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ABSTRACT. It is the purpose of this paper to clarify the relationship between the

square-integrable irreducible representations of a 2nd countable unimodular locally

compact group G and a closed normal subgroup N using the Mackey theory relating the
dual spaces G and A?.

Introduction. In this paper G will always denote a 2nd countable locally

compact unimodular group and N a closed normal subgroup of G. We shall also

assume that N is of type I and regularly embedded in G so that Mackey's theory

applies. (See e.g. G. W. Mackey [8].) All representations will be continuous and

unitary. We will use the following notation:

(1) 77„ = the Hilbert space for the representation it.

(2) G = the set of all equivalence classes of irreducible representations of G,

also called the dual space of G.

(3) G, = the set of all equivalence classes of irreducible square-integrable

representations of G.

(4) 6G = the representation of G induced from the representation 9 of K,

where AT is a closed subgroup of G.

(5) w, C 7T means that the representation ttx is a direct summand of the

representation it.

(6) irK = the restriction of the representation m of G to the closed subgroup K.

(7) n ~ u means it is unitarily equivalent to co.

(8) G acts on Ñ by inner automorphisms: (g • u>)(n) = u(g~lng), where

g E G, n E N, w £ Ñ.

We let Ka = (g | g E G and g • to ea co} = the stabilizer of id E Ñ under the

action of G. (Ku is a closed subgroup of G containing N, but need not be normal

inC.)

(9) G ■ a = [g ■ a \ g £ G) = the G-orbit of co E Ñ.

(10) GG.a = {it I -n E G and % =* m /®u g • udp(g • co)}, where m is a countable

cardinal number depending on it and p. some quasi-invariant measure on N (also

depending on it), see [8].
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(11) V(u) = [9 I 9 G Ku and 6n ~m -co for some countable cardinal number

m depending on 9).

We will often denote a representation with the same symbol as its equivalence

class. Note that it E G, if and only if there exist nonzero elements h and / in H„

such that the function g h» (w(g)/z,/) is in L2(G) (w.r.t. left Haar measure on G).

It is equivalent to require that g t-* (w(g)/A) be in L2(G), for all/, A G ZZ„, or

that it be an irreducible direct summand of the regular representation of G on

L2(G), (M. A. Rieffel [9]). For convenience we will now state the theorem due to

Mackey which is the point of departure for our discussion.

Theorem (Mackey). (a) Let u E N be fixed. Then the map

9^9G,       K(«) — Gc.a

is a bijection.

(b) Every it E G belongs to Gc.a for some u E Ñ.

(N is assumed to be of type I and regularly embedded in G.)

In particular, the theorem says that in order to survey the irreducible

representations of G it suffices to choose one w from each orbit in N and use the

maps 9 h-» 9G.

The exposition is organized in the following way. In § 1 we prove some general

results about the relation between square-integrable representations of a group

and its closed subgroups. The main result is Theorem (1.3) which gives necessary

and sufficient conditions for a it E Gs to be associated with a G-orbit in Ñ with

only square-integrable elements. In §2 we show that if KjN is compact and

w G Ñs then the fibre GG.a over co is contained in Gs. In §3 it is shown that

Gs = 0 whenever G has a noncompact closed central subgroup. As a corollary

we obtain the well-known result that G, = 0 when G is a simply connected

nilpotent analytic group. Finally, we show how to find the elements of Gs when

the reduced dual Nr of N is countable.

We would like to thank Johan F. Aarnes for leading us into the subject, and

Siegfried Grosser for the many suggestions and remarks he has made about the

presentation.

1. General results. In this section we find necessary and sufficient conditions

for a it E Gs to be in GG.U, for an co G Ñs, under the hypothesis of Mackey's

theorem. We also provide an example where Ñ, — 0 but where the regular

representation of G has irreducible direct summands. Finally we show that if p is

an integrable representation of a closed subgroup K of G then the induced

representation pG is integrable. First we need some lemmas about square-

integrable representations.

