier transform of

g(t) = @m) tVre e ift >0,
=0 ifr <0,

which also belongs to L,(—o0, ). Hence F(r)e™ = £ (1) = 2ng(t) or F(r)
= tYre™ if ¢t > 0 and zero if ¢ < 0 [7]. Consequently,

7 raml(olfeserdr < KOMpt
and this implies that
[ ek iaig(oltar < KMot
for X > 0. So taking p = 1/X, we find
¥ ramlgltar < kMoexe.
To prove that (1) is sufficient, we begin by considering the integral

Lw tallp()'e™dt  (y > 0).

Letting S(¢) = f; 79/7|¢(7)|’dt and integrating by parts we find that when we use
the estimate S(¢) < Kt the integral is less than or equal to Ky f5° t%e™dt
= KT(q + 1)/ Hence

¥ 7 1lp(oltedr < € < oo
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for y > 0. Next we note that for y = ¢(1/p — 1), Theorem B implies that for f
belonging to E,(IT*) (0 < p < 1),
[° 7 M3 f)dy < oo.
Thus for each f belonging to E,(II*)

J v Mu"(y,f)[y" 5 n/v|¢(:)|"e-ﬂdx] dy < o0,
or using Fubini’s theorem

fow fow 190 |¢(0)| "yt M2y, f Je "' dy dt < co.

But from the definition of the Fourier transform for f, we have |f(s)le™
< M(».f). Thus

L7 @1 f@eet [7 yramteterindydr < oo,

or

T [ ko ora <. o

Theorem A has the following interesting corollary.
Corollary. If f belongs to E,(IT*) (0 < p < 1), then f5° |} ()" ¢7-2dt < 0.

This is an extension of the following results.

Theorem (Hardy-Littlewood-Titchmarsh). If f belongs to E,(II*) (1 < p < 2),
then §° |f(0)|7t7-2dt < oo [8].

Theorem (Hille-Tamarkin). If f belongs to E,(IT*), then f&° | f ()| /tdt < o [4].

3. The proof of Theorem B. This proof is a consequence of several other
theorems.

Theorem 1. Let u(z) be a nonnegative subharmonic function defined on I1* and
Suppose
[ utx+m)dx < chr (v>0)

where a > 0. Then there exists a constant K = K(a) such that u(xy + iy,)
< KC/yg*! for each point zy = xy + iyg (yo > 0).

Proof. The case a« = 0 was proved by Krylov [5). So assume a > 0. Then
setting y, = yo/2 and u,,(2) = u(x + i(y + »)), we find

[ uc+p)dx < Cht (»>0).
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Hence, by the case a = 0, we have u, (xo + iv;) < KC/y{y, (y2 > 0), and
putting y; = y, = yo/2,

u(xy + ivg) < 2°M'KC/yg*'. O

Theorem 2. Suppose f(z) is analytic in II* and

M M(nf) S ChF (0<p<o,pB20)
Then there exists a constant K = K(B,p, q) such that
@ M,(y.f) < KC/yPVria  (p< g < ).

Proof. It suffices to consider the case g = 0. For suppose (2) has been proven
for ¢ = o0 and K > 1 (which we may assume without loss of generality). Then

Mq(y’f) = {j:o [£Ce + )PIf(x + ly)lqux}w
< [1"1°° (y,f)]q'l’/q[%(y’f )]P/q

< Ka-rla C/yk,

where A = B8 + 1/p — 1/q. Now to derive the theorem for ¢ = o0, let #(z) be the
nonnegative subharmonic function | f(z)|” and a = Bp. Then Theorem 1 implies

|f(xo + ino)l® < KC/¥E™!,
which is equivalent to (2). O

Theorem 3. Suppose f belongs to E,(I1*). Then for 1 < p < o0, —1 < b, and
1<a< oo,

3) R rMioundy < € [Tyt MR(0nf) dy,
where C = C(a,b) is independent of f.

