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LINEAR OPERATORS AND VECTOR MEASURES
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ABSTRACT. Compact and weakly compact operators on function spaces are studied.

Those operators are characterized by properties of finitely additive set functions whose

existence is guaranteed by Riesz representation theorems.

1. Introduction. In this paper we study operators on function spaces. Criteria

for weak and strong compactness of these operators are established in terms of

their representing vector measures. Some of these results have been announced

by the authors in [10]. The function spaces are as follows. Let E and F be locally

convex spaces, and let H be a locally compact Hausdorff space. By C0(H,E) we

denote the space of continuous £-valued functions which vanish at oo, by

C(H,E)v/e denote the space of continuous £-valued functions equipped with the

compact-open topology, and by i/£(2>) we denote the space of totally im-

measurable functions. In §2 a Riesz representation theorem for operators L

defined on the continuous function spaces into F is given in terms of a measure

m on 2, the Borel subsets of H, with values in B(E,F**), where the latter is the

space of operators from E to F** and E and F are locally convex spaces. In

symbols, L(f) = ffdm, and we write L*-* m. Our theorem extends and unifies

existing representation theorems of this type. Although a number of authors have

considered this problem in special cases, none have used the device of embedding

isometrically the simple functions in C(H,E)** and thus reducing the problem

to utilizing the representation theorem for operators L: i/£(2)) -* F, which can

be easily established.

In order to study weak compactness of operators, when E and F are Banach

spaces, one examines the adjoint which maps F* into ca(2,£*), the Banach

space of £*-valued measures of bounded variation. Consequently, the problem is

reduced to considering weakly compact subsets of ca(2,£*). This enables us to

use recent results of Brooks [6] giving necessary and sufficient conditions for sets

to be weakly compact in the space of vector measures. This theory is presented

in §3 and applied to operators in §4. Essentially the criterion for an operator

L «-» m to be weakly compact is that m(E¡) -* 0 on disjoint sets E¡, where m is

the semivariation of m. Other topics in §4 include a discussion concerning the

problem of when m takes its values in B(E, F) and criteria for operators to be

compact in terms of topologies induced on K* by m. In §5 various topics are
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discussed; a modified example of Lewis [22] is given which settles questions on

limits of strongly bounded vector measures.

2. Representation theorems. In this section we establish integral representation

theorems for various function spaces. Numerous authors have worked on this

problem. For example, see Bartle, Dunford, and Schwartz [2], Dinculeanu [11],

Foias, and Singer [15], Singer [31], Swong [32], and Tucker [34]. However, none

of these authors has made use of the isometry in Lemma 2.1 and of Theorem 2.0.

The approach presented here unifies much of the work in this area and shows the

applicability of the representation theorem on the space of totally measurable

functions and this isometry.

We next establish some notation and terminology. We denote the classes of all

continuous seminorms on the locally convex spaces (lcs)fi and F by {p}E and

{p}f, respectively; if X is an les, then A'* will be the continuous dual of X. If X

is a Banach space (fi-space), then we view A' as a closed linear subspace of X**.

The term operator will always be used to refer to a continuous linear transforma-

tion, and the term measure will be used to refer to a finitely additive set function.

The reader should recall that a bounded regular complex valued finitely additive

set function defined on an algebra 25 of subsets of a compact space S is countably

additive, e.g. see [13, p. 138]. We denote the characteristic function of a set A by

HLA. The symbol B will denote C0(H,E), Bc will denote those functions in

C0(H,E) with compact support, and C will denote the space of all continuous E-

valued functions on H; the analogous spaces of scalar valued functions will be

denoted by C0(H), Ce(H), and C(H). The topology on B and Bc will be given by

uniform convergence, and the topology on C will be the compact-open topology.

Definition 2.1. Let 25 denote a ring of subsets of a universal space S, and let

S£(25) be the collection of all ^-valued simple functions over the ring 25; let

t/£(25) be the collection of all £-valued functions/which vanish outside of some

set in 25 such that/is the uniform limit of a net (fa) C S£(25). The space £/£(25)

is called the space of totally measurable functions; t/£(25) is equipped with the

uniform topology.

Definition 2.2. If L: t/£(25) -» F is a linear mapping, A G 25, p G {p}£, and

q E {p)p then let

\\LA\M) = snp{q(L(f)):f E UE(®),XA •/ = /,/</) < 1},

where p(/) = sup{p(/(/)): / G H). Let <£ be the set of linear mappings

L: i/£(25) -* fiso that if q E {p)F then there is ap G {p}£ so that \\LA \[M) < oo

for each A G 25.
Definition 23. If X and Y are arbitrary les with the family of all continuous

seminorms [p}x and {p)Y respectively, m: 2)-* B(X,Y) is finitely additive,

q G {p)y, and A E 2), then define m(p¡q)(A) to be

sup-M    2    m(Ai)-x,) \
v(A),x,\.    \A,ev(A) > J
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where ir(A) denotes the (disjoint) ©-partitions of A, and p(x¡) < 1 for each /,

p G [p}x. If B C S, define m(pq)(B) to be s\ip{m{pg)(A): A C B,A G 35}.

In the sequel, m(M) will be called the (p, <?)-semivariation, where (p, q) is a

pairing determined as in Definition 2.2.

We mention that the bilinear integration theory used here is developed in

Dinculeanu [11]. In particular, if m: 35 -* B(E,F) has finite (p, i)-semivariation

and / G t/£(35), then let (fa) be a net in S£(35) which converges uniformly to /,

and define ffdm to be lim ffadm, where the convergence is in the locally convex

completion of F.

We state the following theorem for reference purposes; it will be referred to as

the RRT.

Riesz Representation Theorem [29, p. 131]. To each bounded linear functional L

on C0(X), where X is a locally compact Hausdorff space, there corresponds a unique

complex regular Borel measure p such that

(11.1) L(f)=fxfdp,      fEC0(X).

Moreover, if L and pare related as in (II. 1), then

(11.2) ||L|| = \p\(X)      (|ft| is the total variation of ft).

Theorem 2.0 [11, p. 145]. // L E @, then there is a unique finitely additive,

operator-valued set function m: 35 —* B(E,F) so that

L^)=Lfdm'  f G u*<®-

Furthermore, for each q E [p}F there is a p E [p)E so that m(p^(A) < co for

each A E 35, and m(M)(A) = ||Z*||(M).

Before proceeding further, it will be necessary to make explicit the various

topologies we shall be using. If F is an les, then the topology on F* will be the

strong topology and the topology on F** will be the e°°-topology. Therefore the

topology on F** will be uniform convergence on the polars of the /Minit balls of

F. If A is an les and p is a continuous seminorm on A, then A(p, 1) will be the p-

unit ball of A; and iff** E A**, then

ap(f**) = sup{|/**(/*)|:/* G A°(p,l)},

where A°(p, 1) denotes the polar of A(p, 1).

If £ is a 5-space and r > 0, then 2Er will denote the closed ball of radius r about

the origin.

Definition 2.4. Let £ be the subring of 2 consisting of those sets whose

characteristic functions are pointwise limits of sequences in CC(H). If A E £and

(q>¡* ) is a sequence converging pointwise to £A so that 0 < <p¡* < 1 for each n,
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then (<p¡*) is called a determining sequence for A. We write <p < A to denote that

supp(tp) C A.

Definition 2.5 (see [16] and [13, VI.7.2]). If A E 2 and x E E, let £A-x be
defined on B* by

(11.3) $A ■ x(f*) = IW^GO,      /* G B*.

wAere Pi*,/«) is the unique regular Borel measure in the RRTgiven by

(11.4) <*,/*>(/) = /*(/ • x) = /,/<4w> = *W-)(/)-

It is clear that S£(2) is a linear manifold in the les of bounded £-valued

functions defined on H; from Definition 2.5, it follows that S£(2) may be viewed

as a subspace of B**. However, if E and Fare fi-spaces, much more can be said,

as the following lemma indicates. We give the proof in some detail since we shall

have occasion to refer to the construction later.

