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ON THE TENSOR PRODUCT OF  W* ALGEBRAS

BY

BRUCE B. RENSHAW

ABSTRACT. We develop the algebra underlying the reduction theory of von Neumann

in the language and spirit of Sakai's abstract W" algebras, and using the maximum

spectrum of an abelian von Neumann algebra rather than a measure-theoretic surrogate.

We are thus enabled to obtain the basic fact of the von Neumann theory as a special

case of a weaker general decomposition theorem, valid without separability or type

restrictions, and adapted to comparison with Wright's theory in the finite case.

Introduction. The study of von Neumann algebras (weakly closed rings of

operators on Hilbert space) has always been largely algebraic. Many of their

properties follow from the spectral theorem, and can consequently be developed

for the abstract A W* algebras of Kaplansky [6], [7]. However there are some

more delicate consequences of weak closure which do not survive in a general

A W* algebra. For questions of this kind we have the striking abstract character-

ization due to Sakai [9]: a C* algebra is* isomorphic to a von Neumann algebra

if and only if it is a dual Banach space. This is taken as the definition of a W*

algebra in [11], where much of the standard theory of von Neumann algebras is

developed in a space-free manner, including the so-called "reduction theory" of

von Neumann [16]. The central algebraic fact is found to be a representation of

the W* tensor product Z ® A of an abelian W* algebra Z = Lx (T, p) with

another W* algebra A, as the algebra Z = Lx(T,p;A) of all essentially bounded

weakly* measurable y4-valued functions on T, with pointwise operations. This

result is restricted to the case when A can be faithfully represented on a separable

Hilbert space because of measure-theoretic difficulties. In this paper we prove an

analogous theorem, without separability hypotheses, by working with the contin-

uous Gelfand representation Z = C(S2) of the abelian algebra, rather than a

measure-theoretic one, the role of null sets being played by meager sets (i.e., sets

of the first category) in Í2, as follows:

Theorem. Let Z = C(Í2) be an abelian W* algebra, and let A be any W* algebra,

with predual A*, and let B = Z® Abe the W* tensor product. Let C*(Q,A) be the

Banach space of all w* continuous functions from uto A, with the supremum norm.

Then there is a natural isometry

77^ C*(ti,A):b+*b
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with the following properties

(1) 0 + c)'(t) - b(t) + c(t), and(b*)'(t) = (b(t))*,for all t E Q.

(2) If b E Z ®A A, the C* tensor product, and c E Z® A is arbitrary, then

(bc)'(t) = b(t)c(t),forallt E fi.

(3) If b, c E B are arbitrary, then be is the unique element of B so that for all

9 E At, we have

9((bc)'(t)) = 9(b(t)ê(t))   a.e.

(4) Let {b") be a bounded monotone net of selfadjoint elements of B, and

b = w* limab". Then b is the unique element of B so that for all 9 E A*, we have

9(b(t)) = hmj(ba(t))   a.e.

In (3) and (4), "a.e." means "off a meager set in ñ", and the meager set is

understood to depend on 9. In the separable case we can eliminate this

dependence (see 2.7 and 3.8), and we obtain a new and more canonical version

of Sakai's theorem, on which a reduction theory can be based, as in [11, §3.2].

In the general case, the multiplicative description (3) is too weak to accomo-

date such a direct approach to decomposition theory. However, I believe our

success in generalizing the structure theorem of the tensor product suggests

strongly that the correct approach in the general case is to avoid measure theory

and work instead with the more intrinsic continuous representation of an abelian

algebra.

The plan of the paper is as follows. In § 1 we recall the basic facts about tensor

products of W* algebras. In §2 we set up the isometry of the theorem and prove

all of the theorem except for assertion (3). §3 contains the proof of (3) using

normed module techniques. In §4 we compare the continuous and measure-

theoretic results and show that in the inseparable case the space Lx(T,p;A) is

definitely the wrong object. In an appendix §5 we prove an extended version of

Halpern's theorem ([5, Theorem 3]) which is required in §3.

I am indebted to Professor S. Sakai and to Professor J. Feldman for

encouragement and helpful criticisms in the course of this research.

1. W* algebras and their tensor products. We recall some results of the space-

free theory. For our purposes, a W* algebra is a C* algebra which is also a dual

Banach space. If A is such an algebra, then its w* topology is actually

determined by its algebraic structure, as follows: the predual can be identified

with the subspace of the dual spanned by those positive functionals which are

normal in the sense that they preserve least upper bounds (Dixmier [2]).

