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ABSTRACT. Let M be a compact, metric continuum that is separated by no subcon-

tinuum. If such a continuum has a monotone, upper semicontinuous decomposition, the

elements of which have void interior and for which the quotient space is a simple closed

curve, then it is said to be of type A'. It is proved that a bounded plane continuum is of

type A' if and only if M contains no indecomposable subcontinuum with nonvoid interior.

In E} this condition is not sufficient and an example is given to illustrate this. However, it

is shown that if M is hereditarily decomposable then M is of type A'. Next, a condition is

given that characterizes continua of type A'. Also the structure of the elements in the

decomposition of a continuum of type A' is discussed and the decomposition is shown to

be unique. Finally, some consequences of these results and some remarks are given.

A continuum M irreducible between two points is defined by Thomas [7, p. 13]

to be of type A' if M has a monotone, upper semicontinuous decomposition each

of whose elements has void interior and whose quotient space is an arc. He

proves [7, p. 15] that M is of type A' if and only if M contains no indecomposable

subcontinuum with nonvoid interior. For a continuum M not separated by any

subcontinuum it is natural to define M to be of type A' if the above definition

holds except that the quotient space is required to be a simple closed curve

instead of an arc. For these continua it seems reasonable too that a characteriza-

tion can be obtained by using Thomas' condition. If the continuum is planar this

is true and is the content of Theorem 1. But surprisingly the characterization is

not valid in 3-space and Example 1 is a continuum not separated by any

subcontinuum, not containing any region-containing indecomposable subcontin-

uum yet not of type A'. Interestingly enough though, if M is hereditarily

decomposable it is of type A' and this is proved in Theorem 2 using a result of

Schlais [6]. But, whereas the former condition is too weak to obtain a character-

ization as Example 1 shows, the latter condition is too strong as easy examples

show. It is of some interest to speculate what the "right" intermediate condition

is. Theorem 3 gives a characterization but the condition is not entirely satisfac-

tory. L. E. Rogers raised the question as to whether the desired condition might

be that K(x)° = 0 for all x G M where K(x) consists of x and all points y of M
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such that M is not aposyndetic at x with respect to y. The author does not know

the answer to this question. Finally some theorems are given that yield informa-

tion about the structure of the elements in the decomposition of type A' continua

and the uniqueness of the decomposition. The author wishes to thank Leonard

Rubin of the University of Oklahoma for his helpful insights and suggestions,

especially in regard to Example 1.

1. Preliminary theorems. Unless stated otherwise M will be a compact, metric

continuum that is separated by none of its subcontinua. If A is a subset of M then

T(A) consists of A together with all points x G M such that there does not exist

an open set U and a continuum H such that x G UCHCM — A.UxGM

let T°(x) = x, and T"(x) = T(Tn~l(x)) where « is a positive integer. If A is a

subset of M let K(A) consist of A together with all points x G M such that there

does not exist an open set U and continuum H such that A C U C H

CM — {x}. The continuum M is of type A if M has a monotone, upper

semicontinuous decomposition whose quotient space is a simple closed curve and

is of type A' if, in addition, the elements of the decomposition have void interior.

If B, C, D C M we say B cuts C from D if every subcontinuum of M intersecting

both C and D also intersects B. If P C M we say P separates M if M — P is not

connected. Finally, if H is a subset of M then the boundary of H, the interior of

H and the closure of H, relative to M, are denoted by Fr(//), H" and H,

respectively.

Theorem A (Thomas [7]). Let M be a continuum irreducible between a pair of its

points. A necessary and sufficient condition that M have a monotone, upper

semicontinuous decomposition, the elements of which have void interior, and for which

the quotient space is an arc, is that M contain no region-containing indecomposable

subcontinuum.

Theorem B. A necessary and sufficient condition that M be of type A' is that M

contain no indecomposable subcontinuum with nonvoid interior and that there exist

mutually disjoint subcontinua H, Ksuch that H° ^ 0 # AT0.

Proof. If M is of type A' then the quotient space M is a simple closed curve.

Let x, y G M'. Then M' — {x,y) = A U B, a separation, where A = {x} U A

U {y} and 5~ = {x} U B U {y} are arcs with endpoints x and y. If / is the

quotient map of M onto M then/-1 (A) and/-1 (B) are irreducible continua from

/-1(x) to f~l(y) and have monotone, upper semicontinuous decompositions

whose elements have void interiors and with the arcs .4" and B, respectively, as

quotient spaces. Using Theorem A the necessity is proved.

