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BORDISM INVARIANTS
OF INTERSECTIONS OF SUBMANIFOLDS
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ALLAN HATCHER AND FRANK QUINN(1)

ABSTRACT. This paper characterizes certain geometric intersection prob-
lems in terms of bordism obstructions. These obstructions give a setting in
which to study such things as parametrized h-cobordisms (pseudoisotopy), and
surgery above the middle dimension and on fibrations, where such intersection
problems arise.

0. Introduction. Suppose P and Q are c.osed manifolds (smooth or PL)
embedded or immersed in a manifold M. We give two techniques for changing
the intersection of P and Q in M by ambient isotopy or regular homotopy
of Q. The first, generalizing lemmas of Stallings and Wall, characterizes the
dimensions in which modifications of P N Q (for example, making P and Q
disjoint) by homotopy of Q < M are realized by ambient isotopy or regular
homotopy of Q <» M. The second method, generalizing the classical Whitney
procedure for cancelling pairs of isolated double points, characterizes the possible
changes in P N Q in terms of a bordism group for a metastable range of dimen-
sions. As a particular case, when P and Q are sufficiently highly connected,
the bordism group is the k-dimensional framed bordism group of the loop space
of M, where k = dim(P N Q). For example, in the classical case k = 0 this
gives the integral group ring Z[m,M]. A similar but more complicated bordism
invariant is obtained for the problem of modifying self-intersections of an immer-
sion of Q by regular homotopy.

In view of applications to parametrized versions of the h-cobordism theorem
and surgery theory, we consider in the final section the situation when P, Q, and
M are fibered over some manifold, with all immersions, embeddings, etc., fiber
preserving. We show in this case that the fibered theory is identical with the
unfibered. As an immediate simple application we give some remarks on sections
of metastable PL and vector bundles.

Since this paper was written, we have discovered that it overlaps two theses
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written at the University of Paris at Orsay in 1971. First, Theorem 1.1 is a
special case, with a shorter proof, of a result in the third cycle thesis of A. Tineo
[10]. Second, the techniques of § §2 and 4 are similar to those used by J. P.
Dax [11], who considers the problem of homotoping maps to embeddings, rather
than regularly homotoping immersions to embeddings. His results extend those
of Haefliger [1], while ours are oriented toward the immersion and isotopy prob-
lems considered in [6] and [7].

1. Homotopy of Q. We work throughout in either the smooth or PL
category.

Suppose f: P— M, g: Q — M are differentiable or PL maps which are
transversal. Then we denote the transversal pullback {(p, q) EP X QIf(p) =
g(q)} together with its induced manifold structure by f Mg.

1.1. THEOREM. Suppose ip: PP —M™ and ig: 09— M™ are immer-
sions (embeddings) of closed manifolds P, Q, and M. If iQ is homotopic to a
map transversal to ip with pullback N, and m>q + p/2 + 1, then iQ is
regularly homotopic (ambient isotopic) to an immersion (embedding) transversal
to ip with pullback N.

ProoF. Let H: Q X I — M be the homotopy specified in the theorem,
so that Hy =i, and H; M ip =N. We may assume that the singular set

TH={x€QXIIH isnot an immersion (embedding) at x}

is a subcomplex of dimension 2g —m + 1 (2g — m + 2). (For the PL case
see Stallings [6] or Hudson [4] on general position.) For K C Q X I define the
shadow

shX)={(x, ) €@ X Il(x, t"YEK for some t' < 1t}.

Case 1. dim sh(ZH) <codimP,or m>q+pl2+1 (m>q +pl2 +
3/2 for embeddings). In this case we can approximate H so that sh(ZH) N
H~Y(P)=g. This is done by composing H with a small ambient isotopy of
M which carries H(sh(ZH)) off P.