If A is any C* algebra, then its second dual A** is naturally a C* algebra, and

hence a W* algebra, in such a way that the canonical map A -* A** is a *

isomorphism of A onto a W* dense subalgebra (Sherman [13]). The multiplica-

tion and *operation of A induce operations on A* defined by
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La9(b) = Rb0(a) = 9(ab),       6*(a) = 9(a*)   for a, b E A and 9 E A*.

If L C A* is a subspace of the dual invariant under these operations, then its

annihilator L1 in A** is a W* closed ideal, so that L* — A**/I± is a W* algebra

and the map A -» L* is a * homorphism of A onto a w* dense subalgebra of L*.

This will be an isomorphism iff it is one-to-one, and hence iff L is faithful on A

in the sense that for all a E A there is a 9 E L with 9(a) ^ 0.

Let A and B be C* algebras. Then there is a unique smallest norm a on the

algebraic tensor product A ®c B making it into a pre-C* algebra, and so that the

inclusions A, B -* A ® 77 are isometric (Takesaki [14]). It is in fact a cross-norm,

that is, we have a(a ® b) = \\a\\ \\b\\ for a E A, b E 77. The completion A ®aB

in this norm is by definition the C* tensor product oí A and 77. If A and 77 are W*

algebras, with preduals A* and 77t respectively, then A* ® 77, is naturally

identified with a faithful invariant subspace of (A ®a 77)*, and as such inherits a

cross-norm a*. By the reasoning of the preceding paragraph, its dual (Am

®„. 77*)* is a W* algebra containing A ®„ 77 as a W* dense subalgebra. This

algebra A ® 77 = (/l, ®0» 77*)* is by definition the W* tensor product of A and 77.

When one of the algebras is abelian, we can be more specific. Thus let Z be an

abelian W* algebra and let A be any W* algebra. Then the C* cross-norm a is

actually the least cross norm X in the sense of Schatten [12], and the dual cross-

norm a* is the greatest cross norm y. (See Sakai [11, §1.22] for a full account of

these facts.)

2. Proof of the theorem, part 1. Throughout this section, A is a W* algebra with

predual A*, Z = C(S2) is an abelian W* algebra with predual Z,, and 77

= Z ® A = (Z* ®y A*)* is the W* tensor product. We denote by C*(Q,,A) the

Banach space of all bounded w* continuous functions from Í2 to A, with the

supremum norm.

2.1. Proposition. There is a linear isometry 77 ̂  C*(Ü,A), b —* b characterized

by

(*) b(u ® 9) = w(9 o b)   for all b E B, w E Zm,9 E A*.

Proof. Let b: Q -» A be a w* continuous bounded function. Then 9 ° b E Z

for all 9 E A*, and so (*) serves to define a complex-valued function b on the

generators of the tensor product Z» ® A+. We verify easily that ||6|| = sup ||£(r)ll

= sup{|¿>(w ® 9)\: IHI, ||0|| < 1), and it follows that b extends uniquely to a

functional b E (Z* ®r A*)* = B of norm exactly ||6||. The correspondence

b -* b is clearly linear, and so we have defined a linear isometry of C*(2,A) into

B = (Z+ ®r /4»)*. It remains to see that every b E B arises in this way. So let

b E (Z* ®Y A*)*. Then for fixed 9, the map u -* b(u> ® 9) is a functional on Z*

of norm < ||¿|| ||0||, and so for some z,6Zwe have b(u ® 9) = u(ze), for all

w E Z*, and ||zs|| < ||6|| ||0||. Now fixing / E Q, the map 9 -* z9(t) is a linear
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functional on A*, of norm < ||è||, so for some b(t) E A we have z9(t) = 9(b(t)),

for all 9 G A*, and ||¿(r)|| < ||¿>||. Then t -» b(t) is w* continuous and bounded

by ||6||, and we have b(u ® 9) = w(zfl) = u(9 ° b), as desired.

Remark. We note that by the compactness of ß and the uniform boundedness

principle, every w* continuous function ß -* A is in fact bounded. (I am

indebted to Professor Feldman for this observation.) In the remainder of this

section, we proceed to verify assertions (1), (3) and (4) of the theorem.

2.2. Proposition. Let b E B correspond to ¿: ß -» A under the isometry of 2.1.

Then b*(t) = (b(t))* for all t E ß. (That is, (1) of the theorem holds.)