Lemma 2.\.IfE and F are B-spaces and

S - 2 Za, • x, e s£(2),

then ||f||B.. = llfllaj, where IHI«, denotes the uniform norm.

Proof. Without loss of generality, we may suppose that f = 2*=i &a, ' xi is hi

the canonical form of a simple function and that ||jC| || = ||£lb. Let t E Ax and

define |: 2 -» E* in the following way:

(i)£(A) = 0ift$A;
(ii) ift E A, then i(A) = x* E E*, where \\x*\\ = 1 andx*(xx) = \\xx\\.

Then clearly £ is countably additive, has finite semivariation, and |£| (the total

variation function) is regular. Furthermore, £ G B*, and ||£||B. = 1(H) = 1.

Now

M) = (Î Xa,' x)&) = Î Xa,' x&)
V-i / /-i

*

1—1

Let / > 1, e > 0, and choose a collection {K,}¡-2 of compact sets so that K, C A¡

and 2f=2 Mix,*)^/ ~ ^i) < e- r^ien ^et Í*í) ^e a disjoint collection of condition-

ally compact open sets so that t & U V¡, and 2*=2 M(;c„î)(Jî — ̂ i) < £- By me

Baire approximation theorem [19, p. 218], and the Lebesgue dominated conver-

gence theorem, we can choose a collection of compact Gs subsets {(?,} and

{<p,} C C(H) so that AT, G G¡ C V¡, 0 < <p, < 1, supp(<p,) C V¡, and

2?-j lrW)(G.) - /»fo,í)(w)l < e- But P(X/4)(œ) = S %x,dí = 0. Since
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(Xax-xx)(Î) = &Ax)-xx = \\xx\\,

it follows that IIIL < \\th~.
For the reverse inequahty, let £ be as above, and choose | arbitrarily in Bf. Let

{K¡), {G¡), (K}> and {<p,} be chosen as in the preceding paragraph, except that we

now insist that i tange from 1 to k. Therefore

k k

.2, Gv„iM) - fWtt))   ^   2 (lH*A)(4i) - IH*Jt)(G¡))í=i /-i

2 GW)(G,) - faifa)) <3e,

and

I / * M      II *
12 ¡Hx,jtfa)\ = €( 2 ft ■ x¡ )\<   2 »i • x,

I   V-l /I l|i-l
<  11*1 II-

This proves the lemma.

Remark 2.1. If E is an les, q E [p}E, and £ = 2*«i £/>, • x¡ G S£(2), then

from the technique of Lemma 2.1 it follows that

aqy 2 *z>, • *, j < «7^2 *A * *. j-

Therefore it follows that the second adjoint L**: S£(2) -» F** is continuous

relative to the uniform topology on iS£(2).

The following theorem is used in establishing the representation theorem.

Theorem 2.1. Letf E C0(H,E). Then there is a net (ga) C SE(t) simultaneous-

ly approximating f in the uniform andB** topologies.

Proof. For each/? G {p}E, letAM = {x: p(f(x)) > \/n). Then A{fA E £for

each p and each n since A(pji) is a compact Gs. Let N denote the natural numbers,

and let T = {p}E X N. For (p, n), (q,m) E T, define (p,n) > (q,m) if and only

p > q in the ordering on [p}E and n> m. Then T is a directed set, and for each

y E T, y = (p,n), let t = 3L -f be defined as in Definition 2.5. Thus

JÇ G B**. It is clear thatjÇ -»/uniformly. But alsojÇ -»/in the B** topology. In
fact, if x* E B°(p, 1) and e > 0, then choose k E N and let y G T, y = (q, t) so

that \/k < e/2 and q > p, t > k. Using the fact that there is a determining

sequence for A(q,t) which is identically one on A(q,t), we see that ¡JÇ(jc*)

- x*(f)\ < 2/t < e.
Now let X = (p,n) be a fixed element of T, and note that f(A(X)) is a compact

subset of E. Therefore for each m E N there is a partition {A"}^ of A(X) into

elements of £ so that p-diam(f(A")) < \/m for each /'. Then, for each m> n,

choose one such partition {Af)^\ let xf E f(A^), and let
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k(m)

Ç(X,m) = 2 XAm-xf.
1=1

To simplify notation, we shall usually denote f (X, m) by 2fl'î) &a, ' x¡. Order the

set / = {(X,m): X = (p,n) E T,m > «} by (A,«i) > (yj) if X > y and m >/.

It is easy to see that {C(X,m)}¡ -»/uniformly.

Finally, we prove that {£(X,n)}, is a net which satisfies the conclusion of the

theorem. To this end, let q G {p}£, e > 0, and choose p > q, \/n < e, and

X = (d,t) > (p,n). If £(X,m) = 2,*i'ï) %d, ' x¡ is chosen as above and /* G

B°(q, 1), then

|(¿(A,«0-/X)/*| =
k(m)

2 Ow«)(A) - tH/,r)(D<))¿-i

where P(x.j») and P(/j») are the regular Borel measures of Definition 2.5. Repeat

the construction of Lemma 2.1 to select disjoint open sets {I/},^ and compact

Gs sets {GAffi so that G¡ C ^ for each i, d-di&m(F(V¡)) < 2/r,

*2 IpI^j^^aA) < e,
«-i

and

Therefore

2 |p|(/>/.)(G,.AA) < e.i-i

|£(A,m)(/*)-A(/*)|<
*(m)

2 (P(^,/.)(G,) - Pvj.^GA) + 2e.

We may apply the Lebesgue dominated convergence theorem since each G¡ G £.

Thus since </ > ? and/* G B°(q, 1),

k(m)

.2 ip\Xl.f)(Gi) - IHf.f')(G^/-i
**

whence |f(A,m)(/*) -/A(/*)| < 6e, and the proof is completed.

Definition 2.6. If m: 2 -* B(E,F**) is finitely additive with finite (p, ?)-

semivariation, then we say that m is weakly regular provided that x E E and

z G F* imply that «i^O) = </w(-)*,z> is a finite regular Borel measure.

We should note here that this notion of weak regularity differs from that in

[13].

Theorem 2.2 (Representation Theorem). If L: B -* F is an operator, then there

is a unique weakly regular set function m: 2 -» B(E, F**) so that

L^-S¿dm>  feB-



LINEAR OPERATORS AND VECTOR MEASURES 145

Proof. We know that S£(2) C B**, and therefore L**: S£(2) -» F**. From

Corollary 2.1.1, it follows that L** has a continuous extension L: i/£(2)

-» C(F**), where C(F**) denotes the locally convex completion of F**. But by

Theorem 2.1 and Lemma 2.1 it follows that £(/) = L**(f) = L(f). Now we

apply Theorem 2.0 and write L(f) = fHfdm. Furthermore, by Theorem 2.0,

L(jfLA • x) = L**(£A • x) — f  %A • xdm = m(A) • x,

and \\LA\\p4) = m(PJIM) < oo for appropriate pairings (p, q), p E [p}E, q

E {p)f Also, if z E F*, then

(m(A)-x,z) = (L**(IA-x),zy

= HA ■ x(L*(z)) = ft(Xi¿.W)(^),

where p^^z)) is a finite regular Borel measure. The uniqueness statement follows

from the corresponding uniqueness statement in the RRT.

We write L «-» m to denote the correspondence established in this theorem.

Next we show that the representation portion of Theorem 2.2 of [14] follows

as an immediate corollary to Dinculeanu's representation theorem. To this end,

let H be an arbitrary point set, let E and F be normed linear spaces (NLS), and

let S be a linear space of bounded /¿-valued functions.

