A PROOF THAT \mathcal{H}^2 AND \mathcal{T}^2 ARE DISTINCT MEASURES (¹) BY

LAWRENCE R. ERNST

ABSTRACT. It is proven that there exists a subset E of \mathbb{R}^3 such that the two-dimensional \mathfrak{I} measure of E is less than its two-dimensional Hausdorff measure. E is the image under the usual isomorphism of $\mathbb{R} \times \mathbb{R}^2$ onto \mathbb{R}^3 of the Cartesian product of $\{x: -4 \le x \le 4\}$ and a Cantor type subset of \mathbb{R}^2 ; the latter term in this product is the intersection of a decreasing sequence, every member of which is the union of certain closed circular disks.

1. Introduction. To any positive integers m, n with $m \le n$ there correspond several *m*-dimensional measures over \mathbb{R}^n . These measures were studied extensively by H. Federer in [2]. Three of them are the *m*-dimensional Carathéodory, \mathcal{J} and Hausdorff measures, which are denoted by \mathcal{C}^m , \mathcal{J}^m and \mathcal{H}^m respectively. It is known that $\mathcal{C}^m(S) \le \mathcal{J}^m(S) \le \mathcal{H}^m(S)$ for all $S \subset \mathbb{R}^n$ and that $\mathcal{C}^m(S) = \mathcal{J}^m(S) =$ $\mathcal{H}^m(S)$ if m = 1, m = n, or S is *m*-rectifiable [2, 2.10.6, 2.10.4]. However, it was shown by G. Freilich [3] and E. F. Moore [4] that \mathcal{C}^2 and \mathcal{H}^2 are distinct measures over \mathbb{R}^3 ; more recently the author [1] established that \mathcal{C}^2 and \mathcal{I}^2 are also distinct over \mathbb{R}^3 .

In this paper we prove (Theorem 5.4) that there also exists $E \,\subset\, \mathbb{R}^3$ satisfying $\mathcal{J}^2(E) < \mathcal{H}^2(E)$. A precise definition of E is given in §2, but roughly this set is the image under the usual isomorphism of $\mathbb{R} \times \mathbb{R}^2$ onto \mathbb{R}^3 of the Cartesian product of $\{x: -4 \leq x \leq 4\}$ and a Cantor type subset of \mathbb{R}^2 ; the latter term in this product is the intersection of a decreasing sequence, every member of which is the union of certain closed circular disks.

2. Preliminaries. In general we adopt in this paper the notation and terminology of [2]. Presented in this section are additional definitions that we use.

Define $p: \mathbb{R}^3 \to \mathbb{R}^3$, $q: \mathbb{R}^3 \to \mathbb{R}^3$, $\iota: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^3$, $p(x_1, x_2, x_3) = (x_1, 0, 0)$, $q(x_1, x_2, x_3) = (0, x_2, x_3)$, $\iota(x_1, (x_2, x_3)) = (x_1, x_2, x_3)$ for $x_1, x_2, x_3 \in \mathbb{R}$.

AMS (MOS) subject classifications (1970). Primary 28A10, 28A75.

Copyright © 1974, American Mathematical Society

Received by the editors July 11, 1973.

Key words and phrases. m-dimensional measures, two-dimensional I measure, twodimensional Hausdorff measure, Cantor type subsets.

⁽¹⁾ Research supported by a grant from the City University of New York Faculty Research Award Program.

To define E first inductively define families G_0, G_1, G_2, \cdots of closed circular disks contained in $\mathbb{R}^2 = \mathbb{C}$ by taking

$$G_0 = \{\mathbf{B}(0, \frac{1}{2})\},\$$

$$G_n = \{B[z + 0.99r \exp(0.02\pi ki), 0.01r]: B(z, r) \in G_{n-1}, k = 1, \dots, 100\}$$

for $n \ge 1$; then let $E = \iota(\{x: -4 \le x \le 4\} \times \bigcap_{n=0}^{\infty} \bigcup G_n)$. Let C = q(E), $K_n = \{\iota(\{0\} \times S): S \in G_n\}$.