Next suppose M contains continua H, K such that H" # 0 ¥= K° and

H n K = 0. Since M - (H U K) is not connected (because M - (H U K)

separates Ai), M — (H U K) = A U fi, a separation of M. Now either Äor IB

must contain a continuum intersecting both H and K (otherwise M will not be

connected). Let C be an irreducible subcontinuum of .4" from H to K. We must

have C = Ä or else M - (H U K U C) = (A - C) U B, a separation of M.
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Since H U A U K is a continuum, B is connected. Also B must intersect both H

and K, otherwise K or H, respectively, will separate M. As with A, 2? is also an

irreducible continuum from H to K. By hypothesis .4 and B do not contain

indecomposable subcontinua with nonvoid interiors; hence by Theorem A, A

and B have monotone upper semicontinuous decompositions the elements of

which have void interiors and whose quotient spaces are arcs. Let DA and DB be

elements of the decompositions of A and B, respectively, such that DA C A and

DB C B. By the above reasoning M — (DA U DB) = P U Q, a separation of M,

such that F and Q are both irreducible continua from DA to Z>B. As with A and

5 above, P and Ö have monotone, upper semicontinuous decompositions with

arcs for the quotient spaces. Clearly DA U DB C P I) Q. Therefore M = F

U Q and is of type A'.

The condition that there exist mutually disjoint continua with nonempty

interiors is another way of saying that M is not strictly nonmutually aposyndetic

[3].

Theorem C. The continuum M is of type A' if and only if M contains no

indecomposable subcontinuum with nonvoid interior and there exists x G M such

that T2(x) * M.

Proof. The necessity is proved as in Theorem B. Suppose v G M — T2(x). By

Theorem B we need to show that there exist subcontinua H and K such that

H° ¥= 0 ¥= K° and H n K = 0. Let H be a subcontinuum of M such that

y G H° C H C M — T(x). For each point z G H, there exists a continuum Hz

such that z G H°z C Hz C M — {x}. By the compactness of H and because it is

connected, there exists a continuum L such that H C L° C L C M — {x}. The

set M — L is connected so if we let K = M — L it is clear that the continua H

and K meet the required conditions.

Theorem D. The continuum M is of type A' if and only if M contains no

indecomposable subcontinuum with nonvoid interior and there exist points x and y

such that T(x) ("I T(y) = 0.

Proof. Let x, y G M such that T(x) f~l T(y) = 0. For each z G T(x) there

exists a continuum Hz such that z G H° C Hz C M — {y}. By compactness and

because T(x) is connected [4], there exists a continuum H such that T(x) C H°

C H C M — {y}. Lei K — M — H which is a continuum since M — H is

connected. For each z G K there exists a continuum Kz such that z E K° C Kz

CM — {x}. Again there exists a continuum L such that K C L° C L C M

- {x}. Let AT = M-L. Clearly AT n tf = 0 and AT * 0 # A"°. Therefore M
is of type A' by Theorem B.

2. A decomposition theorem for plane continua. In order to prove the main

theorem of this section we need a corollary of a result due to Bing [1]. For

completeness the proof is included.



70 E. J. VOUGHT

Lemma (Bing). If M is a compact, metric continuum that is separated by no

subcontinuum, then no subcontinuum of M cuts between open sets.

Proof. Suppose C is a subcontinuum of M that cuts between the open sets

Ux, U2. Let Vx, V2 be nonempty open sets such that Vx C Ux, V2 C U2. Let C be

the component of M — (IfU V2) that contains C. Each component of M

— (Vx U V2) must intersect Vx — Vx or V2 — V2 but none, except C, intersects both

since such a continuum would intersect Ux and U2 but not C. For each point

a G M - (Vx U 1^) let ga be the component of M - (Vx U V2) that contains a,

let

6i= U{ßJaGM-(IiU V2);Qa*C;QaC\(Vx-Vx)*0}

and

02 - U{gfl I a G M- (Vx U K2);ga * C';gfl n (V2-V2) * 0}.

As noted gi n g2 = 0; furthermore gi n g2 = 0. For suppose p G Qx n g2.

