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FIXED POINT ITERATIONS USING INFINITE MATRICES

BY

B. E. RHOADES

ABSTRACT. Let £ be a closed, bounded, convex subset of a Banach

space X, /: E —»E.   Consider the iteration scheme defined by x"« = xQ e E,

x     , = ñx ), x   = 2"   na ,x., nal, where A is a regular weighted mean
n + l     '    n       n        * = 0   nk   k o er

matrix.   For particular spaces X and functions /we show that this iterative

scheme converges to a fixed point of /.

Let X be a normed linear space, E a nonempty closed bounded, convex sub-

set of X, /: E —» £ possessing at least one fixed point in E, and A an infinite

matrix.   Given the iteration scheme

(1) *o = *oeE'

(2) *n + l=^*J»        « = 0,1,2,...,
fl

(3) x   = F a ,x.,      «=1,2, 3, •••»
n      *-*Ä     nK  «

fe=0

it is reasonable to ask what restrictions on the matrix A are necessary and/or

sufficient to guarantee that the above iteration scheme converges to a fixed point

of/.

During the past few years several mathematicians have obtained results using

iteration schemes of the form (1 )—(3) for certain classes of infinite matrices.   In

this paper we establish generalizations of several of these results as well as

point out some of the duplication and overlap of the work of these authors.

An infinite matrix A is called regular if it is limit preserving over c, the

space of convergent sequences; i.e., if x e c, xn —» /, then Aß(x)= 2fcan^xfc—»

/.  A matrix is called triangular if it has only zeros above the main diagonal, and

a triangle if it is triangular and all of its main diagonal entries are nonzero.  We

shall confine our attention to regular triangular matrices A satisfying

(4) 0<a . <1,      », *-0, 1, 2, •••,
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n

(5) £  ank = 1>       " = 0,1,2.

Conditions (4) and (5) are obviously necessary in order to ensure that x   and x~
n 72

in (2) and (3) remain in E.   The scheme (1)— (3) is generally referred to as the

Mann process, in the light of [131.

Barone [l] observed that a sufficient condition for a regular matrix A to

transform each bounded sequence into a sequence whose set of limit points is

connected is that A satisfy

00

(6) lim £  KrVlJ = 0'

In [18] we posed the following conjecture:

Conjecture. Let / be a continuous mapping of [a, b] into itself, A a regular

matrix satisfying (4)-(6).  Then the iteration scheme defined by (1)— (3) converges

to a fixed point of /.

The conjecture need not remain true if condition (6) is removed.  To see this,

let A be the identity matrix, [a, b] = [0, l], /(x) = 1 - x, and choose xQ = 0.

(Note Remark 3 following Theorem 8.)

The conjecture is true for a large class of weighted mean matrices (see, e.g.,

[8, p. 57] for the definition and basic properties of weighted mean matrices) as

we now show.

A weighted mean method is a regular triangular method A = (ank) defined by

a U=p./P , where the sequence \p } satisfies pn > 0, p   > 0 for 72 > 0, P   =
n rt ft fl ft V n ft

2, _ 0p. and P   —» 00 as 72 —♦ 00.   It is easy to verify that such a matrix satisfies

(6) if and only if p /Pn —► 0 as 72 —» ».

Theorem 1. Let A be a regular weighted mean method satisfying (6), / a

continuous mapping from E = [a, b] into itself.  Then the iteration scheme (1)-

(3) converges to a fixed point of f.

Proof. There is no loss of generality in assuming [a, b] = [O, l].  Any regu-

lar weighted mean method automatically satisfies conditions (4) and (5).  Using

(3 ) we may write

(7) *„+i = (Pn+l/Pn+l^/^-*B) + V

Since xn, f(xn) e [O, l], we have, from (7), |xn+, - xJ < p^,/Pn+l -» 0

as 72 —» 00.

One now parrots the proof in [6, p. 325] to establish that {xj converges.

It remains to show that \x \ tends to a fixed point of /.
71
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Fact. Let A be any regular matrix, / as defined above.  If the iteration

scheme (1)—(3) converges, it converges to a fixed point of /.

Proof. Let x = {x j, x = {x n\, y = limn*n.   By the continuity of /,

lim  f(x ) = f(y).  Since x      l = /(*n) for each n, limnxn = f(y).   But A is a regu-

lar matrix.   Hence y = limn*n = limnAn(x ) = /(y).