For $a \ge 0$, *n* a nonnegative integer define

$$\zeta(\alpha, n) = \{q^{-1}(C) \cap \iota(\{x: \beta \leq x \leq \beta + \alpha\} \times S): \beta \in \mathbb{R}, S \in G_n\}$$

If $S \subseteq E$ and diam q(S) > 0, then let

$$\eta(S) = \sup \{n: q(S) \subset T \text{ for some } T \in K_n\}$$

and take $\mu(S)$ to be that element of $K_{\eta(S)}$ containing q(S). For $S \subseteq \mathbb{R}^3$, $a \in \mathbb{R}^3$ define $\xi(S, a) = S \cap q^{-1}\{q(a)\}$. Let $S - T = \{x - y: x \in S, y \in T\}$ for $S, T \subseteq \mathbb{R}^n$. Finally, for $\emptyset \neq S \subseteq \mathbb{R}^n$ let $b^1(S) = \text{diam } S, \quad b^2(S) = (\pi/4)(\text{diam } S)^2$ and $t^2(S) = (\pi/4) \sup\{|(a_1 - b_1) \land (a_2 - b_2)|: a_1, b_1, a_2, b_2 \in S\}$.

These are the gauge functions used in defining \mathcal{H}^1 , \mathcal{H}^2 and \mathcal{I}^2 , respectively [2, 2.10.1-2.10.3].

3. Some lemmas. We prove here several results for use in §5.

3.1. Lemma. If $D \subseteq K_n$, $2 \leq \text{card } D \leq 51$ and $\eta(\bigcup D) = n - 1$, then there exist $A, B \in D$ such that

dist (A, B) >
$$10^{-2n}(99 \sin[(\text{card } D - 1)0.01\pi] - 1)$$
.

Proof. The conclusion follows from the observation that for some $A, B \in D$ the distance between the centers of A and B is at least $10^{-2n}99 \sin[(\text{card } D - 1)0.01\pi]$.

3.2. Lemma. If $A \subseteq E$ and diam q(A) > 0, then $\mathcal{H}^1[q(A)] \leq \text{diam } \mu(A)$.

Proof. For any integer $m \ge \eta(A)$ we let $W_m = K_m \cap \{S: S \cap q(A)\} \ne \emptyset$ and obtain our assertion by noting that $q(A) \subset \bigcup W_m$ and $\sum_{S \in W_m} b^1(S) \le 10^{-2\eta(A)} = \text{diam } \mu(A)$.

3.3. Lemma. $\mathcal{H}^1(C) > 0$.

Proof. Consider any countable covering of C consisting of nonempty subsets of C that are open in C and let W be a finite subcovering. Since $\{\mu(S): S \in W\}$ is a

covering of C, and $T \cap C \neq \emptyset$ for any $T \in \bigcup_{i=1}^{\infty} K_i$, it follows that $\sum_{S \in W} 10^{-2\eta(S)} \ge 1$. Using this result, Lemma 3.1, and the fact that $\operatorname{card}(K_{\eta(S)+1} \cap \{T: T \cap S \neq \emptyset\}) \ge 2$ for all $S \in W$, we deduce that

$$\sum_{S \in W} b^{1}(S) \ge \sum_{S \in W} 10^{-2\eta(S) - 2} [99 \sin(0.01\pi) - 1] \ge 0.99 \sin(0.01\pi) - 0.01;$$

hence $\mathcal{H}^1(C) > 0$.

3.4. Corollary. $0 < \mathcal{H}^2(E) < \infty$.

Proof. We combine Lemmas 3.2, 3.3 and [2, 2.10.45].

3.5. Lemma. If $A_1 \in \zeta(\alpha, n)$, $A_2 \in \zeta(10^{2(n-m)}\alpha, m)$, and B_1 is a nonempty closed subset of A_1 , then there exists a closed subset B_2 of A_2 such that

- (i) $b^{2}(B_{2}) = 10^{4(n-m)}b^{2}(B_{1}),$
- (ii) $t^2(B_2) = 10^{4(n-m)}t^2(B_1)$,
- (iii) $\mathfrak{H}^{2}(B_{2}) = 10^{4(n-m)} \mathfrak{H}^{2}(B_{1}).$

Proof. Let c_j denote the center of A_j for j = 1, 2. Let $j: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $f(x) = 10^{2(n-m)}(x-c_1) + c_2$ for $x \in \mathbb{R}^3$. Let $B_2 = f(B_1)$. Then clearly (i) and (ii) hold. Furthermore, since Lip $f = 10^{2(n-m)} = 1/\text{Lip}(f^{-1})$, (iii) follows from [2, 2.10.11].