Now since sh(ZH) is “convex upwards”, there is a function ¢: Q — I
so that the closure of {(x, £)I# > ¢(x)} is a neighborhood of sh(ZH) disjoint
from H~!(P) and so that ¢(x) =0 if (x,0) € ZH. Then H': Q X I — M,
H'(x, ) = H(x, t¢(x)) is a regular homotopy (isotopy) of iy. Moreover
(H;)~!(P) = N, since this is the only intersection of the graph of ¢ with
H~1(P).

Case II. Embeddings, with dim sh(ZH) < codim P,or m > q + p/2 + 1.
If codim P = dim sh(ZH) then in general position we will still have TH N
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H~1(P) = &, but there may be isolated intersections of H~1(P) with the shad-
ows of top dimension cells of ZH, which consist of immersed double points. If
p <m — 1, then in general position H ~!(P) will intersect the shadow of at
most one of each pair of double points—just move H ~!(P) slightly near one
double point of each pair—and, after excising from ZH small neighborhoods of
these isolated double points whose shadows intersect H ~1(P), we can proceed
as before.

Finally,if p>m —1 and m>q +p/2+1 then m > 2(q + 1), so
ZH consists entirely of isolated double points. In general position no two of
these double points will lie on the same level Q X {s}, and H itself will be the
desired isotopy. 0O

Previous versions of this theorem have been given by Stallings, when P, Q
are spheresand p+q=m =5 [6, p. 246], Wall, generally when p +qg=m
[8], and Laudenbach, when N = & [5]. Our proof is essentially that of Stallings
and Wall.

Theorem 1.1 implies that in the given dimension range if an embedding or
immersion is homotopic to a map disjoint from a submanifold, then it is isotopic
or regularly homotopic to a disjoint map. We next give a proposition showing
this statement remains valid for immersions outside this range, and an example
to show it generally fails for embeddings.

1.2. PROPOSITION. Suppose iy: 07 —M™ and ip: PP —M™ are
immersions and Q is closed. If q #m — 1 and iQ is homotopic to a map
disjoint from P, then it is regularly homotopic to an immersion disjoint from P.

PrOOF. Let H be the homotopy, with H, =i, and H,(Q) NP = 2.
The derivative of ig gives an injective bundle map diQ: To M covering
ig. Since homotopic bundles are isomorphic, we get a homotopy of bundle in-
jections covering H. In particular, over Q X {1} we get H;: Q—M — P
covered by a bundle injection b: To > Ty—_p- By the immersion classification
theorem [2], [3] if ¢ <m — 1, H, is homotopic to an immersion ié in
M — P with derivative homotopic to b. Considered as an immersion in M, how-
ever ié is homotopic to io and has a covering homotopy of the derivative. By
the classification theorem again the two immersions are regularly homotopic, pro-
vided g <m — 2. If g =m the result is trivial. O

1.3. ExaMmpLE. There are embeddings

ij:SFXS" XS -8t XS5*xsxS!
and
iy ST X ST — ST X S X S X S

forall n>0,7>0,and k = 1, such that i, is homotopic to a map disjoint
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from i,,but i, is not homotopic to a map disjoint from i,.

This example, a generalization of one of Laudenbach [5], satisfies all but
the dimension requirements of 1.1 with i, =iy, i, =ip,and N =g. The con-
clusion of 1.1 for the case of embeddings and ambient isotopies fails, since the in-
verse of an ambient isotopy of i; off i, would give a homotopy of i, off
i;. In the notation of 1.1 we get an example for every p and g with m <
q+pl2+1, m—-p=1l,and m—-q=2.

ConsTRUCTION OF 1.3. Let i, be the standard inclusion of a factor. For
iy, map D¥*! in §! X §2* by taking the disc around the S! factor to inter-
sect itself in an arc. This gives a “self-linked” embedding of dD**! = ¥,
Explicitly 7, is obtained as follows: S! X §2¥ > §! X C¥, c*¥ D R¥ D D¥,
and S' is considered as S' C C. Now on D* X I define i, by

x, if t<1/3

7,0, ) = 3™ ) (B DmI2)x, 1/3<1<2/3] €S X CF,
iex,if t>1/3

Now define i, =7; X lS ny gi° By construction (using the disc D*¥*1!) i, is

homotopic to projection on S X S/ composed with an inclusion as a factor.
By including over a different point in S! from that used for i,, this is clearly
disjoint from i, .