A proof of the Fact also appears in [13], and, for arbitrary linear normed

spaces, in [4] and [16].   In [6] a more complicated and summability independent

proof is used.

One obtains the theorem of [6] by setting p   = 1 in Theorem 1.

J. Reinermann [16] defines a summability matrix A by

n

(8) imk*1

¿=72,

= 0, k > n,

where the real sequence {cn\ satisfies (i) cQ = 1, (ii) 0 < cn < 1 for « > 1, and

(iii) 2, c, diverges. (It is easy to verify that A is regular and satisfies condi-

tions (4) and (5). Actually Reinermann permits c « 1 in order to take care of

the identity matrix, but in all interesting applications the restriction c < 1 is

imposed.) He then defines the iteration scheme (l)and *_., = ^i_oß t/(**)»

which can be written in the form

(9) *n+i = d - C„K + ej(*n),

and establishes the following.

Theorem Rl [16, p. 211]. Let a, b e R, a < b, E = [a, b], f: E -* E, f

continuous and with at most one fixed point.   With A as defined in (8) and with

{c } satisfying (i)—(iii) and lim c = 0, the iteration scheme (1), (9) converges

to the fixed point of f.

The same iteration scheme has been defined independently by Outlaw and

Groetsch [15] and Dotson [4].   In fact, Theorem 2 of [4] is a characterization of

the method described by (8) and (i)—(iii).

With the choice c   = (n + 1)~  , Theorem Rl reduces to that in [l3l.
n '

The matrix of (8) with {c ! satisfying (i)-(iii) is a regular weighted mean

matrix.  For, set ank = Pk/P„, k<n.  Then Pk/pk+1 = «nk/a„ik+i =

c,(l - c,    ,)/c,    ,, which can be solved to obtain

(10) pk = ckp0/fl (1 - c),      k>0.
t*l
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By induction one can show that Pn = ?0/II?=j(l - c ) for 72 > 0.  Since 2,c,

diverges, the product must diverge to 0.   Therefore Pn —> °° as 72 —» 00 and the

weighted mean method (N, p ) with p    defined by (10) is regular.  Also, each

pk>0.

Conversely, let (N, p ) be a regular weighted mean method with each p, > 0

and define \c I by

(11) c   =p IP ,       72 >0.v 71     rn     n —

Then cQ = 1, and, since each p, > 0, 0 < c^ < 1 for all 72 > 0.  Now from (11),

1 _ c   = P     ,/P , which leads to P   = pJ\T. ,(1 - c.).  Therefore p./P   =
n        «-I       n' n     r0      7=1 7' e k.      n

Ck^"sk 1^ " c.)and A has the form (8).   Moreover, 2fecfe diverges because P  ~*

00 as 72 —» 00.  Since c   = p  /P , the condition lim c   = 0 is the same as
n      * n      n' n  n

(Nj P„) satisfying (6).

We point out, however, that even though the matrices involved are the same,

the iteration schemes (1)— (3) and (1), (9) are different.   Scheme (1)—(3) takes

the form x = Az, where z = {xQ, f(xQ), /(Xj), •••}; whereas (1) and (9) become

x = Aw, where w = {/(xQ), /(Xj), • • •}.   In other words the first scheme uses a

translate of w.   However, since / is continuous, it is easy to verify, using the

Fact, that each method converges to the same fixed point.

Therefore Theorems 1 and Rl are equivalent statements when / has exactly

one fixed point and \c ! satisfies (i)— (iii). Theorem 1 generalizes Theorem Rl

to those cases where / may have more than one fixed point.

Because the iteration scheme defined by (1), (9) is notationally simpler, the

remaining theorems of this paper will be stated and proved in terms of a matrix A

defined by (8) with \c i satisfying (i)—(iii).   The reader should be aware, how-

ever, that each of these theorems has an equivalent theorem stated in terms of a

regular weighted mean matrix (N, p ) and a corresponding condition on iPn/Pn!.

The conclusions remain unchanged even though the / involved may not be

continuous.

Hillam [9] has shown the conjecture to be false and has established the fol-

lowing result, which is a slight generalization of Theorem 1.