3.6. Corollary. If $A \in \zeta(8 \cdot 10^{-2n}, n)$, B_1 is a closed subset of A and $b^2(B_1) > 0$, then there exists a closed subset B_2 of E such that $\eta(B_2) = 0$ and

$$\mathfrak{H}^{2}(B_{2})/b^{2}(B_{2}) = \mathfrak{H}^{2}(B_{1})/b^{2}(B_{1}).$$

3.7. Corollary. If $A \in \zeta(\alpha, n)$ then $\mathcal{H}^2(A) = 10^{-2n} \alpha \mathcal{H}^2(E)/8$.

Proof. We note that $\mathcal{H}^2(S) = 10^{-4n} \mathcal{H}^2(E)$ for $S \in \zeta(8 \cdot 10^{-2n}, n)$ by Lemma 3.5(iii), and combine this with [2, 2.10.45] to obtain our conclusion.

4. A key lemma. Our main goal here is to prove Lemma 4.5 for later use in the proof of Theorem 5.3. Throughout this section we assume that $A \subseteq E$ is such that q(A) = C, and $-x \in A$ for all $x \in A$, and let d = diam A.

4.1. Notation. For $a \in S \subseteq E$ let

 $\lambda(S, a) = \{(u, v): u \in \xi(S, a) - S, v \in S - S \}$

 $|u \wedge v| \ge (\text{diam } S)^2 - 10^{-18} \text{ and } |q(u) \wedge q(v)| \le 10^{-9} \text{ diam } S$.

4.2. Remark. If $a \in S \subseteq E$ and $(v_1, v_2) \in \lambda(S, a)$, then $|v_j|^2 \ge (\text{diam } S)^2 = 2 \cdot 10^{-18}$ for j = 1, 2.

4.3. Lemma. If $a_1, a_2, b_1, b_2 \in A$, $(v_1, v_2) = (a_1 - b_1, a_2 - b_2) \in \lambda(A, a_1)$, and j = 1 or j = 2, then L. R. ERNST

(i)
$$|q(2a_j) - q(v_j)| \le 2 \cdot 10^{-9},$$

(ii)
$$||q(2a_j)|^2 - |q(v_j)|^2| \le 10^{-8}.$$

Proof. It follows from Remark 4.2 that

$$2a_{j} \cdot b_{j} = |a_{j}|^{2} + |b_{j}|^{2} - |v_{j}|^{2} \le |a_{j}|^{2} + |b_{j}|^{2} - d^{2} + 2 \cdot 10^{-18}.$$

Furthermore, since $-a_j, -b_j \in A$ we have that $|a_j| \leq d/2$, $|b_j| \leq d/2$. Together these results yield (i) because

$$|2a_j - v_j|^2 = |a_j + b_j|^2 = |a_j|^2 + 2a_j \cdot b_j + |b_j|^2 \le 2 \cdot 10^{-18}.$$

We then deduce (ii) immediately from (i) by noting that

$$||q(2a_j)|^2 - |q(v_j)|^2| \le |q(2a_j) + q(v_j)| \cdot |q(2a_j) - q(v_j)| \le 10^{-8}.$$

4.4. Lemma. If $(v_1, v_2) \in \lambda(A, a)$ for some $a \in A$, then

$$||q(v_1)|^2 + |q(v_2)|^2 - d^2| \le 3 \cdot 10^{-6}.$$

Proof. From Remark 4.2, the inequality $d \leq 10$ and the definition of $\lambda(A, a)$ we obtain that

$$\begin{split} |p(v_1) \cdot p(v_2)|^2 &\leq [d^2 - |q(v_1)|^2][d^2 - |q(v_2)|^2] \\ &\leq [|p(v_1)|^2 + 2 \cdot 10^{-18}] [|p(v_2)|^2 + 2 \cdot 10^{-18}] \\ &\leq |p(v_1) \cdot p(v_2)|^2 + 5 \cdot 10^{-16}, \\ |[|q(v_1)| \cdot |q(v_2)|]^2 - |q(v_1) \cdot q(v_2)|^2| = |q(v_1) \wedge q(v_2)|^2 \leq 10^{-16}, \\ |v_1 \cdot v_2| &= [(|v_1| \cdot |v_2|)^2 - |v_1 \wedge v_2|^2]^{\frac{1}{2}} \leq 2^{\frac{1}{2}} 10^{-8}. \end{split}$$

