A PROOF THAT \mathcal{H}^{2} AND \mathcal{T}^{2} ARE DISTINCT MEASURES $\left({ }^{1}\right)$

BY

LAWRENCE R. ERNST

Abstract

It is proven that there exists a subset E of $\mathbf{R}^{\mathbf{3}}$ such that the two-dimensional \mathcal{I} measure of E is less than its two-dimensional Hausdorff measure. E is the image under the usual isomorphism of $\mathbf{R} \times \mathbf{R}^{\mathbf{2}}$ onto $\mathbf{R}^{\mathbf{3}}$ of the Cartesian product of $\{x:-4 \leq x \leq 4\}$ and a Cantor type subset of R^{2}; the latter term in this product is the intersection of a decreasing sequence, every member of which is the union of certain closed circular disks.

1. Introduction. To any positive integers m, n with $m \leq n$ there correspond several m-dimensional measures over $\mathbf{R}^{\boldsymbol{n}}$. These measures were studied extensively by H. Federer in [2]. Three of them are the m-dimensional Carathéodory, \mathcal{J} and Hausdorff measures, which are denoted by $\mathcal{C}^{m}, \mathfrak{J}^{m}$ and \mathcal{H}^{m} respectively. It is known that $\mathcal{C}^{m}(S) \leq \mathcal{J}^{m}(S) \leq \mathcal{H}^{m}(S)$ for all $S \subset \mathbf{R}^{n}$ and that $\mathcal{C}^{m}(S)=\mathcal{J}^{m}(S)=$ $\mathcal{H}^{m}(S)$ if $m=1, m=n$, or S is m-rectifiable $[2,2.10 .6,2.10 .4]$. However, it was shown by G. Freilich [3] and E. F. Moore [4] that \mathcal{C}^{2} and \mathcal{H}^{2} are distinct measures over R^{3}; more recently the author [1] established that C^{2} and \mathcal{J}^{2} are also distinct over \mathbf{R}^{3}.

In this paper we prove (Theorem 5.4) that there also exists $E \subset \mathbf{R}^{3}$ satisfying $\mathcal{J}^{2}(E)<\mathcal{H}^{2}(E)$. A precise definition of E is given in $\delta 2$, but roughly this set is the image under the usual isomorphism of $\mathbf{R} \times \mathbf{R}^{\mathbf{2}}$ onto $\mathbf{R}^{\mathbf{3}}$ of the Cartesian product of $\{x:-4 \leq x \leq 4\}$ and a Cantor type subset of R^{2}; the latter term in this product is the intersection of a decreasing sequence, every member of which is the union of certain closed circular disks.
2. Preliminaries. In general we adopt in this paper the notation and terminology of [2]. Presented in this section are additional definitions that we use.

Define $p: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}, q: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}, \iota: \mathbf{R} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}, p\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0,0\right)$, $q\left(x_{1}, x_{2}, x_{3}\right)=\left(0, x_{2}, x_{3}\right), \iota\left(x_{1},\left(x_{2}, x_{3}\right)\right)=\left(x_{1}, x_{2}, x_{3}\right)$ for $x_{1}, x_{2}, x_{3} \in \mathbf{R}$.

[^0]To define E first inductively define families $G_{0}, G_{1}, G_{2}, \ldots$ of closed circular disks contained in $\mathbf{R}^{\mathbf{2}}=\mathbf{C}$ by taking

$$
\begin{gathered}
G_{0}=\{\mathrm{B}(0,1 / 2)\} \\
G_{n}=\left\{\mathrm{B}[z+0.99 r \exp (0.02 \pi k \mathrm{i}), 0.01 r]: \mathrm{B}(z, r) \in G_{n-1}, k=1, \ldots, 100\right\}
\end{gathered}
$$

for $n \geq 1$; then let $E=\iota\left(\{x:-4 \leq x \leq 4\} \times \bigcap_{n=0}^{\infty} \cup G_{n}\right)$.
Let $C=q(E), K_{n}=\left\{c(\{0\} \times S): S \in G_{n}\right\}$.
For $a \geq 0, n$ a nonnegative integer define

$$
\zeta(\alpha, n)=\left\{q^{-1}(C) \cap \triangleleft(\{x: \beta \leq x \leq \beta+\alpha\} \times S): \beta \in \mathbf{R}, S \in G_{n}\right\}
$$

