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BY

RICHARD C. BROWN AND ALLAN M. KRALL

ABSTRACT. The operator Lry = / + Py, whose domain is determined in part by the

Stieltjes integral boundary condition Jo dv{i)y{f) = 0, is studied in Xj¡($>, 1), 1 < p < oo.

It is shown that Lp has a dense domain; hence there exists a dual operator L* operating on

.£¡¡(0,1). After finding LJ we show that both L, and L¡¡ are Fredholm operators. This

implies some elementary results concerning the spectrum and states of Lp. Finally two

eigenfunction expansions are derived.

1. Introduction. The most recent works which are pertinent to this article are

those of Bryan [7], Tucker [22], and Vejvoda and Tvrdy [23], all of which discuss

systems of the form

x' = A(t)x + /(/),       £ dF(t) x(t) = K,

or slight generalizations of the same. In addition Brown [4], Brown and Krall [6],

Brown, Green, and Krall [5], Green and Krall [11], and Krall [15], [16], [17] have

considered the differential operator Lpy = y' + Py in the Hubert space ^(0,1)

or the Banach space J!*(0,l), 1 < p < oo, where its domain is restricted by a

boundary condition of the form

I AtAt,) = o,
i-O

or

^Aiy(ti)+flK(x)y(x)dx = 0.

In these papers an adjoint has been either defined or derived, and in some of

them eigenfunction expansions have been determined.

Further references can be found in the review articles by Whyburn [24] and

Conti [8] as well as the article by Halanay and Moro [12].

The purpose of this article is to discuss in X¡fifi, 1) the boundary value problem

ly=y' + Py,       U(y) = fQ dv(t)y(t) = 0,

where P is an n X n matrix valued continuous function, v is an m X n matrix
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74 R. C. BROWN AND A. M. KRALL

valued measure of bounded variation. The space -¿^(0,1) consists of all n-

dimensional vector valued functions defined on [0, 1] under the norm

Mp=[£{i\xM}P/2ätf.

We remark without proof that J!„i0,1) has the usual properties associated with

other complex Xp spaces. In particular, the dual of -C%(Q, 1), 1 < p < oo, is

isometrically isomorphic to -¿^(0,1), 1/p +1/^=1. Holder's inequality remains

true: If / e ^(0,1) and g e X"n(0,1), then

\SX0S*gdt\<f0\f\\g\dt<\\f\\p\\gl,-

For a complete development of Xp functions with values in a Banach space see

Lang [18] or Dinculeanu [9].

1.1. Definition. Let D0p, 1 < p < oo, be the subspace of J!%(0,1) consisting of

all elements satisfying

(a) y is absolutely continuous on [0, 1] (hence, in fact, y G -£"(0,1) C -£'(0,1));

(b) ¡y = / + Py exists a.e. and is in -2?,f (0,1).

1.2. Definition. We define the differential operator Lqp by letting L(¡py = lyfor all

y in D0p.

1.3. Definition. Let U: D0p -» Cm be the operator U(y) = Jo dv(t)y(i). By Dp we

mean the subset of D0p satisfying U(y) = 0.

1.4. Definition. We define the differential operator Lp by letting Lpy = lyfor all

y in Dr
It is the operator Lp which will be our primary concern.

At this point it is convenient to state some measure theoretic technicalities. As

indicated earlier, the boundary functional U is represented by an integral with

respect to a matrix valued measure v. v is understood to be a countably additive

set function defined on the a-ring of Lebesgue measurable sets in [0, 1] with range

in the space of m X n matrices over the complex field C. Clearly v can be

represented by an m X n matrix (v'J) whose components are complex valued

measures. By considering the components, many of the standard concepts of

measure theory can be extended to the matrix valued case.

For example the total variation \\v\\ of v may be defined by \\v\\ = sup(-/||zv'-'||. v

is of bounded variation if \\v\\ < oo, which, following Tucker [22], we will assume

to be true.

If v and v' are two matrix valued measures, then v is singular (v _L v') or

absolutely continuous (v <sc v') with respect to v' if and only if ||zv|! J_ ||//|| or

Ml « Ik'll.
In addition a matrix valued measure v will be singular (v ± p) or absolutely

continuous (v «: p) with respect to Lebesgue measure if and only if |M| ± p or

IMI « ,*•
If y is an n X p matrix valued function and v is an m X n matrix valued
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measure, then y is v measurable or v integrable if every component of v is

measurable or integrable with respect to every component of v. For any

measurable set E in [0, 1], the integral of y with respect to v is given by

SEdvit)y(t) = ^JEykJ(t)dv^(t)).

Such concepts sketched above lead to generalizations of the Lebesgue decom-

position, Radon-Nikodym and Hopf-Carathéodory extension theorems which

will be needed throughout the paper. Specifically, if y is a matrix valued measure,

then v can be uniquely decomposed in the form v = vc + v„ where vjj < p and

vJJ ± p. (ps can be further decomposed in the form i$ = vx + t^ where both

$ ± n and vu ± p, but j>x is continuous, while v^ is atomic (supported by

points).)