We then use these results and the fact that $1 \le d \le 10$ to conclude that

$$\begin{aligned} ||q(v_1)|^2 + |q(v_2)|^2 - d^2| \\ &\leq |[d^2 - |q(v_1)|^2][d^2 - |q(v_2)|^2] - [|q(v_1)| \cdot |q(v_2)|]^2| \\ &\leq ||p(v_1) \cdot p(v_2)|^2 - |q(v_1) \cdot q(v_2)|^2| + 6 \cdot 10^{-16} \\ &= |v_1 \cdot v_2| \cdot |p(v_1) \cdot p(v_2) - q(v_1) \cdot q(v_2)| + 6 \cdot 10^{-16} \leq 3 \cdot 10^{-6}. \end{aligned}$$

4.5. Lemma. $\lambda(A, a) = \emptyset$ for some $a \in A$.

Proof. Choose α , β , $\gamma \in A$ satisfying $q(\alpha) = (0, 0.5, 0)$, $q(\beta) = (0, 0.49, 0)$, $q(\gamma) = (0, 0.4999, 0)$. We will obtain our conclusion by showing that if there exist $(u_1, u_2) \in \lambda(A, \alpha)$, $(v_1, v_2) \in \lambda(A, \beta)$, then $\lambda(A, \gamma) = \emptyset$.

366

To prove this we first note that $0.98 \le |q(2x)| \le 1$ for all $x \in A$ and then apply Lemmas 4.4, 4.3(ii) to obtain that

(1)
$$d^2 \ge |q(u_1)|^2 + |q(u_2)|^2 - 3 \cdot 10^{-6} \ge 1.9603969,$$

(2)
$$d^2 \le |q(v_1)|^2 + |q(v_2)|^2 + 3 \cdot 10^{-6} \le 1.9604031.$$

Next take any $\sigma = (\sigma_1, \sigma_2, \sigma_3) \in \xi(A, \gamma) - A, \ \delta \in A, \ \tau = (\tau_1, \tau_2, \tau_3) \in \xi(A, \delta)$ - A. To establish that $(\sigma, \tau) \notin \lambda(A, \gamma)$ we observe that if $|q(2\delta)| \leq 0.9802$ then

$$||q(\sigma)|^2 + |q(\tau)|^2 - d^2| \ge 4 \cdot 10^{-6}$$

by Lemma 4.3(ii) and (1), while if $|q(2\delta)| \ge 0.9998$ then Lemma 4.3(ii) and (2) yield the same conclusion; in either case $(\sigma, \tau) \notin \lambda(A, \gamma)$ by Lemma 4.4. On the other hand, if $0.9802 < |q(2\delta)| < 0.9998$, then Lemma 4.3(i) and the fact that $q(\delta)$ is not in any element of K_2 nearest to or furthest away from the origin are used to obtain that

$$|\tau_3| \ge 10^{-2} \sin(2 \cdot 10^{-2} \pi) - 2 \cdot 10^{-4} \ge 4 \cdot 10^{-4};$$

furthermore Lemma 4.3(i) also implies that $|\sigma_2| \ge 0.9997$, $|\sigma_3| \le 2 \cdot 10^{-9}$; consequently $(\sigma, \tau) \notin \lambda(A, \gamma)$ in this case either since $|q(\sigma) \land q(r)| \ge 10^{-4}$.

5. Final results. Our main conclusion is Theorem 5.4. This result follows principally from Theorem 5.3, which in turn depends on Lemmas 4.5, 5.1 and 5.2.

5.1. Lemma. If A is a closed subset of E, diam q(A) > 0 and diam $\mu(A) \le [\text{diam } p(A)]/3$, then $\mathfrak{f}(^2(A) \le 2b^2(A)/3$.