Proof. Let 9 E A*. Then for all u E Z„, we have

u(9 o (b*f= 6*(w ® 9) = b(u* ® 9*) = u*(9* ° b) = u((9* o £)*).

Hence 9 ° (b*)~ = (9* ° b)*. Then evaluating at a point t E ß, we have

W«) = i9* o b)*(t) = ¥W) = 0((b(t)T).

This holds for all 9 E A„, so (b*)" (t) = (b(t))*.   Q.E.D.
To verify (2) of the theorem, we first calculate the transform of a generator

z ® a of the tensor product:

2.3. Lemma. Let b = z ® a be a generator of the tensor product. Then b(t)

= z(t)afor all t E ß.

Proof. lfb = z®a, then we have u(9 ° b) = b(u ® 9) = u(z)9(a) = u(z9(a))

for all u E Z*, 9 E At. Hence 9 ° b = z9(a) for each Ô. Then evaluating at

t E ß we have 0(¿(f)) = z(t)9(a) = ö(z(i)a). This holds for all 9 E A*, and so

b(t) = z(t)a.   Q.E.D.

Remark. The lemma shows that the C* tensor product Z ®XA is mapped by

our isometry onto the uniform span of the functions t -* z(t)a, for z G Z, a E A.

Since ß is a compact Hausdorff space, this is just the subalgebra C(ß, A) of

uniformly continuous /1-valued functions on ß.

2.4. Proposition. Let b E Z ®XA and let c E Z ® A be arbitrary. Then

(be)' (t) = b(t)c(t)for all t E ß. (That is, (2) of the theorem holds.)

Proof. By linearity and uniform continuity, it is enough to prove the proposi-

tion for the generators b = z ® a of the tensor product. But if b is of this form

then cj(0 o(bc))x = (bc)(u ® 9) = c(Lb(u ® 9)) = c(Lzu ® La9) = Lzu(La9

o c) = u(z(La9 o c)). We have this for all co G Z,, so 0 o (be)" = z(La0 o ¿).

That is, for each / G ß, 9((bc)"(t)) = z(t)LJ(c(t)) = 9(z(t)ac(t)) = 9(b(t)c(t)).

We have this for all 9 E A„, and so (be)" (t) = b(t)c(t) as desired.

Assertion (4) of the theorem will follow from the special case A = C. We say

that a property holds almost everywhere (a.e.) in ß if it holds on the complement

of a meager set (and hence on a dense set, by the Baire theorem).
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2.5. Lemma (cf. Dixmier [1, p. 153]). Let [za] be a bounded monotone net of

self adjoint elements ofZ, and z = w* limaza. Then z(t) = limaza(/) a.e.

Proof. We may assume (za) monotone increasing, so that z = supaza. Then

easily z(t) > supaza(i) for all t. On the other hand put U„ = {t E Q \ z(t)

< sup0za(i) + l/n) for each positive integer n. If t E Un, then for some a we

have z(t) < za(t) + l/n, and hence by continuity z(s) < za(s) + l/n on a neigh-

borhood of t. Thus U„ is open. It is also dense, for otherwise it would miss the

support of a nonzero projection p, so that z - (l/n)p would be an upper bound,

a contradiction. Thus M = U„(ß — Un) is meager, and z(t) — supaza(/)

= limaza(/) for t E M.

2.6. Proposition. Let {ba) be a bounded monotone net of self adjoint elements of B,

and b = w* lim ba. Then for all 9 E A+, we have

9(b(i)) = \tma9(ba(i))   a.e.

That is, (4) of the theorem holds.

Proof. It is enough to prove the assertion in the case when 9 E A+ is positive,

since an arbitrary functional can be written as a C-linear combination of four

positive ones. So let 9 be positive. For definiteness assume [b") is monotone

increasing. Then for each positive w E Z», the net {u(9 ° ba)} = {ba(u> ® 9)} is

monotone increasing, with limit u(9 ° b) = b(u ® 9). Thus 9 ° b is the mono-

tone limit of 0 o b" as elements of Z, and so by the lemma we have 9(b(t))

= lim 9(ba(t)) a.e.

In case the predual A* of A is separable, we can strengthen this point:

2.7. Corollary. Let Z, A, B, Í2 be as in the theorem and suppose that A* is

uniformly separable. Let {ba} be a bounded monotone net of self adjoint elements of

B, and b = w* lim ba. Then

b(t) = w* limja(t)   a.e.