Next we show i, is not homotopically disjoint from #,. The universal
cover of S! X §2* js R X S2¥, and the inverse image of the disc used to con-
struct i, isa “chain” of discs. For D?*¥ c §2¥, R X D?¥ =R X D* X D¥,
and these discs can be described by

Ul -2 2 + Z]x p* x 10} U 2p+1-3,zp+1+3]X{0}XD"
4 AR 5 3 3

where p € Z. Now fold up by projecting to [0, 1] X S2* by

t—[r], [t] even

“v - ({1 -t+ [51, [£] odd}’")'
This projects the boundary spheres of the chain of discs exactly to two linked
discs D¥ ,D¥ with boundaries on opposite ends of [0, 1] X §2¥. It is not
hard to see that the inclusion [0, 1] X §2¥ —(D¥ U D¥)— [0, 1] X §2¥
is homotopy equivalent to the standard map S* X §*¥ — 52k of degree one.
Now a homotopy of i, disjoint from i, would, after lifting to the cover and
folding, give a lift of the map §2% X S" —S$2*¥ X " X §/ to S¥ X S¥ X §" X §/.
In particular, it would give a right inverse for the map §* X §¥ — §2¥_ This is
impossible because, among other things ,,(S*¥) is infinite, while m,,(S* X §¥)=
2m,,(S¥) is always finite.
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2. Bordism of PN Q. Let f: P— M, g: Q — M be maps of topological
spaces. The homotopy pullback is E(f, g) ={(p,q, 0)lp €EP,q € Q,and 6: [0, 1]
— M with 6(0) = f(p), 6(1) = g(q)}. This gives a homotopy commutative
diagram

E(fe) —Z 0

g -4

P ——o M

which is universal in the sense that if #,: X— P, h,: X — Q are maps,and a
homotopy fh, ~ gh, isgiven, then there is a natural map j: X — E(f, g) so that
h, =fgi, h, = ggj, and the homotopy from fh; to gh, is j composed with the
homotopy from ffg to ggz. For example, if f, g are transversal maps of mani-
folds, then there is a natural map f M & — E({, g).

Next we define “framed bordism with coefficients in a bundle”. Let X bea
space with a (PL or vector) bundle ¢ over it. Define QJ'(X;%) to be the bordism
grdups of manifolds mapping to X, together with a stable bundle isomorphism of
the normal bundle with the pullback of £. This is natural with respect to maps
covered by stable bundle maps. The example which will arise is Q' (E(f, £); vp®
Vo ®17,,). The indicated bundle is a shorthand for fg vp©® gz- Vo & fE r* ™
(v and 7 are normal and tangent bundles respectively). Generally to simplify
formulas we will omit notation indicating pullback of bundles.

If ¢ isa k-dimensional bundle over X,and e the trivial bundle, then
Q' (X;§)=limm, +TES e/=¥). This is a version of the usual Pontrjagin-Thom
theorem (T denotes Thom spaces). Thus the group depends only on the fiber
homotopy type of &.

2.1. ProposiTION. If f: PP —M™ and g: Q9 — M™ are transversal maps
of closed manifolds, then the transversal pullback f 0\ g determines a bordism
class [fMg] in Q};’_,_ q-m (E(f,2);vp® v ® Tpr) Which is an invariant of the
homotopy classes of f and g.

ProoF. The universal property of E(f, g) givesamapof f g to E(f, g).
Further, the transversal pullback of homotopies of f or g will also map to E(f, g)
giving a bordism between the pullbacks of homotopic maps.

