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ABSTRACT. It is proven that there exists a subset E of R3 such that the
two-dimensional J measure of E is less than its two-dimensional Hausdorff
measure. E is the image under the usual isomorphism of R X R2 onto R3 of
the Cartesian product of {x: —4 < x <4} and a Cantor type subset of R2; the
latter term in this product is the intersection of a decreasing sequence, every
member of which is the union of certain closed circular disks.

1. Introduction. To any positive integers m, n with m < n there correspond
several m-dimensional measures over R”. These measures were studied exten-
sively by H. Federer in [2). Three of them are the m-dimensional Carathéodory,
T and Hausdorff measures, which are denoted by €, J™ and H™ respectively.
It is known that C™(5) < T™(5) < H™(S) for all SCR" and that Cm(§)= Tm(s) =
Hm(S) if m=1, m=n, or S is me-rectifiable [2, 2.10.6, 2.10.4]. However,
it was shown by G. Freilich [3] and E. F. Moore [4] that C? and H? are distinct
measures over R?; more recently the author [1] established that C? and T2 are
also distinct over R>.

In this paper we prove (Theorem 5.4) that there also exists E C R? satisfying
J2E)< HX(E). A precise definition of E is given in §2, but roughly this set is
the image under the usual isomorphism of R x R? onto R3 of the Cartesian prod-
uct of {x: -4 < x < 4} and a Cantor type subset of R?; the latter term in this
product is the intersection of a decreasing sequence, every member of which is
the union of certain closed circular disks.

2. Preliminaries. In general we adopt in this paper the notation and termi-
nology of [2]. Presented in this section are additional definitions that we use.

Define p: R>— R3, : R*>R3, : RxR2=R?3, p(xl,xz, x3)= (&,,0,0),
alx 5 x5 x.) = 0, x, 5 x3), x5 (), %)= (s x50 x3) for x, %,, x; €R.
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To define E first inductively define families G, G5 Gys+ -+ of closed cir-
cular disks contained in R? = C by taking

G, = {B(0, )},
G,= {Blz + 0.99r exp(0.027ki), 0.01r): B(z, r) € G,_pp k=1,..., 100}

for n >1; then let E = «(fx: -4 < x < 4} x n:;o UG").
Let C=g(E), K, ={{0} x $): S € G}
For a >0, n a nonnegative integer define

{la, n) ={g" MO Nulix: B<x < B+alx5): BeR, SeG )
If SCE and diam ¢(S) > 0, then let
7S) = supin: g{S) C T for some Te K }

and take p(S) to be that element of K, ¢y containing g(S).
For SCR3, a € R? define £(S, a) = Sng~Yq(a).
Let S-T={x-y:x€S,yeT}for S, TCR".
Finally, for g # SCR" let
bXS) =diam S,  h*S) = (n/4)(diam 5)* and

t%8) = (n/4) sup{|a, - b)) Ala,-b))l:a,, by, a,, b,€S}

These are the gauge functions used in defining HY, H? and T2, respectively
[2, 2.10.1-2.10.3].

3. Some lemmas. We prove here several results for use in $s.

3.1. Lemma. If DCK_ , 2< card D< 51 and 7 UD)=n- 1, then there
exist A, B € D such that

dist(4, B) > 1072799 sin[(card D - 1)0.017] - 1).

Proof. The conclusion follows from the observation that for some A, B € D
the distance between the centers of A and B is at least 10~2"99sin[(card D - 1)0.017L

3.2. Lemma. If ACE and diam q(4) > 0, then H[g(4)]1 < diam p(A).

Proof. For any integer m > 7(A) we let W_=K_n{S: SNg(A)} £ & and ob-
tain our assertion by noting that g(4)C U W_ and I ewmbl(S) <107274)
diam p(A).

3.3, Lemma. X!(C)>o0.