Proof. Let {#„} be a dense sequence in A*. Then, for each n, 2.6 gives a meager

set Mn in Í2 so that 9n(b(t)) = lim^^f)) when t E Mn. Put M = U„M„. Then

M is meager. Since the 9„ are dense and the b" bounded, we have 9(b(t))

= Ytma9(ba(t)) for all 9 E A*, so long as I Í M. Thus b(t) = w*lim0¿"(/) for

/ E M.

3. Proof of the theorem, part 2. In order to establish (3) of the theorem in the

general case we make use of the theory of normed modules. The module analog

of Hilbert space was introduced by Kaplansky in [8] to show that any derivation

of a Type I AW* algebra is inner, and to settle some questions about

homogeneous A W* algebras. The idea was further developed by Widom [17], and

has been taken up recently in a series of papers of Halpern [4], [5].

Let Z be an abelian W* algebra. A normed Z-module is a Banach space X

which is also a Z-module in such a way that ||z|| ||x|| < ||z|| ||;t|| for z E Z,
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x G X. By a Z-valued norm on X we mean a function | |: A" -» Z* satisfying

|zx| = |z| |jc|, |jc + >>| < |jc| + | v|, and || |jc| || = \\x\\.

3.1. Proposition. A normed Z-module X carries a Z-valued norm iff

(*) INI = sup,||p,x||

whenever x E X and{p¡) is a set of projections in Z with lub,p,- = 1.

Proof. If X has a Z-valued norm, then ||x|| = || \x\ || = sup,||p,|x:| ||

= sup,|| |p,jc| || = supiUpjcll, so (*) holds. On the other hand, if X satisfies (*),

and x E X, define a function \x\ on ß by \x\(t) = inf{||pjc|||p a projection,

p(t) = 1}. Then (*) shows that pc = lub{p|||pjc|| < c} is the largest projection

satisfying ||pcx|| < c. It follows that \x\ is continuous because c < \x\(t) < c' on

the open set where pc(t) = 1 andp,(r) = 0. If c < ||x|| thenpc # 1 so there is a

point t where pc(t) = 0. There |x|(r) > c. This shows that || |x| || = ||x||. The

triangle inequality is easy, and the relation |zx| = |z| \x\ follows from the case

when z is a projection, which is clear.

Let A* be a normed module with Z-valued norm. We say that X is Z-complete

if whenever {p,} is a family of orthogonal projections in Z with lub,p, = 1, and

{Xj} is a bounded family of elements of X, there is an x EX such thatp,* = p,x,

for all i. If X is Z-complete, and Y is a submodule of X, we denote by Y the

smallest uniformly closed and Z-complete submodule containing it. Explicitly we

have x E Y iff there is a sequence {x„) converging uniformly to x and for each

n, a family {p(i„} of projections in Z, such that lub,p,n = 1 and p^x„ E Y (cf.

Widom[17]).

3.2. Proposition. If Y is a Z-complete submodule of a Z-normed module X, then

X/Y, the quotient module with quotient norm, carries a Z-valued norm.

Proof. We verify the condition (*) of 3.1. The quotient norm is defined by

||jc + y|| = d(x, Y) = inf{||jc -y\\:y E Y}. Let {p,} be a family of orthogonal

projections with lub,p, = 1, and suppose c > lub¡,d(p¡x, Y). Then for each / we

can find a y¡ E Y with \\p¡x — y¡\\ < c. The family {y¡} is bounded because

IIv,|| < c + \\PiX\\ < c + \\x\\. Hence by the completeness condition there is a

y E Y with p,v =p¡y¡. Then ||x-.y|| = lub,||p,x-p,v|| = lub,||p,x -.y,.||

< c. Thus d(x, Y) < c whenever lúb¡d(p¡x, Y) < c, so d(x, Y) < luh¡d(p¡x,

Y). The opposite inequality is automatic in any normed module.   Q.E.D.