(1.1) Lemma. Let G be a 2nd countable locally compact group and K a closed

subgroup of G. Assume also that the left coset space G/K has a G-invariant measure

v.Ifit E Gs and 9 E K is a direct summand of ttK, then 9 E Ks.
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Proof. Let/ ^ 0 be an element of He(C 77„), then

+00 > fG Ug)ff)\2dX(g) = fG/KfK \(ir(gk)ff)\2dp(k)dv(gK)

= fG/KfK \(9(k)f,tr(g^)f)\2dp(k)dv(gK).

(Here p denotes a suitably normalized left Haar measure on K.) Hence

M jK\{0{k)f,it(g-i)f)\2dp(k)

exists for ^-almost all cosets gK E G/K. Let TJ be a »'-measurable set in G/K such

that (*) is positive, for all gK £ E, and such that v(E) > 0. Then choose

gK E E such that (*) is finite. If P is the orthogonal projection of 77„ onto He then

\(0(k)fMg->)f)\2 = \(0(k)f,p*(g->)f)\2

for all k E K. Therefore

0 *fK\(8(k)f,h)\2dp.(k)<+00,

where h = Pir(g~l)f E He. Since 9 is irreducible it follows that 9 E Ks.

(1.2) Lemma. Let N be a closed normal subgroup of G and let G act on Ñ by inner

automorphisms. 7/ co E Ñs then the G-orbit G • co C Ñs.

Proof. Let p be a left Haar measure on TV, and assume f E Hu, f ¥= 0. Then,

for g E G,

fN I((S • o:)(n)f,f)\2dp(n) = ¿ \(o>(g->ng)fJ)\2dp(n)

= fN\(o>(n)f,f)\2dp(gng-<)

= fN M»)/,/)l2*fe(»),

where pg: E h» (gEg~l) is left invariant on TV. Hence there exists a function

ß > 0 such that ju.g = /i(g)/x. We conclude that g • co is square-integrable.

We next give necessary and sufficient conditions for an element it of Gs to be

associated with the orbit of an element co £ TV,.

(1.3) Theorem. Let G be a 2nd countable locally compact group and it E Gs.

Assume that TV is a closed normal subgroup of G which is of type I and regularly

embedded in G. Let co £ TV be such that it £ Gc.u. Then the following conditions

are equivalent.

(1) co E TVr

(2) 9 C wgj where 9 E V(u) and 9G at it.

(3) % ä m ■ 0c.ug • co, where m E {1,2,3,..., N0}.

(4) The G-orbit G • co is countable.
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Proof. (1) «• (2): If it a* 9G and 9 Q itKo then 9N C %. Hence co ç 9N C ttN.

Since G/N is a locally compact group it has a G-invariant measure so that we

may use Lemma (1.1) to conclude that co G Ñs.

Conversely, if co G A?,, we have G ■ co Ç Ñs, by Lemma (1.2). We now note that

Ü(N) is a Hubert space of countable dimension so that the set Ñs is countable,

since every element of Ñ, has a representative which is a direct summand of the

left regular representation of N on L2(N). Hence G • u is countable. Next we

observe that the map g • co (-» gKu, G • co -* G/Ku is a bijection, so that G/Ku is

countable. Then \(Ka) > 0, where A is a (left) Haar measure on G. It is then easy

to verify that the map U: / h» /(e) from the subspace of ZZôC generated by the

functions whose supports are contained in Ka, gives a unitary equivalence

between 9 and the subrepresentation of (9G)Ka on this subspace.

(1) <=> (3): If co G Ns then 9 Q ttKa, so that co Q 9N Q itN. Conversely, if

ttN ~ m • ©<;._£ • co, then co Q itN, and by Lemma (1.1) we conclude that

co G Ñs.

(1) =* (4): If a EN, then G • co G Ñ„ by Lemma (1.2); hence G ■ co is

countable.

(4) => (3): Let G • co be countable. Then the direct integral/®u (g • u)dp(g • co)

reduces to a direct sum. Thus ttN ̂  m • 0G.„(g • co).

