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ABSTRACT. A function / analytic in the upper half-plane n+ is said to be of class

Ep(Tl+) (0 < p < oo) if there exists a constant C such that/"«, \f(x + iy)\'dx < C < oo

for all y > 0. These classes are an extension of the Hp spaces of the unit disc U. For /

belonging to EP(H+) (0 < p < 2), there exists a Fourier transform / with the property

that f(z) = (2ir)~'Jü" J(i)e"'dt. This makes it possible to give a definition for the

multiplication of EP(TI*) (0 < p < 2) into L,(0, oo) that is analogous to the multiplication

of Hr(U) into /,. In this paper, we consider the case 0 < p < 1 and p < q and derive a

necessary and sufficient condition for multiplying Ep(îl*) into L,(0, oo).

1. Introduction. A function / analytic in the unit disc U is said to be of class

HP(U) if there exists a constant C such that f02,r \fire*)\pd0 < C < oo for all

r < 1. For these classes there exists a rich and varied theory which is described

in Duren's book [2]. Among the concepts studied is that of multipliers from

HP(U) to /,.

Definition 1. A sequence (XB) is said to multiply HP(U) into lq (0 < q < oo),

if for each/(z) = 2 anz" belonging to HpiU), 2 kH\,|« < oo.
Duren and Shields have shown that a necessary and sufficient condition for

[Xn] to multiply HpiU) (0 < p < 1) into /, (/» < q < oo) is that

2 n"lp\Xn\" = 0(N")      [2], [3].
»-I

It is our aim in this paper to consider classes of functions analytic in the upper

half-plane n+, which are analogous to the classes HP(U), and to prove a result

similar to that of Duren and Shields.

2. The main result.

Definition 2. A function / analytic in n+ is said to be of class f^íjl*)

(0 < p < oo) if there exists a constant C such that

Mp(y,f) = {/_" \f(x + iy)\pdxyP < C < oo

for all 0 < y < oo.

The expression Mp(y,f) is called a /»th mean of /. Also the expression

Mmiy,f) = sup_00<Jt<001/(* + iy)\ is a /»th mean of / and, if Mmiy,f) is

bounded,/is said to belong to EX(U+).
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Definition 3. If /belongs to Ep(H+) (0 < p < 1), then the Fourier transform

of/is

/W - H fix + iy)e-**+Wdx      [6].

A proof of the fact that / exists and is independent of y is given in §5. In

addition, the facts /(») is continuous, /(») = 0 for t < 0, and

f(z) = (2„)~x f" JW'dt,

are proved there.

Definition 4. Let <p(») be a function measurable on (0,oo). Then ¿>(») is said to

multiply EP(U+) (0 < p < 1) into Lq(0, oo) (0 < q < oo), if for each f(z)

= O)"' foœJ(t)eiz'dt belonging to Ep(il+),

jf won/Mi^ < oo.

We now state the main result.

Theorem A. Let <b(t) be a function measurable on (0, oo). 77ie7i <¡>(t) multiplies

Ep(Tl+) into Lq(0, oo) (p < q) if and only if

0) foXt"/p\4,(t)\Xdt<KX",

where K is a positive constant.

The proof of Theorem A requires the use of two other results.

Theorem B. // 0 < p < q < oo, / belongs to Ep(U+), a = \/p — \/q, and

X>p, thenS?y^M£(y,f)dy < oo.

The second of these results needs some introduction. If/belongs to Ep(Tl+)

(0 < p < co), then limy_0f(x + iy) = f(x) exists a.e. and

P(f,g)=}0°°\f(x)-g(x)\''dx,

where/and g belong to Ep(U+), is a translation invariant metric on Ep(H+).

Moreover, under this metric, Ep(Ti+) (0 < p < oo) is a complete topological

vector space. In other words, Ep(U+) (0 < p < oo) is an F-space [1], [2], [5].

Finally, we say that an operator A from Ep(Tl+) into L,(0, oo) is bounded if there

exists a constant A-such that ||A(/)|L, < Al|/||,, where ||/||, = {/0°° \f(x)\pdxYp.

Theorem C. Let </>(») be a function measurable on (0, oo). // <p(») multiplies

£p(II+) (0 < p < 1) i"7i»o L,(0, oo) then the operator A(f)(t) = <?(/)/(») »J bound-

ed.
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We defer, for now, the proofs of Theorem B and Theorem C in order to give

an immediate proof of Theorem A.