If $S \subset E$ and $\operatorname{diam} q(S)>0$, then let

$$
\eta(S)=\sup \left\{n: q(S) \subset T \text { for some } T \in K_{n}\right\}
$$

and take $\mu(S)$ to be that element of $K_{\eta(S)}$ containing $q(S)$.
For $S \subset \mathbf{R}^{3}, a \in \mathbf{R}^{3}$ define $\xi(S, a)=S \cap q^{-1}\{q(a)\}$.
Let $S-T=\{x-y: x \in S, y \in T\}$ for $S, T \subset R^{n}$.
Finally, for $\varnothing \neq S \subset R^{n}$ let

$$
\begin{aligned}
& b^{1}(S)=\operatorname{diam} S, \quad b^{2}(S)=(\pi / 4)(\operatorname{diam} S)^{2} \quad \text { and } \\
& t^{2}(S)=(\pi / 4) \sup \left\{\left|\left(a_{1}-b_{1}\right) \wedge\left(a_{2}-b_{2}\right)\right|: a_{1}, b_{1}, a_{2}, b_{2} \in S\right\} .
\end{aligned}
$$

These are the gauge functions used in defining $\mathcal{H}^{1}, \mathcal{H}^{2}$ and \mathscr{J}^{2}, respectively [2, 2.10.1-2.10.3].
3. Some lemmas. We prove here several results for use in $\oint 5$.
3.1. Lemma. If $D \subset K_{n}, 2 \leq \operatorname{card} D \leq 51$ and $\eta(\cup D)=n-1$, then there exist $A, B \in D$ sucb tbat

$$
\operatorname{dist}(A, B) \geq 10^{-2 n}(99 \sin [(\operatorname{card} D-1) 0.01 \pi]-1)
$$

Proof. The conclusion follows from the observation that for some $A, B \in D$ the distance between the centers of A and B is at least $10^{-2 n} 99 \sin [(\operatorname{card} D-1) 0.01 \pi]$.
3.2. Lemma. If $A \subset E$ and $\operatorname{diam} q(A)>0$, then $\mathcal{H}^{1}[q(A)] \leq \operatorname{diam} \mu(A)$.

Proof. For any integer $m \geq \eta(A)$ we let $W_{m}=K_{m} \cap\{S: S \cap q(A)\} \neq \varnothing$ and obtain our assertion by noting that $q(A) \subset \bigcup W_{m}$ and $\Sigma_{S \in W_{m}} b^{1}(S) \leq 10^{-2 \eta(A)}=$ $\operatorname{diam} \mu(A)$.
3.3. Lemma. $\mathcal{H}^{1}(C)>0$.

Proof. Consider any countable covering of C consisting of nonempty subsets of C that are open in C and let W be a finite subcovering. Since $\{\mu(S): S \in W\}$ is a
covering of C, and $T \cap C \neq \varnothing$ for any $T \in \bigcup_{i=1}^{\infty} K_{i}$, it follows that $\Sigma_{S \in W^{1}} 0^{-2 \eta(S)}$ ≥ 1. Using this result, Lemma 3.1, and the fact that $\operatorname{card}\left(K_{\eta(S)+1} \cap\{T: T \cap S \neq \varnothing)\right.$ ≥ 2 for all $S \in W$, we deduce that

$$
\sum_{S \in W} b^{1}(S) \geq \sum_{S \in W} 10^{-2 \eta(S)-2}[99 \sin (0.01 \pi)-1] \geq 0.99 \sin (0.01 \pi)-0.01 ;
$$

hence $\mathcal{H}^{1}(C)>0$.
3.4. Corollary. $0<\mathcal{H}^{2}(E)<\infty$.

Proof. We combine Lemmas 3.2, 3.3 and [2, 2.10.45].
3.5. Lemma. If $A_{1} \in \zeta(a, n), A_{2} \in \zeta\left(10^{2(n-m)} \alpha, m\right)$, and B_{1} is a nonempty closed subset of A_{1}, then there exists a closed subset B_{2} of A_{2} such that
(i) $b^{2}\left(B_{2}\right)=10^{4(n-m)} b^{2}\left(B_{1}\right)$,
(ii) $t^{2}\left(B_{2}\right)=10^{4(n-m)} t^{2}\left(B_{1}\right)$,
(iii) $\mathcal{H}^{2}\left(B_{2}\right)=10^{4(n-m) \mathcal{H}^{2}\left(B_{1}\right) \text {. }}$

Proof. Let c_{j} denote the center of A_{j} for $j=1,2$. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $f(x)=10^{2(n-m)}\left(x-c_{1}\right)+c_{2}$ for $x \in \mathbf{R}^{3}$. Let $B_{2}=f\left(B_{1}\right)$. Then clearly (i) and (ii) hold. Furthermore, since Lip $f=10^{2(n-m)}=1 / \operatorname{Lip}\left(f^{-1}\right)$, (iii) follows from [2, 2.10.11].
3.6. Corollary. If $A \in \zeta\left(8 \cdot 10^{-2 n}, n\right), B_{1}$ is a closed subset of A and $b^{2}\left(B_{1}\right)$ >0, then there exists a closed subset B_{2} of E such that $\eta\left(B_{2}\right)=0$ and

$$
\mathcal{H}^{2}\left(B_{2}\right) / b^{2}\left(B_{2}\right)=\mathcal{H}^{2}\left(B_{1}\right) / b^{2}\left(B_{1}\right) .
$$