Theorem Hi [9, p. 16]. Let f: [O, l] —► [O, l], / continuous, A a regular tri-

angular matrix satisfying (4)—(6) and

n

Z\a    . , — (1 - a    ,  ,   ,)a   . | = o(a    ,      ,).
1   n + l,k )i + l,* + I     n*1 n+l,n+l

//, in addition,



FIXED POINT ITERATIONS USING INFINITE MATRICES 165

oo       R

Z    Z    \a„+l,k-{l-an+l,k+l)ank\<e°>
n=l   *=0

then the iteration scheme (1)—(3) converges to a fixed point of f.

For an arbitrary Banach space X, continuity is not an adequate restriction

to guarantee convergence to a fixed point.   Fixed point theorems have been

established for functions satisfying a variety of growth conditions.  We shall

focus on five of these.   Using the notation of [2] we shall call Pj = j/|/   is con-

tractive on E; i.e., ||/(x) - f(y)\\ < \\x-y\\ fot all x, y e X}, and ?2 = {f\f is

strictly pseudocontractive on X; i.e., there exists a positive constant k < 1 such

that ||/(x)- f(y)\\2 < \\x-y\\2 + ¿||(/-/)x - (/-/)y||2 for all x, y € X\.

In [19] a number of definitions of contractive-type mappings are compared.

We shall consider two of the more'general ones.

Let a, ß, y be real nonnegative numbers satisfying <x < 1, ß, y < Vi.  We

shall say that f: X —* X satisfies condition Z if, for each pair of points x, y e X,

at least one of the following conditions is satisfied:

(i) l|/(*)-/(y)||<a||x-y||,

(ii) ||/(x)-/(y)|| < ß[\\x-f(x)\\ + ||y-/(y)||], or

(iii) ||/(x)-/(y)|| <y[||x-/(y)|| + ||y-/(x)||].

Suppose, for each x, y e X, there exist nonnegative numbers q(x, y), r(x, y),

s(x, y), and t(x, y) such that

sup   {q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} = A < 1.
x.yex

Let

C = {/|||/(x) - /(y)|| < q(x, y)\\x - y\\ + r(x, y)\\x - /(x)||

+ six, y)\\y - f(y)\\ + t(x, y)[\\x - f(y)\\ + ||y - /(x)||]!.

Let ö = l/|/ is quasi-nonexpansive on X; i.e., for each fixed point p of / in X,

ll/(*)-/(p)ll<ll*-iii.
Clearly Pj Ç P2 and, if / has a fixed point in X, Pj C Q, but P. and Q are

independent.  Using the example in [4], let X be the reals, / defined by f(x) =

(x/2)sin(l/x), 0< x < 1, /(0) = 0.   Then 0 is a fixed point of /, and it can be

shown that f e Q.  To show that fi P2, pick x = 2/(4tj + 1)tt, y = 2/(4t2 + 3)jr,

n > 1.  Now consider a function / defined by f(x) = (-x/a) + 1, 0<x<a, 1/3 <

a< H, and /(x)= 0 for a < x < 1.   Then / e P2 with k = (l-a)/(l + a), but f'4 Q.

In [19] it is shown that Z is a proper subset of C.   From [21], if / e Z then

/ has a fixed point in X.   It is easy to show that Z C Q.

Definitions C and P2 are independent.  The / in Example 1 of [3] is not

continuous, hence / i P2.  The /, in the above example, which belongs to P
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and not to Q, also does not belong to C.

Sets C and Q ate independent. Define / by /(x) = 0, 0 < x < A, fix) = A.

A< x < 1.  Then / e Q, but / 4 C.  On the other hand, if f(x) = l/-,0<x< 1/3,

f(x) = 0, 1/3 < x < 1, then / e C and / 4 Q.

Sets Z and P, are independent.  Since Z C C, there exists an f e P    f'4 Z.

Example 1 of [3] also satisfies Z, but not P,.

The most general theorem for a quasi-nonexpansive mapping on a strictly

convex Banach space is the following.

Theorem 2 [4, Theorem 3].   Ler X be a strictly convex Banach space, E a

closed convex subset of X, f: X —» X, / continuous, f e Q on X and f(E) C K C X

for some compact set K.   Let A be defined by (8) with \c ! satisfying (i)—(iii)

a72a" such that \c I has a cluster point in (0, 1).   Then the iteration scheme (1),

(9) converges strongly to a fixed point of f.