Theorem 23 [14, Theorem 2.2]. Suppose that B is equipped with a norm ||-||'

which is weaker than the uniform norm, and suppose there is an algebra 35 of subsets

of H so that ||-1|' can be extended to S = S£(35) in such a way that there is a

subspace S' of S satisfying

(i) B C U(S'), the uniform closure of%', and

(ii) there is a linear mapping p: S -* B** which is continuous relative to ||-||'; and,

when we extend 9 to t/£(35), 9 maps t\(f) into f for each f E B, where tj is the

canonical embedding.

Then, if T: (B\\-\\') -» Fis a continuous linear operator, there is a finitely additive

set function m: 35 —» B(E,F**) with finite semivariation m so that T(f) = fHfdm,

f E B. Furthermore m(A) = \\(T** ° 9)A\\, A E 35.

(We know that we can extend 9 to t/£(35) since 9 is continuous on S with

respect to the uniform norm; we continue to denote the extension by 9.)

Proof. Since 9: C/£(35) -» B** is continuous relative to the uniform norm, then

T** o 9: tV£(35) -» F** is an operator. By Theorem 2.0 there is a unique finitely

additive m: 35 -» B(E,F**) with finite semivariation so that

T** o 9(g) = fH gdm,      g G l/£(35),

and

m(A) = \\(T** o 9)A\\,       ,4 G 35.
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But then if / G fi,

T** o 9(f) = T**U) = ffdm,

and we have the desired conclusion.

Definition 2.7 [20, §1.5]. Let L: Bc -» F be an operator. The point t G H will

be in the support of L, denoted by supp(L), if and only if for each neighborhood

N(t) of t there is an/ G Bc so that supp(/) C N(t) and L(f) ¥= 0. If L has B

for its domain, the notion of support is defined similarly.

Theorem 2.4. Let L: Bc -* F be an operator so that supp(L) is compact. Then L

has a unique extension L G B(C,F) so that L(f) = 0 for each f E C which

vanishes in a neighborhood of supp(L).

The proof of this theorem very closely parallels the proof of the analogous

statement in the scalar case and will be omitted.

Theorem 2.5. Let F be a B-space. A linear mapping L: C -> F is continuous if

and only if L is the unique extension of Theorem 2.4 of an operator L E B(BC,F)

so that L has compact support.

Proof. Suppose that L G B(C,F). Then, by the continuity of L, there is a

compact set K C H, a positive number M, and a continuous seminorm p on E

so that

0) \\t\x)\\ < MpK(x),      xEC,

where pK(x) = sup{p(*(r)): t E K). Now if L = L |Bc, then certainly supp(L)

C K and L is an extension of an operator with compact support. If x E C

vanishes in a neighborhood of supp(L), let <p G Cc(/Y) so that 0 < <p < 1 and

<p(K) = 1. Then x = q> • x + (1 - <p) • x, and

L(x) = L(<p ■ x) + i((l -cp)-x)

= L(<p ■ x) + L((\ - <p) ■ x).

But L((l — <p) • x) = 0 by (i), and tp • x E Bc so that <p • x vanishes on a

neighborhood containing supp(L). By appealing to a partition of unity argument,

it follows that L(tp • x) = 0.

The converse of the theorem follows immediately from Theorem 2.4, and the

proof is completed.

We remark that this characterization fails in case we allow F to be an les.

Example 2.1. Let H be a locally compact, noncompact, Hausdorff space, let

E = normed space, let C = C(H,E) with the compact-open topology, and let

F — C. If / denotes the identity mapping from C to C, then / 1^ is the identity

mapping and obviously does not have compact support.

The following lemma enables us to see the measure theoretic consequences of

Theorems 2.4 and 2.5 more clearly.
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Lemma 2.2 [23]. Suppose that H, 2, E, and F are as in the introduction. If

m: 2 -» B(E,F) is a weakly regular Bore! measure, then there is a smallest closed

set D C H so that if U is an open subset of H, then /ñ(M)(C/) = 0 for each

P e {p)ei Q e {p}f> 'f and only if U D D = 0. Hence m vanishes on 2

n (H - D).

This set D, called the support of m, is denoted by supp(m).

The proof of the following theorem involves primarily the technical details

carried out in Lemma 2.1 and Theorem 2.1. Consequently, we omit the proof.

Theorem 2.6. Let L: B -» F be an operator, with L *-» m. Then supp(L)

= supp(/w).

We can now restate Theorem 2.5 as follows.

Corollary 2.6.1. If F is a B-space, then a linear mapping L: C -» Fis an operator

if and only if there is a unique weakly regular measure m: 2 -» B(E,F**) so that

supp(/n) is compact and L(/) = Siifdm,f E C.

The following example is interesting in view of Theorem 2.2 of this paper.

Example 2.2. Let H be the natural numbers equipped with the discrete

topology, and let B(H) be all the bounded, complex-valued functions on H

topologized by the uniform norm. Then 2 is the power class of H. If A E 2,

define m(A) to be diA E B(H) =á B(C,B(H)). Then m: 2 -» B(C, B(H)) is
finitely additive and has finite semivariation. If / G C(H), define L(f) to be

fufdm.
Now let ßH denote the Stone-Cech compactification of H, and choose

t G ßH - H. For/ G B(H), define t(f) to be/(f), where/ denotes the unique

extension of/to all of ßH. Certainly t G B(H)*. We note next that È^ = £{„,}

for a singleton a, E H. Therefore

2 m,{a,) = 2 t(XM) = 0.
7— 1 7— 1

But m,(H) = t(lH) = 1, and m, is not countably additive. Hence the represent-

ing measure of Theorem 2.2 differs considerably from the measure m used to

define the operator L.

In the remainder of the paper, E and F will denote B-spaces.

We now turn to more general domain spaces H. As an application of

Urysohn's extension theorem in [18] we obtain the following.

Lemma 23. // H is a Hausdorff space, then C(H,E) \K = C(K,E) for each

compact K C H if and only if the continuous functions on H separate the points ofH.

Such a Hausdorff space H will be called an S-space.

Theorem 2.7. If H is an S-space and L: C = C(H,E) -» F is a linear

transformation continuous with respect to the compact-open topology, then there is a
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unique weakly regular, compactly supported set function m: 2 -» B(E,F**) so that

L(f) = Sh Jdm, f G C.

Proof. Since L is continuous, there is a constant M > 0 and a compact set

KCHso that ||L(/)|| < M||/||*, where U/H, = sup{||/(f)||: t E K}. Therefore,

by Theorem 2.5, L induces an operator T: C(K,E) -» F. By Theorem 2.2, we

may write T(f) = fKfdm', where m'\ 2(#) -* B(E,F**) is weakly regular.

Since 2(/Y) ni= 2(AT), we may define w: 2(/7) -* B(E,F**) by m(/l)

= ffi'C^ nA"). Then clearly m is weakly regular and L(f) = fHfdm,f G C.

The uniqueness follows from the uniqueness statement in Theorem 2.2.

In the future, we shall identify m and m'.

As an application of the following theorem, we can say more than simply that

m is weakly regular. In fact, it follows that if m2 : 2 -» E* is defined by

m2(A) • x = (m(A) • x,z), x E E, then |w2| G rca(2,C).

Definition 2.8. If H is a locally compact Hausdorff space, then an operator

L: B -> F is said to be dominated provided there is a positive linear functional

P E Co(H)* so that ||L(/)|| < P(||/||),/ G B.
The following theorem is due to N. Dinculeanu.

Theorem 2.8. If L: B -* Fis an operator with L*-* m, then L is dominated if and

onlyif\m\ E rca(2,C).

Proof. If m has finite total variation, which we denote by \m\, then certainly

ILf/*MI < / U/H d\m\. But Sh (')d\m\ is a positive operator, and therefore L is

dominated.