To obtain the bundle isomorphism data, consider fM g as (fX g)~ I(AM),
the pullback of the diagonal A;, under fX g: PX Q — M X M. Then there is
a natural splitting
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If f and g are immersions, the bundles v, & Vo ® 7y and v, M) D
v(Q, M) ® v, are stably isomorphic over E(f, g). We will use the second bun-
dle from now on, since it arises more directly from the geometry of the situation.

2.2. THEOREM. If ip: PP — M™ and i: 0% — M™ are transversal
immersions (embeddings) of closed manifoldsin M, m>p +q/2+ 1, m >
q+p/2+1,and N is equivalent to ip M ig in

1 q—m (EGip, i); v(P, M) ® 0(Q, M) ® vyy),

then there is a regular homotopy (ambient isotopy) of iQ to an immersion
(embedding) ié transversal to ip with ip M i'Q diffeomorphic to N.

ProoF oF 2.2. (i) To begin, we put ip in general position with respect
to ip sothat ip M iy isembedded in M by ip and ip;ip M iy can then
be identified with ip(P) N iQ(Q). This is accomplished by making P and Q
disjoint from the self-intersections of the other in M. For this general position
suffices if dim(self-intersections of P) < codim @ or 2p —m<m — q, and
dim(self-intersections of Q) < codimP or 2g —m<m - p.

Next, let W be a bordism realizing the equivalence of ip M iQ and N
in Q{’_’,_q_m(E(iP, i); v(P, M) ® »(Q, M) ® vy,). Thus we have a map H:
WX I— M restricting to Hy: WX {0} — ip(P) and H,: WX {1} -—>iQ(Q)
with HlGp M ig) X I the constant homotopy.

(i) Approximate H, by an embedding in i,(P) extending the inclusion
ip M oM and disjoint from the self-intersections of P. This is possible if
dim W <p/2, dim W + dim(self-intersections of P) <p. Similarly, make H,
an embedding.

(iii) Approximate H by an embedding (with (i, M ig) X I pinched to
ipMi o © M) extending H, and H, and intersecting ip(P) and in(Q)
only at Hy and H,. This uses dim(W X I)<m/2 and dim(WX I)<
codim P, codim Q.

(iv) Split y(WX I, M) as v(W, Q) ® v(W, P) X I compatibly with the
natural splitting v(ip M iy, M) ~v(ip M ip, Q) ® v(ip M iy, P). This is done
as follows. By hypothesis

vy = v(W, M) ® vy, =~ v(P, M) ® v(Q, M) ® vy,

so (W, M) ®e~v@P M) ®v(Q M). Since v(W,M)Be~v@P, M) D
v(W, P)® e also,»(Q, M)~ v(W, P) ® e. Now

VWXL, M)@eDe~v(W,M)@e=~v(W, Q)®v(Q,M)Be
which equals v(W, Q) ® v(W, P) ® e ® e. Destabilizing, v(WX I, M) =
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v(W, Q) ® v(W, P) which, taking into account our convention of omitting no-
tation for pullbacks of bundles, is really »(W, Q) ® v(W, P) X I. Note that
destabilizing is well defined since »(W, Q) and »(W, P) are stable bundles
(dim W < dim »(W, Q), dim »(W, P)).

Steps (i)—(iv) allow us to build a simple model for the desired deformation
of ig- First extend the embedding W X I & M to include a small collar
neighborhood to obtain W+ X It <, M. Let (x,y, ) Ev(W*, Q) ®
v(W*, P) X I be coordinates for y(W+ X I't, M), so that W+ X It has
coordinates (0, 0, £), Q@ has coordinates (x, 0, 0), and P has coordinates
(0,5, ¢) for some function ¢: W —I* with ¢=1(0) =ip M ip and
¢~ (1) =N. Let y: v(W*, Q) — I equal zero away from W and one near
W. Then (x,0,0) - (x, 0, sy¥(x)), 0 <s < 1, provides an isotopy of ip near
W which replaces ip M ipg by N. O

REMARKS. (1) The regular homotopy (isotopy) constructed not only ends
with an immersion (embedding) having the desired intersection N, but the inter-
section W of the regular homotopy (isotopy) itself can be preassigned. Thus
for example, any element of the bordism group can be realized as the intersection
of a regular homotopy (isotopy) between two disjoint immersions (embeddings).