Proof. We begin by assuming that f is analytic in the closed upper half-plane.
Then integrating by parts we find

o dy = B mzng)

1 9, 4
“ 5T k P M ().
Thus our next step is to estimate |(3/3y) M,’(y.f)|. But

O@/W)MS(1.f) = (@/p) M (y.f) 3/ WM (.f),
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so we need to estimate |(3/9y) M/ (y,f ).
However,

| o 1rGa + 07| = A1+ 9 | Z16s + )|

and

G+ i)l = £ (e + ipll  |fGe + i) = Flx + i)l

Iyl -l [» =l

implies

1B/ fx + )l < 1 (x + ),

|15+ )l

S PG+ )P f e + ).
Thus Hoélder’s inequality implies

I3/ MP (3.l < pMF' (3. IM,(1.f")
and this implies
10/ M (3. f)l < aMe'(y.f )M, (3.f").

But now we have

[P AN < a A M0 M0

<a{ [P rmona) [P remona).

where we have used Holder’s inequality again. Hence

Va
{rmonas)
@
1 \Va Yo Va
s(%})mmﬁ+ﬁhupmwum@}‘
where we have used the estimate

1 Me .
[ AM )y > M OS)



A MULTIPLIER THEOREM FOR FOURIER TRANSFORMS 365

which follows from the fact that the means M,(y,f) are nonincreasing functions
of y [5].

From (4), it is clear that in order to complete the proof for this case, we need
only show that y§*' M,’(y,f) tends to zero as y, tends to infinity. But using
Theorem 2, it is easy to see that f(x + iyy) = —i s /'(x + iy)dy and applying
Minkowski’s inequality, we find

M(30.f) < [” My(5.f)dy.
So suppose r > 1. Then

1
r—1

d(- l/y"‘)]“
C(») ’

where C(y,) = f;7 d(=1/y""") = 1/y;7!, and Jensen’s inequality gives

M} (y0.f) < [C(yo)]“[ f: Y M,(».f")

ME(0.f) < [CON™ —— [* y~ M2 (3,1 .
r—1)*"x%

Hence setting r = (a + b)/(a — 1), we have

a 1 © a+ a ’
YgﬂMp()’o,f) < ((b + l)/(a _ l))¢_|_/;,° .Y" b% (y’f )dy’

from which it follows that y§*! M,’(,,f) tends to zero as y, tends to infinity.
Finally we remove the restriction that f is analytic in the closed upper half-
plane. Since f(z) = f(z + iy) is analytic in the closed upper half-plane, the
theorem holds for f,(z). Thus the result for fz) follows from letting y tend to zero
and applying the monotone convergence theorem. [J
These three theorems have prepared the way for a proof of Theorem B.
Proof of Theorem B. We first reduce the theorem to the case A = p = 2. By
Theorem 2

M} ».f) < KNPME(y,f) [y®»,

0 ]
J M)y < KM [Ty M2 (5, ) .
Hence we can assume A = p. Next assume the theorem is true for A = p = 2

and f(z) # 0 in IT* and belongs to E,(IT*). Then g(z) = [f(2)]”/* belongs to
Ez(n+) and

©
j; y—p/quP(y’f)dy = j(;°° y-z/sMZ(y,g) dy < o0,
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where s = 2g/p > 2. In case f(z) has zeros in IT*, it is possible to write it as a
sum of two nonzero functions in E,(IT*) [2] and still show that it suffices to take
p=2

So let f € E,(I1*). Then using the Paley-Wiener theorem [7], we can write

1@ = 5 7 e,

where f(7) is the Fourier transform of the boundary function f{x) of f{z). Also

f@ =5 f tf (e dt.
Next we assume 2 < g < 0. Then by Theorem 3
00 ]
[y My < € [T M. f) dy,

and by Theorem 2 M,(y,f’) < KyVa~V2My(y/2,f’), so

Sy )y < CK [T yME(y/2.8) db.

Finally, by Plancherel’s theorem [7], we find

|7 a2 (r.0)ay < gﬂ Ky S 17 OP e ardy
_CK = [T 10 [T yerdyar
O
= CK [ 1f(x)Pdx < co.