Proof of Theorem A. We begin by showing that (1) is necessary. So let us

consider the function

F(z) = F„(z) = i»"1 f™ tVPe-o'e^dt.

Since the Laplace transform of t"~x (u > 0) is T(u)/s", where j is a complex

number with Re s > 0, we see that setting u = 1 + \/p and j = —iz + p gives

f(z) = r(i + \/P)/ip - izrx'p-

From this it follows that F(z) belongs to Ep(U+) and \\F\\p = M/p. But by

Theorem C there exists a constant A such that

l|A(/)lk < K\\F\\P,

so llFW^OII, < KM/p. Thus, our next step is to find Fit). However, Fix + iy)

= Fyix) is in L^-oo, oo) and is the Fourier transform of

g(f) = i2-rr)-xtVPe-<»e->"       if t > 0,

= 0 if t < 0,

which also belongs to Lx(-00,00). Hence F(t)e~yl = Fy(t) = 2<ng(t) or F(t)

= tV'e'" if / > 0 and zero if t < 0 [7]. Consequently,

^°° ti/p\^(t)\"e-'""dt < KW/p"

and this implies that

ff e-wxtilp\tff)\qdt < KW/p"

for X > 0. So taking p = 1/A, we find

fQX ti/p\<bit)\"dt < KMieiX".

To prove that (1) is sufficient, we begin by considering the integral

/0°° /«/'WOlVdr      iy > 0).

Letting Sit) = Jo rq^\<¡>(T)\''dt and integrating by parts we find that when we use

the estimate S(t) < A/', the integral is less than or equal to Ky f" tqe~y'dt

= AIX<7 + 1)//. Hence

y" J" tilp\$(i)\qe->"dt < C < 00
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for y > 0. Next we note that for y = q(\/p — 1), Theorem B implies that for/

belonging to £„(n+) (0 < p < 1),

Çyy-xMx"(y,f)dy<^.

Thus for each / belonging to Ep(W)

Cy^Wiyjfyf* M/'WOIV*«*] dy < oo,

or using Fubini's theorem

X" Jo" f'^tWy^-'M^y^e^dydt < co.

But from the definition of the Fourier transform for /, we have \f(t)\e~y'

<Mx(y,f).Thus

X" \W)\V(t)\qt'>1'' j™ y^-xe-^x»'dydt < oo,

or

ÄJT" mm)Vd, < ».       D

Theorem A has the following interesting corollary.

Corollary. Iff belongs to Ep(Tf+) (0 < p < 1), then JJ° |/(f)|'r*-2<ft < oo.

This is an extension of the following results.

Theorem (Hardy-Littlewood-Titchmarsh). Iff belongs to Ep(ll+) (1 <p < 2),

thenfftfCWt^dK oo [8].

Theorem (Hille-Tamarkin). Iff belongs to Ex(Il+), then S™ \f(t)\/tdt < oo [4].

3. The proof of Theorem B. This proof is a consequence of several other

theorems.

Theorem 1. Let u(z) be a nonnegative subharmonic function defined on II+ and

suppose

C u(x + iy)dx < C/y"      (y > 0),
J~ 00

where a > 0.  Then there exists a constant K = K(a) such that u(x0 + iy0)

< KC/y§+x for each point z0 = x0 + »>„ (y0 > 0).

Proof. The case a = 0 was proved by Krylov [5]. So assume a > 0. Then

settingy, = y0/2 and uy¡(z) = u(x + <(jy + y,)), we find

/_! "* (* + '»rf* ^ c/>f      (^ > 0).
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Hence, by the case a — 0, we have uyi(x0 + iy2) < KC/yxy2 (y2 > 0), and

putting j», =y2 =y0/2,

u(x0 + iy0)<2*+xKC/y§+x.       D

Theorem 2. Suppose f(z) is analytic in n+ and

(1) Mpiy,f) < C/y»      i0<p<oo,ß> 0).

Then there exists a constant A = A(/?,/», q) such that

(2) M„iy,f) < KC/yWp-V"       (/» < q < oo).

Proof. It suffices to consider the case q = oo. For suppose (2) has been proven

for q = oo and A > 1 (which we may assume without loss of generality). Then

Mq(y,f) = {/J \f(x + iy)\p\f(x + iy)rpdxyq

< W„(y,f)]'>-'l<>[Mp(y,f)yl<'

< Ki-p'iC/yx,

where X = ß + \/p - \/q. Now to derive the theorem for q = oo, let u(z) be the

nonnegative subharmonic function l/iz)!7" and a = ßp. Then Theorem 1 implies

l/(*o + '>o)r<AC/yó3^1,

which is equivalent to (2).   □

Theorem 3. Suppose f belongs to Ep(H+). Then for 1 </» < oo, — 1 < b, and

1 < a < oo,

(3) Çy»Mpa(y,f)dy < c/o°°y°+bMpa(y,f')dy,

where C = C(a, b) is independent off.