(2) Example 1.3 gives counterexamples to the statement of 2.2 for embed-
dings outside the given dimension range.

(3) If P, Q, M have boundary, then 2.2 can be modified to hold a neigh-
borhood of the boundary fixed (the invariant is defined via a difference con-
struction, see 4.2), or to allow part of the boundary to vary using a relative
bordism group.

A little elaboration is required to treat self-intersections. Suppose i: Q —
M is an immersion which is self-transversal in the sense that i X i: (Q X Q - Ap)
— M X M is transversal to the diagonal A,,. In this case define the self-inter-
section i M i to be the manifold {(q,, q,)lq, #4q, and i(q,) = i(q,)}/Z/2.
Here /Z/2 means divide out by the free Z/2 action interchanging (q,, q,)
and (q,, q,). The self-inverse image (i M i)~ is (i X i)~1(4y) — A, and
double covers i M i. If i has no triple points, then i M i is a submanifold of
M, while (i M i)* is a submanifold of Q.

The homotopy pullback

N
EGiH—Q

Ia i

also has a Z/2 action, not free, by interchanging the copies of Q. Explicitly
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thisis 7= (p, q, 0) = (q, p, 6~') where §~! denotes the path with reversed
parametrization (0~ !(2) = 0(1 —¢)). The natural map (i f i)~ — E(, i) is
equivariant. The freeness of the action on (i M i) " is captured as follows: Let
W, be a free acyclic Z/2 complex (e.g., W, =S with the antipodal map, so
W,/Z[2 = RP*)" Let E(, i) X, W, denote the quotient of the product by the
diagonal Z/2 action. The map E(, i) X, W, is universal in the following sense:
given a map g: X — M, a double cover m: X—>X amap h: X—> Q,and a
homotopy from i° h to gem then there is a canonical map f: X —

E(i, i) X, W, such that X is induced from the double cover of E(i, i) X, W,,
and the maps g, &, and the homotopy from ie h to go w are all given by
composing j with the corresponding maps and homotopy defined on

EG i) X, W,.

The natural map j: i M i — E(, {)X,W, will be our characteristic bordism
element once some bundle information is included.

Denote the normal bundle »(Q, M) by v, then as before the stable nor-
mal bundle of (i § §)* is naturally isomorphic with the pullback of f 1* v®
f2*v D f *VM from E(, i). The involution on E(, i) is covered by the
bundle involution 7* which interchanges the two factors f,*» and f,'», and
an involution w of f *vM.

Taking the quotient, we have constructed a stable bundle map

v — L1y © £ 01/1* © vy, 00.(2)

2.3 THEOREM. If i: Q9 — M™ is an immersion of a closed manifold
with m>3q/2+ 1 and N is equivalent to i i in

Qo —m (EG, 1) X5 Wy (Lf'v @ £101/1%) @ (F vyl @),
then i is regularly homotopic to an immersion with self-intersection N.

PROOF Let W be a bordism of the indicated sort between i M i and
N, and let W be its double cover. Suppose first that this is a tnv1a] cover: W=
W, UW_ and Z/2 interchanges the two pieces. Approximate W— Q byan
embedding (keeping i M i fixed), then 2.2 applies to a neighborhood Q. of
W, in Q to isotope it to have intersection N with Q — @, . This gives an
immersion with self-intersection N.