For uniformly convex spaces we combine Theorem 5 of [41 with Corollary 1

and comment (ii) from [7].

Theorem 3. Let X be a uniformly convex Banach space, f: E —* E, E a

closed convex subset of X, f e Q with at least one fixed point in E, and I—f

closed.   Let A be defined by (8) with \c \ satisfying (i), (ii), a72a" (iv):

2,c,(l-c ) diverges.   If, in (9), {x | clusters strongly at some p e E, then

f(p)= Pt end \x \ and {x   ] (defined by (2)) converge to p.

The following example shows that continuity is a necessary condition in

Theorem 2, and that /-/ closed is a necessary condition in Theorem 3.   Let X

be the reals, E = [0, l], / defined by f(x) = A, 0 < x < A, f(x) = 1, A < x < 1,

/(1)= 3/4, and A the matrix defined by (8) with c   a a for 72 > 1, for some

0< <z< 1.  f e Q and has A as its only fixed point.  Choose xQ = 1.   One can

show that 3/4 < x   < 1 and x      in 72 for all 72 > 2.
n n —

Since condition (iv) on \c } implies (iii), the theorem of [7] shows that, in

Lemma 2 of [16], one can replace the conditions: {c H in 72 and the convexity

moduli 5    chosen so that 2 8    diverges, by (iv) and still retain the conclusion
n n   n

lim ||/(x  ) - x  II = 0.   Theorem 3 is therefore a generalization of Theorem 3 of

[16], with the hypothesis /-/ closed replaced by / completely continuous for

some 72q. Theorem 1 of [14] and Theorem 5 of [4] are special cases of Theorem

3.

By restricting the class of functions to Z, a stronger version of Theorem 3

can be proved.

Theorem 4.  Let X be a uniformly convex Banach space, E a closed convex
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subset of X, f: E —> E, / e Z.   Let A be defined by (8) with {cj satisfying (i),

(ii), and (iv).   Then {x ! of (1), (9) converges to the fixed point of f.

Proof. Theorem 1 of [2l] shows that / has a unique fixed point in X.  Call

it p.   For any x e E,

\\xn+l-p\\<(l-cn)\\xn-p\\ + cjf(xn)-p\\.

Since ZCß, ||/(x )- p\\ < ||x   - p\\.  Thus {||x   - p||U in«.  Also, ||x -f(x )|| =
~ n —        n n n n

\\(x   - P)- (f(x ) - p)\\ <2\\x   - p\\. We shall assume that there is a number

a > 0 such that ||x   - p|| > a for all n.

Assume {||x   - f(x )||} does not converge to zero.   Then there are two possi-

bilities.  Either there exists an e > 0 such that llx   - f(x )|| > t fot all n or

limj|xn - /(*n)|| = 0.   In the first case, use the lemma of [7] with b = 28(f/||x0 - p\)

to get

K+l-p||<(l-c„(l-cn)è)||(xn-p)||

< K-l - PW - Cn-l{l - Cfl-l^lVl - ñ - K - Pll|èC»(l - 'J

< K- 1 - Í« - H*« - P\\b{cn- 1(1 -CnJ + C»(l - &

By induction, a < ||xn + 1 - p|| < ||x0 - p\\- \\xn - p\\b 2^ 0cfc(l-cfc).  There-

fore,

a(l+b Z c¿l-c¿) < ll*o "ill»/l+¿¿ct(l_cA<||Xo_

a contradiction since {c \ satisfies (iv).
a

In the second case, there exists a subsequence such that lim ||x    - f(x   )|| = 0.
ft   fl. n»

If x    , x     satisfy (i) of Z, then
"ft     "I

\\f(*nk>-n*n?W<«Kk-*nf

< a[\\xnk - f(xn)\\ * ||/(x„fe) - /(xn/)|| + ||/(xni) - xn/||],

"/(V " /U"/)|1 - a(l - a)'1[K„ - 'M + W*n > - Xn »■
ft ft 11

If x    , x     satisfy (ii) of Z, then
"ft     "l

WfK,!-fK}\\ < #11^-/(^)11 * Krf(*np-

If x    , x     satisfy (iii) of Z, then
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so that

II/V - /(*„,>« < * - 2y>- HK, - f\n+ K. - /(*»,)||]-

Therefore ¡/(x    )! is Cauchy, hence convergent.  Call the limit u.  Then
nk

lim.x     = lim,/(x    )=u.
k nk k      nk

For each k,

||a - /(a)|| < ||« - x„J| + ||x^ - f(xn)\\ + ||/(xnfc) - /(a)||.