There will also exist a unique mXn matrix valued function dvjd¡i such that for

each measurable set E

•w-JĈda.
e du r

We call dvc/dn the Radon-Nikodym derivative of vc with respect to p. It is an

elementary exercise to show that dvjdfi — (dj>ciJ/d¡i) where dvJJ/dn is the scalar

Radon-Nikodym derivative of vJJ with respect to ¡i.

Dinculeanu [9] states the following generalization of the Hopf-Carathéodory

extension theorem:

Let ¿A be an algebra of sets and X be a Banach space. Then every countably

additive set function of bounded variation m: o? —* X can be uniquely extended to a

countably additive set function of bounded variation m: *£ -» X, where £ is the a-

algebra generated by <=#.

m is the extension of m from c# to *£. In our situation X is the space ofmXn

matrices, and <=# is an algebra of intervals generating the Borel sets, m then can

be extended uniquely to a matrix valued Borel measure.

2. The density of Dp. It is well known that the adjoint of an operator on a

normed vector space exists if and only if the domain of that operator is dense.

This occurs in our case if and only if the kernel of the boundary functional U is

dense. When this happens, following Krall [14], we say that the boundary

functional U is acceptable.

Our purpose in this section is to characterize acceptable boundary functionals

in terms of their representing measures. The results are stated in Theorems 2.6

and 2.8.

Relying upon the Lebesgue decomposition and Radon-Nikodym theorems, we

rewrite the boundary functional U(y) — Jo dv(t)y(t) as

i/(v) = X' dvs(i)At) +/0' JcM'Vfi,
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where vs and vc are unique, v„ _L vc, vs A p and vc « p on [0, I], and dvc/d¡i is the

Radon-Nikodym derivative of vc with respect to p. If U is represented solely by a

singular measure, we say U is singular. Otherwise Í/ will be said to be mixed.

We state several principles of functional analysis as lemmas.

2.1. Lemma. A linear functional on a topological vector space is unbounded

(discontinuous) if and only if its kernel is dense.

Proof. See Këlley and Namioka [13, p. 37].

2.2. Lemma (linear dependence principle). If<?,/., .. ,,f„ are linear functionals

on a topological vector space, then <p = 2z"=i \ft if and only if n,"_iker/ C ker <¡>.

Proof. See Kelley and Namioka [13, p. 7].

2.3. Lemma (corollary to the Hahn-Banach theorem). If K is a closed subspace of

a normed (or locally convex) vector space, and if p & K, then there exists a

continuous linear functional <f> such that K C ker <p and <j>(p) =£ 0.

Proof. See Royden [21, p. 190].

We also require the following two lemmas.

2.4. Lemma. Let f, ...,fnbe a finite collection of linear functionals on a normed

(or locally convex) vector space V. Then n,"= ■ ker f¡ is dense in V if and only if every

linear combination 2ü»i X¡f¡ ¥= 0 is unbounded.

Proof. Assume fl/Liker/ is dense in V. Since

ñker/ ç ker 2 \J, C V,
i-l i_l

ker 2f-i \fi is dense in V. Hence, by Lemma 2.1, 2"-i \f is unbounded.

Conversely, assume that every non trivial linear combination 2z"=i \f¡ is

unbounded, and that njLiker./- is strictly contained in V. Letp x= F\nf_iker/-.

By Lemma 2.3 there exists a nonzero functional <¡> such that níL.ker/; C ker £,

which is impossible by Lemma 2.2.

2.5. Lemma. Let U: V -* Rm be a densely defined operator on a normed (or

locally convex) vector space V. Let ir¡, i = 1, ..., m, be the projection of Rm onto

its ith coordinate space. Then ker U = V if and only if every nonzero functional

2¡li x\v,(U) is unbounded.

Proof. If m = 1, the conclusion follows from Lemma 2.1. Otherwise, since

ker U = njliker AU), it follows from Lemma 2.4.

2.6. Theorem. If U is a singular boundary functional, then U is acceptable.

Proof. We consider two cases.

(1) Let n = 1. In this case since D0p is dense if 1 < p < oo, according to

Lemma 2.1 it is only necessary to verify that U is unbounded. If we assume the
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contrary, then U has a unique bounded extension U on -¿",£(0,1). By the Riesz

representation theorem, there exists an element g in -£'(0,1), 1/p + \/q = 1, such

that

U{y) = £ g*{t)yit)drit).

This implies that dvs = g*d¡i. Hence vs « p, which is impossible.

(2) Let n > 1, and let J = 2,11 \*i(U) be a non trivial linear combination.

By Lemma 2.1 it is sufficient to show that J is unbounded. Consider the subspace

DJ = {y:y e D0p;trky = 0,k +j).

That is, DJ consists of all elements in D0p with zero entries except possibly for y}.

Then

«¿u(y)) - X' MWW

for all y e Z)j. By part (1), rç(t/) is unbounded on /J¿ and hence on D0p.