Then there exists a sequence of components Q„x, Qai,..., such that Qa¡ C g, for

each i, and p G lim inf Qa¡. Then lim sup Qa¡ is a continuum K that lies in the

component Qp of A/ - (Vx U ^Hg, ¥= C since p g C). Now p G Q2 so

QP C Q2; but K C\ ffi - Vx) ¥= 0, so Qp C Qx. This is impossible and therefore
Ôi n Ô2 = 0; similarly g, n g2 = 0. Let /I = ^ U g, and S = V2 U g2.

We have A/-C' = ^U5andJnfi = 0 = y4nF. Thus A/ - C is not

connected which is a contradiction since C is a subcontinuum of A/.

We now prove the simple closed curve decomposition theorem for plane

continua.

Theorem 1. If M is a bounded plane continuum that is separated by none of its

subcontinua and contains no region-containing indecomposable subcontinua, then M

is of type A' and conversely.

Proof. The converse is proved in general in Thereom B. According to Theorem

B it is sufficient to prove that there exist two subcontinua H, K with nonempty

interiors such that H (1 K = 0. Since M contains no indecomposable subcon-

tinuum with nonempty interior and no subcontinuum separates M, there exist

subcontinua Mx, M2, M3, A/4, A/5 whose interiors relative to M are nonempty and

pairwise disjoint and such that M = Mx U M2 U M3 U M4 U A/5. Suppose that

M¡; fl Mj; ¥= 0; 1 < /',/ < 5. There exist pairwise disjoint simple closed disks /,,

J2, h, J4, J5 such that J°¡ n M¡ # 0, /' = 1, 2, 3,4, 5; J¡ n M¡ — 0, i i- j (/°( is
the interior of / in the plane). The continuum A/3 U A/4 U A/5 does not separate

M and hence does not cut M between the open sets J\ n Mx and J 2 D M2 of

M. Hence there exists a subcontinuum Bx2 of M — (A/3 U A/4 U A/5) intersecting

these two sets. Let C12 be an irreducible subcontinuum of Bx2 from Jx to J2. Clearly

Cl2 D J°i = 0 = C,2 n y 5. The continuum M2 U A/4 U A/5 U C12 does not

cut M between the open sets J\ n Mx and /°3 n A/3. There exists a subcontin-

uum BX3 of A/ - (A/2 U A4 U A/5 U C12) intersecting these sets and an irreduc-
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ible subcontinuum C13 of Bx3 from Jx to J3. As before Cx3 n J°x = 0 = CX3

n / 3. In a similar manner there exists a subcontinuum CM of M — (M2 U M3

U Af5 U CX2 U C,3) irreducible between 7, and 74 with CM n /, = 0 = Cw

D /4. Continuing,in this way we obtain for all 10 combinations of subscripts

i,j, 1 < '' <y < 5, pairwise disjoint continua Cö each of which is irreducible

between J¡ and J¡ and intersects only these two of the five simple closed disks. For

each Cy an arc Ay can be constructed so that the ten arcs Ay, 1 < / <y < 5, are

pairwise disjoint, Ay is irreducible between J¡ and Jj and intersects only these two

disks. Now if we decompose the plane by considering each J¡ to be a "point", the

plane continuum U?=i/ U Ui<i</<5^iy 's topologically equivalent to the contin-

uum of [5, p. 230, second figure] which is not embeddable in the plane. So the

assumption that At*¡n M} =/= 0, 1 < i,j < 5, has led to a contradiction and

therefore there exist two integers i,j, 1 < i,j < 5, such that M¡ n M}-, — 0. The

continua M¡ and M¡ have nonvoid interiors relative to M and the proof is

complete.

3. A continuum not of type A'. The following example is a continuum M that

is not separated by any subcontinuum (in fact, not by any finite number of

subcontinua), does not contain any indecomposable subcontinuum with nonvoid

interior, but is not of type A'.