(1.4) Example. One may ask if every it E Gs comes from a representation

u E Ñs. This is not the case as is seen by considering the following unimodular

group G. Let G, be the "Heisenberg group" consisting of all real 3 by 3 matrices

of the form

Let G = Gx/C where C is the central subgroup

G is the semidirect product of H and N where

H = <

and

R

N z,y
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Hence H ~ R and JV~RxT. Thé normal subgroup N is seen to be regularly

embedded in G, and the stability groups are: Ka = N for a ¥= 1 and Kx = G.

Hence G consists of all the induced <xG, a E Ñ, a ¥= 1, together with the

characters of G/N lifted to G. The infinite dimensional representations aG are

known to be square-integrable, but no a is so, being a character of the

noncompact N. Note that G is a connected nilpotent Lie group but it is not

simply connected, compare with Corollary (3.3).

In the example above we observe that the normal subgroup JV^RxT has

measure 0 in G. If, on the contrary, we assume \(Ka) > 0 for some co eN-Ns,

we may conclude that 9 Q ttKa, for each pair it, 9 (it E Gc.u and 9 E K(co)) such

that 9G ■=*■ it. (See e.g. the argument in the proof of (1) <=> (2) of Theorem (1.3).)

Hence it follows that co Q % so that co is not square-integrable (Lemma (1.1)).

Therefore we have:

(1.5) Proposition. Let N be of type I and regularly embedded in G (as in Mackey's

theorem). Assume X(KU) > Ofor every co G Ñs. Then the following holds.

(i) If Ñ, = 0 then G, = 0.
(ii) Ifit EG„tt E GG.a; then co G Ñs.

We shall now investigate the behavior of integrable representations under the

inducing process. We would like to thank Professor J. Gil de Lamadrid for

pointing out an error in the proof of the original version of the following result.

(1.6) Proposition. Let K be a closed subgroup of G, and assume K and G both are

unimodular. If p is a cyclic integrable representation of K (i.e. k H» (p(k)£,£) is in

I)(K) for some cyclic vector £ of p), then the cyclic representation it = pG is

integrable.

Proof. Let p be a cyclic representation of K. Then it = pG is cyclic. Since p is

cyclic it may be constructed from a measure p of positive type on K in the usual

way. It is well known that the induced representation it = pG is unitarily

equivalent with the representation constructed from the induced measure v on G

[4]. Furthermore, it is shown in [4] that for 2nd countable groups G, the

representation constructed from a given measure of positive type is always cyclic.

Hence pG is cyclic.

Let v be a measure of positive type on G corresponding to it = pG. If

f, h E CC(G) = the *-algebra of continuous functions with compact support on

G with the usual convolution and involution, we have (ir(x)[f], [h]) = v(h* * fx),

where [/]-/+ N, N - {f\v(f* *f) = 0,/ G CC(G)}, and fx(y) = f(x-xy);
x, y E G. Let £ be a cyclic vector for p. Then h h» p(h) = fK h(k)(p(k)£,£)dk,

h E CC(K), is a measure of positive type which gives rise to p. The induced

measure jà is given by p(h) = p(h\ K) (since G and K are unimodular by

hypothesis). Since the induced measure p gives rise to it = pG, we may assume

v = p. Hulanicki has shown that there exists/ G CC(G) such that [/] is a cyclic

vector for it [Proc. Amer. Math. Soc. 38 (1973), 220]. We choose such an /G

CC(G).  Then
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Mx)[fl[f]\ = v(f* * CO) = p((f* •/,) I K)

= fK(f**L)(k)(p(k)è,è)dk

= fKfGf*(y)f(x~ly'^M^Oäydk.

