A MULTIPLIER THEOREM FOR FOURIER TRANSFORMS

BY JAMES D. McCALL, JR.

ABSTRACT. A function f analytic in the upper half-plane Π^+ is said to be of class $E_p(\Pi^+)$ (0 if there exists a constant <math>C such that $\int_{-\infty}^{\infty} |f(x+iy)|^p dx \le C < \infty$ for all y > 0. These classes are an extension of the H_p spaces of the unit disc U. For f belonging to $E_p(\Pi^+)$ $(0 , there exists a Fourier transform <math>\hat{f}$ with the property that $f(z) = (2\pi)^{-1} \int_0^\infty \hat{f}(t)e^{tx} dt$. This makes it possible to give a definition for the multiplication of $E_p(\Pi^+)$ $(0 into <math>L_q(0, \infty)$ that is analogous to the multiplication of $H_p(U)$ into I_q . In this paper, we consider the case $0 and <math>p \le q$ and derive a necessary and sufficient condition for multiplying $E_p(\Pi^+)$ into $L_q(0, \infty)$.

1. Introduction. A function f analytic in the unit disc U is said to be of class $H_p(U)$ if there exists a constant C such that $\int_0^{2\pi} |f(re^{i\theta})|^p d\theta \le C < \infty$ for all r < 1. For these classes there exists a rich and varied theory which is described in Duren's book [2]. Among the concepts studied is that of multipliers from $H_p(U)$ to I_q .

Definition 1. A sequence $\{\lambda_n\}$ is said to multiply $H_p(U)$ into l_q $(0 < q < \infty)$, if for each $f(z) = \sum a_n z^n$ belonging to $H_p(U)$, $\sum |a_n|^q |\lambda_n|^q < \infty$.

Duren and Shields have shown that a necessary and sufficient condition for $\{\lambda_n\}$ to multiply $H_p(U)$ $(0 into <math>l_q$ $(p \le q < \infty)$ is that

$$\sum_{n=1}^{N} n^{q/p} |\lambda_n|^q = O(N^q)$$
 [2], [3].

It is our aim in this paper to consider classes of functions analytic in the upper half-plane Π^+ , which are analogous to the classes $H_p(U)$, and to prove a result similar to that of Duren and Shields.

2. The main result.

Definition 2. A function f analytic in Π^+ is said to be of class $E_p(\Pi^+)$ (0 if there exists a constant <math>C such that

$$M_p(y,f) = \left\{ \int_{-\infty}^{\infty} |f(x+iy)|^p dx \right\}^{1/p} \le C < \infty$$

for all $0 < y < \infty$.

The expression $M_p(y,f)$ is called a pth mean of f. Also the expression $M_{\infty}(y,f) = \sup_{-\infty < x < \infty} |f(x+iy)|$ is a pth mean of f and, if $M_{\infty}(y,f)$ is bounded, f is said to belong to $E_{\infty}(\Pi^+)$.

Received by the editors July 18, 1972 and, in revised form, December 14, 1972.

AMS (MOS) subject classifications (1970). Primary 30A78; Secondary 42A68.

Key words and phrases. H_p spaces, multipliers.

Definition 3. If f belongs to $E_p(\Pi^+)$ (0 < p < 1), then the Fourier transform of f is

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x+iy)e^{-i(x+iy)t}dx \qquad [6].$$

A proof of the fact that \hat{f} exists and is independent of y is given in §5. In addition, the facts $\hat{f}(t)$ is continuous, $\hat{f}(t) = 0$ for $t \le 0$, and

$$f(z) = (2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{izt} dt,$$

are proved there.

Definition 4. Let $\phi(t)$ be a function measurable on $(0,\infty)$. Then $\phi(t)$ is said to multiply $E_p(\Pi^+)$ $(0 into <math>L_q(0,\infty)$ $(0 < q < \infty)$, if for each $f(z) = (2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{izt} dt$ belonging to $E_p(\Pi^+)$,

$$\int_0^\infty |\phi(t)|^q |\hat{f}(t)|^q dt < \infty.$$

We now state the main result.