By a Z-functional on a normed module X we mean a bounded module

homomorphism X -* Z. The space X# of all Z-functionals on X is again a

normed Z-module in a natural way. As such it always carries a Z-valued norm

and is Z-complete. In analogy with the case Z = C, we have the following

separation result:

3.3. Proposition. Let X be a normed module with Z-valued norm, and let Y be a

Z-complete submodule. If Y ¥= X, then there is a nonzero Z-functional on X

vanishing on Y.
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Proof. Let | | be the Z-valued norm on X/Y guaranteed by 3.2, and take

x E X — Y. Then zx + y ^> z\x + Y\ is seen to be a Z-functional on the

submodule Zx + Y. By the Hahn-Banach theorem for normed modules over a

W* algebra [15], it extends to a Z-functional / on X, with f(Y) = 0 and

f(x) = \x + Y\ * 0.
We return now to the algebra 77 = Z ® A of the theorem. Then 77 is naturally

a normed Z-module. Let 77# C 77* be the space of Z-functionals on 77 which are

w* continuous. We easily check that 77# is a Z-complete submodule of 77*.

Moreover 77# is closed under the operations La, Rb defined by

La4>(b) =Pb<t>(a) = <b(ab)   for a, b E B,       ¿> E B#.

Finally for each 9 E At, the map « -* « ® 9 on the preduals induces a Z-

functional 9 E B# defined by 9(b) = 9 ° b, for b E B, and ||0|| = ||0||.

3.4. Proposition. The natural map B -» (77#)#: b -* b** defined by ¿>**(d>)

= d>(¿>) is an isometry onto.

Note. Thus 77 is a dual Z-module as well as a dual Banach space. Halpern ([5,

Theorem 3]) has proved this result whenever 77 is a If* algebra with center Z. In

the present case Z is only a sub- W*-algebra of the center; it will coincide with

the center of 77 only if A is centerless, that is, a factor. Thus Halpern's theorem

does not strictly apply. However, the result and the main ideas of its proof go

through in the more general case of a W* algebra 77 and an arbitrary sub- W*-algebra

Z of its center. For completeness we include a proof of this extended version of

Halpern's theorem in an appendix §5.

3.5. Corollary. 77# is generated as a Z-complete module by the elements 6, for

9 EA*.

Proof. By 3.3 it is enough to show that the only Z-functional on B# which

vanishes on every 9 is the zero functional. But by 3.4 every Z-functional on B#

is given by evaluating at an element of 77. If b** (9) = 9 ° b = 0 for all 9 E A+,

then b = 0 and hence b = 0 by the isometry of the theorem.   Q.E.D.

We can give a functional representation for the elements of B#. If <b E 77# and

t e £2, we define a functional <b(t) E A* by (<¡>(t))(a) = (¿>(1 ® a))(t). The map

d> -* d>(f) is linear and norm-decreasing, and for the special elements 9 we have

9(t) = 9.

3.6. Proposition. Let d> E 77#. Then there is a meager set M = M(<b) in fi such

that for t £ M,we have

(a) ¿.(î) E A*.

(b) The function s -* <¡>(s) is uniformly continuous at t.

(c) For all b E 77, we have

(<p(b))(t) - («MX*«)-
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Proof. Let Y C B# be the submodule of elements of the form 2*-i zfit with

z¡ E Z, 9¡ E A%. We check easily that (a)-(c) are satisfied for all t when <j> E Y.

If ¿> e B# is arbitrary, then by the explicit description of the Z-completion given

before 3.2, there is a sequence {¿>„} converging uniformly to d>, and for each n a

family {p¡„) of projections in Z, such that lub,/?,,, = 1 and pind>„ E Y. Then for

each n the set F„ = {t: p¡¡n(t) — 0 for all /} is closed and nowhere dense, so that

M = UnF„ is meager. If í £ M, then for each « choose an / so that pi<n(t) = 1.

Then (¿>„)(r) = (p¡^H)(i) 6 /4» since/7,-„¿>n G y, and therefore ¿.(f) - limn¿»„(í)

e ¿„ proving (a). Similarly (<p(b))(t) = limn(<¡>„(b))(U = ^m„(p^<t>„(b))(t)

= limn(<bn(t))(b(t)) = (<¡>(t))(b(t)). proving (c). To prove (b) for ¿>, let e > 0 be

given and take n so that ||</>„ - ¿>|| < e/3. Then take / so that p¡„(t) = 1. Then

the function s -* (p¡^„)(s) is continuous at /, so we can take an open set U

contained in the support of pUn, with t E U, and such that \\(pi¡n<t>n)(s)

- (p¡*$n)(,t)\\ < e/3 for s E U. Then \\<b(s) - <b(t)\\ < e for j e U, showing that

s -* ¿>(í) is uniformly continuous at t.   Q.E.D.