Conversely, suppose that L is dominated by the positive operator P = / (•) dp

(p is the positive regular Borel measure given by the RRT). Then, using the weak

regularity of m and repeating the construction in Lemma 2.1, it follows that

|m|(/4) < p(A), A G 2. But, from this inequality, it follows that \m\ E rca(2, C),

and m is countably additive.

We remark that if the set function given by Theorem 2.2 has finite total

variation, then it must be countably additive.

Thus, if L «-» m as in Theorem 2.2 or Theorem 2.7, then (z ° L)(f) = z(L(f))

= SfíSdm,, \\z o L\\ = mAH) = \mz\(H), and it follows that \mz\ E rca(2,C)

for each z G F*. We should also point out that L*(z) = mz. Therefore we have

the following corollary.

Corollary 2.8.1. Ifm: 2 -» B(E,F**) is finitely additive with finite semivariation

and «i(X2) is a regular Borel measure for each (x,z) E Ex F*, then \mz\ is a

nonnegative regular Borel measure.

This prompts us to make the following definition.

Definition 2.9. By a representing measure m: 2 -* B(E, F**) we shall mean a

finitely additive set function with finite semivariation so that \mz\ is a regular

Borel measure for each z G F*.
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Remark. It is clear that an S-space H is the most general domain space which

will yield unique compactly supported representing measures. In the C0(H,E)

setting, the support of a representing measure need only be closed and not

necessarily compact.

3. Weak compactness of vector measures. In this section we establish criteria for

weak compactness in the B-space of vector measures. This will enable us to

determine the compactness or weak compactness of operators on function spaces

by examining the weak compactness of the set of vector measures formed by the

image of the unit sphere under the adjoint operator. The various results

concerning weak compactness of vector measures are due to Brooks and are

essentially taken from [6], where the proofs are briefly outlined (for the reflexive

case). We are grateful to C. Swartz for providing us with Lemma 3.3 which

enabled us to eliminate a weak sequential completeness condition that was

imposed earlier.

The following definition is fundamental in characterizing representing meas-

ures of weakly compact operators.

Definition 3.1. Let 35 be a ring of subsets of a set S. A finitely additive set

function m: 35 -» B(E,F**) is strongly bounded (s-bounded) if m(A¡) -» 0, when-

ever (A¡) is a disjoint sequence of sets from 35. An operator L is said to be s-

bounded provided that its representing measure is .s-bounded.

A similar concept was introduced by Lewis [22] under the name variational

semiregularity (vsr), where the requirement took the form m(A¡) -* 0, where A,

are Borel sets satisfying A¡ \ 0. We remark that countable additivity, even on a

a-algebra, need not imply j-boundedness (Lewis [22]), as Example 5.1 infra will

show. Rickart [28] also introduced a continuity condition in a different setting.

Let A" be a S-space. By fa (35,*) we denote the Banach space of all finitely

additive set functions ft: 35 -» X with bounded total variation; the norm of ft is

given by |ft|(S). The subspace consisting of countably additive measures is

denoted by ca (35,*).

A set is said to be conditionally compact with respect to a topology t if its t-

closure is r-compact. In the sequel, we shall use the following equality [11]:

(ULI) m(A) = sup{|mJ04): z E /?},       A E 35.

Lemma 3.1. Suppose that D is an S-space and m: 2(D) -* B(E, F) is a

representing measure. Then the following are equivalent:

(i) m is s-bounded;

(ii) ifAn \ 0, then m(An) -> 0;

(iii) [\mz\: z E F*} is conditionally weakly compact in ca(2,.F*);

(iv) 2 fn(A¡)x¡ converges in F for each disjoint sequence (A¡) and (x¡) C Ex.

Proof, (ii) => (i). Let (A,) be a disjoint sequence. Then Bk \ 0, where

Bk = Ua>kA„. Hence m(Ak) < m(Bk) -» 0 and m is .s-bounded.



150 J. K. BROOKS AND P. W. LEWIS

(ii) ■» (iii). In view of equality (III.l), m satisfies (ii) if and only if

{\mz\: z E F*} is uniformly countably additive. The result follows by Theorem

IV.9.1 in [13].
(i) =*> (iv). Let (A,) be a disjoint sequence, (x,) C Ex and suppose that

2 m(A¡)x¡ does not converge. Then there is a subsequence (ik) and an e > 0 such

that

2   m(An)xH > e,       k = 1, 2,

Let Dk = UJê^+i^,,. Then (Dk) is a disjoint sequence and m(Dk) > e for each k.

Hence m is not j-bounded.

(iv) => (i). If m is not s-bounded, there exists an e > 0 and a disjoint sequence

(i4,-) such that m(A¡) > e for each /'. From the definition of m, there exist

partitions (fii)J*?, of A¡ and (4)*i-i C £ so that ||2* m(Bk)xk\\ > e for each i.
Consequently (iv) does not hold.

(i) =» (ii). If (ii) does not hold, there exists an e > 0 and A¡ \ 0 such that

m(A¡) > e. There is a zx E E* such that \mz¡\(AX) > e. Choose N2 > Nx = 1 so

that \mZl | (A^ — ANj) > e. Proceeding inductively, we obtain an increasing

sequence (N¡) so that m(AN¡ — AN¡+¡) > e, i = 1,2.Thus m is not s-bounded.

This completes the proof of the lemma.

Definition 3.2. A fi-space A' has the Radon-Nikodym property (property R-N) if

every countably additive X-valued measure m of bounded variation defined on a

a-algebra, which is absolutely continuous with respect to a scalar measure v, can

be expressed as the indefinite integral of a Bochner integrable function /; in

symbols, dm/dv =/ G Ü(v,X).

Remark 3.1. The following spaces are known to have property R-N: reflexive

spaces [27] and separable dual spaces [12].

The next result is a key lemma in obtaining criteria for weak compactness in

the countably additive case. We denote weak convergence by -*" and uniform

convergence by -»".

Lemma 3.2. Let &bea a-algebra and let X be a B-space such that X and X* have

property R-N. Suppose that (p„) is a sequence in c&(&,X) such that supn|p„|(S)

= M < oo. Assume that {|pj: « = 1,2,...} is uniformly countably additive and

p„(A)^>wp(A) in X for each A E & Then p: 8, -» X belongs to a(&,X) andp* -*w

pin cà(â,X).

Proof. Let x* E X*. Since x*p„(A) -* x*p(A) for each A, x*p is countably

additive by the Nikodym theorem. It then follows from the Orlicz-Pettis theorem

that p is countably additive. Let (A¡y¡Lx be a partition of S. For suitable x* G X*,

2 llp(A)ll = 2 \xTKA,)\ = um 2 \xhM)\

< urn 2 Ik04i)ll < M.
k   i-1
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Since |u|(S) < M, ft G ca^,*). Let po = ft and define v(A) - 2,"o \p¡\{A)/2>,
A E ÉL Note that v is finite, countably additive and ft « v for each /'. Since * has

property R-N, for each i there exists an/ G l)(v,X) such that </ft,</aV =/• To

show that ft, -»•" po, it suffices to prove that / -»"/o in Ll(v,X). Since X* has

property R-N, one can show that D(v,X)* = U°(v,X*). Consequently, we have

to show that /, <pf, -* £ <p/0 for each <p G Lx(v,X*). To establish this, choose a

sequence (\f/„) of éE-simple **-valued functions satisfying «^ -» <p a.e. j» and

\\ip„(t)\\ < 2||<p(f)|| for each n. Since |u,| < v uniformly in / (see [8, Theorem 1]),

given an c > 0 there exists a 8 > 0 such that |u,|(.4) < e, i = 1, 2,..., if

v(A) < 8. By EgorofFs theorem, there is an A E & such that v(A) < 5, and

% -»" m on S - A. By considering the inequality

|/<P/-/«P/o|<|/^-/<P/|

+ |/^,/.-/^/o| + |/^,/o-/<P/o ,

one can show that |/ <p/ — J" œ/0| < ATe for j > /, and a suitable constant K. The

lemma then follows.