Using Fubini's theorem and unimodularity we derive,

fG Mx)Vl[f]\\dx < fJJG \f*(ky)f(x-iy-i)(p(k)t,t)\dydkdx

= fJJG \r(ky)f(x-'y-')(p(k)i,i)\dxdydk

= fKfGfG\f* (&)/(*-' ) (P(k)í i)\dxdydk

= ¡G \f(x-l)\dxfJG \f*(y)(p(k)mdydk

= WfWifK\(i>(k)W\dk <+00.

Hence it = pG is integrable.

2. The case " 7i"u/TV compact." Starting with a representation to E TV, we shall

now find a sufficient condition for GG.U, the fibre over co, to be contained in Gs.

The situation is as in Mackey's theorem.

(2.1) Proposition. Let u £ Ñs and assume that KjN is compact. Then GG.U

C Gs. In particular, each orbit G • co in Ñs corresponds to a fibre GG.U in Gs.

Proof. Let it E GG.a. Then it ^ 9G, for some 9 £ V(u). It suffices to show that

9 is square-integrable since a direct summand of the regular representation of Ka

will give a direct summand of the regular representation of G when we induce it

to G. Let/ ¥= 0 be an element of 77„(ç 77Ä). Then, if k E Ka and P: Ht -> Hu is

the orthogonal projection,

fN \(9(kn)fJ)\2dy(n) = ¿ \(9(n)f,9(k^)f)\2dy(n)

= fN\(o>(n)f,P9(k->)f)\2dy(n)

= c/icor'iicow/ipiip^-')/!!2 < ¿(«ni/ir.

Here, c/(co) denotes the formal dimension of w, and the last equality follows from

the orthogonality relations for square-integrable representations (see J. Dixmier

[2]). y denotes a left Haar measure on TV. Hence we have

¿ \(9(k)f,f)\2dp(k) ={KJN \(9(kn)f,f)\2dy(n)dv(kN)

</Ww¿(«rWdK*AO = v(KjN)d(o>r\\f\\4,
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since KjN is compact. Hence 9 E (Ka)'s and therefore it E G,.

(2.2) Corollary. IfuEÑ, and KjN is compact then V(u) C (Ku)~.

Proof. Apply Proposition (2.1), with G = Ku.

3. Examples and applications.

(3.1) Example. In Proposition (2.1), the hypothesis that KjN be compact

cannot be removed. This is seen, e.g., when we let G = Vx H where H is a 2nd

countable compact group, and V is a vector group. If we first let N = V, Ñ is

isomorphic with N, so that the orbits are countably separated and therefore N

regularly embedded in G. We apply Mackey's theorem: If ir E GG.a, we have

Ka = G since G acts trivially on Ñ. Hence % =¿ m • co, for some countable

cardinal number m, and if / G HU(Q H„),f¥= 0, we obtain

fG Ug)fJ)\2dXig) = fjy \(it(v,h)f,f)\2dv(v)dy(h)

= ShSv Mv,e)f,tr(e,h-X)f)\2dv(v)dy(h)

= fHfvM»)Me,h-x)f)\2dV(v)dy(h) = +00,

since the Haar measure A on the direct product V X H is the direct product of

the Haar measures v on V and y on H, v and y suitably normalized. (We also

used the fact that co is a character on V and therefore not square-integrable, so

that the inner integral is +00, for all h in a set E Q H, with y(E) > 0.) Hence

G, = 0. Next, if we let N = H, then H, = H, so that the statement of

Proposition (2.1) does not hold. In this case, Ku = G so that KjN =s V is not

compact, co being an arbitrary element of Ñ. Observe that H is regularly

embedded since H = ß, is countable and also discrete, and the orbits are the one

point sets.

From the first part of this example we now derive the following result, the

proof of which is a slight modification of the one given above for VxH.

(3.2) Proposition. Let G be a 2nd countable locally compact group having a

noncompact closed subgroup N contained in its center, then  Gs = 0.

Proof. We only note that ttN ̂  m • co, if it E GG.a and that G/N has an

invariant measure y. Thus we get, for/ G HU(C H„),f ¥= 0,

0 * fG Mg)f,f)\2d\(g) = Jg/Jn \(it(gn)f,f)\2dVin)dyig)

= fG/NfN Mn)fMg-x)f)\2dv(n)dy(gN) = +00.