Proof. We use [2, 2.10.45] and Lemma 3.2 to obtain that $\mathcal{H}^2(A) \leq (\pi/2)\mathcal{H}^1[p(A)]\mathcal{H}^1[q(A)] \leq (\pi/2)\mathcal{H}^1[p(A)] \operatorname{diam} \mu(A) \leq 2h^2(A)/3.$

5.2. Lemma. If A is a closed subset of E, diam q(A) > 0 and $(\text{diam } A)^2 \le 4 \cdot 10^{-2\eta(A)}/3$, then $\mathcal{H}^2(A)/b^2(A) \le 0.992$.

Proof. By Lemma 5.1 we may assume that diam $\mu(A) > [\text{diam } p(A)]/3$ and then by Corollary 3.6 further assume that $\eta(A) = 0$.

Let d = diam A, $W = K_1 \cap \{S: S \cap q(A) \neq \emptyset\}$. Define $\psi(S) = p[q^{-1}(S) \cap A]$ for $S \in W$. Applying [2, 2.10.45] and Lemma 3.2 we then have that

(3)
$$\mathcal{H}^{2}(A)/b^{2}(A) \leq \frac{\pi}{2} \sum_{S \in W} \frac{\mathcal{H}^{1}[\psi(S)]\mathcal{H}^{1}[S \cap q(A)]}{b^{2}(A)} \leq 0.02 \sum_{S \in W} \frac{\mathcal{H}^{1}[\psi(S)]}{d^{2}}.$$

Let $n = \operatorname{card} W$. Let *m* be the greatest integer not exceeding n/2. Define $\rho(x) = 0.99 \sin(0.01\pi x) - 0.01$ for $x \in \mathbb{R}$. Using Lemma 3.1 we deduce that if S_1, \dots, S_{2m} is a sequence of distinct elements of *W* arranged in clockwise order, then

L. R. ERNST

(4)
$$\mathfrak{f}({}^{1}[\psi(S_{i})] + \mathfrak{f}({}^{1}[\psi(S_{i+m})] \leq 2(d^{2} - [\rho(m)]^{2})^{\frac{1}{2}} \text{ for } i = 1, \cdots, m.$$

Furthermore, by Lemma 3.1 there exists $S \in W$ such that

(5)
$$\mathfrak{H}^{1}[\psi(S)] \leq (d^{2} - [\rho(n-1)]^{2})^{\frac{1}{2}}.$$

At this point we divide the proof into several cases and subcases, in each of which we show that $\mathcal{H}^2(A)/b^2(A) \leq 0.992$.

We first consider the following two cases:

Case I. n = 3. The desired result is obtained by first observing that (3), (4) and (5) imply

$$\mathfrak{H}^{2}(A)/b^{2}(A) \leq [0.04(d^{2} - [\rho(1)]^{2})^{\frac{1}{2}}/d^{2}] + [0.02(d^{2} - [\rho(2)]^{2})^{\frac{1}{2}}/d^{2}]$$

and then maximizing separately both terms of the right-hand side of this inequality with respect to d for $d \ge \rho(2)$.

Case II. $n \neq 3$. Define $f: \mathbb{R} \cap \{x: x \ge \rho(m)\} \to \mathbb{R}$, $f(x) = 0.02n(x^2 - [\rho(m)]^2)^{\frac{1}{2}}/x^2$ for $x \ge \rho(m)$. We use (3), (4) and for n odd also (5) to obtain $\mathcal{H}^2(A)/h^2(A) \le f(d)$ and further observe that the absolute maximum for f occurs at $2^{\frac{1}{2}}\rho(m)$ and f is increasing on $\{x: \rho(m) \le x \le 2^{\frac{1}{2}}\rho(m)\}$. Then we divide the remainder of the proof into the following three subcases:

Case II.A. $2 \le n \le 96$ and *n* is even. Let $g: \mathbb{R} \cap \{x: \rho(x/2) \ne 0\} \rightarrow \mathbb{R}$, $g(x) = 0.01 x/\rho(x/2)$ whenever $\rho(x/2) \ne 0$. Our conclusion is obtained by noting that $g(n) = f[2^{1/2}\rho(m)]$, g has no relative maximum on $\{x: 2 \le x \le 96\}$, $g(2) \le 0.95$ and $g(96) \le 0.99$.