Proposition 3.1. (i) Assume that X andX* have property R-N. Let%C caía,*)

satisfy the following conditions:

(a) 3C is bounded;

(b) {|ft|: ft G 3C} « uniformly countably additive;

(c) {ft(/4): ft G %) is conditionally weakly compact in X for each A E ÉL

Then %is conditionally weakly compact in ca((£,*).

(ii) Conversely, if X is any B-space and % C ca (<$,*) is conditionally weakly

compact, then (a), (b), and (c) hold.

Proof. To prove (i), it suffices in view of the Eberlein-Smulian theorem to prove

that if (ft,,) is a sequence of elements from % there is a weakly convergent

subsequence. Construct a countable subalgebra <£0 = [Ax, A2,...} of â such that

|ft„ | (S ) = |/jt„ [Ä0 |(S), n = 1,2,_Let Él' be the o-algebra generated by &q. Thus

the mapping it: span(uB) -» ca(éE',.Y) is an isometry, where w(jt) = fi|8'. Using

(c) we can choose a subsequence (ßk) of (p.k) such that ßk(A„) -*k, n — 1,2,_

By Theorem 4 in [5], x*ßk(A) -» for every A E &' and x* E X*. Using (c) we

conclude that ßk(A)^>wfoT every A E &'. If we define ß0(A) to be this weak

limit, then irßk^>wß0 in ca^',*) by Proposition 3.1. Hence &-»*V-1 (/30) in

ca (&,X).

To prove the converse, assume that % is conditionally weakly compact and

{|ft|: ft G %} is not uniformly countably additive. There exists an e > 0, (ft,)

c % and a disjoint sequence (A,) such that |u,|(A) > e, i = 1, 2,.... Obtain

partitions {By}fi\ of A, and Xy G X* such that

(#) 2 |*W*„)| > e,       /=1,2,....
y-i
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The map Ï: %-* /, defined by T(p) = {xj f(B9)}ffij!.i G /, is continuous with
respect to weak topologies on % and lx. Thus T(3C) is a conditionally weakly

compact subset of lx; by the Schur theorem, t(%) is conditionally strongly

compact. One can show that in view of (#), this leads to a contradiction. This

completes the proof of the proposition.

We now turn our attention to the finitely additive case. A family % of finitely

additive set functions p: 25 -» X is uniformly strongly additive if p(A¡) -* 0

uniformly with respect to p E % whenever (A,) is a disjoint sequence. When 3C

consists of countably additive measures and 25 is a a-algebra, this concept

coincides with uniform countable additivity.

First we need the following lemma.

Lemma 33. Let I be a nonempty set. Suppose that there exists a sequence of

functions f„: I -* X such that fn(I) is a conditionally weakly compact set in X for

each n. Assume that f: I -* X and lim„||X(a) -f(a)\\ = 0 uniformly for a E I.

Then f (I) is conditionally weakly compact.

Proof. Let B(I ) denote the fi-space of all bounded functions with norm defined

by the sup norm. Let / = /0 and for each « > 0 define T„: X* -* B(I) by

Tn(x*) = x*f,(-)- By Theorem 2 in [33], each TH is a weakly compact operator.

Since Tn -> T in the uniform operator topology, T is weakly compact. Again by

the above-mentioned theorem,/(/) is conditionally weakly compact in X.

We can now state the main theorem on weak compactness in fa(25,X).

Theorem 3.1. (i) Assume that X and X* have property R-N. Let % C fa^,*)

satisfy the following conditions:

(a) % is bounded;

(b) {|p|: p E %) is uniformly strongly additive;

(c) {p(A): p E %} is conditionally weakly compact in X for each A E 25.

Then % is conditionally weakly compact in fa(25, X).

(ii) Conversely, if X is any B-space and % C fa(25,A") is conditionally weakly

compact, then (a), (b) and (c) hold.

Remark 3.2. In view of Remark 3.1, if A" is reflexive or X = Y* and A'* is

separable, then A' and X* have property R-N and thus satisfy the hypotheses of

(0-
Proof. Assume 25 = <3l is an algebra of sets-that is, S G SU Let % be the Stone

algebra [13, p. 312] of all open-closed subsets of the compact Hausdorff space Sx.

The a-algebra generated by % is denoted by 9^. We shall use the fact that

fa(%X) and c&(§,2,X) are isometrically isomorphic (see [11]). Let %' denote the

usual image of 9Cin ca.(%,X); %" denotes the extensions of 9C to R2. It suffices

to show that 9C" satisfies (a), (b) and (c) of Proposition 3.1 if % satisfies the

hypotheses of (i). Clearly (a) is satisfied. Next, (b) follows from Theorem 3 in [5],

which implies that since {|p'|: p' G %} is uniformly strongly additive on %,
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{|ft"|: ft" G %"} is uniformly countably additive on 9l2. Note that we use the fact

that the |ft"| is the extension of |ft'|. To prove (c), let A E 9^ and let

(o„) = (p"„) C 9C". Set X = 2 kfl/2". Then X is a bounded measure such that
|o-J < X for each n. By Theorem 1 in [8], the o„ are uniformly absolutely

continuous with respect to X. Choose a sequence of sets Bn E % such that

X(B„A.A) -» 0. Hence o¡(B„) -*, o ¡(A) uniformly in i. Let / be the set of positive

integers. Define/,/: /-* ï by/„(/) = o¡(B„),f(i) = o¡(A). Since each/B(/) is

conditionally weakly compact and^ -* /uniformly on /, we conclude by Lemma

3.3 that /(/) = [o¡(A): i = 1,2,...} is conditionally weakly compact. This

establishes (c).

In the general case when 35 is a ring, we consider 9, the algebra generated by

35. Then % is extended to T on 9, in such a way that (a), (b) and (c) hold for %'

on 9L (see 3.V in [6]). The problem is then reduced to the above case. This

completes the proof of the theorem.

4. Weakly compact and compact operators. In this section we establish criteria

for operators to be (weakly) compact on certain function spaces.

Definition 4.1. Let T: C(H,E) -» F be an operator. We say that Tis (weakly)

compact if there exists a compact set K such that T({f: ||/||j{ < 1}) is condition-

ally (weakly) compact in F.

Theorem 4.1. Let L be an operator defined on either C(H,E) or C0(H,E) into F,

with L «-» m. If L is weakly compact then m is s-bounded, and m(A): E -+ F is

weakly compact for each A.

Conversely, if E* and E** have property R-N (e.g. if E is reflexive or E** is

separable), m is s-bounded and m(A) is a weakly compact operator in B(E, F) for

each A, then L is weakly compact.

Proof. We shall only consider the case where L is defined on C(H,E). Suppose

L is weakly compact. One can find a compact set K C H and a constant M > 0

suchthat ||L(/)|| < M\\f\\K,f E C(H,E)andL({/: \\f\\K < \,f E C(H,E)})is
conditionally weakly compact in F. Thus we may consider L as an operator

on C(K,E) into F. By Gantmacher's theorem,

L*: F* -> C*(K,E) C ca(2(//),£*)

(see Corollary 2.9.1) is weakly compact. Consequently, {mz: z E E*} = {L*(z):

z E F*) is conditionally weakly compact in ca(2,£*). By Proposition 3.1,

[\m2\: z E F*} is uniformly countably additive, hence conditionally weakly

compact in ca(2, C). By Lemma 3.1, m is s-bounded.