Example 1. Let K be an indecomposable plane continuum lying in the unit

square and intersecting y = 0 and y ■» 1 each in a single point. Let C be the

Cantor middle third discontinuum and form the cartesian product Cx K. Each

point in Cx K is of the form (x,(y,z)) where x G C and (y,z) G K (for

simplicity of notation we will write (x,y,z) for (x,(y,z))) . Pick the point

(yx,\) G K and "identify" all the points of Cx{(yx,\)}. Pick the point

(y0,0) G /Tand identify the two points (l/3,^0»0) and (2/3,^0.0). Consider the

six points 1/9, 2/9, 1/3, 2/3, 7/9, 8/9 G C and the 15 combinations taking two

at a time. Pick 15 points (.y,/2,i,l/2),..., (^^,5,1/2) each from a different

composant of K and also from different composants than those that contain

(^i, 1) and (^o>0)- Make the following 15 identifications:

(1/9,^2,1,1/2) and (2/9,^,, 1/2),

(1/9,.^, 1/2) and (l/3,yx/2a, 1/2),

(l/^i/w.l/í)       and      (2/3,^^,1/2),

(7/9,JV2,i5>l/2)      and      (8/9,^,5,1/2).

Next consider the 14 points 1/27, 2/27, 1/9, 2/9, 7/27, 8/27, 1/3, 2/3, 19/27,
20/27, 7/9, 8/9, 25/27, 26/27 and the 91 combinations taking two at a time. Pick

91 points (v2/3,i2/3),..., (.y2/3,9i,2/3) each from a different composant of K

and also from different composants than those chosen earlier. Make 91 identifi-

cations:



72 E. J. VOUGHT

(1/27,^/3,,,2/3)   and   (2/27,ym,2/3),

(1/27,^,2/3)   and   (1/9,^^,2/3),

(\/27,y2/X3,2/3)   and   (2/9,y2/3¡3,2/3),

•

(25/27,j2/3,2/3,91,2/3)   and   (26/27,y2/3¡9x,2/3).

Continue inductively this construction of identification of pairs of points. Let M

be the quotient space of the decomposition of C X K whose elements consist of

all these identifications (this includes Cx{(.y,,l)} as one of the elements)

together with the remaining individual points of C X K. This decomposition is

clearly upper semicontinuous and M is a compact, metric continuum. Notice that

any infinite sequence of M whose elements are identified pairs must converge to

the point Cx {(yx, 1)} which, for brevity, will be denoted by p hereafter. Let

U = {(x>y>z) E. CxK\z *£ \ and x is not an endpoint in C] and Q = M

— (U U {/>}). (Q contains all the identified pairs and individual points (x,y,z) of

CXKwhere x is an endpoint in C.) So M = {/>} U U U Q.

(1) Let us show that p cuts U from Q in M and cuts any two points of U with

unequal x-coordinates. Let M' be the quotient space of C X K formed by

identifying all the points of C X {(yx, 1)} and regarding all other points of C X K

as individual elements of the decomposition. Clearly the point/» = C X {(yx, 1)}

in M' cuts any two points of M' with unequal x-coordinates. But this implies that

p cuts U from Q in M and also cuts two points of U with unequal jc-coordinates.

(2) Let a be a nonendpoint of the Cantor set and let Ua = ({a} X K) — {/?} in

M. If H is any subcontinuum of M that contains p then H n (Ua U {/>}) is a

continuum. For suppose the closed set H D (Ua U {/>})= A U B, a separation,

with p G A. Let V,W be open sets in Af such that A C V, B C W and

V ("I W = 0. Choose a point ¿ G B. Since // is a continuum then Fi(W) D //

¥= 0 and so there exists a subcontinuum N of H n ÏF such that b G /Y and

AT n Fr(JT) # 0. Now N C H but N (t Ua for otherwise iVC^Ufi which

implies that Ft(W) D (A U B) ¥^ 0. So N C M - {/>}, N D Ua # 0 and
JV <t t/a. From (1) this is impossible.

(3) We will now prove that T2(x) = M for all x G M. Clearly r(/>) = M

from (1) and so T2(p) = A/. Let x G M - {/>} and let us show that p G T(x).

Then since T(p) C r2(x) and T(/?) = M it will follow that r2(x) = A/.

Suppose p & T(x). Then there exists an open set W and continuum H such that

p El W C H C M - {x}. Let a be a nonendpoint of the Cantor set C such that

Ua intersects M - H. From (2), H (1 (Ua U {/>}) is a continuum. Also HP

n (Ua U {/>}) is an open set in Ua U {p} containing/;. So we have the sequence

of inclusions/? G W n (Ua U {/?}) C // n (<7a u {/>}) Cl/.U {/>}. Therefore

// n (Ua U {/?}) is a proper subcontinuum with nonvoid interior of the inde-

composable continuum Ua U {/?}. This contradiction shows that/» G T(x).
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(4) No indecomposable subcontinuum with nonvoid interior is contained in M.