3.7. Corollary. If $A \in \zeta(\alpha, n)$ then $\mathcal{H}^{2}(A)=10^{-2 n} \alpha \mathcal{H}^{2}(E) / 8$.

Proof. We note that $\mathcal{H}^{2}(S)=10^{-4 n} \mathcal{H}^{2}(E)$ for $S \in \zeta\left(8 \cdot 10^{-2 n}, n\right)$ by Lemma 3.5 (iii), and combine this with $[2,2.10 .45]$ to obtain our conclusion.
4. A key lemma. Our main goal here is to prove Lemma 4.5 for later use in the proof of Theorem 5.3. Throughout this section we assume that $A \subset E$ is such that $q(A)=C$, and $-x \in A$ for all $x \in A$, and let $d=\operatorname{diam} A$.
4.1. Notation. For $a \in S \subset E$ let

$$
\begin{aligned}
\lambda(S, a)=\{(u, v): & u \in \xi(S, a)-S, v \in S-S \\
& \left.|u \wedge v| \geq(\operatorname{diam} S)^{2}-10^{-18} \text { and }|q(u) \wedge q(v)| \leq 10^{-9} \operatorname{diam} S\right\} .
\end{aligned}
$$

4.2. Remark. If $a \in S \subset E$ and $\left(v_{1}, v_{2}\right) \in \lambda(S, a)$, then $\left|v_{j}\right|^{2} \geq(\operatorname{diam} S)^{2}-$ $2 \cdot 10^{-18}$ for $j=1,2$.
4.3. Lemma. If $a_{1}, a_{2}, b_{1}, b_{2} \in A,\left(v_{1}, v_{2}\right)=\left(a_{1}-b_{1}, a_{2}-b_{2}\right) \in \lambda\left(A, a_{1}\right)$, and $j=1$ or $j=2$, then
(i)

$$
\left|q\left(2 a_{j}\right)-q\left(v_{j}\right)\right| \leq 2 \cdot 10^{-9}
$$

(ii)

$$
\|\left. q\left(2 a_{j}\right)\right|^{2}-\left|q\left(v_{j}\right)\right|^{2} \mid \leq 10^{-8}
$$

Proof. It follows from Remark 4.2 that

$$
2 a_{j} \cdot b_{j}=\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}-\left|v_{j}\right|^{2} \leq\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}-d^{2}+2 \cdot 10^{-18} .
$$

Furthermore, since $-a_{j},-b_{j} \in A$ we have that $\left|a_{j}\right| \leq d / 2,\left|b_{j}\right| \leq d / 2$. Together these results yield (i) because

$$
\left|2 a_{j}-v_{j}\right|^{2}=\left|a_{j}+b_{j}\right|^{2}=\left|a_{j}\right|^{2}+2 a_{j} \cdot b_{j}+\left|b_{j}\right|^{2} \leq 2 \cdot 10^{-18}
$$

We then deduce (ii) immediately from (i) by noting that

$$
\left|\left|q\left(2 a_{j}\right)\right|^{2}-\left|q\left(v_{j}\right)\right|^{2}\right| \leq\left|q\left(2 a_{j}\right)+q\left(v_{j}\right)\right| \cdot\left|q\left(2 a_{j}\right)-q\left(v_{j}\right)\right| \leq 10^{-8} .
$$

4.4. Lemma. If $\left(v_{1}, v_{2}\right) \in \lambda(A, a)$ for some $a \in A$, then

$$
\left|\left|q\left(v_{1}\right)\right|^{2}+\left|q\left(v_{2}\right)\right|^{2}-d^{2}\right| \leq 3 \cdot 10^{-6}
$$

Proof. From Remark 4.2, the inequality $d \leq 10$ and the definition of $\lambda(A, a)$ we obtain that

$$
\begin{aligned}
\left|p\left(v_{1}\right) \cdot p\left(v_{2}\right)\right|^{2} & \leq\left[d^{2}-\left|q\left(v_{1}\right)\right|^{2}\right]\left[d^{2}-\left|q\left(v_{2}\right)\right|^{2}\right] \\
& \leq\left[\left|p\left(v_{1}\right)\right|^{2}+2 \cdot 10^{-18}\right]\left[\left|p\left(v_{2}\right)\right|^{2}+2 \cdot 10^{-18}\right] \\
& \leq\left|p\left(v_{1}\right) \cdot p\left(v_{2}\right)\right|^{2}+5 \cdot 10^{-16}
\end{aligned}
$$