Theorem A. Let $\phi(t)$ be a function measurable on $(0, \infty)$. Then $\phi(t)$ multiplies $E_p(\Pi^+)$ into $L_q(0, \infty)$ $(p \le q)$ if and only if

$$(1) \qquad \int_0^X t^{q/p} |\phi(t)|^X dt \le KX^q,$$

where K is a positive constant.

The proof of Theorem A requires the use of two other results.

Theorem B. If 0 , <math>f belongs to $E_p(\Pi^+)$, $\alpha = 1/p - 1/q$, and $\lambda \ge p$, then $\int_0^\infty y^{\lambda \alpha - 1} M_q^{\lambda}(y, f) dy < \infty$.

The second of these results needs some introduction. If f belongs to $E_p(\Pi^+)$ $(0 , then <math>\lim_{y\to 0} f(x+iy) = f(x)$ exists a.e. and

$$\rho(f,g) = \int_0^\infty |f(x) - g(x)|^p dx,$$

where f and g belong to $E_p(\Pi^+)$, is a translation invariant metric on $E_p(\Pi^+)$. Moreover, under this metric, $E_p(\Pi^+)$ $(0 is a complete topological vector space. In other words, <math>E_p(\Pi^+)$ (0 is an <math>F-space [1], [2], [5]. Finally, we say that an operator Λ from $E_p(\Pi^+)$ into $L_q(0, \infty)$ is bounded if there exists a constant K such that $\|\Lambda(f)\|_q < K\|f\|_p$, where $\|f\|_p = \{\int_0^\infty |f(x)|^p dx\}^{1/p}$.

Theorem C. Let $\phi(t)$ be a function measurable on $(0, \infty)$. If $\phi(t)$ multiplies $E_p(\Pi^+)$ $(0 into <math>L_q(0, \infty)$ then the operator $\Lambda(f)(t) = \phi(t)\hat{f}(t)$ is bounded.

We defer, for now, the proofs of Theorem B and Theorem C in order to give an immediate proof of Theorem A.

Proof of Theorem A. We begin by showing that (1) is necessary. So let us consider the function

$$F(z) = F_{\rho}(z) = (2\pi)^{-1} \int_0^{\infty} t^{1/p} e^{-\rho t} e^{itz} dt.$$

Since the Laplace transform of t^{u-1} (u > 0) is $\Gamma(u)/s^u$, where s is a complex number with Re s > 0, we see that setting u = 1 + 1/p and $s = -iz + \rho$ gives

$$F(z) = \Gamma(1 + 1/p)/(\rho - iz)^{1+1/p}$$

From this it follows that F(z) belongs to $E_p(\Pi^+)$ and $||F||_p = M/\rho$. But by Theorem C there exists a constant K such that

$$\|\Lambda(f)\|_{a} \leq K\|F\|_{a}$$

so $\|\hat{F}(t)\phi(t)\|_q \le KM/\rho$. Thus, our next step is to find $\hat{F}(t)$. However, $F(x+iy) = F_y(x)$ is in $L_1(-\infty,\infty)$ and is the Fourier transform of

$$g(t) = (2\pi)^{-1} t^{1/p} e^{-\rho t} e^{-yt} \quad \text{if } t \ge 0,$$

= 0 \quad \text{if } t < 0,

which also belongs to $L_1(-\infty, \infty)$. Hence $\hat{F}(t)e^{-yt} = \hat{F}_y(t) = 2\pi g(t)$ or $\hat{F}(t) = t^{1/p}e^{-\rho t}$ if $t \ge 0$ and zero if t < 0 [7]. Consequently,

$$\int_0^\infty t^{q/p} |\phi(t)|^q e^{-q\rho t} dt \le K^q M^q / \rho^q$$

and this implies that

$$\int_0^X e^{-q\rho X} t^{q/p} |\phi(t)|^q dt \le K^q M^q / \rho^q$$

for X > 0. So taking $\rho = 1/X$, we find

$$\int_0^X t^{q/p} |\phi(t)|^q dt \le K M^q e^q X^q.$$

To prove that (1) is sufficient, we begin by considering the integral

$$\int_0^\infty t^{q/p} |\phi(t)|^q e^{-yt} dt \qquad (y > 0).$$

Letting $S(t) = \int_0^t \tau^{q/p} |\phi(\tau)|^q dt$ and integrating by parts we find that when we use the estimate $S(t) \le Kt^q$, the integral is less than or equal to $Ky \int_0^\infty t^q e^{-\gamma t} dt = K\Gamma(q+1)/y^q$. Hence