Proof. Consider any countable covering of C consisting of nonempty subsets of C
that are open in C and let W be a finite subcovering. Since {u(S): S € Wi is a
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covering of C,and TNC#g forany T € vz K., it follows that Esewlo-z")(s)

i=l
> 1. Using this result, Lemma 3.1, and the fact that card (K.,'(S)“n{T: TNS £ &)
>2 forall S € W, we deduce that

Y bUS)> 3 10727)-2[99 5in(0.01) - 1] > 0.99 sin(0.01z) - 0.01;
SeWw SeW

hence H1(C)> 0.
3.4. Corollary, 0< H2%(E)< e.
Proof. We combine Lemmas 3.2, 3.3 and [2, 2.10.45],

3.5. Lemma. If A, € {(a,n), A, € {102(*=™)a, 1), and B, is a nonempty

closed subset of A,, then there exists a closed subset B, of A, such that
() p%(B,) = 104n=m)p2(g ),

Gi) £%(B,) = 104=-m)2(B)),

Gii) ¥2(B,) = 104=m)2(B,).

Proof. Let c, denote the center of A,. for j=1,2. Let f: R — R? be de-
fined by f(x) = 105("""')(::- c)+c, for x € R Let B, = {(B,). Then clearly
(i) and (ii) hold. Furthermore, since Lip f=102"*=m) = 1/Lip (/~1), (iii) follows
from [2, 2.10.111,

3.6. Corollary. If A € {(8-10"",2), B, is a closed subset of A and b*(B)
>0, then there exists a closed subset B, of E such that 7(B,)=0 and
2 2 2 2
Hx(B,)/b%(B,) = H*(B )/bX(B)).
3.7. Corollary. If A € {(a,n) then H*(A)= 10" H2(EYS.

Proof. We note that H2(S) = 10~ 4"H2(E) for S € (8 . 10-27, ) by Lemma
3.5(iii), and combine this with [2, 2.10.45] to obtain our conclusion.

4. A key lemma. Our main goal here is to prove Lemma 4.5 for later use in
the proof of Theorem 5.3. Throughout this section we assume that A C E is such
that g(A)= C,and —-x € A for all x € A, and let d = diam A.

4.1. Notation. For a € SCE let

NS, @) ={(u, v): ueé(S,a)-S, veS -5,
lu A v| > (diam $)2 - 1078 and |g(a) A ¢(v)| < 1072 diam S}.

4.2. Remark. If a € SCE and (v, ”z) € A(S, a), then Ivj|2 > (diam $)? -
2.10718 for j=1, 2,

4.3, Lemma. I/ aps a29 bl’ b2 € A, (UI,UZ)= (al_bl’ dz— bZ) GA(A, al),
andj=l or j= 2, then
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o) le(24) - glv)| <2 1077,
(ii) llg(2a))|? - |4 )|?| < 1075,

Proof. It follows from Remark 4.2 that
2 2 -1
2a,0b.=af?+ 6|2~ v |2 <la)?+ |b)% -d + 2. 10715,

Furthermore, since —a;,~b, € A we have that Iajl <d/2, Ib’.I < d/2. Together
these results yield (i) because

2 _ 2 12 . 2.5, 10-18
|22; —v|"=la;+b|°=a}|" + 22, b, +[b|° <2. 10775,
We then deduce (ii) immediately from (i) by noting that
1962217 - a0 )I?] < le(20) + g0 - a(2a,) - o) < 107>,
4.4, Lemma. If (”1’ ”2) € MA, a) for some a € A, then
llgw )% + |¢(w,)|? = @ <3 - 1076,

Proof. From Remark 4.2, the inequality d < 10 and the definition of A(4, )
we obtain that

lp(w,) -« p(v,)|? < [d% - |g(v )| 2[d? - |glv,)|?]
1 2 1

<lpwp? + 2. 107181 [|x0,)| 2 + 2 107 18]

<lplw) « plw)|? + 5. 10716,
gl - lgw )% - 14w, « ¢(v,)|?] = lg(v)) A g(v,)|? < 10716,
[, « vyl = [o,| + lo,D2 = o, A vy D% < 2% 1078,
We then use these results and the fact that 1 < d < 10 to conclude that
gt I? + |g(w)|? - 82|

< @2 - |¢(w D124 - g )| A - [glv )] - 19 )IT?