If xn , a satisfy (i), then  ||/(xn  ) - /(«)|| < ||xn   - a||.   If Xf¡ ,u satisfy (ii),

then  ||/(x    ) - /(a)|| < /S[||x     - f(x    )|| + ||«-/(a)||], so that

II" - /(«)» < W\u - xn\\ + (1 + /3)||x^ - /(xn¿)||]/(l - /S).

If x    , a satisfy (iii), then

\\f(xn) - f(u)\\ < y[\\xnk - f(u)\\ + ||a - /Oc^jfl]

< Kl«.à - iï*„kn + H/Kfc) - /mi + il« - /(«„¿il.

or

11/U   ) - /(«)« < y(l - y)~ nik    - /(x   )|| + ||B - f(xn )||].

Hence a = /(a).

Since /> is the unique fixed point of /, p = u.  The two conditions limfcxn   =*

a = p and |||xn - p||il in n yield üm^ = p.

It has been shown in [19] that the contractive condition of Kannan [ll] is a

special case of that of [20].  Thus Theorems 2 and 3 of [ll] are special cases

of Theorem 4 with c   =■ A.  Theorem 3 of [12] is the special case of Theorem 4

with c   =X, 0<A<1.
71

Theorem 5. Let X be a Banach space, /: X —» X, / e C. Lei A fee defined

by (8) u/t'fi f c ! satisfying (i), (ii) aTja" bounded away from zero. Then, if \x \,

defined by (1 ), (9) converges to a point p, p is the unique fixed point of f in X.

Proof. For each n, x     , - x   = c (f(x ) - x ). Since   lim_x    =  p,
'     n+i        n        n       n n n n

limj|xn + j - xj| = 0.  Since {cj is bounded away from zero, limj|/(x ) - x  || = 0.
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For f e C, writing a for #(*„, p), and similarly for r, s, and f,

\\f{xn)-f(p)\\<q\\xn-p\\ + r\\xn-f(xn)\\

+ slip - /(¿oil + ill*. - /(p)ll + Up - /MU.

Up - /(p)|| < Up - *J ♦ ll*„ - /Ml + n/u,) - /(p)ll.

K-/(p)||<K-/(*n)IUII/(*n)-/(p)IU

and

IIp-/u„)II<IIp-*J + II^-/M-

Therefore

l/UJ - /(P)|| < [(a + s + /)||xb - p|| + (r + s + 2/)||xn - /(xJl/Q - s - t)

<A(l-A)-H||xn-p|| + ||xn-/(xn)||];

i.e., limn/(xn) = f(p).   \\f(p) -p\\< \\f(p) - f(xn)\\ + ||/(xb ) - xj + \\xn - p\\.  Hence

P = /(p).  From [3], p is unique.

Since \c 1 is bounded away from zero, 2c. diverges, and A is a regular

method equivalent to convergence.  From the viewpoint of summability, Theorem

5 is a natural result.  A special case of Theorem 5 appears in [ll].  The following

result is the analogous one for functions in P2>

Theorem 6. Let X be a Banach space, /: X —» X, / e P2.  Let A be defined

by (8) with \c I satisfying (i), (ii) and bounded away from zero.  Then, if \x j

defined by (1 ), (9) converges to a point p, p is a fixed point of f.

Proof. Since / e P2, ||/(xn) - /(p)|| < (1 + V*)||*„ - p||/d - V*), so that

limn/(x )=/(?).  As in the proof of Theorem 5, lim ||/(x )- x || = 0.  Thus

II/(P)-P||<II/(P)-/U„)|| + II/(x„)-xJ + K-P||      and    /(p) = p.

We now establish some results when X is a Hubert space and / e C, P., or

e.
Theorem 7. Let H be a Hilbert space, f e C, f: E —* E, E a closed convex

subset of H. Let A be defined by (8) with \cn\ satisfying (i)-(iii) and lime <

1 -X .   Then the iteration scheme (1), (9) converges to the fixed point of f.