Conversely, suppose the conditions of the second part of the theorem are

fulfilled. As before we regard L as an operator on C(K,E) for some compact set

K. Consider the set % = {mz: z E Ff)\ = L*(/¡*). It suffices to show that % is

conditionally weakly compact in ca(2(Ä'),£*). But % is bounded since m(K)

< oo, and [\mz\: z G /,*} is uniformly countably additive since m is s-bounded.

Let .4 G 2(Ä^). Since m(A): E -* £(see Corollary 4.4.1 infra) is weakly compact,

{m(A)*z: z E F*} = {m2(A): z E F*} is conditionally weakly compact in £*.

The conditional weak compactness of 3Cnow follows from Proposition 3.1.



154 J. K. BROOKS AND P. W. LEWIS

Remark 4.1. It follows from the above theorem that if L is weakly compact,

then m is countably additive. If L is a dominated operator, then \m\ is finite and

countably additive, hence j-bounded. Thus in this case L is weakly compact if

E* and £** have property R-N and m(A) is a weakly compact operator for each

A. The above theorem strengthens Theorem VI.7.3 of [13] as follows: L: C0(H)

-» F is weakly compact if and only if m is countably additive. The hypothesis

that m maps into F is unnecessary. We mention that if the hypotheses on E* and

£** are omitted in the above theorem, then the result is false. In fact if £ is not

reflexive, one can exhibit nonweakly compact operators which correspond to s-

bounded measures. Special cases of the above result have been obtained by Batt

and Berg [3] and C. Swartz (private communication).

Next we consider operators on the space of totally measurable functions 17£(25)

(Definition 2.1) into F. First we state a lemma whose proof will be left to the

reader.

Lemma 4.1. Let L: i/£(25) -» F be an operator. Then there exists a unique finitely

additive set junction m: 25 -» B(E,F) such that m(S) = ||L|| < oo and L(f)

= Sfdm,fE t/£(2)).

If L and m are related as above, we write L «-» m. The following theorem

characterizes weakly compact operators on t7£(25).

Theorem 4.2. Let L: t/£(25) -* F be an operator, with L*+m. If L is weakly

compact, then m is s-bounded.

Conversely, if E* and £** have property R-N (e.g. if E is reflexive or E** is

separable), m is s-bounded and m(A): E -* F is weakly compact for each A G 25,

then L is weakly compact.

Proof. We first note that 1/1(25) C fa(25,£*). Since L*(E*) = {mz: z G F,*},

the theorem follows in view of Theorem 3.1.

Using Theorem 4.2 we establish a result concerning the pointwise limit of

weakly compact operators on the space of totally measurable functions.

Theorem 43. (i) If c0 (t F and L: i/£(25) -» F is an operator, then L is s-

bounded. (ii) Let E* and E** have property R-N, let L: t/£(25) -* Fbean operator,

let L„ be a sequence of weakly compact operators, and suppose that c0 <t F. If

L„($a " x) -* L(£A • x) for each A and uniformly for x G Ex, then L is weakly

compact.

Proof, (i) Suppose that L is not i-bounded. Then there is a disjoint sequence

(A¡), a subsequence (nk) of positive integers, a sequence (x¡) C Ex, and an e > 0

so that

(#) 2    ™(A¡) • x¡ >£.
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However, if we select :6if, then 2,°li Km(Ai)x„z')\ < 2,"i \mt\(A¡)

< sup{\mz\(A): A E 35} < sup{m(A): A E 35} < oo, and (#) is a weakly un-

conditionally convergent series which is not unconditionally convergent. Thus by

Bessaga and Pelczyñski [4, p. 160], F contains c0, and (i) is proved.

(ii) Let ma «-» L„ and m*+ L. Since m„(A)x = Ln(3iA • x) -* m(A)x =

L(£A • x) for each A and uniformly for x E Ex, then m(A) is a weakly compact

operator for each A. And, since m is s-bounded by (i), the result follows from the

preceding theorem.

Next we turn to the problem posed by Dinculeanu [11, p. 416] of characterizing

those operators L: B -* F whose representing measures actually map into

B(E,F). This question has also been studied in [3] and [16]. We give a

characterization analogous to the theory developed by Bartle, Dunford and

Schwartz [2].

If L: C0(H,E) -> F is an operator and x E £, let Lx: C0(H) -» F be the

usual induced operator. Note that L**(XA • x) = L**(XA), A E 2(//). For

x E E and v G F***, mx and my are defined in the obvious manner.

Theorem 4.4. Let L: B -» F be an operator with L±+ m. Then the following are

equivalent:

(i)m: 2^ *(£,£);

(ii) mx is countably additive for each x G £;

(iii) Lx : C0(H) -* F is weakly compact for each x E E;

(iv) my is countably additive for each y E F***.

Proof, (iii) => (i). Since Lx *-* mx and L** : C/c(2) -» F, we have mx(A) E F

for each x E E. Therefore m: 2 -» B(E,F).

(i) => (ii). Since mx: 2 -* Fand mx is weakly countably additive, by the Orlicz-

Pettis theorem mx is countably additive.

(ii) => (iii). If mx is countably additive for each x, it follows that mx is s-

bounded, and thus Lx is weakly compact by Theorem 4.1.

(iv) => (ii). Since my is countably additive for each v G F***, it follows that

mx is weakly countably additive, and by the Orlicz-Pettis theorem mx is countably

additive.

(i) => (iv). Since m: 2 -» B(E, F), it follows that if y G F*** and z = y\p, then

my = mz. Therefore my is countably additive since |w2| G rca(2,C).

The next corollary follows from the above theorem.

Corollary 4.4.1. Let m be a representing measure. Then m takes its values in

B(E, F) in any of the following cases: (a) m is countably additive; (b) m is s-bounded;

(c) m corresponds to a weakly compact operator.

We remark here that the weak extension L: UE(2) -* F of L which is given in

Theorem 1(b) of Batt and Berg [3] is simply L**. Therefore if L «-» m, then it is

immediate that L is (weakly) compact if and only if m: 2-»B(£,F) and
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A = {2^jy) m(A¡)xt: x¡ G Ex) is (weakly) conditionally compact. This is the

principal content of Theorem 6 of [3].

We mention that if L «-> m and m is s-bounded, then m is variationally regular.

That is, if e > 0 and A E 2, then there is a compact set K C A and an open set

U D A so that m(U - K) < e. This follows since there is a positive

X E rca(2,C) so that \mz\(A) -> 0 as X(A) -» 0 uniformly for z G fi*.

We next turn our attention to compact operators on function spaces.

Definition 4.2. Suppose that 25 is an arbitrary ring of subsets of S and

m: 25 -* B(E,F) is finitely additive with finite semivariation. If A E 25 and

z E £*, then let P(m,A)(z) = |«iJG4). The topology induced on fi* by the

seminorms { P(myA) : A G 25} will be denoted by 8(m). We note that if S G 25, then

(F*,8(m)) is a pseudometric space whose topology is determimed byp(m¿).

It is known that if H is compact and L: C(H) -* F, with L*^»m, where L is

an operator, then L is compact if and only if m takes its values in a compact

subset of F [13]. However, if L has C(H,E) as its domain, then the range of m

need not be compact if L is compact [3]. Conversely, Example 5.1 infra shows

that if the range of m is compact and for each A, m(A) is compact (even nuclear),

then m may not be s-bounded; hence L is not even weakly compact.

Theorem 4.5. Let L: C(H,E) -* F be an operator, with L «-» m. Then

(i) L is compact if and only if (F*, 8(m)) is a compact pseudometric space;

(ii) L is compact with dense range if and only if 8(m) induces the w*-topology on

FT.