To see this let H be such a subcontinuum of M. It follows from (1) thatp G H.

For each nonendpoint a G C such that Ua n H ¥= 0 by (2) we have that

H n (Ua U {/>}) is a continuum. Hence a single composant of >Y contains all

points of U n H.lî a is an endpoint of C and ga = ({a} X A") — {p} then in A/

the set H n (g„ U {p}) has at most a countable number of components. This is

true because any such component must contain p or a point of ga which is one

of the identified pairs and the set of these identified pairs in ga is countable. The

set of endpoints of C is countable and so H n g is the union of a countable

number of continua. Therefore H has a countable number of composants

contradicting the assumption that H is indecomposable.

(5) Next it will be established that no subcontinuum of M separates M. Let H

be a proper subcontinuum of M. If H does not contain p then it is clear from (1)

that H does not separate M. Suppose p G H. If g C H then M = g C H. So

let g' = {ga | ga <t /Y} and assume g' is not empty. If ga G g' and >Y contains

a point x of ga that is an identified pair in the decomposition of C X K then H

must contain the entire "dual" continuum QB U {/?}, i.e., the entire continuum

Qß u ii) that contains the other point of the identified pair. For if not then

neither H n (ga U {p}) nor // n (Qß U {p}) can have a subcontinuum con-

taining both x and p. Then each set can be separated into disjoint closed sets, one

containing p and the other x. But by using (1) and the argument in (2), a

contradiction is obtained. Clearly if x is an identified pair in ga and x & H then

the "dual" continuum Qß U {p} <t H. Choose any ga G Q. Now all the points

of ga such that x is an identified pair in C X K cannot belong to H or else H

would contain all the "dual" continua of these points. But this would include all

points of g and thus H = M since g = M, a contradiction to the fact that H is

a proper subcontinuum. Let X be all points x of ga that are identified pairs in

the decomposition but are not contained in H. For any element Q¿ G g', it must

be that Q¿ - H is connected since H cannot intersect any composant of

Qa' U [p) that does not contain p or one of the countable number of identified

pairs in g„.. So ga — H is connected and so is Qß — H where Qß U {p} is any

one of the dual continua of ga for some point x G X. Now Q — H = (ga — H)

U Uxex(Qß — H) and this set is connected since (ga - H) U (Qß — H) is

connected for each x e X. But g — H is certainly dense in M — H and so

M — H is connected. This concludes the proof that no subcontinuum separates

M and, in fact, it follows easily that no finite number of subcontinua separate M.

It has now been established that M is a continuum that is separated by no

subcontinuum, contains no indecomposable subcontinuum with nonvoid interi-

or, and T2(x) = M for all x G M. By Theorem C, M is not of type A'.

4. Conditions for type A' continua. The first theorem in this section depends on

a theorem due to Schlais [6]. Schlais states his theorem for a point x but the proof

goes through without any difficulty if x is replaced by a continuum H with void
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interior and will be stated here in this more general setting. The theorem is valid

for any compact, metric continuum.

Theorem (Schlais). Let M be a compact, metric continuum. If M is hereditarily

dcomposable then for every subcontinuum H with void interior, K(H)° = 0.

Theorem 2. Let M be a compact, metric continuum not separated by any

subcontinuum. If M is hereditarily decomposable then M is of type A'.

Proof. Because no continuum separates it follows immediately that for any

closed set F we have K(F) = T(F). Let x G M. By Schlais' theorem we have

T(x)° = K(x)° = 0 and consequently T2(x)° = T(r(jc))° = K(T(x))° = 0

since T(x) is a continuum with void interior. Since T2(x) has empty interior,

T2(x) =£ M, and hence by Theorem C, M is of type A'.

That the condition in Theorem 2 is not necessary for M to be of type A' is

shown by the following example.