Proof. From [3] / has a unique fixed point p e H.  Let u, v e H, a, ß any

nonnegative real numbers with a + ß - 1.  Then one can expand and add the inner

products (as + ßv, clu + ßv) and (a(u~v), ß(u~v)) to obtain the identity

\\o.u + ßv\\2 = a\\u\\2 + ß\\v\\2-aß\\u-v\\2.
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Using this identity and (9), we have, for each positive integer n,

<12>   K+l -Pll2 = C1 - cn)\\xn - p||2 + cjf(xn) -p\\2- cn(l - cn)\\f(xn) - xj2.

Since fed,

«/<*„) - P\\ < ill*, - P\\ + r\\xn - f(xn)\\ + i[||xn - /(p)|| + ||p - f(xn)\\],

i.e.,

I/U„) - P\\ < K* + t)\\xn - p|| + r||xn - /(xn)||l/(l - t)

<Amax{||xn-p||,||xB-/(xn)|||.

For each n such that the maximum is  ||xn - p\\, we have, using (12),

K+i - ?" < <* - "■>!*. - ill2 + ̂ 2K - ill2 - *£ - '„W(*„) - *J2.

For each n such that the maximum is ||/(x )-x ||, we have

K+i - ill2 < d - OK - ill2 - c.ö - s - *2W(-„) - -„II2-

In either case, we have

K+1 - PII2 < I«. - Pll2 - c„d - c„ - A*)||/(*n) - xj2.

The above inequality implies that [||x   - p||U in n foe all n sufficiently

large.  Also, since {c ! satisfies (iii) and lim c   < 1-À , there exists a sub-
n  n

sequence jx    ! such that lim,||/(x    )-x    || = 0,

ii/ v 'S*1 - qK - x-f+ rK - f{ V"
+sK. - /<V1+*K - '(%>n+ ii*», - '<*j«

\\\-fKfi<\\\-fKkn + \\f(xn)-f(xn)\\,

and

ii^-/Vii<ii-»/-/(Vil + ,l/V-/(s)|1*

Therefore
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||/(x    )-/(xB)||<[(a + r+/)||x    -/(x   )||
ft I It It

+ (q + s+ t)\\xn - f(xn )||]/(1 - a - 2/)

< xd - x)-H\\xnk-f(xn)\\.+ K;-/(*n/)a

so that \f(x    )1 is Cauchy, hence convergent.  Call the limit u.   Then

||/(a) - a|| < ||/(a) - /<*   )|| + ||/(xB ) - xn || + |»     - a||.
* ft ft k

Since f e C,

ll/(») - /(*„ )ll < «II« - *. J + HI« - /(")ll + *ll*   - /(OH

+ rf||«-/(x  )|l + ll*   - /Will-
ft Ä

Therefore

||/(a) - a|| < [(1 + q + i)||« - «    | + (l + s)||/(x^) - *BJ + r||« - /(*„¿||]/Ü - r)

< [(1 + A)||a - xb || + (1 + A)||/(x   ) - xBJ|+A||a - /(xnJ||]/(l - X),

and /(a) = a.  Since p is unique, u = p e E.  Combining lim.x     = p and
* nk

{||x   — p||!l in 72 for all 72 large enough we get lim x   = p.

Theorem 8.  Let H be a Hilbert space, f e P , f:E—*E,Ea compact, convex

subset of H.   Let A be defined by (8) with \c ! satisfying (i)-(iii) îïm c   =

c < l-k.   Then the iteration scheme (1), (9) converges strongly to a fixed point

off.

Proof. From [20] / has a fixed point in E.  Call it p.

Since f e P2, there exists a number k, 0 < k < 1, such that if u, v e E, then

||/(a) - /Ml2 < ll"-H|2 + k\\(I-f)u - (/-/M|2.   Thus, if v = p and a = xn,

!/(*„) - Pll2 < ll*„ - Pit2 + k\\*„ - /(*„)l|2, and, substituting in (12), we obtain

IK+l-H|2<K-Pll2-cn(l-CB-^)||/(xB)-XB||2.