(Note that co G Â is not square-integrable since it is a character of the

noncompact group N)
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As a corollary we obtain the following well-known result.

(3.3) Corollary. If G is a simply connected nilpotent analytic group then G =

0.0)

Proof. From the definition of nilpotence we see that G contains a nontrivial

closed central subgroup TV. This subgroup is also simply connected and hence a

vector group, i.e., isomorphic with R", for some n (see Hochschild [5]). The orbits

in TV under the action of G are the one-point sets in TV s R", so that TV is

regularly embedded. By Proposition (3.2), Gs = 0.

Since the Plancherel measure is concentrated on the reduced dual space TV, of

TV it follows that whenever TV, is countable the regular representation p of TV

decomposes into a direct sum of irreducible subrepresentations: p = ©,(w, • co,),

co, £ TV, (see J. Dixmier [2, 18.8.1-4]).

This occurs, e.g., when TV is compact. On the other hand, there are examples

of noncompact groups TV such that TV, is countable. (L. Baggett [1]. In [1] it is also

shown that if TV is a separable Lie group with countable reduced dual then TV is

compact.) We will now construct the square-integrable representations of G when

TV, is countable.

(3.4) Lemma. Let the hypothesis be as in Mackey's theorem and assume that, in

addition, TV, is countable. IfirEGs then % ta m • @G.u(g • co), for some u £ Ñs.

Proof. From a generalization of the Frobenius reciprocity theorem due to

Mackey (see G. W. Mackey [7]) it follows that % ^ ®¡m¡ • co,-, where co,- E Ñs

and m¡ is a countable cardinal number. On the other hand by Mackey's theorem

we also have, for some co £ TV,

(*) % es m • JGu (g ■ u)dp(g ■ co),   where m < K0.

Hence, and since the decomposition in (*) is the essentially unique central

decomposition of % (see J. Dixmier [2] and G. W. Mackey [8]), we may conclude

that the two decompositions of % coincide.

(3.5) Theorem. Let the hypothesis be as in Mackey's theorem and assume that, in

addition, TV, is countable. Then the following holds.

(i) 7/ co £ TV, then the map 9 h> 9g of V(u>) n (Kj¡, into GG.a n Gs is a

bijection.

(ii) If w E Gs, then it may be obtained in the form ir ^ 9G where 9 E V(u)

n (Ku)¡ for some co E TV,.

Note. Gs may, of course, be empty (see, e.g., Example (3.1)). However, the

theorem tells us that if Gs = 0 then already V(u) D (Ka)¡ = 0.

(') This result is known to hold, more generally, for simply connected nilpotent Lie groups. C.

C. Moore communicates to the author that he has found necessary and sufficient conditions for

nilpotent Lie groups to have square-integrable representations.
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Proof. If it G G, it follows from Lemma (3.4) that it E GG.U, for some co G Ñ,.

If 9 E V(u) and 9G ̂  it then 9 ç itKa (Theorem (1.3)). Now the G-orbit G • co is

countable, so that X(Ka) > 0. Let/ ¥= 0,/ G He(ç Hw). Then

¿ \(9ik)fif)\2d\ik) = ¿ \iitik)fif)\2d\(k) < fc Ug)f,f)\2dXig) < +00.

Hence 9 G F(co) D (KUX, and (ii) follows.

If 9 G K(co) n (KaX then 0e G Gc.u D G„ by Mackey's theorem and the fact

that if 9 G (Ka)~ then 0C is a subrepresentation of the regular representation of

G. Surjectivity of the map 9 h> 6g is demonstrated exactly as in the proof of (ii).

Note. Lemma (3.4) says that the case "Nr countable" is an instance where The-

orem (1.3) holds. In fact, an analogous version of Theorem (3.5) may be proved

whenever Theorem (1.3) holds .(2)
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