Moreover, on an arbitrary set DJ,

Jiy) = 2 \£yjñ*1>(ñ = £ yjiùdvjit),

when ijy = 2/11 \hu- If % — 0 for all y", then J would be trivial on D0p, which

contradicts our assumption. Thus, for some j, r\j is a nonzero measure. It is

obvious from the Lebesgue decomposition theorem" that ty A. p. Hence, from

part (1), J is unbounded on Dj, and also on D0p.

Next we consider a mixed boundary functional.

2.7. Lemma. Let B and C be operators on a normed (or locally convex) vector

space V to Rm such that ker B = V, C is continuous, and B + C is densely defined.

Then B + C is acceptable if and only if

m m

2 A/i/Cß) = 0   implies    2 \b}(C) = 0.
í-i <-i

Proof. Assume that 2/11 K^iB) = 0 implies 2ili \^(C) = 0. By Lemma

2.5 it is sufficient to show that an arbitrary sum 2/11 \ty(B + C) ¥* 0 is

unbounded. Suppose the contrary. Since

2 \MB + C) = 2 \v,(B) + 2 A,^(C),
/-i i=i /-i

we find that 2/li hw¡(B) must be continuous. By Lemma 2.5 again 2<1i \-"/(5)

= 0. By assumption this implies 2,11 Kn(C) = 0. Thus 211 \¡ir¡(B + C) = 0,
a contradiction.

The converse follows immediately from Lemma 2.5.
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2.8. Theorem. The following statements are equivalent:

(1) U is acceptable.

(2) If 2£i \m(JS diiit)yit)) - Ofar ally in D0p, then 2,"-! WJo1 dvc(t)y(i))
= 0 for all y in D0p.

Proof. Let By = f<¡ dvs(i)y(i) and C>> = /0' dvc(t)y(t) and apply Lemma 2.7.

2.9. Definition. Let v be an mX n matrix valued measure of bounded variation.

Let T be a set in [0, 1]. By the kernel Kj of v with respect to T we mean

n,erker,v[0, r].

With the idea of the kernel of a measure it is possible to give an elegant

characterization of an acceptable boundary functional.

2.10. Theorem. Let T be everywhere dense in [0, 1]. 77¡evj U is acceptable if and

only if KJ* C Kfn.

Proof. It is sufficient to show that the condition stated is equivalent to the

second statement in Theorem 2.8. Let

2 A,«i(/o' ^(0/(o) = o

imply

2 \%($ MÙA')) = 0,

and let d> be in Kj,. Then v*[0, t]<¡> = 0 on a dense set T. Let * = 2*=-i a,-A(/,)(f)

be an arbitrary C valued step function with ends in F. If I, — [a¡,b¡], then

/V(0^/(0* = 2 «>,*U)<¡>JO I=1

= 2 «,*"f [o,ô,.]<f. - 2 «/VttUfo = o.
1=1 i=l

Since T is dense in [0, 1], the step functions ¥ are dense in -£;f(0,1) and also in

D0p. Thus

X' y*it)dv;it)<¡> = 0

for all y in D0p. This can be rewritten in the form

2<i»,^/01^J(OXO = o,
i-i     J°

where </>, is the z'th component of <J>. By assumption this implies

2 <m/' Mt)At)-o,
i-l JU

which may also be rewritten as
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/01v*(/)^*W«i> = o.

Since this holds for all y in D0p, it holds for all y in D0p with support in [0, t].

Moreover these elements are dense in J!¡¡(0,t). These observations imply

v* [0, t]<t> = 0 for all t in T, or that d> e K?,.

Conversely, suppose that Kf* C Kj*. Then i>*[0,t]<¡> = 0 implies v*[0,t]4> = 0.

If

î\,iriCdv,(t)y(t) = 0>
/—i        •"'

then

/0V(zW(/)x* = o,

where X = (Xt,.. .,Xm). This implies (repeating the arguments above) that

i}*[0,i]A* = 0 for all / in T. By assumption, this implies v*[0,t]X* = 0 for all t in

T, which in turn implies that

/-i     j°

2.11. Corollary. If K.J* = 0, then the boundary functional U is acceptable.

3. The adjoint of L. In this section we turn our attention to the construction of

L*, the adjoint of Lp, lying in Xqn(0,1). For this purpose we will require a

technical measure theoretic result depending upon the Hopf-Carathéodory

extension theorem (see Royden [21, p. 257]).

3.1. Lemma. (1) If T is everywhere dense and contains (1), then the kernel ofv is

invariant with respect to T. That is, if T and T are two everywhere dense sets

containing {1}, then K? = Kj".

(2) Let T be everywhere dense and contain {1}, and let v and v' be mutually

singular. Then K*L, C K? D Kj.

Proof. (1) Let c4r be the algebra generated by the interval [0, f], where t is in

T. Suppose that <b, in C, is in Kf but not in K.T'. Then v$ defines a nontrivial

vector valued set function tj on c4r which may be uniquely extended to a measure

ij on the smallest a-algebra S' containing <&T. Because T is dense, S3' = B, the

Borel sets in [0, 1]. Because of uniqueness r¡ is the measure v<f> on S. But by the

same reasoning, 17 is also the unique extension of «p restricted to <=#r. Since T

contains 1, yd) is trivial. This contradiction shows that Kj C Kj'. By interchang-

ing T and T, we find Kj = Kj'.