<|plw) - pw)? - 1g(v)) « qlv)|?| + 6-1071€

=lv, e vyl « [plo)) « p0) - fw) -« glv,)] + 6+ 10"16<3. 1076,

4.5. Lemma. M4, @)= & for some a € A.

Proof. Choose a, B,y € A satisfying gla) = (0, 0.5, 0), ¢(8) = (0, 0.49, 0),
q() = (0, 0.4999, 0). We will obtain our conclusion by showing that if there ex-
ist (lll’ uz) EA(A, a)s (Ul’ 112) € A'(Aa B), then A(A’ y)= z.
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To prove this we first note that 0.98 < |g(2x)] < 1 for all x € A and then ap-
ply Lemmas 4.4, 4.3(ii) to obtain that

(1) @ > |qu))|? + |qlu,)|? - 3. 1076 > 1.9603969,
) 42 < |qw )| + |g(v,)|? + 3 . 1076 < 1.9604031.

Next take any 0= (01, O, 03) € f(A,}')— A, e A, 7= (71972,73) € £4,90)
- A. To establish that (0,7) ¢ A(A, y) we observe that if |¢(28)] < 0.9802 then

142 + |g(d|? - 2% >4.10-6

by Lemma 4.3 (ii) and (1), while if |g(20)| > 0.9998 then Lemma 4.3(ii) and (2)
yield the same conclusion; in either case (d,7) ¢ AM(4, y) by Lemma 4.4. On the
other hand, if 0.9802 < |¢(28)] < 0.9998, then Lemma 4.3 (i) and the fact that ¢(5)
is not in any element of K, nearest to or furthest away from the origin are used to
obtain that

7.1 > 1072 sin(2. 10727 - 2. 1074 > 4. 1074
3! = Z

furthermore Lemma 4.3(i) also implies that |o,| > 0.9997, |o,| < 2. 10~%; con-
sequently (0,7) ¢ A4, y) in this case either since |¢(0) A ¢(r)] > 10~4,

5. Final results. Our main conclusion is Theorem 5.4. This result follows
principally from Theorem 5.3, which in turn depends on Lemmas 4.5, 5.1 and 5.2.

5.1. Lemma. If A is a closed subset of E, diam ¢(A) > 0 and diam p(4) <
[diam p(A)V/ 3, then H?(A) < 2b2(A)/3.

Proof. We use [2, 2.10.45] and Lemma 3.2 to obtain that }?(4) <
(/2 [p(A I g(A < (a/2H [p(A)] diam plA) < 262(A)/3.

5.2. Lemma. If A is a closed subset of E,diam q(A)> 0 and (diam A)* <
41072743 1hen H2(AYH2(A) < 0.992.

Proof. By Lemma 5.1 we may assume that diam p(4) > [diam p(4))/3 and
then by Corollary 3.6 further assume that 7(4) = 0.

Let d = diam 4, W= K, N{S: S Ng(A) £ gl. Define ¥(5) = plg~1(s) N Al
for S € W. Applying [2, 2.10.45] and Lemma 3.2 we then have that

@ K oy KOORS00 g 5 HWOL,

Sew bX(A4) sew  d?

Let n=card W. Let m be the greatest integer not exceeding n/2. Define p(x) =
0.99 sin (0.017x) - 0.01 for x € R. Using Lemma 3.1 we deduce that if §;s++,

§, is a sequence of distinct elements of W arranged in clockwise order, then

2m
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(4) Hl[l,lr(Si)] + }(l[¢(5i+m)] < 2d? - [p(m)]z)% fori=1,eee, m

Furthermore, by Lemma 3.1 there exists § € W such that

(5) HUw(s)] < (@2 = [pln - DIDX.

At this point we divide the proof into several cases and subcases, in each of
which we show that H2(4)/5%(4) < 0.992.