Example 2. Let D be the indecomposable "semicircle" continuum on p. 143 of

Kuratowski's book [5] which has only one endpoint. Let R be a ray. The ray R

can be "wrapped" in such a way that D D R = {x} where x is the common

endpoint of both sets, and D is the limiting set of R. Let M = D U R. Clearly

no subcontinuum separates M and A/ is of type A' where the only nondegenerate

element of the decomposition is the indecomposable continuum D.

An interesting consequence of Theorem 2 is that a hereditarily decomposable

continuum M is separated by some two of its subcontinua.

Corollary. Let M be a compact, metric, hereditarily decomposable continuum.

There exist subcontinua Cx and C2 such that M — (CX U C2) is not connected.

Proof. Suppose not. If no pair of subcontinua separates M then certainly no

subcontinuum separates M. By Theorem 2, M is of type A'. Let Da and Db be any

two distinct elements of the decomposition. Clearly Da U Db separates M, a

contradiction.

As the previous theorems and examples show, hereditarily decomposable is too

much and the exclusion of region-containing indecomposable continua is too

little to characterize type A' continua. Theorem 3 uses an intermediate condition

to provide a characterization although probably not the "best" one.

Theorem 3. Let M be a compact, metric continuum not separated by any

subcontinuum. If for every subcontinuum H with void interior it follows that

T(H)° = 0 then M is of type A' and conversely.

Proof. Suppose M is of type A' and let H be a subcontinuum of M with empty

interior. If H f~l /"' (x) =t 0 ¥= H fl /"'( y), x ¥= y, where/is the map from M

onto the quotient space A/', then M - (f~l(x) U f~l(y)) = A U B, a separation

of M, where Xand B are irreducible subcontinua of M from/-1 (x) to/"1 ( v). Let
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H' be an irreducible subcontinuum of H from/"'(je) to/"'(y). Either //' C Â~

or //' C B so let us assume that //' C A~. It follows that H' = A~ since .T is

irreducible from/-1(x) to/-1 (y). So //' contains the open set A. But H contains

no such open set; hence there exists x E M' such that H c/~'(jc). Suppose

there exists>> G M' such that/-1 (.y) n T(H) ¥= 0,x ¥= y. Since M' is a simple

closed curve there exist u, v G M' such that {«} U {v} separates x from y in A/'.

Then /"' (u) U /_1 (i>) separates M into sets ,4 and B with /_1 (*) C A and

/_1(y) C /?. But/_1(«) UfiU /"'(v) is a continuum L that contains a point of

T(H) in its interior. However H C f~l(x) C M - L which is a contradiction.

Hence 7{//) C /-'(x). Since/"'(x)0 = 0 then T(H)° = 0.

Next suppose T(H)° = 0 for every continuum H where H° = 0.U x E M

then r(x)° = 0 and since T(x) is a continuum, T2(x)° = r(7l»)0 == 0.

Therefore T2(x) =£ Af and we will complete the proof that M is of type A' by

showing that M contains no indecomposable subcontinuum with nonvoid

interior and applying Theorem C. Let K be an indecomposable continuum with

nonempty interior lying in M. Let x,y E K°. Suppose there is a continuum P

and an open set U such that y G U C P C M — (x). Since K is indecomposable

P (t K. Therefore P intersects the connected set M - K and so M - K U P is a

continuum Q such that y G Q", x g Q. We have x G M - Q C M -Q

C K — {y}. But M - Q is connected and so M - Q is a proper subcontinuum

of K with nonvoid interior which is impossible. This means that y G r(jt) and

since y was chosen arbitrarily it follows that K° C T(x) contradicting the

hypothesis that T(x)° = 0.

Question. In Theorem 3 can "subcontinuum H" be replaced by "point x"?

5. Element structure and uniqueness of the decomposition of type A' continua.

For a compact, Hausdorff continuum M, FitzGerald and Swingle [2, p. 39] have

proved that if {T"(x) \ x E M) is a decomposition of M and T"(x) = rB+I(.x)

for all x G A/, then {T"(x) \ x E M) is the core decomposition of M with

respect to being monotone, upper semicontinuous and having a semilocally

connected quotient space M'. By the core decomposition is meant a decomposi-

tion of M that has the aforementioned properties and refines every other

decomposition with these properties. If a continuum M in which no subcontin-

uum separates has a monotone, upper semicontinuous decomposition with a

semilocally connected quotient space A/', then clearly no subcontinuum separates

M', and in such continua semilocal connectedness is equivalent to local connec-

tedness [1, Theorem 2]. If M is also metric then Af' is a locally connected, metric

continuum that is not separated by any subcontinuum. Hence A/' is either

degenerate or a simple closed curve. We can use these results next.