$$y^q \int_0^\infty t^{q/p} |\phi(t)|^q e^{-yt} dt \le C < \infty$$

for y > 0. Next we note that for $\gamma = q(1/p - 1)$, Theorem B implies that for f belonging to $E_p(\Pi^+)$ (0 ,

$$\int_0^\infty y^{\gamma-1} M_1^q(y,f) \, dy < \infty.$$

Thus for each f belonging to $E_p(\Pi^+)$

$$\int_0^\infty y^{\gamma-1} M_1^q(y,f) \left[y^q \int_0^\infty t^{q/p} |\phi(t)|^q e^{-yt} dt \right] dy < \infty,$$

or using Fubini's theorem

$$\int_0^\infty \int_0^\infty t^{q/p} |\phi(t)|^q y^{\gamma+q-1} M_1^q(y,f) e^{-yt} dy dt < \infty.$$

But from the definition of the Fourier transform for f, we have $|\hat{f}(t)|e^{-\gamma t} \le M_1(y,f)$. Thus

$$\int_0^\infty |\phi(t)|^q |\hat{f}(t)|^q t^{q/p} \int_0^\infty y^{\gamma+q-1} e^{-(q+1)yt} dy dt < \infty,$$

or

$$\frac{\Gamma(q/p)}{(q+1)^{q/p}} \int_0^\infty |\phi(t)|^q |\hat{f}(t)|^q dt < \infty. \quad \Box$$

Theorem A has the following interesting corollary.

Corollary. If f belongs to $E_p(\Pi^+)$ $(0 , then <math>\int_0^\infty |\hat{f}(t)|^p t^{p-2} dt < \infty$.

This is an extension of the following results.

Theorem (Hardy-Littlewood-Titchmarsh). If f belongs to $E_p(\Pi^+)$ $(1 , then <math>\int_0^\infty |\hat{f}(t)|^p t^{p-2} dt < \infty$ [8].

Theorem (Hille-Tamarkin). If f belongs to $E_1(\Pi^+)$, then $\int_0^\infty |\hat{f}(t)|/t \, dt < \infty$ [4].

3. The proof of Theorem B. This proof is a consequence of several other theorems.

Theorem 1. Let u(z) be a nonnegative subharmonic function defined on Π^+ and suppose

$$\int_{-\infty}^{\infty} u(x+iy) dx \le C/y^{\alpha} \qquad (y>0),$$

where $\alpha \ge 0$. Then there exists a constant $K = K(\alpha)$ such that $u(x_0 + iy_0) \le KC/y_0^{\alpha+1}$ for each point $z_0 = x_0 + iy_0$ $(y_0 > 0)$.

Proof. The case $\alpha = 0$ was proved by Krylov [5]. So assume $\alpha > 0$. Then setting $y_1 = y_0/2$ and $u_{y_1}(z) = u(x + i(y + y_1))$, we find

$$\int_{-\infty}^{\infty} u_{y_1}(x+iy) dx \le C/y_1^{\alpha} \qquad (y>0).$$

Hence, by the case $\alpha = 0$, we have $u_{y_1}(x_0 + iy_2) \le KC/y_1^{\alpha}y_2$ $(y_2 > 0)$, and putting $y_1 = y_2 = y_0/2$,

$$u(x_0 + iy_0) \le 2^{\alpha+1} KC/y_0^{\alpha+1}$$
.