Proof. Suppose L: C(H,E) -» F is a compact operator. As we have seen

before, we may consider L: C(K,E) -* F, where AT is a compact set. To show

(F*,8(m)) is a compact space, let (za) be a net in fi,*. By the Banach-A'laoglu

theorem, there is a subnet (z„.) of (za) converging to z G fi,* in the w*-topology.

By Theorem VI.5.6 in [13], L*(za.) -» L*(z) in ca(2,£*). This means thatz«. -» z

in (fi,*,5(m)).

Conversely, suppose that (fi,*,5(/n)) is a compact space. Let (zn) be a sequence

in F*. There exists a subsequence (zn¡) such that \m(z -Z)\(K) -* 0. This implies

that L*(z„) -* L*(z) in ca(2, £*). Hence L* is compact. This proves (i).

To establish (ii) we make the following observations. The operator L has dense

range if and only if L* is a one to one mapping; hence 8(m) is a metric if and

only if L has dense range. Thus by (i), L is compact with dense range if and only

if (F*,8(m)) is a compact metric space; and by (i) the w*-topology is stronger

than the ô(«i)-topology if L is compact. Consequently, the theorem is proved.

5. Properties of s-bounded measures. In this section we continue our investiga-

tion of strongly bounded representing measures. An example is given which

illustrates the pathological behavior of operator valued representing measures.

Following this example, three notions of absolute continuity are discussed and

additional miscellaneous results are given.
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Theorem 5.1. The following conditions are equivalent:

(a) the B-space F does not contain a topological isomorph of c0;

(b) for each E and each H, the limit of every pointwise convergent uniformly

bounded (in semivariation) sequence of s-bounded representing measures p^:

2 —» B(E, F) is an s-bounded representing measure;

(c) for each E and each H, a representing measure m is s-bounded if and only if

m: 2->£(£,£).

Proof. Since Example 5.1 infra and the remarks following it show that if F D c0

then there is a representing measure m which is countably additive, not s-

bounded, and the pointwise limit of a uniformly bounded sequence of s-bounded

representing measures, it suffices to show that (a) ■»■ (b) and (a) •* (c).

(a) => (c). Suppose that F does not contain c0 and m: 2 -» B(E,F). Choose

(A¡) disjoint, (x¡) C £,, andz G F*. Since 2 \(,ffÁAi)xl,z')\ < 2 |wJ04f) < oo,

2 ff(A¡) • x¡ is weakly unconditionally convergent, and by a result of Bessaga

and Pelczyñski [4, p. 160], 2 ff(A¡)x¡ is unconditionally convergent. Thus m is s-

bounded by Lemma 3.1.

Conversely, if m is s-bounded, then m is countably additive and m: 2

-> B(E,F) by Corollary 4.4.1.

(a) ■* (b). Suppose that c0 Ct F and (pi) is a sequence satisfying the hypothesis

of (b). Set p(A) = lim p?(A), A G 2. Since p'(H) is uniformly bounded, it is

clear that p(H) < oo. Therefore to complete the argument it is enough to show

that u is countably additive and \pz\ E rca(2,C) for each z E F*. For we know

that ft: 2 -* B(E, F), and, by the proof of the preceding implication, to see that

ft is s-bounded it suffices to prove that ft is a representing measure. Since each ft'

is s-bounded, there is a A, > 0, A, G rca(2,C), so that pi (A) -+ 0 as X¡(A) -* 0

(see Dunford and Schwartz, [13, IV.13.20(iii)]). Let X = 2," i X,/2'(|X1|(//) + 1);
note that p' « X. By the Nikodym theorem, ft is countably additive. Furthermore,

by the Vitali-Hahn-Saks theorem, pz < X uniformly in i for each z E FV

Therefore ft2:2-»£* is regular for each z, and, by Corollary 2.8.1, |ftz|

G rea (2). This completes the proof of the theorem.

Recall that an operator Y from an arbitrary B-space X into a B-space Y is

unconditionally convergent provided it maps weakly unconditionally convergent

series in X to unconditionally convergent series in Y. The Orlicz-Pettis theorem

implies that every weakly compact operator T: X -* F is unconditionally conver-

gent.

Theorem 5.2. If c0 (£ £, then every s-bounded operator /w «-* L: C0(H,E) -* F

is unconditionally convergent.

Proof. Let 2/ be weakly unconditionally convergent in C0(H,E). Since

H ® E* C B*, it follows that 2 /-(O is weakly unconditionally convergent in £

for each t E H. But, £ 3) c0, and 2 /(') is unconditionally convergent in £. Set

f0(t) = limn 2?-i/,(0. t E H, and let §„(/) = 2"-i//W, « = 1, 2, .... By the
uniform boundedness principle, supfllSjl«,} < oo.
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Now since m is s-bounded, K = {\m,\: z G fi*} is conditionally weakly

compact in ca(2, C); thus by [13, IV.9.1] there is a positive A G ca(2, C) so that

K < X uniformly and X(A) < s\ip{\mz\(A): z G F*). Therefore X(A) -> 0 if and

only if m(A) -* 0, and À is a control measure for m in the sense of Bartle [1]. By

the bilinear dominated convergence theorem in [1] it follows that Sfodm

= limB/Sfli/«J = limB2,l.L(/).

Finally, if (nk) is any permutation of the natural numbers, then 2*/.*(')

-»/0(r), t E H, since 2/(0 is unconditionally convergent. Therefore

lim,, 2*-i L(fnk) — Sfodm, and the theorem is proved.
The following example was mentioned in Theorem 5.1.

Example 5.1. Let En be Euclidean 2" + 1 dimensional space with the /'-norm,

and let E = (II^=i E„), i.e. E is the collection of all functions / defined on the

natural numbers so that /(/) G E¡ and sup{||/(i)||: i = 1,2,...} < oo. Note

that elements of E may act on E and transform it into /°°, i.e. if (x„), (y„) E E,

then <(jcB),(%)) = (z„) G /", where z„ is the inner product of xn a.ndy„. Let H

be a countably infinite discrete space whose elements are written in the form

{<£u(/): i = 1,2,..., 1 </(/) < 2' + 1}, and let A¡ = {<$,,,,... ,6?(j2«+I}. Now de-

fine m({&¡j}) to be that point in E with 1/2' in/th component of the /th coordinate

and 0 elsewhere; define m(0) to be 0. Therefore m({&,j)) E E for each / and/;

in addition m({&¡j}): E -» c0 is an operator. If A G 2, define m(A) to be the

point in E whose /th component of the /th coordinate is m(A n {&¡j}). Then

m(A): E -* c0 is an operator for each A E 2. In fact, if v = (yn) G Ex, then

m(X)v = (z„) E c0 so that tn = 0 if n * / and |z,| = |<(l/2',.... 1/2'), vf>|

< 1/2'. From this inequality, it follows easily that m is countably additive. But,

since m(A¡) = (2' + l)/2', m is not s-bounded.

Remark 5.2. As we indicated in Theorem 5.1, this example answers two other

questions dealing with vector measures. In [9], using Rickart's notion of s-

boundedness, Brooks and Jewett showed that the pointwise limit of a sequence

of s-bounded set functions was s-bounded. This result fails for representing

measures. In fact, if (A¡) and m are as in Example 5.1, then defining mJ[A) to be

m(A n (UiLi-d,)) and using the countable additivity of m, it follows that

mn(A) -» m(A). In addition, it is not difficult to see that each mn is s-bounded.

Secondly, Batt and Berg [3] have given an example of a compact operator

L: B -» F whose representing measure does not have conditionally compact

range. Example 5.1 shows that the conditional compactness of range (m) and the

compactness (even nuclearity) of each m(A) does not imply that the represented

operator is even weakly compact. In fact, if A E 2, then fn = m(A n An) may

be naturally interpreted as an element of E*. As such, \\fn\\ < 1/2". Now let en

denote the nth unit vector in l°°, and note that fn ® en is an operator from E to

c0, where ® denotes tensor product, e.g., see Schaefer [30, pp. 97-100]. The

countable additivity of m then implies that

m(A) = 2 ¿(27J ® eH,
«—i ̂
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where ||2"jü|| < 1 and ||ej| = 1. But this is Grothendieck's characterization of

nuclear operators [17].