(2) Let <p be in KjL,. Then j-[0,r]<p = v'[0,t]4>. As in part (1), the set functions

p<b and y'<p agree on c#T. Therefore their unique extensions to S agree. But this

contradicts the mutual singularity of v and v' unless v<b and v'<¡> are trivial on c#t,

that is, unless <p is in Kj n Kj.
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In view of Lemma 3.1 we shall write Kr to indicate the kernel of v making no

reference to the underlying at T, provided of course F is dense and contains {1}.

3.2. Definition. In Xqn(Q, 1), 1 < q < oo, let D^ be the set of absolutely

continuous functions z vanishing at t — 0, t = 1, such that l0+z = —z'+ P*z is in

-¿5(0, i).
3.3. Definition. We define the differential operator L^ by letting L^z = Iq z for

all z in Dqq.

3.4. Definition. In jC„(0, 1), 1 < q < oo, let D+ be the set of all elements z for

which there exists a vector <b(z) in the quotient space Cm/KVi such that

(1) z(0 = e(0 ~ *S*[0»fr£(*) where e(t) is absolutely continuous.

(2) l+z = -z' + P*z + (dvc/dn)*<b(z) exists a.e. in J*(0,1).

(3) z(0 +) = -rffOJX», z(l -) = ,tf [IJXz).
3.5. Definition. We define the differential-boundary operator Lq by letting

L+z = 1+zforallzinDj.

The principal result to follow in this section is that Lp and L+, 1 < p < oo,

\/p + \/q = 1, are dual operators.

3.6. Lemma. The mapping tj: D* -* Cm/K,f defined by t](z) = <f>(z) is a well-

defined linear operator. ij(z) = 0 if and only if z is inD^ . The expression l+z is well

defined if and only if the domain of Lp, Dp, is dense in -££(0,1).

Proof. Suppose that 17 maps z onto two elements of Cm/K,*, <pi(z) and <b2(z).

Then by condition (1) of Definition 3.4, z(0 + v*[0, tfa(z) and z(0 + v*[0, t]<hit)

are absolutely continuous. Subtracting, we find J}*[0,f](ft(z) — <¡>2(z)) is absolute-

ly continuous, which is impossible unless it is the zero measure. Therefore

4>i(z) — <b2(z) is in K,j. That tj is linear and onto is trivial.

Secondly, if z is in D0p and z(0 + v* [0, t]<t>(z) is absolutely continuous, then

p*[0,t]4>(z) is the zero measure, and <i>(z) is zero in Cm/K,j. Conversely, if

<p(z) = 0 in Cm/Kr», then v* [0, f]<i> = 0, z is absolutely continuous and vanishes

at 0 and 1 by parts (1) and (3) of Definition 3.4.

Finally that /+ is well defined if and only if Dp is dense follows from Theorem 2.10.

3.7. Theorem. The differential-boundary operator L% is closed, 1 < q < 00.

Proof. Recall that L* is closed if whenever limt_00zt = z(zk e Dk) and

limk_xL+zk = y, then z is in Dk and L+z = y.

Now

Zk(s) - As) = J0 (4 - z'î)d£ - v*[0,s]4>(zk - z,)

= - JT' L+(zk - z,)dt + f0' P*(zk - z,)dt

+ [i>;[0,s]-ii*[0,s]]<b(zk-zl).

Since

I/.'LUzk - z,)di <\\L+q(zk-z,)\[„
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and

IfP*(zk - z,)di <llJ»*UI**-*/ll,.

we find that zk(s) + [«$*[0, j] — v*[0,s]]<b(zk) converges uniformly on [0, 1]. Since

**(1 -) = «?[M'k) and zk(0 +) - -ittOfoÎA), fo*[0,1] - *?[0, l]]<f>(z*) and
»}*[0]¿>(zt) converge. Further if we take ^-norms on the inequalities above, we find

and

¡¿L+(zk-z,)dt     < \\L+q(zk - z,)\\,

fo'p*(zk-z,)dè     < ||/»*IUIkA-^|

Thus the original equation yields

IfaflM - f[o,sM*k -*Hl < Ik - z,\\, + \\P*\\P\Uk - z,l + WLfrk - *t%,

which shows that the functions

Fkis) = [v;[0,s]-r;[0,s]]<¡>(zk)

converge in -¿"¡|(0,1) and thus also in measure. Thus there exists a subsequence

Fm(s) which converges on a set T of unit measure. Clearly T is everywhere dense

and contains {1}. Thus, by Lemma 3.1, Kj*_,* C Kj», and {<b(zm)} is a Cauchy

sequence in Cm/K,j. In other words, we have shown that a subsequence {<t>(zm)}

converges to an element ¿> in Cm/K,*. Since

*«(*) = -fQ' L+qzmdí+£ P*zmdi + [V;[0,s] - v?[0,sMzm),

and <p(zm) converges, we may take limits to find

40 = -£ydt + /0' ***** + ItflM - tf[o,*D*.

or

*0) + ,$*[o,4p = -f0'ydè + J0' P*zdi + rfiM*.