Case II.B. $5 \le n \le 97$ and n is odd. Let $g: \mathbb{R} \cap \{x: \rho[(x-1)/2] \ne 0\} \rightarrow \mathbb{R}$, $g(x) = 0.01x/\rho[(x-1)/2]$ whenever $\rho[(x-1)/2] \ne 0$ and proceed as in Case II.A.

Case II.C. n = 98, 99, or 100. We observe that $f[(4/3)^{\frac{1}{2}}] \ge f(d)$ because $d \le (4/3)^{\frac{1}{2}} \le 2^{\frac{1}{2}}\rho(m)$, and compute $f[(4/3)^{\frac{1}{2}}] \le 0.91$ for n = 98, 99, 100.

5.3. Theorem. There exists a nonempty closed subset M of E such that

(6)
$$t^{2}(M) < \mathcal{H}^{2}(M) - 10^{-44}\mathcal{H}^{2}(E)$$

Proof. By Corollary 3.4 and the definition of \mathcal{H}^2 there exists a countable covering W of E consisting of nonempty closed subsets of E for which

$$0 < \sum_{S \in W} b^{2}(S) \leq (1 + 10^{-44}) \mathcal{H}^{2}(E) \leq (1 + 10^{-44}) \sum_{S \in W} \mathcal{H}^{2}(S);$$

hence there exists a nonempty closed subset F of E satisfying

(7)
$$0 < b^{2}(F) < (1 + 10^{-44}) \mathfrak{f}(^{2}(F).$$

368

Furthermore, it follows from Lemma 5.1 and Corollary 3.6 that we may assume $\eta(F) = 0$.

Next, let d = diam F. We note that Lemmas 5.1, 5.2 imply $10 \ge d^2 \ge 4/3$. Define /: $\mathbb{R}^3 \to \mathbb{R}$, $f(x_1, x_2, x_3) = x_1$ for $(x_1, x_2, x_3) \in \mathbb{R}^3$, and then let

$$\begin{split} F_1 &= \{x: \operatorname{diam}(F \cup \{x\}) = d, \text{ and } f(x) \ge f(y) \text{ for some } y \in \xi(F, x)\}, \\ F_2 &= \{x: \operatorname{diam}(F_1 \cup \{x\}) = d, \text{ and } f(x) \le f(y) \text{ for some } y \in \xi(F_1, x)\}, \\ F_3 &= F_2 \cap \{x: \ p(x) \in p[\xi(F_2, y)] \text{ for all } y \in F_2 \text{ satisfying } |q(x - y)| \le 10^{-44}\}, \\ F_4 &= \{x: \ \operatorname{dist}(x, C) \le (J({}^1[\xi(F_3, x)] + J({}^1[\xi(F_3, -x)])/4], \\ F_5 &= \{x: \ \operatorname{dist}(x, C) \le J({}^1[\xi(F_4, x)]\}. \end{split}$$

Applying Lemma 4.5 we choose $a \in F_4$ for which $\lambda(F_4, a) = \emptyset$, and let $M = F_5 \cup \{x: 0 \le f(x) - \frac{1}{2} [\xi(F_5, a)]/2 \le 10^{-20}, q(x) \in C \text{ and } |q(x - a)| \le 10^{-22} \}.$ We observe that since $d \le 10^{\frac{1}{2}}$, clearly $M \subseteq E$. Furthermore, to establish (6) it need only be proven that

(8)
$$t^2(M) \leq 2b^2(F_4),$$

(9)
$$b^2(F_4) \le b^2(F),$$

(10)
$$\mathcal{H}^{2}(M) \geq 2\mathcal{H}^{2}(F) + 3 \cdot 10^{-44} \mathcal{H}^{2}(E)$$

since the inequalities (8), (9), (7), $\mathcal{H}^2(F) \leq \mathcal{H}^2(E) < \infty$ and (10) then yield this conclusion.