$$
\left|\left[\left|q\left(v_{1}\right)\right| \cdot\left|q\left(v_{2}\right)\right|\right]^{2}-\left|q\left(v_{1}\right) \cdot q\left(v_{2}\right)\right|^{2}\right|=\left|q\left(v_{1}\right) \wedge q\left(v_{2}\right)\right|^{2} \leq 10^{-16},
$$

$$
\left|v_{1} \cdot v_{2}\right|=\left[\left(\left|v_{1}\right| \cdot\left|v_{2}\right|\right)^{2}-\left|v_{1} \wedge v_{2}\right|^{2}\right]^{1 / 2} \leq 2^{1 / 2} 10^{-8} .
$$

We then use these results and the fact that $1 \leq d \leq 10$ to conclude that
4.5. Lemma. $\lambda(A, a)=\varnothing$ for some $a \in A$.

Proof. Choose $\alpha, \beta, \gamma \in A$ satisfying $q(\alpha)=(0,0.5,0), q(\beta)=(0,0.49,0)$, $q(\gamma)=(0,0.4999,0)$. We will obtain our conclusion by showing that if there exist $\left(u_{1}, u_{2}\right) \in \lambda(A, a),\left(v_{1}, v_{2}\right) \in \lambda(A, \beta)$, then $\lambda(A, \gamma)=\varnothing$.

To prove this we first note that $0.98 \leq|q(2 x)| \leq 1$ for all $x \in A$ and then apply Lemmas 4.4, 4.3(ii) to obtain that

$$
\begin{align*}
& d^{2} \geq\left|q\left(u_{1}\right)\right|^{2}+\left|q\left(u_{2}\right)\right|^{2}-3 \cdot 10^{-6} \geq 1.9603969, \tag{1}\\
& d^{2} \leq\left|q\left(v_{1}\right)\right|^{2}+\left|q\left(v_{2}\right)\right|^{2}+3 \cdot 10^{-6} \leq 1.9604031 . \tag{2}
\end{align*}
$$

Next take any $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \in \xi(A, \gamma)-A, \delta \in A, \tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \in \xi(A, \delta)$ - A. To establish that $(\sigma, \tau) \notin \lambda(A, \gamma)$ we observe that if $|q(2 \delta)| \leq 0.9802$ then

$$
\left||q(\sigma)|^{2}+|q(\tau)|^{2}-d^{2}\right| \geq 4 \cdot 10^{-6}
$$

by Lemma 4.3 (ii) and (1), while if $|q(2 \delta)| \geq 0.9998$ then Lemma 4.3 (ii) and (2) yield the same conclusion; in either case $(\sigma, \tau) \notin \lambda(A, \gamma)$ by Lemma 4.4. On the other hand, if $0.9802<|q(2 \delta)|<0.9998$, then Lemma $4.3(\mathrm{i})$ and the fact that $q(\delta)$ is not in any element of K_{2} nearest to or furthest away from the origin are used to obtain that

$$
\left|\tau_{3}\right| \geq 10^{-2} \sin \left(2 \cdot 10^{-2} \pi\right)-2 \cdot 10^{-4} \geq 4 \cdot 10^{-4}
$$

furthermore Lemma 4.3(i) also implies that $\left|\sigma_{2}\right| \geq 0.9997,\left|\sigma_{3}\right| \leq 2 \cdot 10^{-9}$; consequently $(\sigma, \tau) \notin \lambda(A, \gamma)$ in this case either since $|q(\sigma) \wedge q(\tau)| \geq 10^{-4}$.
5. Final results. Our main conclusion is Theorem 5.4. This result follows principally from Theorem 5.3, which in turn depends on Lemmas 4.5, 5.1 and 5.2.
5.1. Lemma. If A is a closed subset of E, $\operatorname{diam} q(A)>0$ and $\operatorname{diam} \mu(A) \leq$ $[\operatorname{diam} p(A)] / 3$, then $\mathcal{H}^{2}(A) \leq 2 b^{2}(A) / 3$.

Proof. We use $[2,2.10 .45]$ and Lemma 3.2 to obtain that $\mathcal{H}^{2}(A) \leq$ $(\pi / 2) \mathcal{H}^{1}[p(A)] \mathcal{H}^{1}[q(A)] \leq(\pi / 2) \mathcal{H}^{1}[p(A)] \operatorname{diam} \mu(A) \leq 2 b^{2}(A) / 3$.
5.2. Lemma. If A is a closed subset of $E, \operatorname{diam} q(A)>0$ and $(\operatorname{diam} A)^{2} \leq$ $4 \cdot 10^{-2 \eta(A)} / 3$, then $\mathcal{H}^{2}(A) / b^{2}(A) \leq 0.992$.