Finally we can establish the multiplicative assertion (3) of the theorem.

3.7. Proposition. Let b, c E 77 and 9 E A*. Then

9((bc)'(t)) = 9(b(t)c(t))   a.e.

(That is, (3) of the theorem holds.)

Proof. Consider the Z-functional <f> — Lb9 E B#. Using (2) of the theorem we

verify that ¿>(i) = L^() 9. Now using 3.6(c) we have

9((bcy(i)) = 9(t)({bc)'(t))

= (9(bc))(t) = (<b(c))(t)

= (*0)(*(O) = L^Wi))

= e(b(i)c(i)),

so long as t & M = M(<p), a meager set.   Q.E.D.

As in the case of the topological statement (4), we can strengthen this result in

the separable case.

3.8. Corollary. Let A, 77, Z, S2 be as in the theorem, and suppose An is separable.

Then for all b, c E 77 we have

(30 (bc)'(t) = b(t)c(t)   a.e.

Proof. As in 2.7, we take a dense sequence {9„} in A+ and meager M„ C ß so

that 9n((bc)~(t)) = 9„(b(i)c(t)) for / E M„. Then by density we have 9((bc)~ (t))

= 9(b(t)c(t)) for all 9 E A*, so long as t E M = U„M„, so that (be)' (t)

= b(t)c(t) for t & M.
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4. Comparison with the measure-theoretic result. Let (T, p) be a localizable

measure space, that is a direct sum of finite measure spaces. Let Z = L°°(r,ix)

be the space of essentially bounded locally measurable functions T -* C, and let

Zt = Lx(T,p) be the space of all /¿-integrable functions T -* C. Then Z is an

abelian W* algebra under the pointwise operations, with predual Zn.

If A is a W* algebra, with predual A+, we denote by Lx(T,p;A) the space of

essentially bounded funtions/: T -* A which are w* measurable in the sense that

for each 9 E A* we have 9 ° / G L°°(r, p). There is a canonical norm-decreasing

map, K: L°°(T,p;A) -» Lx(T,p) ® A, defined as follows: If/ G L°(T,p;A), then

ZC(/) acts as a functional on (L°°(r,/ti) ® A)+ = L'(T,p) ®yA, by the rule

(K(f),g ® Ö) = Jr (0 ° f)gdp. If A* is separable, the Dunford-Pettis theorem

[3] shows that K is an isometry onto. In [10], Sakai goes on to show that in this

case the multiplication in the tensor product corresponds under K to pointwise

multiplication in Lx(T,p;A).

We can give a simple example to show that K may have a nontrivial kernel

when A„ is not separable. In fact let T = [0,1], p = Lebesgue measure and v =

counting measure. Take A = Lx(T,v) and Z = Lx(T,p), and consider the

function /: ß -> A defined by /(/) = Ô,. Then ||/|| = 1 as an element of

ü°(T,p;A), but K(f) = 0. Thus L°(T,p;A) is too big in this case.

For certain special measure spaces we can say more. In fact, if Z = C(ß) is a

given abelian W* algebra then by a well-known procedure [11, §1.18] we can

represent Z ^ L" (T, p) as a measure algebra where T is an open dense subset of

the spectrum ß of Z, and p is a perfect Borel measure. If b E Z ® A is an

element of the W* tensor product, let b: ß -» A be the corresponding w*

continuous function given by our theorem. Then b \ T is in Lx(T,p;A) and

K(b | T) = b, as is easily checked. The mappings K and b -* b | T thus exhibit

Z ® A as a retract of L° (T, p; A) as Banach spaces.

5. Appendix: Halpern's theorem. Throughout this section let Z be an abelian

W* algebra, and let B be a W* algebra containing Z as a sub-IK*-algebra of its

center. Then B is naturally a normed Z-module. Let Z?*, Z„ be the respective

preduals, and let Z?# be the space of all bounded W* continuous module

homomorphisms of B into Z. We show that then B can be identified with the

space (Z?#)* of all Z-functionals on B#, in analogy with the identification

B = (Bt)*. This is the theorem of Halpern [5, Theorem 3] in case Z is the center

of B. Our proof follows similar lines, the main difference being that as in the body

of this paper we avoid reference to Hilbert space representations of the algebras.