To obtain (8) we first define $g: F_5 - F_5 \rightarrow F_4 - F_4$ by g(x) = p(x)/2 + q(x)for $x \in F_5 - F_5$ and observe that for $x_1, x_2 \in F_5 - F_5$

$$|x_1 \wedge x_2|$$
(11)
$$= |2p[g(x_1)] \wedge q[g(x_2)] + 2p[g(x_2)] \wedge q[g(x_1)] + q[g(x_1)] \wedge q[g(x_2)]|$$

$$= (4|g(x_1) \wedge g(x_2)|^2 - 3|q[g(x_1)] \wedge q[g(x_2)]|^2)^{\frac{1}{2}}.$$

We next take any $u_1, u_2 \in M - M$ and consider the following two possibilities: If $u_1, u_2 \in F_5 - F_5$ then $(\pi/4)|u_1 \wedge u_2| \le 2b^2(F_4)$ by (11).

On the other hand, suppose at least one of u_1, u_2 , say u_1 for the sake of argument, is not in $F_5 - F_5$. Then $u_1 = v_1 + w_1$, $u_2 = v_2 + w_2$, where $v_1 \in \xi(F_5, a) - F_5$, $v_2 \in F_5 - F_5$, $|w_1| \le 2 \cdot 10^{-20}$, $|w_2| \le 2 \cdot 10^{-20}$; together these relations yield

L. R. ERNST

(12)
$$\begin{aligned} |u_1 \wedge u_2| &\leq |v_1 \wedge v_2| + |v_1 \wedge w_2| + |v_2 \wedge w_1| + |w_1 \wedge w_2| \\ &\leq |v_1 \wedge v_2| + 6 \cdot 10^{-20} \operatorname{diam} F_5 \leq |v_1 \wedge v_2| + 6 \cdot 10^{-19}. \end{aligned}$$

Finally, using (11) and the fact that $(g(v_1), g(v_2)) \notin \lambda(F_4, a)$ by the choice of a, we find that

$$|v_1 \wedge v_2| \le 2(\text{diam } F_4)^2 - 7 \cdot 10^{-19}$$

and combine this with (12) to conclude (8).

To deduce (9) we let $\delta = \text{diam } F_3$, take any $x, y \in F_4$ and observe that

 $\Re^{1}[\xi(F_{3}, x)] + \Re^{1}[\xi(F_{3}, y)] \leq \max\{2[\delta^{2} - |q(x - y)|^{2}]^{\frac{1}{2}}, \delta\}.$

We then use this relation twice, the second time with x, y replaced by -x, -y, and also the inequalities $\delta \le d$, $d^2 \ge 4/3$, to conclude that

$$(\operatorname{diam}[\xi(F_4, x) \cup \xi(F_4, y)])^2 \le (\mathcal{H}^1[\xi(F_3, x)] + \mathcal{H}^1[\xi(F_3, y)] + \mathcal{H}^1[\xi(F_3, -x)] + \mathcal{H}^1[\xi(F_3, -y)])^2/16 + |q(x - y)|^2 \le \max\{\delta^2 - |q(x - y)|^2, \, \delta^2/4\} + |q(x - y)|^2 \le d^2.$$

To prove (10) we first note that clearly $\mathcal{H}^2(F_2) \geq \mathcal{H}^2(F)$ and that $\mathcal{H}^2(F_5) = 2\mathcal{H}^2(F_3)$ by [2, 2.10.45]. Hence it suffices to show that

(13)
$$\mathfrak{H}^{2}(F_{3}) \geq \mathfrak{H}^{2}(F_{2}) - 5 \cdot 10^{-45} \mathfrak{H}^{2}(E),$$

(14)
$$\mathcal{H}^2(M \sim F_5) \ge 10^{-43} \mathcal{H}^2(E)$$

To obtain these last two inequalities, we first show that if α and β are endpoints of $\xi(F_2, \alpha)$ and $\xi(F_2, \beta)$ respectively, r > 0, $|q(\alpha - \beta)| \le r$ and

$$0 < |p(\alpha - \beta)| = \min\{|p(\alpha - x)|: x \in \xi(F_2, \beta)\},\$$

then

$$|p(\alpha - \beta)| \leq 2r.$$

To establish (15) we choose $\gamma \in F_2$ satisfying $|\beta - \gamma| = d$, and $p(\alpha - \beta) \cdot p(\beta - \gamma) \ge 0$, note that $|p(\beta - \gamma)| \ge 1/2$ since $d^2 \ge 4/3$, and then find that