Theorem 2. Suppose f(z) is analytic in Π^+ and

(1)
$$M_p(y,f) \leq C/y^{\beta} \quad (0$$

Then there exists a constant $K = K(\beta, p, q)$ such that

(2)
$$M_q(y,f) \leq KC/y^{\beta+1/p-1/q} \qquad (p < q \leq \infty).$$

Proof. It suffices to consider the case $q = \infty$. For suppose (2) has been proven for $q = \infty$ and $K \ge 1$ (which we may assume without loss of generality). Then

$$M_{q}(y,f) = \left\{ \int_{\infty}^{\infty} |f(x+iy)|^{p} |f(x+iy)|^{q-p} dx \right\}^{1/q}$$

$$\leq [M_{\infty}(y,f)]^{q-p/q} [M_{p}(y,f)]^{p/q}$$

$$\leq K^{q-p/q} C/y^{\lambda},$$

where $\lambda = \beta + 1/p - 1/q$. Now to derive the theorem for $q = \infty$, let u(z) be the nonnegative subharmonic function $|f(z)|^p$ and $\alpha = \beta p$. Then Theorem 1 implies

$$|f(x_0+iy_0)|^p \leq KC/y_0^{\beta p+1},$$

which is equivalent to (2). \square

Theorem 3. Suppose f belongs to $E_p(\Pi^+)$. Then for $1 , and <math>1 < a < \infty$,

where C = C(a, b) is independent of f.

Proof. We begin by assuming that f is analytic in the closed upper half-plane. Then integrating by parts we find

$$\int_0^{y_0} y^b M_p^a(y,f) dy = \frac{y_0^{b+1}}{b+1} M_p^a(y_0,f) - \frac{1}{b+1} \int_0^{y_0} y^{b+1} \frac{\partial}{\partial y} \{M_p^a(y,f)\} dy.$$

Thus our next step is to estimate $|(\partial/\partial y)M_p^a(y,f)|$. But

$$(\partial/\partial y)M_p^a(y,f)=(a/p)M_p^{a-p}(y,f)(\partial/\partial y)M_p^p(y,f),$$

so we need to estimate $|(\partial/\partial y)M_p^p(y,f)|$. However,

$$\left|\frac{\partial}{\partial y}|f(x+iy)|^p\right|=p|f(x+iy)|^{p-1}\left|\frac{\partial}{\partial y}|f(x+iy)|\right|$$

and

$$\frac{||f(x+iy_1)|-|f(x+iy_2)||}{|y_1-y_2|} \le \frac{|f(x+iy_1)-f(x+iy_2)|}{|y_1-y_2|}$$

implies

$$|(\partial/\partial y)|f(x+iy)|| \le |f'(x+iy)|,$$

SO

$$\left|\frac{\partial}{\partial y}|f(x+iy)|^p\right| \leq p|f(x+iy)|^{p-1}|f'(x+iy)|.$$

Thus Hölder's inequality implies

$$|(\partial/\partial y)M_p^p(y,f)| \leq pM_p^{p-1}(y,f)M_p(y,f')$$

and this implies

$$|(\partial/\partial y)M_p^a(y,f)| \leq aM_p^{a-1}(y,f)M_p(y,f').$$

But now we have

$$\left| \int_0^{\gamma_0} y^{b+1} \frac{\partial}{\partial y} \{ M_p^a(y,f) \} dy \right| \le a \int_0^{\gamma_0} y^{b+1} M_p^{a-1}(y,f) M_p(y,f') dy$$

$$\le a \left\{ \int_0^{\gamma_0} y^b M_p^a(y,f) dy \right\}^{1-1/a} \left\{ \int_0^{\gamma_0} y^{a+b} M_p^a(y,f') dy \right\}^{1/a},$$

where we have used Hölder's inequality again. Hence

(4)
$$\left\{ \int_{0}^{y_{0}} y^{b} M_{\rho}^{a}(y,f) dy \right\}^{Va} \\
\leq \left(\frac{y_{0}^{b+1}}{b+1} \right)^{Va} M_{\rho}(y_{0},f) + \frac{a}{b+1} \left\{ \int_{0}^{y_{0}} y^{a+b} M_{\rho}^{a}(y,f') dy \right\}^{Va}.$$

where we have used the estimate

$$\int_0^{y_0} y^b M_p^a(y,f) dy \ge \frac{y_0^{b+1} M_p^a(y_0,f)}{b+1}.$$

which follows from the fact that the means $M_p(y,f)$ are nonincreasing functions of y [5].