Since the right side is absolutely continuous, z satisfies the first requirement to be

in Dq. Differentiating, we find

v = -z' + P*z + (dvc/dn)*<t>   a.e.,

the second condition. The third condition follows trivially.

3.8. Lemma. (L¿¡,)* = Lo,, 1 < q < oo.
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Proof. This is well known. For example, see Goldberg [10, Chapter VI] for a proof

with n — 1. His proof is easily modified to fit the present situation.

3.9. Theorem. (L+)* = Lp, 1 < p < oo.

Proof. If 1 < p < oo, then 1 < q < oo. Consequently D^ is dense in -£*(0,1).

Since £>£ C Df, (L+)* is well defined.

First we show that L, C (L+)*. If y e Dp and z e Df, then

(Lpy,z) - (y,L+z) = £ [z*(*)(V(s)) - (i^»^)]*

= /„' [*?/(*) + As)*Ás) + (fr^'))*^)] as

= Jo' [z(j) + v;[o,s]<Kz)Ty'is)ds -£ Iffe«)*)!*/»*

+ X' W*) + ̂ [O.sMz)]*'^)^ -X' [^[O^íz)]*'^)^

+X' [f «♦«] *)*.
Since >^í) and z(s) + í{*[0,í]<í>(z) = e(i) are absolutely continuous, the sum of the

first and third integrals is

WAsWsZoZ = <tiz)*r,[0,W).

The second integral may be written as

-<b(z? f\,[0,s]y'(s)ds.

Its value is

<*>(*)**[0]Á0) - <tiz)\[0, l]yil) + <Kz)* X' dtiishis).

The fourth integral is 0. Finally the last integral is

Adding, we find

(Lpy,z) - (y,L+z) = «(z)*[£ d,i(s)y(s) + £ JcO>>(*)<fc]'

= ̂ »(zrX'^Mi) = 0.

To show the reverse inclusion, let z e D^; then since D^ C D+ and <i>(z) = 0

for such z, Log C L+. This implies (L+)* C (Lo,)* = Lr^. This implies that the

domain of (L+)* is in D0p. For arbitrary z e D+ and.y e Z)0;J the calculation in
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the first part of the proof shows <f>(z)* Jo dv(s)y(s) = 0. Since ¿> maps D+ onto

C">(2).lo dv(s}y(s) = 0. Thus the domain of (Lp* satisfies the boundary condition

and is in Dp. Therefore (Lq)* C Lp, and the two are equal.

3.10. Theorem. If l < p < oo, L* = L¡¡.

Proof. We consider two cases.

Let p > 1. Then Dq, the domain of Lq is dense, and -Cqn(0, 1) is reflexive.

Further Lq is closed. It follows then that (L£)** = Lq. Since, by Theorem 3.9,'

(I*)* = L„ L* = (L-)** = Lr
Let p = 1; since ./""(O,1) C ^'(0,1) for a > 1, it follows that La C L, and

L* C L* = Lt(\/a + 1/t = 1). Thus Z^z = l+z on some domain S £ DT+

D -¿""(0,1). On the other hand, a simple calculation similar to that of Theorem

3.9 shows that L+ C L*, i.e., that D* C 5. Since DT+ D -C(0,1) = ££, S

= Z3¿, and Lf = L£.

4. Spectral analysis-expansions. Brown [3] has shown that, when vs is purely

atomic, the operators Lp and Lq are Fredholm operators (that is, they have closed

ranges, finite dimensional kernels and deficiencies, and mutually orthogonal

ranges and kernels), and that when m — n there is only point spectrum.

Furthermore if vc = 0, it is easy to show that the eigenvalues are isolated (see

[11]). Since the proofs behind these results depend in no way upon the nature of

the representing measures, they remain valid in our setting. In other words Lp and

Lq are Fredholm. When m = n, the spectrum of Lp (and Lq) consists only of

isolated eigenvalues. If X is not one of them, then Lp — XI is invertible, the

resolvent being generated by an integral operator with a Green's function as its

kernel. It is these facts we now wish to investigate in more detail. We emphasize

that throughout the remainder of the paper m = n.

In addition we need to assume that jj is atomic at t = 0 and t = 1, and that

rç[0] = AQ, vs[1] = Ax are nonsingular matrices.

Eigenvalues. If we let Y(t) be a fundamental matrix for the differential equation

y + Py = 0, then an elementary calculation shows that y(t) = Y(t)eXt satisfies

y + Py = Xy. Eigenvalues will then be the roots of

det iU(Y(i)e*)) = det (£ dv(t) Y(i)eA = 0.