Proof. By Lemma 5.1 we may assume that $\operatorname{diam} \mu(A)>[\operatorname{diam} p(A)] / 3$ and then by Corollary 3.6 further assume that $\eta(A)=0$.

Let $d=\operatorname{diam} A, W=K_{1} \cap\{S: S \cap q(A) \neq \varnothing\}$. Define $\psi(S)=p\left[q^{-1}(S) \cap A\right]$ for $S \in W$. Applying $[2,2.10 .45]$ and Lemma 3.2 we then have that

$$
\begin{equation*}
\mathcal{H}^{2}(A) / b^{2}(A) \leq \frac{\pi}{2} \sum_{S \in W} \frac{\mathcal{H}^{1}[\psi(S)] \mathcal{H}^{1}[S \cap q(A)]}{b^{2}(A)} \leq 0.02 \sum_{S \in W} \frac{\mathcal{H}^{1}[\psi(S)]}{d^{2}} . \tag{3}
\end{equation*}
$$

Let $n=$ card W. Let m be the greatest integer not exceeding $n / 2$. Define $\rho(x)=$ $0.99 \sin (0.01 \pi x)-0.01$ for $x \in \mathbf{R}$. Using Lemma 3.1 we deduce that if S_{1}, \ldots, $S_{2 m}$ is a sequence of distinct elements of W arranged in clockwise order, then

$$
\begin{equation*}
\mathcal{H}^{1}\left[\psi\left(S_{i}\right)\right]+\mathcal{H}^{1}\left[\psi\left(S_{i+m}\right)\right] \leq 2\left(d^{2}-[\rho(m)]^{2}\right)^{1 / 2} \text { for } i=1, \ldots, m . \tag{4}
\end{equation*}
$$

Furthermore, by Lemma 3.1 there exists $S \in W$ such that

$$
\begin{equation*}
\mathcal{H}^{1}[\psi(S)] \leq\left(d^{2}-[\rho(n-1)]^{2}\right)^{1 / 2} . \tag{5}
\end{equation*}
$$

At this point we divide the proof into several cases and subcases, in each of which we show that $\mathcal{H}^{2}(A) / b^{2}(A) \leq 0.992$.

We first consider the following two cases:
Case I. $n=3$. The desired result is obtained by first observing that (3), (4) and (5) imply

$$
\mathcal{H}^{2}(A) / b^{2}(A) \leq\left[0.04\left(d^{2}-[\rho(1)]^{2}\right)^{1 / 2} / d^{2}\right]+\left[0.02\left(d^{2}-[\rho(2)]^{2}\right)^{1 / 2} / d^{2}\right]
$$

and then maximizing separately both terms of the right-hand side of this inequality with respect to d for $d \geq \rho(2)$.

Case II. $n \neq 3$. Define $f: \mathbf{R} \cap\{x: x \geq \rho(m)\} \rightarrow \mathbf{R}, f(x)=0.02 n\left(x^{2}-[\rho(m)]^{2}\right)^{1 / 2} x^{2}$ for $x \geq \rho(m)$. We use (3), (4) and for n odd also (5) to obrain $\mathcal{H}^{2}(A) / h^{2}(A) \leq f(d)$ and further observe that the absolute maximum for f occurs at $2^{1 / 2} \rho(m)$ and f is increasing on $\left\{x: \rho(m) \leq x \leq 2^{1 / 2} \rho(m)\right\}$. Then we divide the remainder of the proof into the following three subcases:

Case II.A. $2 \leq n \leq 96$ and n is even. Let $g: \mathbf{R} \cap\{x: \rho(x / 2) \neq 0\} \rightarrow \mathbf{R}, g(x)=$ $0.01 x / \rho(x / 2)$ whenever $\rho(x / 2) \neq 0$. Our conclusion is obtained by noting that $g(n)$ $=f\left[2^{1 / 2} \rho(m)\right], g$ has no relative maximum on $\{x: 2<x<96\}, g(2) \leq 0.95$ and $g(96)$ ≤ 0.99.

Case II.B. $5 \leq n \leq 97$ and n is odd. Let $g: \mathbf{R} \cap\{x: \rho[(x-1) / 2] \neq 0\} \rightarrow \mathbf{R}$, $g(x)=0.01 x / \rho[(x-1) / 2]$ whenever $\rho[(x-1) / 2] \neq 0$ and proceed as in Case II.A.