We first consider the following two cases:

Case . n=3. The desired result is obtained by first observing that (3), (4)
and (5) imply

H2(A)/pX(A) < [0.04(d% - [p(1)]12%/d?] + [0.02d? - [(2]D¥%/d?]

and then maximizing separately both terms of the right-hand side of this inequality

with respect to d for d > p(2).
Casell. n# 3. Define f: RN {x: x> p(m} — R, flx) = 0.02n(x*- Lo(m)]’)“/xz
for x> p(m). We use (3), (4) and for 7 odd also (5) to obtain HXA)/4%A) < f(d) and

further observe that the absolute maximum for f occurs at 2%p(m) and [ is in-
creasing on {x: p(m) < x < 2%p(m)}. Then we divide the remainder of the proof in-
to the following three subcases:

Case LA, 2<n<96 and 7 is even. Let g: R N {x:p(x/2) £ 0} =R, glx) =
0.01x/p(x/2) whenever p(x/2) £ 0. Our conclusion is obtained by noting that g(n)
= f[2%p(m)], g has no relative maximum on {x: 2 <x < 96}, g(2) <0.95 and g(96)
<0.99.

Case ILB. 5<n<97 and n is odd. Let g: R {x: pl(x-1)/2]£0} — R,
g(x) =0.01x/pl(x - 1)/2] whenever p[(x — 1)/2] £ 0 and proceed as in Case I.A.

Case IL.C. n =98, 99, or 100, We observe that f[(4/3)%]> f(d because
d < (4/3)% < 2%p(m), and compute f[(4/3)%#]1<0.91 for n= 98, 99, 100.

5.3. Theorem. There exists a nonempty closed subset M of E such that
© tAM) <HAM) - 10-44H%(E).

Proof. By Corollary 3.4 and the definition of H? there exists a countable
covering W of E consisting of nonempty closed subsets of E for which

0< 3 hAS) <(1+ 10749HAE) < (1 + 10744 3 HA(s);
Sew Sew

hence there exists a nonempty closed subset F of E satisfying

(7) 0 < b3(F) < (1 + 10~ *HHX(F).
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Furthermore, it follows from Lemma 5.1 and Corollary 3.6 that we may assume
7(F) = 0,
Next, let d = diam F. We note that Lemmas 5.1, 5.2 imply 10> d2 > 4/3.
Define /: R> - R, fGys x50 %5) = x) for (x),x,,%5) € R3, and then let
F = {x: diam(F U {x}) = d, and f(x) > f(y) for some y € &(F, x)},
F,=lx: diam(F, U {x}) = 4, and /(x) <f(y) for some y € £(F, x)},
Fy=F,nix: plx) € pl&(F,, y)] for all y € F, satisfying |q(x - y)| < 10744},
F =lx: dist(x, C) < (}(l[-f(Fs, <] + }(I[E(Fs, -x))/4},
F={x: dist(x, C) <H'[&(F , 2]}

Applying Lemma 4.5 we choose a € F for which A(F, a) = &, and let
M=F uix: 0</(x) - HIEFS, 2)1/2<1072°, g(x) € C and |qlx - a)] < 10772

We observe that since d < 10%, clearly M C E. Furthermore, to establish (6) it
need only be proven that

®) £2(M) < 2%(F ),
® b¥(F ) < bX(P),
(10) K2 2 2HA(F) + 3. 10~ 44H2(B)

since the inequalities (8), (9), (7), H2(F) < H2(E) < = and (10) then yield this
conclusion.

To obtain (8) we first define g: F5— Fg — F, ~ F, by glx)=p(x)/2 + q(x)
for x € Fg — F5 and observe that for x,,x, € Fg— Fy

2, A x|

(¢3)) = 12plg(x DI A glg(x )] + 2plg(x )] A qlg(x )] + glglx )] A gle(x )]
= (4]g(x,)) A g(x2)|2 - 3|4lg(= )1 A q[g(xz)llz)%.

Ve next take any u;,u, € M~ M and consider the following two possibilities:

If uj, u, € Fg = Fg then (@/4)|u; A u,| < 26%(F,) by (11).