If ¢ = o0, then the estimate

M2(».f) < KM (y/2.f)/y¥
for some r > 2 can be used to derive the desired results. O

4. The proof of Theorem C. Since E,(II*) is an F-space under the metric
o(f,8) = 2, | f(x) — g(x)|’dx, we can use the closed graph theorem. Thus we
need to show that A is a closed operator. So let {f,} be a sequence which
converges in E,(II*) to f and also suppose A(f£,)(r) = ¢(7) £, (t) converges to g(f)
in L,(0, o0). Then we need to show that A(f)(r) = g(1) a.e.

Considering the sequence { f,} and f first, we find by Theorem 2 that

{ L5 14 + o) = flx + i) dx } K"flf/xp_v{"p‘
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where yo > 0. Thus £ .(2) = f,(z + iyo) converges to f (2) = f(z + ipp) in
E,(IT*). Moreover, it is easy to see that the Fourier transform of f, ,(x) is
fn(D)e™", while the Fourier transform of So(%) is f(1)e™". Consequently, Plancher-
el’s theorem [7] implies that f,(r)e " converges to f()e in L,;(0, o0). Hence,
there exists a subsequence {f,(f)} of {f,(r)} converging to f(s) a.e. But the
sequence {A(f;)} also converges to g(r) in L,(0, o0). Therefore, there exists a
subsequence of {A(f;)}, which we also denote by {A(f)}, converging to g(¢) a.e.
Thus {¢(r) £.(r)} converges to ¢(¢)¥(¢) a.e. and also to g(r) a.e., which implies

o()f() =g(t) ae. O

5. Fourier transform. The Fourier transform defined in §2 certainly exists since
Theorem 2 implies that f,(x) = f(x + iy) belongs to L;(—o0, o0). In fact, if C is
a constant such that M,(y,f) < C for y > 0, then there exists a constant
K = K(0,p, 1) such that

W f-: |f(x + iy)ldx < CK/yVr?

fory > 0.

To see that f is independent of y, fix 0 < y, < y, < oo and for each a > 0 let
I;, be the rectangular contour with vertices *a + iy; and *a + iy,. By Cauchy’s
theorem

) jl; f)e*dz = 0.
Next let I = [y,,y,] and put

®B) =i f, f(B + iu)e-Be™ du.
Then |®(B)| < e 3 | f(B + iu)| du. Now if we let

V() = [ 1£(B + i),
then Fubini’s theorem and (1) imply
S weras = [ [7 158 + wldsay < y%}f;(yz -n).
1

Thus there exists a sequence {a;} such that a; —> 00 as j — o0 and ¥(a;)
+ ¥(—a;) = 0 as j = oo. Hence we have

3) ®(a) >0 and @(-a;) >0
as j > 00. Now combining (1), (2), and (3), we find
L7 e + iy )erterinna
@ R
= [ S + w)eritermnva,

i.e., f is independent of y.
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If we let f,(z) = f(z + iy), then (4) becomes
@ = en'f, () = e, ().

Since j}, is the Fourier transform of an L,(—oo0, c0) function, it is continuous and

hence f is continuous.
Using (1) again, we see that

IF@le™ = 14,01 < Il < CK/pd!

for a fixed yp < y. Thus if we fix # < 0 and let y — oo, we find f(f) = 0. Hence
f (¢) is identically zero on (0,00) and by continuity it is zero at ¢ = 0. Also note
£(®) = 0on (—00,0].

As we have noted, f(r) = 5(0e”, so fy(t) = f()e™” = f,o(t)e(’o")‘, and letting
Yo = y/2, we have

[ 1500de < U f° eowora
KC 1

Y Lot A ()
2V KC
T

Hence for y > 0, f; belongs to L,(—oc0,00) and we can apply the inversion
theorem [7], to find

f@) =4 = @n" fow J(De=dt
= @oy [7 foe e

=en [ ® }@)etdt.
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