From (4), it is clear that in order to complete the proof for this case, we need only show that $y_0^{b+1} M_p^a(y_0, f)$ tends to zero as y_0 tends to infinity. But using Theorem 2, it is easy to see that $f(x + iy_0) = -i \int_{y_0}^{\infty} f'(x + iy) dy$ and applying Minkowski's inequality, we find

$$M_p(y_0,f) \leq \int_{y_0}^{\infty} M_p(y,f') dy.$$

So suppose r > 1. Then

$$M_p^a(y_0,f) \le [C(y_0)]^a \left[\frac{1}{r-1} \int_{y_0}^{\infty} y^r M_p(y,f') \frac{d(-1/y^{r-1})}{C(y_0)} \right]^a,$$

where $C(y_0) = \int_{y_0}^{\infty} d(-1/y^{r-1}) = 1/y_0^{r-1}$, and Jensen's inequality gives

$$M_p^a(y_0,f) \leq [C(y_0)]^{a-1} \frac{1}{(r-1)^{a-1}} \int_{y_0}^{\infty} y^{ar-r} M_p^a(y,f') dy.$$

Hence setting r = (a + b)/(a - 1), we have

$$y_0^{b+1} M_p^a(y_0, f) \le \frac{1}{((b+1)/(a-1))^{a-1}} \int_{y_0}^{\infty} y^{a+b} M_p^a(y, f') dy,$$

from which it follows that $y_0^{b+1} M_p^a(y_0, f)$ tends to zero as y_0 tends to infinity.

Finally we remove the restriction that f is analytic in the closed upper half-plane. Since $f_y(z) = f(z + iy)$ is analytic in the closed upper half-plane, the theorem holds for $f_y(z)$. Thus the result for f(z) follows from letting y tend to zero and applying the monotone convergence theorem. \square

These three theorems have prepared the way for a proof of Theorem B.

Proof of Theorem B. We first reduce the theorem to the case $\lambda = p = 2$. By Theorem 2

$$M_p^{\lambda}(y,f) \leq K^{\lambda-p} M_q^p(y,f)/y^{\alpha(\lambda-p)},$$

so

$$\int_0^\infty y^{\alpha\lambda-1} M_q^{\lambda}(y,f) dy \le K^{\lambda-p} \int_0^\infty y^{\alpha p-1} M_q^{p}(y,f) dy.$$

Hence we can assume $\lambda = p$. Next assume the theorem is true for $\lambda = p = 2$ and $f(z) \neq 0$ in Π^+ and belongs to $E_p(\Pi^+)$. Then $g(z) = [f(z)]^{p/2}$ belongs to $E_2(\Pi^+)$ and

$$\int_{0}^{\infty} y^{-p/q} M_{q}^{p}(y,f) dy = \int_{0}^{\infty} y^{-2/s} M_{s}^{2}(y,g) dy < \infty,$$

where s = 2q/p > 2. In case f(z) has zeros in Π^+ , it is possible to write it as a sum of two nonzero functions in $E_p(\Pi^+)$ [2] and still show that it suffices to take p = 2.

So let $f \in E_2(\Pi^+)$. Then using the Paley-Wiener theorem [7], we can write

$$f(z) = \frac{1}{2\pi} \int_0^\infty \hat{f}(t) e^{izt} dt,$$

where $\hat{f}(t)$ is the Fourier transform of the boundary function f(x) of f(z). Also

$$f'(z) = \frac{1}{2\pi} \int_0^\infty t \hat{f}(t) e^{izt} dt.$$

Next we assume $2 < q < \infty$. Then by Theorem 3

$$\int_0^\infty y^{-2/q} M_q^2(y,f) \, dy \le C \int_0^\infty y^{2-2/q} M_q^2(y,f') \, dy,$$

and by Theorem 2 $M_q(y,f') \leq Ky^{1/q-1/2}M_2(y/2,f')$, so

$$\int_0^\infty y^{-2/q} M_q^2(y,f) \, dy \le CK \int_0^\infty y M_2^2(y/2,f') \, dy.$$