$$d^{2} \geq |\alpha - \gamma|^{2} = |(\alpha - \beta) + (\beta - \gamma)|^{2}$$

$$\geq 2p(\alpha - \beta) \cdot p(\beta - \gamma) + 2q(\alpha - \beta) \cdot q(\beta - \gamma) + |\beta - \gamma|^{2}$$

$$\geq |p(\alpha - \beta)| - 2r + d^{2}.$$

370

We then deduce (13) by using (15) with $r = 10^{-44}$ to obtain that $F_2 \sim F_3$ is contained in the union of $2 \cdot 10^{44}$ elements of $\zeta(2 \cdot 10^{-44}, 22)$, and combining this with Corollary 3.7.

To prove (14) we consider any $b \in F_5$ with $|q(a-b)| \le 10^{-22}$ and apply (15), first with $r = 10^{-44}$ and then with $r = 10^{-22}$ to obtain that

$$\begin{aligned} &\mathcal{H}^{1}[\xi(F_{5}, b)] - \mathcal{H}^{1}[\xi(F_{5}, a)] \\ &= \mathcal{H}^{1}[\xi(F_{3}, b)] - \mathcal{H}^{1}[\xi(F_{3}, a)] + \mathcal{H}^{1}[\xi(F_{3}, -b)] - \mathcal{H}^{1}[\xi(F_{3}, -a)] \\ &\leq \mathcal{H}^{1}[\xi(F_{2}, b)] - \mathcal{H}^{1}[\xi(F_{2}, a)] + \mathcal{H}^{1}[\xi(F_{2}, -b)] - \mathcal{H}^{1}[\xi(F_{2}, -a)] + 8 \cdot 10^{-44} \\ &\leq 9 \cdot 10^{-22}. \end{aligned}$$

Consequently, $M \sim F_5$ contains an element of $\zeta(9 \cdot 10^{-21}, 11)$ and then (14) follows from Corollary 3.7.

5.4. Theorem. $\mathcal{J}^{2}(E) < \mathfrak{f}^{2}(E)$.

Proof. Given any $\delta > 0$ choose a positive integer *n* satisfying $10^{-2n+1} < \delta$. Since *E* is contained in the union of 10^{4n} elements of $\zeta(8 \cdot 10^{-2n}, n)$, Theorem 5.3 and Lemma 3.5(ii), (iii) imply there exists a family W_1 consisting of 10^{4n} nonempty closed subsets of *E* of diameter less than δ such that

(16)
$$\sum_{S \in W_1} t^2(S) \le \mathcal{H}^2\left(\bigcup W_1\right) - 10^{-44} \mathcal{H}^2(E).$$

Furthermore, since $\mathcal{J}^2(E \sim \bigcup W_1) \leq \mathcal{H}^2(E \sim \bigcup W_1)$ and $\mathcal{H}^2(E) > 0$, there also exists a countable family W_2 of nonempty closed sets of diameter less than δ covering $E \sim \bigcup W_1$ for which

(17)
$$\sum_{S \in W_2} t^2(S) \le \mathcal{H}^2\left(E \sim \bigcup W_1\right) + 5 \cdot 10^{-45} \mathcal{H}^2(E).$$

Then $W_1 \cup W_2$ is a countable covering of E by nonempty closed sets of diameter less than δ which by (16) and (17) satisfies

$$\sum_{S \in W_1 \cup W_2} t^2(S) \le (1 - 5 \cdot 10^{-45}) \mathfrak{f}(^2(E);$$

hence $\mathcal{J}^2(E) \leq (1-5 \cdot 10^{-45}) \mathcal{H}^2(E)$. Finally, this last inequality and Corollary 3.4 yield the desired conclusion.

L.R. ERNST

REFERENCES

1. L. R. Ernst, A proof that C^2 and T^2 are distinct measures, Trans. Amer. Math. Soc. 173 (1972), 501-508.

2. H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976.

3. G. Freilich, On the measure of cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232-275. MR 12, 324.

4. E. F. Moore, Convexly generated k-dimensional measures, Proc. Amer. Math. Soc. 2 (1951), 597-606. MR 13, 218.

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE, CITY UNIVERSITY OF NEW YORK, FLUSHING, NEW YORK 11367