Proof. We begin by assuming that / is analytic in the closed upper half-plane.

Then integrating by parts we find

j?y>M,'iytf)dy = ^jM/iyoJ)

-b+-x^yMTy{Mp{yJ)]dy-

Thus our next step is to estimate \i$/ty)Mpiy,f)\. But

0/WW) = ia/p)M;-"(y,f)(d/dy)M/(y,f),
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so we need to estimate \(o/oy)Mpp(ytf)\.

However,

¿l/i' + fr)!'= p\f(x + iy)rl\^\f(x + iy)\

and

implies

so

ll/(* + '>■)! - l/(* + »2)ll „ \f(x + iyx)-f(x + iy2)\
m -yi\ \y\-y2\

3

IO/3y)|/(* +»»II <!/'(* +»>)|,

</»!/(*+ .»rli/'(* + i»i.\pf(x + iy)\l

Thus Holder's inequality implies

|(3/3y)M/(y,/)| < pM/-'(y,/)M,(y,/')

and this implies

|(3/3y)A//(y,/)| < aMp°-l(y,f)Mp(y,f).

But now we have

\So"yMo\{M^y,f)]dy\ - aCyb¥iM"x^f)M^ndy

<fl{iVM;w)*}H/a{f/+tA/;w)*}Vs,

where we have used Holder's inequality again. Hence

1 Va

(4)

{foy°ybMp°(y,f)dyy

* (b^ïTMp^f) + F+^{/o>+4^/v/f.

where we have used the estimate

r° *wi  r^ ^ ybo+x MPa(y0J)
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which follows from the fact that the means Mp(y,f) are nonincreasing functions

of y [5].

From (4), it is clear that in order to complete the proof for this case, we need

only show that j^'A/^^,/) tends to zero as y0 tends to infinity. But using

Theorem 2, it is easy to see that/(jc + iy0) = —ify^fix + iy)dy and applying

Minkowski's inequality, we find

Mpiyo,f) < jf Mpiy,f')dy.

So suppose r > 1. Then

m;u,/) < [cu)r[^rj[;/^u/')^p]a,

where C(j>0) = Jv" ¿/(-l/y-1) = \/yro~x, and Jensen's inequality gives

Mp'iyoJ) < [c(y0)r'{r _\)a-x f~ yar-'Mp°(y,f')dy.

Hence setting r = (a + b)/(a - 1), we have

from which it follows that.y§+l Mp(y0,f) tends to zero as y0 tends to infinity.

Finally we remove the restriction that / is analytic in the closed upper half-

plane. Since fy(z) = f(z + iy) is analytic in the closed upper half-plane, the

theorem holds for^(z). Thus the result foryíz) follows from letting .y tend to zero

and applying the monotone convergence theorem.   D

These three theorems have prepared the way for a proof of Theorem B.

Proof of Theorem B. We first reduce the theorem to the case X = p = 2. By

Theorem 2

Mpx(y,f) < K*-PMf(y,f)/y°*-p),

so

f"y*->M}iy,f)dy < K*-pf™ y<*-xMf(y,f)dy.

Hence we can assume X = p. Next assume the theorem is true for X = p = 2

and/(z) # 0 in n+ and belongs to £/)(n+). Then g(z) = [f(z)]p/2 belongs to

£2(n+) and

J"y-p/"M¡(y,f)dy = f"y-2/°M2(y,g)dy < oo,
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where s = 2q/p > 2. In case f(z) has zeros in n+, it is possible to write it as a

sum of two nonzero functions in EP(U+) [2] and still show that it suffices to take

p = 2.
So let/ G E2(Tl+). Then using the Paley-Wiener theorem [7], we can write

where j(t) is the Fourier transform of the boundary function/^) of f\z). Also

Next we assume 2 < q < oo. Then by Theorem 3

j* y-2l"M2(y,f)dy < CJ™y2-2><M2(y,f')dy,

and by Theorem 2 Mq(y,f) < KyVi-V2M2(y/2,f), so

X"y-2l"M2(y,f)dy < CKfoXyM22(y/2,f')dy.