Case II.C. $n=98,99$, or 100. We observe that $\left[(4 / 3)^{1 / 2}\right] \geq f(d)$ because $d \leq(4 / 3)^{1 / 2} \leq 2^{1 / 2} \rho(m)$, and compute $f\left[(4 / 3)^{1 / 2}\right] \leq 0.91$ for $n=98,99,100$.
5.3. Theorem. There exists a nonempty closed subset M of E sucb that

$$
\begin{equation*}
t^{2}(M) \leq \mathcal{H}^{2}(M)-10^{-44} H^{2}(E) . \tag{6}
\end{equation*}
$$

Proof. By Corollary 3.4 and the definition of \mathcal{H}^{2} there exists a countable covering W of E consisting of nonempty closed subsets of E for which

$$
0<\sum_{S \in W} b^{2}(S) \leq\left(1+10^{-44}\right) \mathcal{H}^{2}(E) \leq\left(1+10^{-44}\right) \sum_{S \in W} \mathcal{H}^{2}(S) ;
$$

hence there exists a nonempty closed subset F of E satisfying

$$
\begin{equation*}
0<b^{2}(F) \leq\left(1+10^{-44}\right) \mathcal{H}^{2}(F) \tag{7}
\end{equation*}
$$

Furthermore, it follows from Lemma 5.1 and Corollary 3.6 that we may assume $\eta(F)=0$.

Next, let $d=\operatorname{diam} F$. We note that Lemmas $5.1,5.2$ imply $10 \geq d^{2} \geq 4 / 3$. Define $f: R^{3} \rightarrow R, f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$ for $\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}$, and then let
$F_{1}=\{x: \operatorname{diam}(F \cup\{x\})=d$, and $f(x) \geq f(y)$ for some $y \in \xi(F, x)\}$,
$F_{2}=\left\{x: \operatorname{diam}\left(F_{1} \cup\{x\}\right)=d\right.$, and $f(x) \leq f(y)$ for some $\left.y \in \xi\left(F_{1}, x\right)\right\}$,
$F_{3}=F_{2} \cap\left\{x: p(x) \in p\left[\xi\left(F_{2}, y\right)\right]\right.$ for all $y \in F_{2}$ satisfying $\left.|q(x-y)| \leq 10^{-44}\right\}$,
$F_{4}=\left\{x: \operatorname{dist}(x, C) \leq\left(\mathcal{H}^{1}\left[\xi\left(F_{3}, x\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3},-x\right)\right]\right) / 4\right\}$,
$F_{5}=\left\{x: \operatorname{dist}(x, C) \leq \mathcal{H}^{1}\left[\xi\left(F_{4}, x\right)\right]\right\}$.
Applying Lemma 4.5 we choose $a \in F_{4}$ for which $\lambda\left(F_{4}, a\right)=\varnothing$, and let $M=F_{5} \cup\left\{x: 0 \leq f(x)-\mathcal{H}^{1}\left[\xi\left(F_{5}, a\right)\right] / 2 \leq 10^{-20}, q(x) \in C\right.$ and $\left.|q(x-a)| \leq 10^{-22}\right\}$.
We observe that since $d \leq 10^{1 / 2}$, clearly $M \subset E$. Furthermore, to establish (6) it need only be proven that

$$
\begin{equation*}
t^{2}(M) \leq 2 b^{2}\left(F_{4}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
b^{2}\left(F_{4}\right) \leq b^{2}(F) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{H}^{2}(M) \geq 2 \mathcal{H}^{2}(F)+3 \cdot 10^{-44 \mathcal{H}^{2}(E)} \tag{10}
\end{equation*}
$$

since the inequalities (8), (9), (7), $\mathcal{H}^{2}(F) \leq \mathcal{H}^{2}(E)<\infty$ and (10) then yield this conclusion.

To obtain (8) we first define $g: F_{5}-F_{5} \rightarrow F_{4}-F_{4}$ by $g(x)=p(x) / 2+q(x)$ for $x \in F_{5}-F_{5}$ and observe that for $x_{1}, x_{2} \in F_{5}-F_{5}$

$$
\begin{align*}
\mid x_{1} & \wedge x_{2} \mid \\
& =\left|2 p\left[g\left(x_{1}\right)\right] \wedge q\left[g\left(x_{2}\right)\right]+2 p\left[g\left(x_{2}\right)\right] \wedge q\left[g\left(x_{1}\right)\right]+q\left[g\left(x_{1}\right)\right] \wedge q\left[g\left(x_{2}\right)\right]\right| \tag{11}\\
& =\left(4\left|g\left(x_{1}\right) \wedge g\left(x_{2}\right)\right|^{2}-3\left|q\left[g\left(x_{1}\right)\right] \wedge q\left[g\left(x_{2}\right)\right]\right|^{2}\right)^{1 / 2}
\end{align*}
$$