As in [5], the key point is that W* continuous functionals on B can be factored

through Z, as follows:

5.1. Factorization Lemma. Any 9 E B+ can be factored in the form 9 = <o ° <¡>

where u E Z», ¿> G B# and \\9\\ = ||<o|| ||<¡>||.

Proof. By the polar decomposition of functionals [11, Theorem 1.14.4], we can
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write 9 = Lu9+ where m G 77 is a partial isometry and 9+ G 77, is positive. If

9+ = w ° d>+ is a factorization of the required type for 9+, then 9 = u ° Lu<j>+ is

a factorization of the required type for 9. Hence we may assume 9 = 9+ is

positive.

So let 0 G /7, be positive, and let co = 0 | Z be its restriction to Z. I claim that

then ||zt?|| = ||zco|| for all z G Z. For \z\9 and |z|co are positive, and hence

Ilz0ll=|| |z|0|| = |z|0(l) =|z|w(l) =||zto||. Thus the map z • u h» z0 is a Z-linear

isometry of Zco onto Z0 and extends to a Z-linear isometry ¿>0 : Zw -> Z0 of the

uniform closures. Now the annihilator (Zco)x C Z is a IF* closed ideal of Z, and

hence of the form (Zco)x = (1 — /?)Z, where/? G Z is a projection, the support of

co. It follows that Zu = (Zw)""""1 = />Z,. Hence we obtain a Z-linear map

¿>, : Z, -» 77, of norm one by putting ¿>,(co') = ¿>0(/?co') for co' G Z,. Let

d. = (¿>,)*: 77 -» Z be the adjoint of </>,. Then \\<b\\ = ||</>,|| = 1, ¿> is a w*

continuous Z-functional, and by definition of the adjoint we have co ° d> = ¿>, co
= 9.   Q.E.D.

It is convenient to rephrase this result in terms of a certain tensor product of

Z-modules . Let X and Y be normed Z-modules. We define a seminorm on the

algebraic tensor product X ®z Y by

11111= inf (2,1k-1Mb,-11}

the infimum being taken over all representations £ = 2< •*/ ® // of | as a finite

sum of elementary tensors. We denote this seminormed space by X ® y.

5.2. Corollary. Composition of functions defines a Z-linear isometry Z, ® 77#

^77,.

Proof. It is immediate that composition gives a norm-decreasing Z-linear map

Z, ® 77# —> 77,. The factorization lemma shows that this is a quotient map. To

see that it is an isometry we must verify that its kernel is trivial. So let

| = 2 co,- ® ¿>, be an element of the tensor product.

Let o¡¡ — u¿\ui¡\ be the polar decomposition of co,- in Z,. Then each |co,| is

dominated by the functional co = 2 |w,-|, and so by the Radon-Nikodym

theorem we can write |co,| = z,co for some z, G Z+. Then co, = m,z,co and so

£ = 2 w,- ® ¿>, = 2 u¡z¡ío ® d>, = co ® (2 u¡z¡^¡). Thus it suffices to show that

no nontrivial tensor co ® ¿> is in the kernel of our map. Suppose then that

co o <b = 0. Then zco » ¿> = 0 for all z G Z, so </>(77) C (Zco)1 = (1 - p)Z, where

p is the support of co. Hence p<¡> = 0, while co = pu and so co ® </> = pu ® d>

= co ® p<j> = 0, as asserted.

5.3. Theorem. The natural map i: B -> (B#)* : b -» b*# defined by b**(<p)

= <b(b) is an isometry onto.

Proof. It is immediate that / is Z-linear and norm-decreasing. On the other

hand by the factorization lemma we have
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||¿|| = sup{|0(ô)M e 2U0H < 1}

= sup{|co o tfb)\: «eUe B#, \\u>\\ < 1 and ||¿>|| < 1}

= sup{||*(ô)||:*eA#,M < 1}

= ||6** ||.

Thus / is an isometry. To see that it is onto, let X: B# -» Z be a Z-functional. We

then obtain a linear functional X on the algebraic tensor product Z* ®z B# by

putting Â(2 w/ ® <#>,) = 2 «í(a(</>/)). We see immediately that Â is bounded with

respect to the seminorm defined above. By Corollary 5.2, therefore, there is a

b E (B*)* = B with (to ° <f>)(¿>) = u(X(<¡>)) for all u E Z*, <i> G B#. In other

words to » X = w o b** for all to G Z*, and so X = ¿>##.   Q.E.D.
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