Theorem 4. Let M be a compact, metric continuum of type A'. Then {T2(x) \ x

E M) is a monotone, upper semicontinuous decomposition of M, the elements of

which have void interiors and for which the quotient space is a simple closed curve.
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Furthermore the decomposition is unique with respect to these properties, i.e., a type

A' continuum has only one such decomposition.

Proof. Since M is of type A' it contains no indecomposable subcontinuum with

nonvoid interior by Theorem B. First let us show that T2(x) = T3(x) for all

x G M. Suppose y G T3(x) — T2(x). Then there is a continuum H such that

y G H" C H C M — T(x). By the compactness argument used earlier there

exists a continuum L such that H C V C L C M — {x}. Let N = M — L

which is a continuum. We have r7nJV = 0soA/-(rïUJV) = /)U g, a

separation of M, such that F and g are irreducible subcontinua from H to N.

The interiors of these continua are nonempty so they are decomposable. Let

P =PX Ö P2 where Px and P2 are continua for which PxC\H¥=0¥^P2r\N

and Px H N = 0 = P2 H H. Let g, and g2 be corresponding continua for g.

It follows that x G N°, T(x) C N, T2(x) C P2 U N U g2, T3(x) C (/>, U P2)

U AT U (ft U g2) = F U N U g. But v G r3(x) yet v g F U N U g, a

contradiction.

Since no subcontinuum separates M, it follows immediately that x G T2(y) if

and only if v G 7*(x). Let z G T2(jc). Then T(z) C T(T2(a:)) = T3(x)

= T2(x) and T2(z) = T(T(z)) C T(r2W) = T2(x). Likewise x G T2(z) and

we have T2(x) C T2(z). Hence T2(;c) = T2(z) and [T2(x) | x G M} is a decom-

position of M. By the result of FitzGerald and Swingle and the observations

immediately following, this monotone decomposition is upper semicontinuous,

has a simple closed curve for a quotient space and refines every other such

decomposition. Because M is of type A' it follows then that T2(x) has void

interior for all x G M.

To see that [T2(x) \ x G M} is the only such decomposition suppose that G is

a different monotone, upper semicontinuous decomposition of M, the elements

of which have void interiors, and with a simple closed curve for the quotient

space. Since (T2(x) \ x G M} refines G there is g G G and T2(jc) for some

x G M such that T2(x) c g. Lei y G g — T2(x). By the argument above there

exist continua H, N such that x G H°, y G N° and H D N = 0. Also

M - (H U N) = P U g, a separation of A/. But g n H # 0 =* g n AT so

there exists an irreducible subcontinuum g* of g from H to N. Certainly gf

contains P or g. But these are open sets and g contains no such set so the proof

is complete.

An interesting consequence of this theory is a generalization of sorts of a

theorem due to Bing [1, Theorem 10].

Theorem (Bing). Let M be a compact, metric continuum that is separated by no

subcontinuum. If M is not cut by xfor any x G M, then M is a simple closed curve.

Theorem 5. Let M be a compact, metric continuum that is separated by no

subcontinuum. If M is not cut by T(x) for any x G M, then M is either
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indecomposable or admits a monotone, upper semicontinuous decomposition whose

quotient space is a simple closed curve (type A continuum).

Proof. First let us show that T(x) — T2(x) for every x E M. Suppose

q E T2(x) — T(x). Since T(x) does not cut M it is easy to show by the Baire

theorem that there exists a continuum H such that q E H, H° # 0 and

H n T(x) = 0 (we canot assume though that q E H°). By compactness once

again there exists a continuum L such that H C L° C L C M — {x}. Let

N = M - L. We have a separation of M, M - (H U N) = P U Q such that P

and Q are irreducible continua from H to N. We have T(x) C ./V and T2(x)

n //° = 0. Because ç G T2(x), q & H° and so q E H n P or q E H (1 Q.