We next take any $u_{1}, u_{2} \in M-M$ and consider the following two possibilities: If $u_{1}, u_{2} \in F_{5}-F_{5}$ then $(\pi / 4)\left|u_{1} \wedge u_{2}\right| \leq 2 b^{2}\left(F_{4}\right)$ by (11).
On the other hand, suppose at least one of u_{1}, u_{2}, say u_{1} for the sake of argument, is not in $F_{5}-F_{5}$. Then $u_{1}=v_{1}+w_{1}, u_{2}=v_{2}+w_{2}$, where $v_{1} \epsilon$ $\xi\left(F_{s}, a\right)-F_{s}, v_{2} \in F_{s}-F_{s},\left|w_{1}\right| \leq 2 \cdot 10^{-20},\left|w_{2}\right| \leq 2 \cdot 10^{-20}$; together these relations yield

$$
\begin{align*}
\left|u_{1} \wedge u_{2}\right| & \leq\left|v_{1} \wedge v_{2}\right|+\left|v_{1} \wedge w_{2}\right|+\left|v_{2} \wedge w_{1}\right|+\left|w_{1} \wedge w_{2}\right| \\
& \leq\left|v_{1} \wedge v_{2}\right|+6 \cdot 10^{-20} \operatorname{diam} F_{5} \leq\left|v_{1} \wedge v_{2}\right|+6 \cdot 10^{-19} \tag{12}
\end{align*}
$$

Finally, using (11) and the fact that $\left(g\left(v_{1}\right), g\left(v_{2}\right)\right) \notin \lambda\left(F_{4}, a\right)$ by the choice of a, we find that

$$
\left|v_{1} \wedge v_{2}\right| \leq 2\left(\operatorname{diam} F_{4}\right)^{2}-7 \cdot 10^{-19}
$$

and combine this with (12) to conclude (8).
To deduce (9) we let $\delta=\operatorname{diam} F_{3}$, take any $x, y \in F_{4}$ and observe that

$$
\mathcal{H}^{1}\left[\xi\left(F_{3}, x\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3}, y\right)\right] \leq \max \left\{2\left[\delta^{2}-|q(x-y)|^{2}\right]^{1 / 2}, \delta\right\}
$$

We then use this relation twice, the second time with x, y replaced by $-x,-y$, and also the inequalities $\delta \leq d, d^{2} \geq 4 / 3$, to conclude that

$$
\begin{aligned}
(\operatorname{diam} & {\left.\left[\xi\left(F_{4}, x\right) \cup \xi\left(F_{4}, y\right)\right]\right)^{2} } \\
\leq & \left(\mathcal{H}^{1}\left[\xi\left(F_{3}, x\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3}, y\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3},-x\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3},-y\right)\right]\right)^{2} / 16 \\
& +|q(x-y)|^{2} \\
\leq & \max \left\{\delta^{2}-|q(x-y)|^{2}, \delta^{2} / 4\right\}+|q(x-y)|^{2} \leq d^{2} .
\end{aligned}
$$

To prove (10) we first note that clearly $\mathcal{H}^{2}\left(F_{2}\right) \geq \mathcal{H}^{2}(F)$ and that $\mathcal{H}^{2}\left(F_{5}\right)=$ $2 \mathcal{H}^{2}\left(F_{3}\right)$ by $[2,2.10 .45]$. Hence it suffices to show that

$$
\begin{equation*}
\mathcal{H}^{2}\left(F_{3}\right) \geq \mathcal{H}^{2}\left(F_{2}\right)-5 \cdot 10^{-45} \mathcal{H}^{2}(E), \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{H}^{2}\left(H \sim F_{5}\right) \geq 10^{-43} \mathcal{H}^{2}(E) \tag{14}
\end{equation*}
$$

To obtain these last two inequalities, we first show that if α and β are endpoints of $\xi\left(F_{2}, \alpha\right)$ and $\xi\left(F_{2}, \beta\right)$ respectively, $r>0,|q(\alpha-\beta)| \leq r$ and

$$
0<|p(\alpha-\beta)|=\min \left\{|p(\alpha-x)|: x \in \xi\left(F_{2}, \beta\right)\right\}
$$

then

$$
\begin{equation*}
|p(\alpha-\beta)| \leq 2 r . \tag{15}
\end{equation*}
$$

To establish (15) we choose $\gamma \in F_{2}$ satisfying $|\beta-\gamma|=d$, and $p(\alpha-\beta) \cdot p(\beta-\gamma)$ ≥ 0, note that $|p(\beta-\gamma)| \geq 1 / 2$ since $d^{2} \geq 4 / 3$, and then find that

$$
\begin{aligned}
d^{2} & \geq|\alpha-\gamma|^{2}=|(\alpha-\beta)+(\beta-\gamma)|^{2} \\
& \geq 2 p(\alpha-\beta) \cdot p(\beta-\gamma)+2 q(\alpha-\beta) \cdot q(\beta-\gamma)+|\beta-\gamma|^{2} \\
& \geq|p(\alpha-\beta)|-2 r+d^{2} .
\end{aligned}
$$

We then deduce (13) by using (15) with $r=10^{-44}$ to obtain that $F_{2} \sim F_{3}$ is contained in the union of $2 \cdot 10^{44}$ elements of $\zeta\left(2 \cdot 10^{-44}, 22\right)$, and combining this with Corollary 3.7.