If X does not satisfy the equation above, then

At) = fQ Gx(t,s)f(s)ds

where

Gx(t,s) = Y(t)ex'U(Y(t)ex')~iM(t,s)Y(s)-le-Ks,

(2) In the sense that ll,<=D*<t>(z)* - C™.
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M(t,s) = £ di>(Ç) Y(t)e*,       0 < s < t < 1,

= - £ _ké) K(iy«,    0 < t < s < 1,

provides a solution to y + Py — Xy = /which also satisfies £/(>") = 0. Since G\

is bounded, the integral operator is itself a bounded operator on Xff(0,1).

4.1. Theorem. The spectrum of Lp consists only of an infinite number of eigenvalues

X which can accumulate only at oo. The eigenvalues are the zeros of

det U(Y(t)e*) = det (£ dv(t) Y^X

The eigenvalues all lie in a vertical strip |Re X| < h. Within that strip, the number

of eigenvalues lying within the rectangle |Re X\ < h, R < Im X < k + 1, is

bounded by a number M which is independent of k. Finally, for any 8 > 0, there

exists a number m(8) > 0 such that

|det (U(Y(t)e*))\ > m(8)

for all X within the strip |Re X| < h lying outside circles of radius 8 centered at the

eigenvalues.

Proof. Clearly if det (í/(F(0ex')) = 0, then X is an eigenvalue with at least one

eigenfunction. Since det (t/(y(0fc,x')) is holomorphic in X, the eigenvalues can

accumulate only at oo. Further if X is not a zero, then X is in the resolvent set.

As Re X -* +00, we note, due to the atomic nature of >v(l), that

U(Y(t)eXl) = A, Y(l)ex(l + o(l)).

This is ultimately never singular since Ax is nonsingular. Similarly, as Re X

-* -oo,

U(Y(ty) = A0Y(0)e°(l + o(l))

which is also nonsingular. Thus the eigenvalues lie within some vertical strip

|Re X| < h.

Within that strip it is possible (see Green and Krall [11]) to transform

det (t/(y(0ex')) into an entire function of nonintegral order which, following

Boas [2, p. 24], has an infinite number of zeros.

Finally the estimates concerning the number of zeros within a rectangular

region and the minimum modulus of |det (Utffye*1))] are direct quotes from

Levin [19, pp. 268-269]. Only cursory inspection is necessary to see that the

function is almost periodic.

The spectrum of L+ also consists only of eigenvalues X,where X is an eigenvalue

of Lp. Bryan [7] has characterized the eigenfunctions associated with them:
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4.2. Theorem. The spectrum of Lq consists only of eigenvalues \,where X is an

eigenvalue of Lp. The corresponding eigenfunctions are given by

z(i) - - Y* (/)"' <r*' JT ' e*> Y* (s) dv* (s) ¿>(z)

where <b(z) G ker t7(y(0ex')*-

Proof. An elementary calculation shows that

-z' + P*z + (dn/dn)*<t> = Xz   a.e.

That z(t) + v* [0, í]«í>(z) is absolutely continuous also follows from the formula, as

does the equation z(0 +) = —v* [0]<p(z). Finally, we calculate

z(l -) = -Y*(l)-le-*fQl-e-*<Y*(s)dt>*(s)<t>(z)

= -Y*(l)-le-î[U(Y(t)e*>)]*<t>(z) + >f [lfefr)

= fÜW.*)-
Eigenmanifolds. If X is a multiple eigenvalue, then not only do we find

eigenfunctions, but also other related functions which generate what is usually

called an eigenmanifold. These are most naturally generated by examining the

poles of the Green's function. They enter also as terms in an eigenfunction

expansion, first for the Green's function, second for functions in Dp and Dq.

Since the results are almost identical with those found in [17] we quote the

results without proof.

4.3. Theorem. Let X,, be in the resolvent set of Lp, and let X„ be an m-fold zero of

det (U(Y(t)eXl)). Near X„ let

row = 2 ",(x - xny,
j=o

M(t,s)Y(s)-*e-*' = 2 v:(X-Xn)k,
*=o

U(Y(t)e*)-x = 2 t/,(X - K)'~m-
1=0

Then the residue of Gx(t,s)/(X — X0) at X„ is

m—l m—\—j m-\—j-k

-22   2  «,<7^(x0-x,,r-;-*-/.
y=0    i=0 /=0

The elements Uj,j = 0, ..., m — 1, are in Dp; the elements vk, k = 0, ..., m — 1,

are in DÎ and are functions of s alone. They satisfy
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(L„-Xn/)«0 = 0,

(Lp - X„I)uj = »,_,,       j = \, ..., m - 1.

(Li+-X„/)tz0 = 0 a.e.

(L+ - XJ)vk = vk_x        a.e.,k = 1, ..., m - 1.

{uf}fA¡ and {vk)kZo farm linearly independent sets. For different eigenvalues, the

linear subspaces spanned by the sets {uj) and {vk) are mutually orthogonal. That is,

Jo vkUjdn = 0.

Expansion of the Green's function.