Now let K = \m(A): A E 2}, and let e > 0. There is an N so that if

A E 2(H), A C B = \JAn, n > N, then \\m(A)\\ < e. But there are only
finitely many sets in 2 which do not meet B. Thus K is totally bounded;

consequently, K is conditionally compact.

Next we define three types of absolute continuity for representing measures

and briefly study permanence of compact and weakly compact operators with

respect to these concepts of absolute continuity.

Definition 5.1. Let each of n, m: 2(//) -» B(E,F**) be a representing meas-

ure.

(i) We say that n is weakly absolutely continuous with respect to m (n < m) if

for each A E 2(/f) and x E E

n(A)-x e(\J 2 ffÍA¡) • x¡: x E E\
L«A) J

(ii) We say that n is absolutely continuous with respect to m (n < m) if for each

e > 0 there is a 8 > 0 so that if m(A) < 8, then ñ(A) < e.

(iii) We say that n is strongly absolutely continuous with respect to m (n < m)

if for each A E 2 and x E £, then

n(A) • x G { U 2 fn(A¡) • x,: x¡ E £,}.

Remarks 53. In Lewis [24] it was shown that n < m if and only if \nz| < \mz|;

in [23] it was shown that if n <SS m, then \nz | < \mz | for each z E F*.

If n *-» T and m*-»L, then we write T <.(<£.)(<&.) L to indicate n <

(«)(<sk)/m. We are concerned with the following questions. If T <(<)(«£)£,

and L is (weakly) compact, then must F be (weakly) compact? We obtain positive

answers in the following cases.

Theorem 5 J. (i) If L is a compact operator and T <%£. L then T is a compact

operator.

(ii) If E* and E** have property R-N, L is weakly compact, and T <SK L, then T

is weakly compact.

(iii) If E is reflexive, L is weakly compact, and m(A) = 0 =* ñ(A) = 0, then Tis

weakly compact if and only ifn<£.m.

Proof, (i) Since L is compact, (F*,8(m)) is a compact pseudometric space. By

Remark 5.3 above, \nz\(A) < \mz\(A), z E F*, A E 2. Therefore 8(n)(z) <

8(m)(z), (F*,8(n)) is a compact space, and Fis a compact operator.

(Ü) Let IV) = {U^> 2 ffi(Ai)xi: X¡ E £,}. Then, since T(A) C ¿**(S£(2),)

and L is weakly compact, T(A) is conditionally weakly compact. Thus T(A) is

conditionally weakly compact, and since [m(A)x: x E Ex) C T(A), m(A) is a

weakly compact operator for each A. Therefore, by Remark 5.3, n is s-bounded,

and, by Theorem 4.1, Tis weakly compact.
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(iii) Since E is reflexive, we immediately see that «(^4) is weakly compact for

each A E 2. And in Lewis [25, Theorem 3.1] it was shown that if m is s-bounded

and m(A) = 0 => ñ(A) = 0, then « is s-bounded if and only if « « m. Therefore,

by Theorem 4.1, (iii) follows, and the theorem is proved.

Our next theorem is an analog of Theorem 7, p. 158 of Dinculeanu [11], i.e. if

E is a fi-space we obtain a measure theoretic identification of the extreme points

of B*. Denote this set by ext(B*). Clearly we cannot conclude that an extreme

point will be multiplicative in our setting.

Theorem 5.4. If L E ext(Bf) and L*-± m* then supp(«i) is a singleton.

Proof. If Ax and A2 are disjoint members of 2, we first show that

(i) m(Ax) = 0   or   m(A2) = 0.

For, if not, let mx(A) = m(A n Ax) and m2(A) = m(A - Ax), A E 2. Then

m(H) = \m\(H) = mx(A) + m2(H - Ax)

= \mx\(Ax) + \m2\(H - A) = I,

since the semivariation and total variation are the same in this case. Now let

«, = mx/(\mx\(H)), and let n2 = m2/(\m2\(H)). Then nx ¥= m, n2 # m, and

\mx\(H)nx + \m2\(H)n2 = m. Therefore L cannot be extreme, and we have a

contradiction. Thus if Ax C\ A2 = 0, then m(Ax) = 0 or m(A2) = 0, and the

only values assumed by m are 0 and m(H). Therefore, in particular, m(A) = 0 if

and only if m(A) = 0.

Now if x and y are distinct points in supp(/n), let Ux and Uy be disjoint open

sets containing x and y respectively. But then m(Ux) = 0 or m(Uy) = 0, and

m(Ux) = 0 or m(Uy) = 0. Consequently, either x or y does not belong to

supp(«i), a contradiction, and the proof is finished.

We remark that establishing (i) is the key to the proof of Theorem 7 in [11].

Furthermore, the converse of this theorem is false in this setting.

Example 5.2. Suppose that H is a nontrivial compact Hausdorff space E = /',

and B = C(H,E). Let / G H, and, if (xn) E /°°, then define

((x„Uif) - <(*»),/(')>.      /GB.

Then certainly ((xn),t) E B*. and ||((x„),/)|| < ||(*„)||. Then let m(A) = (1,

0,... ,0,...) if r G A and 0 otherwise. Therefore m(H) = \m\(H) = 1. But

m = \/2mx + l/2m2, where mx(A) = (1,1,0,.. .,0,...) if t G A and 0 other-

wise and m2(A) = (1,-1,0,.. .,0,...) if / G A and 0 otherwise. Since \mx\(H)

— \m2\(H) = 1, it follows that L(-) = Sh (-)dm = (m(t),t) is not extreme.

We next state two theorems obtained in Lewis [26]—one providing us with a

generalization of a result due to Grothendieck [17] and Bartle, Dunford, and
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Schwartz [2]—the other providing us with a partial result which raises an

interesting question.

Theorem 5.5. Suppose E satisfies the Schur condition (weak and norm convergence

of sequences are the same), and let L: B -» F be an s-bounded operator, with

representing measure m. Then

(i)/n: 2-+£(£,£);

(ii) //(/) is B*-Cauchy in i/£(2), then (L(fn)) converges in F;

(iii) iffn -»»'/i" i/£(2), then L(fn) -» L(f).
Conversely, if E is any B-space and misa representing measure which satisfies (i),

(ii), and (iii), then m is s-bounded.

Theorem 5.6. If mis a representing measure, m <-» L, then m is s-bounded if and

only if for each sequence of sets A¡ \ 0, there is a nested sequence (U„) of open sets

so that A„ C Un and L(fn) -» 0 uniformly for each sequence (f„) so that supp(/,)

C Um ll/JI < 1.

Theorem 5.7. If E satisfies the Schur condition, then no infinite dimensional

reflexive subspace of C0(H,E) is complemented in C0(H,E).

Proof. Suppose X is an infinite dimensional reflexive subspace of C0(H,E) and

P: C0(H,E) -* X is a continuous projection. Since X is reflexive, P is weakly

compact, and, by Theorem 5.5, P2 = P is compact. But then Xx must be compact

in the norm topology, and this is a contradiction since X is infinite dimensional.

In [2] and [17] this result was established for £ being the scalar field.

We conclude with the following two problems.

Problem 1. Using Theorem 5.6, it is not difficult to see that if F = B, then <3>

(= set of s-bounded operators) is a closed left ideal. Is 9> also a right ideal?

Problem 2. Give a measure theoretic characterization of the extreme points

(provided any exist) of the closed unit ball of B(B, F).
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