Finally, by Plancherel's theorem [7], we find

Jf*00 (~" K    /"OO /"OO

0  y-2'oM2(y,f)dy<^ia  'X   \M2t2e^'dtdy

- CA-/o°° |/MI2</* < oo.

If # = co, then the estimate

M2(y,f) < KM2(y/2,f)/y2/'

for some r > 2 can be used to derive the desired results.   D

4. The proof of Theorem C. Since EP(U+) is an F-space under the metric

p(/>g) = S-x \f(x) - g(x)\pdx, we can use the closed graph theorem. Thus we

need to show that A is a closed operator. So let {/,} be a sequence which

converges in EP(U+) to /and also suppose A(f„)(t) = <?>(/)/„(<) converges to g(t)

in Lq(0, oo). Then we need to show that A(/)(») = g(t) a.e.

Considering the sequence {f„} and /first, we find by Theorem 2 that

^2      A1I/-/II,
|/_I \fn(x + »>0) - f(x + »>o)|2^|     < yrn



A MULTIPLIER THEOREM FOR FOURIER TRANSFORMS 367

where y0 > 0. Thus fy?J,iz) = f„(z + iy0) converges to fya(z) = f(z + iy0) in

E2(U+). Moreover, it is easy to see that the Fourier transform of fn,y(x) is

f„(t)e~y"', while the Fourier transform of fyo(x) isf(t)e~y»'. Consequently, Plancher-

el's theorem [7] implies that f„(t)e~y°' converges to f(t)e~y°' in L2(0, oo). Hence,

there exists a subsequence {/*(')} of {/„(/)} converging to f(t) a.e. But the

sequence (A(^)} also converges to g(t) in Lq(0, oo). Therefore, there exists a

subsequence of (A(^)}, which we also denote by (A(^)}, converging to g(t) a.e.

Thus {<?(/)/*(/)} converges to <i>(')y(') a.e. and also to g(t) a.e., which implies

<t>(t)f(t) = gO)   a.e.       D

5. Fourier transform. The Fourier transform defined in §2 certainly exists since

Theorem 2 implies that ^(x) = fix + iy) belongs to L,(-oo, oo). In fact, if C is

a constant such that Mp(y,f) < C for y > 0, then there exists a constant

A = A(0,/», 1) such that

(1) C \f(x + iy)\dx<CK/yxlP-x
J—00

for.y > 0.

To see that/ is independent of y, fix 0 < yx < y2 < oo and for each a > 0 let

r„ be the rectangular contour with vertices ±a + iyx and ±a + iy2. By Cauchy's

theorem

(2) hf(z)e-'"dz = 0.

Next let / = [ji,^] and put

$(ß) = iffiß + iu)e-"»e'udu.

Then |$(/?)| < <?'»jÇf \f(ß + iu)\du. Now if we let

*(/?)= C \f(ß + iu)\du,

then Fubini's theorem and (1) imply

£ ww = /;2£ \/(ß + iy)\dßdy < ̂ ito-yù

Thus there exists a sequence {a,} such that a, -> oo as j -» oo and ^(a,)

+ ^(-a,) -* 0 asy -» oo. Hence we have

(3) «»(a^^O   and   «(-a,)-» 0

as y -» oo. Now combining (1), (2), and (3), we find

C fix + iyx)e-*xHyiïdx

= |    /(x + iy2)e-,(Jt+'>2»'<ic,
y—00

i.e., / is independent of y.
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If we let fy(z) = f(z + iy), then (4) becomes

fit) - e»%it) = e»%ii).

Since fy is the Fourier transform of an L^-oo, oo) function, it is continuous and

hence / is continuous.

Using (1) again, we see that

l/MIe-» = l/,MI < 11/4 <CK/yx0/p-x

for a fixed y0 < y. Thus if we fix t < 0 and let y -» oo, we find/(/) = 0. Hence

f(t) is identically zero on (0,oo) and by continuity it is zero at t = 0. Also note

¿it) = 0 on (-oo,0].

As we have noted,/(/) = fyit)ey', so fy(t) = fit)e~y' = Jy0it)e(yo~yK and letting

y<¡ = y/2, we have

Í0X\Ut)\dt<\\fyg\\Xf%^-y)'dt

KC      1
- yxJp~x y-y0

2VPKC

~    yVr   '

Hence for y > 0, fy belongs to L, (-00,00) and we can apply the inversion

theorem [7], to find

fiz) =fyix) = i2n)~x f" jyit)e»*dt

= (2W)-1/00O/(/)e-'>e"^/

= i»"1 £KtY'dt.
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