A.A. Theorem. Let the eigenvalues of Lp be denoted by {X„}^L,, where their orders

m and elements Uj, U¡, vk are dependent upon n. IfX is in the resolvent set for Lp, then

oo    m— 1 m-l—j m—l—j—k

<%M=2 2   2     2   uJ(t)ulvk*(s)/(X0-xnr-J-"-'.
zi=0 /«0    k-0        Z-0

Proof. Estimates similar to those found in [17] show that as |Re X| —» oo, the

Green's function approaches 0. If j> [Gx(t,s)/(X — Xo)]<iX is computed around a

contour which approaches oo while uniformly avoiding the eigenvalues (as is

possible according to Theorem 4.1), then Cauchy's residue theorem yields the

result above (see [15] or [17] for details).

Eigenfunction expansions. By using the expansion of the Green's function two

eigenfunction expansions can be derived: one for elements in Dp, one for

elements in Df. In addition, Parseval's equality for one element in Dp, the other

in J*(Q, 1), or for one element in -£,? (0,1), the other in D+, then follows

immediately.

4.5. Theorem. Let y be in Dp. Then

At) = - 2 2 ""i'' Uj(t)Um_x-j-k£ v!is)As)ds.

4.6. Theorem. Let z be in D+. Then

oo    itt— 1 m—\—j —i

zis) = - 2  2    2   vkis)u:.x-j-kl u*(t)z(t)dt.
zi-1 >=0    *-0 •">

The proofs of these theorems are similar to those found in [17]. Likewise the

following also holds:

4.7. Theorem. If y is in Dp and z is in -Cq„(0,1), or if y is in -£¡f(0,1) and z is in

Df, then

£ z*(u)y(u)du --22 m2"7o' z*(t)uj(t)dtUm_x-j-k£ vtis)y(s)ds.
JO „»! 7=,0    t_0  JO ' J      JO
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5. Selfadjoint systems. Under special circumstances it is possible for the

problem

V = y' + Py,      £ dv(t)y(t) = 0,

to possess a type of selfadjointness when p = 2. The idea, due originally to Bliss

[1] and substantially extended by Reid [20], is that while the system and its

adjoint may not be the same, it might be possible for there to exist a nonsingular

transformation 17 which transforms one system into the other. Under U

eigenfunctions would be transformed into each other. Since the eigenvalues will

be the same however, they will all have to be real. In order for this to happen,

we introduce the continuous matrix R, mainly with the idea of rotating the

eigenvalues discussed earlier by 90° so that they are now bounded vertically and

can possibly lie on the real axis.

In order to apply the concept, we rephrase the boundary value problem and its

adjoint problem in a new matrix notation. We find, upon letting u(t)

= Jo dvc(s)As), that the problem

/ + Py = XRy,

/; driDyd)=/; (})<M¡*+/; ma - <>,

is equivalent to the problem

r + ÇPY = x^?y,   JT1 do/(t) Y(t) = o,

where

where a0 and ax are matrix valued atomic measures, a0[0] = I, a,[l] = I, but all

zero at all other points.

Similarly, the adjoint problem

-z' + P*z + (p\ ¿>(z) = XR*z a.e.,

z(') + v* [0, t]<¡>(z) is absolutely continuous,

z(0 +) = -iflOfoi», z(l -) = >f [lfrO),

is equivalent to the problem

-Z' + £P*Z = X<^*Za.e.,

Z(i) + <V*[Q,t\<b(z) is absolutely continuous,

Z(0 +) = -O/*[0]*(Z), Z(l -) = 0/*[l]*(Z),
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where Z = (J), v = -<j>(z) and 4>(Z) = ($*)). Note that now the measure <Vis

singular. It contains no absolutely continuous part.

Symmetric systems. Let us now investigate the possibility of the existence of a

transformation O between these problems.

5.1. Definition. The system

Y' + çpY = x<j?y,     X" rfa/(') Y(*) = °

is symmetric if there exists a nonsingular matrix transformation of bounded variation

17 such that under Z = UY the system is equivalent to its adjoint system

-Z' + <P*Z = X<=RZ,

Z(t) + <V*[0, f]$(z)    is absolutely continuous,

Z(0 +) = -<1/*[0]«0), Z(l -) = <V*[l]$(z),

for all eigenvalues X.

Suppose that such a transformation U exists. If <7/ is a fundamental matrix for

y + <PY = X<J?Y, then 2 = (D<\j satisfies the adjoint differential equation.

Substitution yields

-[<j' - u<p - <p* u\<y = x[<=/?* rj + o^Yy.

If D is to transform eigenfunctions for all eigenvalues, then it is convenient to

require U' = "J<P + <P* <3, 0 = <zR* U + GCs#

Since UY + <V*[Q,t]<t>(DY) is to be absolutely continuous, after substituting

y(0 = *7/(/)lo, where Y0 is constant, we are led to expect the singular part of dA3

should satisfy

dVAtfyifK = -d<W(fWpY)-

If <]/ is chosen properly, we can require Y0 = 4>(H7y) and

d<j,(t) = -d<v*(t)<y(t)-1.

Further this differential dD, should be the same for all eigenvalues X.