Finally, by Plancherel's theorem [7], we find

$$\int_{0}^{\infty} y^{-2/q} M_{q}^{2}(y, f) dy \leq \frac{CK}{2\pi} \int_{0}^{\infty} y \int_{0}^{\infty} |\hat{f}(t)|^{2} t^{2} e^{-yt} dt dy$$

$$= \frac{CK}{2\pi} \int_{0}^{\infty} |\hat{f}(t)| t^{2} \int_{0}^{\infty} y e^{-yt} dy dt$$

$$= \frac{CK}{2\pi} \int_{0}^{\infty} |\hat{f}(t)|^{2} dt$$

$$= CK \int_{0}^{\infty} |f(x)|^{2} dx < \infty.$$

If $q = \infty$, then the estimate

$$M_{\infty}^{2}(y,f) \leq KM_{r}^{2}(y/2,f)/y^{2/r}$$

for some r > 2 can be used to derive the desired results. \square

4. The proof of Theorem C. Since $E_p(\Pi^+)$ is an F-space under the metric $\rho(f,g) = \int_{-\infty}^{\infty} |f(x) - g(x)|^p dx$, we can use the closed graph theorem. Thus we need to show that Λ is a closed operator. So let $\{f_n\}$ be a sequence which converges in $E_p(\Pi^+)$ to f and also suppose $\Lambda(f_n)(t) = \phi(t)\hat{f}_n(t)$ converges to g(t) in $L_q(0,\infty)$. Then we need to show that $\Lambda(f)(t) = g(t)$ a.e.

Considering the sequence $\{f_n\}$ and f first, we find by Theorem 2 that

$$\left\{ \int_{-\infty}^{\infty} |f_n(x+iy_0) - f(x+iy_0)|^2 dx \right\}^{1/2} \le \frac{K ||f_n - f||_p}{v_0^{1/p - 1/2}},$$

where $y_0 > 0$. Thus $f_{y_0,n}(z) = f_n(z+iy_0)$ converges to $f_{y_0}(z) = f(z+iy_0)$ in $E_2(\Pi^+)$. Moreover, it is easy to see that the Fourier transform of $f_{n,y}(x)$ is $\hat{f}_n(t)e^{-y_0t}$, while the Fourier transform of $f_{y_0}(x)$ is $f(t)e^{-y_0t}$. Consequently, Plancherel's theorem [7] implies that $\hat{f}_n(t)e^{-y_0t}$ converges to $\hat{f}(t)e^{-y_0t}$ in $L_2(0,\infty)$. Hence, there exists a subsequence $\{\hat{f}_k(t)\}$ of $\{\hat{f}_n(t)\}$ converging to $\hat{f}(t)$ a.e. But the sequence of $\{\Lambda(f_k)\}$ also converges to g(t) in $L_q(0,\infty)$. Therefore, there exists a subsequence of $\{\Lambda(f_k)\}$, which we also denote by $\{\Lambda(f_k)\}$, converging to g(t) a.e. Thus $\{\phi(t)f_k(t)\}$ converges to $\phi(t)f(t)$ a.e. and also to g(t) a.e., which implies

$$\phi(t)\hat{f}(t) = g(t)$$
 a.e.

5. Fourier transform. The Fourier transform defined in §2 certainly exists since Theorem 2 implies that $f_p(x) = f(x + iy)$ belongs to $L_1(-\infty, \infty)$. In fact, if C is a constant such that $M_p(y,f) \le C$ for y > 0, then there exists a constant K = K(0,p,1) such that

(1)
$$\int_{-\infty}^{\infty} |f(x+iy)| dx \le CK/y^{1/p-1}$$

for y > 0.