Since c   < 1 -k for all 72 sufficiently large, and \c } satisfies (iii), the above
n '       " ' n

inequality yields j||x   - p||U for all 72 sufficiently large and lim ||/(x    )-x    || =
n *      nk        nk

0 for some subsequence ix    }.  Since E is compact, there exists a subsequence

of {x_ Î, call it ix   } such that lim   f(x   ) = lim  x    = a.
«£ m m'v  m mm

Using the triangular inequality and the fact that f e P ,
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l/to- «B<«/(«)-/(*w)|| + IK*m-«)||

< tll« - *JI2 + *lia - /)" - (/ - />*JI2]* +1«, - "Il

< II« - *J + V*dl« - /W| + ||*m - /(*m)||) + ll*m - «II-

Therefore ||/(h)- «|| < fc||a-*J + V*ll*m - /(*m)||]/(l- V*). so that /(a) = 8.

The conditions lim  x    =u and Í ||x   - a|||J, in n for all n sufficiently large yield

lim x   = u.
n   n

Remarks. 1. The theorem of [lO] is the special case of Theorem 8 with

cn=(T2 + l)-1.

2. A pseudocontractive operator is one satisfying (14) with k = 1.  Theorem

8 cannot be extended to pseudocontractive operators, because they need not have

any fixed points.   Even for those pseudocontractive operators with fixed points,

the present method of proof cannot be used.  The interested reader may consult

[2] for a convergent iteration scheme for pseudocontractive operators / satisfying

a Lipschitz condition and (/(x), x)< ||x||2 for all x in Sf(0).

3. Specializing Theorem 8 to the reals, E - [a, b], shows that condition (6)

is not necessary for the iteration scheme (1)— (3) to converge to a fixed point for

/ e P.. A simple counterexample shows that the condition c < 1 — k is necessary.

4. Theorem 8 shows that, for compact sets E, the conclusion of Theorem 12

of [2] can be strengthened to strong convergence, without the assumption that U

is demicompact.  The iteration scheme used there is the special case of Theorem

8 with c   =1-A, k<\< 1.

5. Theorem 10 of [9] is the special case of Theorem 8 with lim c   = 0.

Theorem 9.  Let H be a Hilbert space, E a compact, convex subset of H,

f: E —» E, f e Q with at least one fixed point p e E, and 1-f closed.   Let A be

defined by (8) with {c  ! satisfying (i)-(iii) and litancn = c < 1.   Then the itera-

tion scheme (1), (9) converges strongly to a fixed point of f.

Proof. Since f e Q, ||/(*„)- p||2 < ||*B - p||2.  This inequality, along with

(12), gives  ||xn + 1 - p||2 < \\xn - p||2 - cn(l-cn)||/(xn)-xj2.

As in the proof of Theorem 8, one obtains a subsequence, say {x   }, of |x j

which converges.   The result follows by appealing to Theorem 3, since condi-

tions (iii) and limncn = c < 1  imply (iv).

Remarks. 1. Theorem 3 of [l6] and Theorem 3 of [17] treat mappings f e P.

and subject to additional restrictions, while the compactness condition on E is

replaced by E being closed and bounded.

2. Theorem 8 of [4] treats mappings f e Q under the weaker condition that

E is closed and convex but with additional hypotheses on /.
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3. Theorem 2 of [15] is a special case of Theorem 9, since the complex

plane is a Hubert space.

4. For E compact, Theorem 6 of [2] is the special case of Theorem 9 with

c   = X, for some 0 < X < 1.
n

The first of the following two theorems generalizes Theorem 2 of [5].  The

proofs are omitted, since they are basically the same as those in [5].

Theorem 10. Let X be a linear normed space, f: X —» X, f e Q with a fixed

point p e X.   Let A be any regular triangular matrix satisfying (4) and (5).   Then

for any xQ e X, the iteration scheme (2), (3) generates bounded sequences \x }

and jx   !.
n

Theorem 11.  Let H be a Hubert space, f: H —> H, f e P2 with a fixed point

p e H.   Let A be defined by (8) with \c  1 satisfying (i)-(iii) a72a" lim c   = c,

c < 1 - k.   Then for any xQ e H, the scheme (9) generates bounded sequences

jx I a72a" Ix  |.
n n

Theorems 6—9 and 11—13 of [2] can all be extended to the class of iteration

schemes defined by (1), (9) for any 1c  } satisfying (i), (ii), and (iv).  We simply

state these generalizations, since their proofs are the same as their counterparts

in [2] along with an occasional appeal to the theorem in [7],   In each of these

theorems the underlying space is a Hubert space.