On the other hand, suppose at least one of u,,u,, say u, for the sake of
argument, is not in Fg - F;. Then u, =v, + w,, u,=v, + w,, where v, €
é(Fs,a)~Fs, vy € Fg- F, |w|<2- 10-20, lw,| < 2+ 1029 together
these relations yield
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luy Auy| <lvyg Ayl + o, Awyl + v, Aw | + w; Aw,|

(12)
<lv,Av,l+6. 10~29 djam Fy<lv, Avyl+6. 10-19,

Finally, using (11) and the fact that (g(v,), g(v,)) ¢ A(F, a) by the choice of 4,
we find that

lv; A v,| <2(diam F)? - 7. 10719

and combine this with (12) to conclude (8).
To deduce (9) we let 0 = diam F,, take any x, y € F, and observe that

HIULEF S, 1 + HULEF 5, y)] < max {287 - |¢lx - )|?1%, 81

We then use this relation twice, the second time with x, y replaced by -x,~y,
and also the inequalities 8 < d, d* > 4/3, to conclude that

(diamLE(F,, ) U E(F,, Y2

< GOLEF, 01 + HUEE, D1+ HUEF,, -] + HILEE,, -»)D?/16

+ lqlx - )|
< max{8? - |q(x - y)|% 82/4} + |qlx - y)|2 < 2
To prove (10) we first note that clearly H2(F,) > H2(F) and that }(Z(Fs) =
2H2(F,) by [2, 2.10.45]. Hence it suffices to show that
(13) HAF,) > HA(F,) - 5. 107 *HX(B),
(14) HAM~ F) > 107K A(E).
To obtain these last two inequalities, we first show that if o and B are end-
points of £(F,, a) and &(F,, B) respectively, 7> 0, |g(a - B)| < r and
0 < |pla -P)| = minf|pla - 2)|: x€ &(F,, B},
then
(15) |pla - B)| < 27,
To establish (15) we choose y € F, satisfying |8~ | = d, and pla - B) - p(B-y)
>0, note that |p(8- y)| > 1/2 since d2 > 4/3, and then find that
@ 2la-y?=|la-p+(B-p?
>2pa-B) - p(B-P+2gla-B) - qB-1+18- A’
> |pla - B)| - 2r + 4.
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We then deduce (13) by using (15) with r = 107** to obtain that F,~ F is
contained in the union of 2+ 1044 elements of {(2 - 10~ 44, 22), and combining
this with Corollary 3.7.

To prove (14) we consider any b € Fq with |g(a - b)| < 10722 and apply
(15), first with r=10"%* and then with r= 10722 to obtain that

KR, o)) - HILE(F,, a)]
= HUE(F;, )] - HILE(F 5, @] + HILE(F,, - b)) - HILE(F,, -a))
<HLEF,, 0] - HIEF,, )+ HUIE(F,, -0)] - HI[E(F ), -@)] + 8- 10744
<9.10722,

Consequently, M ~ F contains an element of £(9 - 10-21, 11) and then (14) fol-
lows from Corollary 3.7.

5.4. Theorem. I 2(E) < H2(E).

Proof. Given any 8 > 0 choose a positive integer n satisfying 10~27+! < 3,
Since E is contained in the union of 10%” elements of £(8 - 10=2%, n), Theorem
5.3 and Lemma 3.5(ii), (iii) imply there exists a family W, consisting of 1047
nonempty closed subsets of E of diameter less than & such that

(16) T A9 <H(Uw)) - 10745%e).

Ser

Furthermore, since J2(E ~ UWI)S H2(E ~ le) and H2(E)> 0, there also
exists a countable family W, of nonempty closed sets of diameter less than &
covering E ~ U W, for which

(17) X AO<H(E~U wl) +5. 107 45KH2(E).
SeW2

Then W, UW, is a countable covering of E by nonempty closed sets of diameter
less than & which by (16) and (17) satisfies

Y A <(1-5.100Y)HXE),
SeruW2

hence J2(E)< (1 -5 - 1045)H?(E). Finally, this last inequality and Corollary
3.4 yield the desired conclusion.
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