To prove (14) we consider any $b \in F_{5}$ with $|q(a-b)| \leq 10^{-22}$ and apply (15), first with $r=10^{-44}$ and then with $r=10^{-22}$ to obtain that

$$
\begin{aligned}
\mathcal{H}^{1} & {\left[\xi\left(F_{5}, b\right)\right]-\mathcal{H}^{1}\left[\xi\left(F_{5}, a\right)\right] } \\
& =\mathcal{H}^{1}\left[\xi\left(F_{3}, b\right)\right]-\mathcal{H}^{1}\left[\xi\left(F_{3}, a\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{3},-b\right)\right]-\mathcal{H}^{1}\left[\xi\left(F_{3},-a\right)\right] \\
& \leq \mathcal{H}^{1}\left[\xi\left(F_{2}, b\right)\right]-\mathcal{H}^{1}\left[\xi\left(F_{2}, a\right)\right]+\mathcal{H}^{1}\left[\xi\left(F_{2},-b\right)\right]-\mathcal{H}^{1}\left[\xi\left(F_{2},-a\right)\right]+8 \cdot 10^{-44} \\
& \leq 9 \cdot 10^{-22} .
\end{aligned}
$$

Consequently, $M \sim F_{5}$ contains an element of $\zeta\left(9 \cdot 10^{-21}, 11\right)$ and then (14) follows from Corollary 3.7.
5.4. Theorem. $\mathscr{J}^{2}(E)<\mathcal{H}^{2}(E)$.

Proof. Given any $\delta>0$ choose a positive integer n satisfying $10^{-2 n+1}<\delta$. Since E is contained in the union of $10^{4 n}$ elements of $\zeta\left(8 \cdot 10^{-2 n}, n\right)$, Theorem 5.3 and Lemma 3.5 (ii), (iii) imply there exists a family W_{1} consisting of $10^{4 n}$ nonempty closed subsets of E of diameter less than δ such that

$$
\begin{equation*}
\sum_{S \in W_{1}} t^{2}(S) \leq \mathcal{H}^{2}\left(\bigcup W_{1}\right)-10^{-44} \mathcal{H}^{2}(E) . \tag{16}
\end{equation*}
$$

Furthermore, since $\mathscr{T}^{2}\left(E \sim \bigcup w_{1}\right) \leq \mathcal{H}^{2}\left(E \sim \bigcup W_{1}\right)$ and $\mathcal{H}^{2}(E)>0$, there also exists a countable family W_{2} of nonempty closed sets of diameter less than δ covering $E \sim \cup W_{1}$ for which

$$
\begin{equation*}
\sum_{S \in W_{2}} t^{2}(S) \leq H^{2}\left(E \sim U W_{1}\right)+5 \cdot 10^{-45 H^{2}(E) .} \tag{17}
\end{equation*}
$$

Then $W_{1} \cup W_{2}$ is a countable covering of E by nonempty closed sets of diameter less than δ which by (16) and (17) satisfies

$$
\sum_{S \in W_{1} \cup W_{2}} t^{2}(S) \leq\left(1-5 \cdot 10^{-45}\right) \mathcal{H}^{2}(E) ;
$$

hence $\mathscr{J}^{2}(E) \leq\left(1-5 \cdot 10^{-45}\right) \mathcal{H}^{2}(E)$. Finally, this last inequality and Corollary 3.4 yield the desired conclusion.

REFERENCES

1. L. R. Ernst, A proof that $\mathcal{C}^{\mathbf{2}}$ and $\mathbf{g}^{\mathbf{2}}$ are distinct measures, Trans. Amer. Mach. Soc. 173 (1972), 501-508.
2. H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 \#1976.
3. G. Freilich, On the measure of cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232-275. MR 12, 324.
4. E. F. Moore, Convexly generated k-dimensional measures, Proc. Amer. Math. Soc. 2 (1951), 597-606. MR 13, 218.

DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE, CITY UNIVERSITY OF NEW YORK, FLUSHING, NEW YORK 11367

[^0]: Received by the editors July 11, 1973.
 AMS (MOS) subject classifications (1970). Primary 28A10, 28 A75.
 Key words and phrases. m-dimensional measures, two-dimensional 9 measure, twodimensional Hausdorff measure, Cantor type subsets.
 (1) Research supported by a grant from the City University of New York Faculty Research Award Program.