Finally, since the Z boundary conditions at 0 and 1 imply Z(0 —) = Z(l +)

= 0, we should require !7(0 -) = U(\ +) = 0. This can be further checked if

we use Green's formula:

X' [Z*(Y' + <PY) - (-Z' + £P*Z)* Y]dt

= z(i +)y(i) - z(o -)y(o) + <&* X' do/(t) Y(t).

UZ = UY, IY = y + <PY, l+z = -Z' + <P*Z, then
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S*[Y*C3*l(Y))-(l+(<3Y)TY)dt

= T*(1)C7*(1 +)T(1) - Y*(0)U*(0 -)Y(0) + $* J^' dQ/(t) Y(t).

When X is an eigenvalue, the integral vanishes. The right side will entirely vanish

if U(l +) = C7(0 -) = 0.

We can actually solve for the transformation U. The eigenfunctions Y are

given by Y(i) = *2/(r) li3. As noted in §4, Bryan [7] has found that the eigenfunc-

tions Z are given by

z(t) = -<y*{trl £ <y*(s)d<v(swz).

Letting Z = <JY, Y0 = $(Z), this implies

s(0 = -<y*{t)-1 £ <y*(s)d<V(s)<y(trK

Differentiation shows that when <J?* U + UJ? =0, U' = Í7SP + £P* U also

holds for all values of X. Í7(0 —) = 0 is always true, and, when X is an

eigenvalue, U(l +) = 0. Inspection shows dU,(t) = -dQ/*(tYy(t)~*. Thus the

function ü/"has the properties it should. We summarize:

5.2. Theorem. Let the function

u(t) = -«£•(/)-> £<y(s)d<V{s)<y{ir'

be invariant for all eigenvalues X, and satisfy <zR* U + DaR =0, H7' = U<P

+ <P*<J, ¿3 = -d<V*<y-\ C7(0 -) = 0, !J(1 +) = 0. Then the problem

T + <PY = X^RY,       V d<V(s) Y(s) = 0

is symmetric.

Notice that this theorem is not an if-and-only-if statement. The reason for the

omission of the converse statement is the lack of certain algebraic formulae,

which were present in the work of Bliss [1] and Reid [20].

Selfadjoint systems.

5.3. Definition. Let cM be the Hilbert space generated by the inner product

(Y,Z)=^Z*üYdt,

where Û = (00).

5.4. Definition. Let 5>> be the subspace of^H consisting of all elements Y satisfying:

(a) The first component y is in D2.

(b) There exists an element F in <M such that IY = Y' + <PY = <=RF.

5.5. Definition. We define the differential operator X by letting XY = F for all Y
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5.6. Definition. We say that a symmetric system is self adjoint under U (SA T) if

(a) a* <=/?=<=/?* !3
(b)Ü Y*dDsY = 0

for all Y in !h.

5.7. Definition. We say that a symmetric system is definite if the only solution to

Y' + <PY= 0,       <zRY = 0,       X' dtv(t) Y(t) = 0,

£yy=0.
Condition (b) of 5.6 is equivalent to the 17 boundary condition derived by Bliss

[1] and Reid [20] under endpoint boundary conditions. In the present context it

is a much stronger requirement; indeed all its ramifications are not completely

understood. It was inadvertently omitted from previous articles [5] and [16].

5.8. Theorem. For a symmetric, definite, SAT system the operator 17* X is

selfadjoint. 0 is not in the point spectrum of X. X~x exists and is compact. (D*X)~l

is compact and selfadjoint.

Proof. Let y, and K be in 2> and let XYX = Fx, XY2 = F2. Then

(<D*XYX, Y2) = £ Y2*û<J*(XYl)dt=£ Y2*<3**RFxdt

= - £ Y2*<3<zRFxdt = - £ Y2*<J(Y' + <PY)dt.

Integrating by parts, we find

ip*j%,%) = -£ Y2*d<DsYt+£ Y2*"jYxdt+£ y2*[a' - u&ftdt

- £ i?*[Y'2 + <PY2\f Yxdt = £ (<3**RF2)* Yxdt

= X' (D*Jt%)*£%dt = (X, iJ*-^).

This shows U*X is symmetric. Since X is definite, it possesses an inverse

generated by a square integrable Green's function. Therefore since U is nonsin-

gular, D*X possesses a compact and symmetric, i.e. selfadjoint, inverse. Conse-

quently D*Xis selfadjoint.

The eigenfunction expansion. The theory of compact selfadjoint operators in <=H

immediately implies the following:

5.9. Theorem. For symmetric, definite, SAT systems the spectrum of 17* X consists

only of real eigenvalues, which accumulate only at oo. For each eigenvalue there

exists a finite number of eigenfunctions. If they are {y}7"i, and if F is in cdl, then

F = 2 (F, X)X,
j-i

in the sense of the mean in <=#.
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5.10. Corollary. Let {v^jl, be the first components of{Yj}°lx. Iff is in X2„(0,1),

then

in the sense of the mean in X\(Q, 1).
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