To see that \hat{f} is independent of y, fix $0 < y_1 < y_2 < \infty$ and for each $\alpha > 0$ let Γ_{α} be the rectangular contour with vertices $\pm \alpha + iy_1$ and $\pm \alpha + iy_2$. By Cauchy's theorem

(2)
$$\int_{\Gamma_c} f(z)e^{-itz}dz = 0.$$

Next let $I = [y_1, y_2]$ and put

$$\Phi(\beta) = i \int_I f(\beta + iu) e^{-it\beta} e^{tu} du.$$

Then $|\Phi(\beta)| \le e^{iy_2} \int_{y_1}^{y_2} |f(\beta + iu)| du$. Now if we let

$$\Psi(\beta) = \int_{y_1}^{y_2} |f(\beta + iu)| du,$$

then Fubini's theorem and (1) imply

$$\int_{-\infty}^{\infty} \Psi(\beta) d\beta = \int_{y_1}^{y_2} \int_{-\infty}^{\infty} |f(\beta + iy)| d\beta dy \le \frac{CK}{v_1^{1/p-1}} (y_2 - y_1).$$

Thus there exists a sequence $\{\alpha_j\}$ such that $\alpha_j \to \infty$ as $j \to \infty$ and $\Psi(\alpha_j) + \Psi(-\alpha_j) \to 0$ as $j \to \infty$. Hence we have

(3)
$$\Phi(\alpha_j) \to 0 \text{ and } \Phi(-\alpha_j) \to 0$$

as $j \to \infty$. Now combining (1), (2), and (3), we find

(4)
$$\int_{-\infty}^{\infty} f(x+iy_1)e^{-i(x+iy_1)t}dx = \int_{-\infty}^{\infty} f(x+iy_2)e^{-i(x+iy_2)t}dx,$$

i.e., \hat{f} is independent of y.

If we let $f_{\nu}(z) = f(z + iy)$, then (4) becomes

$$\hat{f}(t) = e^{y_1 t} \hat{f}_{y_1}(t) = e^{y_2 t} \hat{f}_{y_2}(t).$$

Since \hat{f}_y is the Fourier transform of an $L_1(-\infty, \infty)$ function, it is continuous and hence \hat{f} is continuous.

Using (1) again, we see that

$$|\hat{f}(t)|e^{-ty} = |\hat{f}_{\nu}(t)| \le ||f_{\nu}||_1 \le CK/y_0^{1/p-1}$$

for a fixed $y_0 < y$. Thus if we fix t < 0 and let $y \to \infty$, we find $\hat{f}(t) = 0$. Hence $\hat{f}(t)$ is identically zero on $(0,\infty)$ and by continuity it is zero at t = 0. Also note $f_v(t) = 0$ on $(-\infty, 0]$.

As we have noted, $\hat{f}(t) = f_y(t)e^{yt}$, so $\hat{f}_y(t) = \hat{f}(t)e^{-yt} = \hat{f}_{y_0}(t)e^{(y_0-y)t}$, and letting $y_0 = y/2$, we have

$$\int_0^\infty |\hat{f}_y(t)| dt \le \|f_{y_0}\|_1 \int_0^\infty e^{(y_0 - y)t} dt$$

$$\le \frac{KC}{y_0^{1/p - 1}} \frac{1}{y - y_0}$$

$$= \frac{2^{1/p} KC}{y^{1/p}}.$$

Hence for y > 0, \hat{f}_y belongs to $L_1(-\infty, \infty)$ and we can apply the inversion theorem [7], to find

$$f(z) = f_y(x) = (2\pi)^{-1} \int_0^\infty \hat{f}_y(t) e^{itx} dt$$

= $(2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{-ty} e^{itx} dt$
= $(2\pi)^{-1} \int_0^\infty \hat{f}(t) e^{itz} dt$.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. P. L. Duren, *Theory of H^P spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.
- 3. P. L. Duren and A. L. Shields, Coefficient multipliers of H^p and B^p spaces, Pacific J. Math. 32 (1970), 69-78. MR 41 #485.
- 4. E. Hille and J. D. Tamarkin, On the absolute integrability of Fourier transforms, Fund. Math. 25 (1935), 329-352.
- 5. V. I. Krylov, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939), 95-138; English transl., Amer. Math. Soc. Transl. (2) 32 (1963), 37-81. MR 1, 308.

- 6. E. Stein, Classes H^p, multiplicateurs et fonctions de Littlewood-Paley, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A716-A719; A780-A781. MR 37 #695a,b.
 - 7. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420.
- 8. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed., Oxford Univ. Press, London, 1948.

DEPARTMENT OF MATHEMATICS, LE MOYNE-OWEN COLLEGE, MEMPHIS, TENNESSEE 38126