Theorem 12 [2, Theorem 6]. Ler / e P., f: E —* E, E bounded, closed, and

convex. Suppose f is demicompact. Then F, the set of fixed points of f in E, is

a nonempty convex set, and, for any xQ e E,\c \ satisfying (i), (ii), and (iv), the

iteration scheme (9) converges strongly to a fixed point of f in E.

Theorem 13 [2, Theorem 7]. Let f e Pj, f:E—*E, E closed, bounded, and

convex, and f has exactly one fixed point p e E.   Then, for any xQ e E,\c j

satisfying (i), (ii), and (iv), (9) converges weakly to p.

Theorem 14 [2, Theorem 8]. Lei f e P., f:E—*E, E bounded, closed, and

convex.   Then, for any x0 e E and \c \ satisfying (i), (ii), a72a" (iv), (9) converges

weakly to p, and p is a fixed point of f in E.

Let x e H.  R£x is defined to be the closest point to x in E.

Theorem 15 [2, Theorem 9l. Let f e P , f:E—*E, E closed, bounded, and

convex.  Suppose further that if p e dE and if p = RE(f(p)), then p is a fixed

point of f.

Then f has a fixed point in E and, for any xQ e E,\c \ satisfying (i), (ii),

and (iv), the scheme
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(13) '„^-O'fl-l+^E*/**«-!».       *>1

converges weakly to a fixed point of f in E.

Theorem 16 [2, Theorem 11]. Suppose that E is uniformly smooth and, under

the hypotheses of Theorem 9 or 10 of [2], that f is a demicompact mapping of E

into H.   Then the iteration scheme (1), (13) converges strongly to a fixed point

of f in E.

Theorem 17 [2, Theorem 12]. Let E be a bounded, closed, convex subset of

H, /: E -» E, f e Pr   Then for xQ e E, {cj satisfying (i), (ii), (iii) and

Hm c   = c < 1 - k, the iteration scheme (9) converges weakly to a fixed point

p e E.   If, in addition, f is demicompact, then {x j converges strongly to p.

Theorem 18 [2, Theorem 13]. Let f 6 P2, /: B/0) -» H and satisfying the

Leray-Schauder condition.  Let R: H —♦ BAO), R a retraction.   Then, for any

xQe B (0), and any y such that 0<l—k<y<l, {c } satisfying (i)—(iii) and

lim c   = c < 1—k, the scheme
n n

\ =(1 - C«K-1 + C„R V«-1»     Uy-yi + d- y)f

converges weakly to a fixed point p e B (0).   //, in addition, f is demicompact,

then {x I converges strongly to p.

Comments. 1. Let / be the shift operator, E the unit ball in H.   Let A be

defined by (8) with cQ = 1, cn = xA, n > 0.  Let ek denote the /eth coordinate

sequence.  With xQ = eQ, from (9), xß = 2~B2A=0(J[)efc   j for all «> 1.  Thus the

sequence jx  I not only does not converge strongly, but it does not have any

strongly convergent subsequences.   On the other hand, every g e H   is of the

form g(x) = (x, a) for some ae H. Also, g(*„) = 2~n 2fc= r/Paft+1» so tnat

limn g(*„) = 0, and {x^} is weakly convergent.  This example shows that compact-

ness is a necessary condition in Theorems 8 and 9, and that weak convergence

is the best one can expect for a function in Pj, Q, or P. and E merely closed,

bounded, and convex.

2. It is a well-known result [8, p. 57] that if lim p IP   = lim c   = c 4 0,
nn      „ « n

then the corresponding summability method is equivalent to convergence.  Thus

Theorems 3 and 6, and the corresponding results quoted in [2] and [4] involve

iteration schemes where the matrix involved is equivalent to convergence.

Recalling the abundance of comparison theorems in summability theory, one is

tempted to conjecture that most of the theorems of this paper are valid for any

regular method satisfying (4) and (5) and strictly stronger than convergence.
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However, the interlacing of the iteration in (2) and (3) precludes the use of

ordinary comparison techniques.  Consequently each summability method, or class

of summability methods, must be investigated individually to determine if it will

bring about convergence to a fixed point of / when used in (l)-(3).
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