Now P and Q are disjoint so assume q E H C\ P. Since # is in the interior of the

continuum H U P it must be that T(x) l~l P ¥* 0. It follows from the Baire

theorem and the assumption that T(x) does not cut between points of M that

there is a continuum R containing q and an open set U of P with U C R

CM- T(x). The closure of S = P-R is a proper subcontinuum of Pcontain-

ing q (since q E T2(x)) and 5D T(x) =£ 0. This contradicts the fact that Pis

irreducible from H to A^.

As in the previous argument it follows that {T(x) \x E A/} is a decomposition

of Af. Using the result of FitzGerald and Swingle again, this decomposition is the

core decomposition with respect to the properties of being monotone, upper

semicontinuous and having a locally connected quotient space A/'. If M is

indecomposable then obviously Af is degenerate. If M is decomposable where

M = A/, U M2, let x E M - M2 and y G M - Mx. Then T(x) C Mx and T(y)

C M2 so Af has more than one element and must be a simple closed curve.

Although M is of type A (unless it is indecomposable) it is not necessarily of

type A' and the next example shows this.

Example 3. Let D be the indecomposable continuum of Example 2 and let R

be an arc [a,b] such that D f*l R = {a,b} where a and b lie in different

composants of D. If M = D U R it is clear that Af is of type A but not type A'.

The crucial notion used in Theorem 5 is a special case of our last theorem.

Theorem 6. Let x be a point of a compact, metric continuum that is separated by

no subcontinuum. Then T"(x) does not cut M if and only if T"(x) = T*+i(x) where

n is a positive integer.

Proof. We will prove only the sufficiency since the necessity was proved in

Theorem 5 for n = 1 and the argument is the same in general. Suppose

T"(x) = Tn+l(x) and take y, z E M - T"(x). Since y,z $ Ta+l(x) there are

continua Hy and Hz such that y G Hf C Hy, z E H% C Hz and Hy n T"(x)

= 0 = Hz n Tn(x). If Hy n H2 * 0 then T"(x) does not cut y from z. If

Hy n H2 = 0 then M - (Hy U H2) = C, U C2, a separation, where C, and C2

are irreducible continua from Hy to Ht. Inasmuch as T"(x) is connected we can
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assume that T"(x) C C,. Then v, z G Hy U C2 U Hz C A/ - T"(a:) and T"(x)

does not cut v from z. Since v, z are arbitrary points of M — T"(x) the conclusion

follows.

If we allow the case « = 0 in Theorem 6, the sufficiency holds but the necessity

fails. The following example shows this.

Example 4. Let Sx = {(x,y)\0 < x < 2/ir,y = -1 + sin(l/x)},S2 = {(x,y) |

x = 0,-2 < v < 0}, S3 = {(x,y) | (x - \/irf + y2 = 1/ir2, v > 0}. Let S =SX
ö S2\J S3 and let x = (0, -2). Then T°(x) = x and x does not cut S. However

S2 = T'Oc) # T°(x).

But if T°(x) = x does not cut in Af for every x G M, then A/ is a simple closed

curve by the theorem of Bing above. It follows that P(x) = T°(x) for every

x G M.

Remarks. The metric condition is not necessary in Theorems 3 and 4. However,

for the theorems to apply to a compact, Hausdorff continuum, wherever a simple

closed curve occurs a generalized simple closed curve must replace it. A compact,

Hausdorff continuum is a generalized simple closed curve if it is separated by the

omission of any two of its points. The decompositions involved in these theorems

will now have generalized simple closed curves for quotient spaces.

References
1. R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948),

497-506. MR 10, 55.

2. R. W. FitzGerald and P. M. Swingle, Core decompositions of continua, Fund. Math. 61 (1967),

33-50. MR 36 #7110.
3. C. L. Hagopian, Mutual aposyndesis, Proc. Amer. Math. Soc. 23 (1969), 615-622. MR 40 #876.

4. F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9,606.

5. K. Kuratowski, Topologie. Vol. 2, 3rd ed., Monografie Mat, Tom 21, PWN, Warsaw, 1961;

English transi., Academic Press, New York; PWN, Warsaw, 1968. MR 24 #A2958; MR 41 #4467.

6. H. E. Schlais, Non-aposyndesis and non-hereditary decomposability, Pacific J. Math. 45 (1973),

643-652.
7. E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966),

1-74. MR 33 #4907.

Department of Mathematics, California State Untverstty, Chico, California 95926