In the general case when W— W is not a trivial cover, it is still locally
trivial and the theorem will follow by applying the above considerations locally.
Put a handlebody structure on (W, i M i); then the inverse image in (ﬁ/, ()
is a handlebody structure in which disjoint handles are interchanged by the Z/2

(2)We would like to thank the referee for correcting an error in our description of
this bundle.
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action. Now we can embed a pair of the lowest dimensional handles disjointly,
and use the discussion above to obtain a regular homotopy in a neighborhood of
one handle disjoint from the other which moves across the handle. This gives a
new situation (W',i' M i) with one fewer handle. Induction on the number
of handles completes the proof. O

REMARK. The bordism class of i M i in Qff_, (EG, i) X, W,;

([ fl* v® f.: | 1M (f *vM/w)) is not an invariant of the homotopy class of
i, but only of the regular homotopy class. For example, a self-transverse immer-
sion i: 8" — §2" with i M i consisting of one point is homotopic to an em-
bedding but not regularly homotopic to one. (The bordism group in this case is
Z or Z/2, depending on the parity of n.) This example also shows that the
analogue of 1.1 for self-intersections of immersions is false.

To get a homotopy invariant we would have to.allow maps Q — M
having singularities. This is the situation studied by Haefliger [1]. Haefliger’s
theorem presumably would fit into this context by using a relative bordism group
to allow for the singularities.

3. Highly connected submanifolds. In this section we elaborate on the
bordism invariants of the preceding section when P and Q are highly connected.
In particular, the bordism groups will be seen to depend only on M, and not on
P, Q, or the immersions ip, iQ. In this case the obstructions for different im-
mersions can be compared, and formulas similar to those of [7, §5] are derived.

If M is also highly connected, the bordism obstruction group collapses to
prf,_ q—m (*). In this case our results generalize ‘a theorem of Wells [9].

Let * EP, = 0 € Q,and * €M be basepoints and choose paths from
iP(*P) and iQ(*Q) to . The basepoints induce a map E(*_, * Q) —

E(ip, ip), and the paths give a homotopy equivalence
E(*p *0)= C{, 0, 1; M, ip(*,), iQ(*Q)) — AWM, *).

(Here A(M, *) denotes the loopspace of M at *.) Choose orientations of P

at *,, Q at *Q,and M at *. Via the paths from ip(+,) and iQ(*Q) to
*, these induce framings of »(P, M) at ip(*,) and »(Q, M) at iQ(*Q).

The orientation of M at * gives a framing of v;, at * which pulls back
along the paths to framings of v,, at ip( *P) and iQ(* Q). Choosing the

framing of v, at iQ(* Q)’ there is then induced a framing of v(P, M) ®
v(Q, M) ® vy, over E(x,, *Q) =~ A(M, *). Thus we have a map

Q& (AWM, ) = QY (EGp, ip); v, M) ® v(Q, M) © vyy).
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This map is k-connected if P and Q are (k + 1)-connected. So having
made the choices above we may identify

lip M ig] € Qg m(EGp,ip);v®@ M) ®v(Q, M) © vy)

with an element A(p, iy) € SZ}{:_ q-m (A1, *)) provided P and Q are
(p + q — m + 1)-connected. We shall next discuss the dependence of A(ip, iQ)
on the choices.

There is a natural two-sided action of m,(M, *) on QI (AWM, %)) via
composition of loops on the left or on the right. Rechoosing the path from
ip( *P) to * by o €m,(M,*) changes A(ip, iQ) by left multiplying by
w, (0)o. The sign w,(0), whichis + 1 or —1 according to whether o pre-
serves or reverses orientation in M, measures the change in the orientation of
v(P, M). Rechoosing the path from i, (* Q) to + by o changes A(p, iQ)
by right multiplying by o~!. There is no sign change here since orientation
changes of »(Q, M) and v,, given by w,(0) cancel.

Now we investigate the effect of interchanging P and Q. Let w:
AM, *) — {0 or PL} be the loop of the classifying map for v,,. Note that
w, above is just my(w): To(AM, *)) — m,{O or PL}. Let I' AM, *) —
A(M, #) denote loop inverse. From these we define an involution on
QL (AM, *)), N\— 1, as follows: If X\ is represented by f: X — A(M, *),
with b a framing of X, then A is represented by I o f: X — A(M, *) with
X framed by (wf) * b, ie., with the framing » changed by wf: X —
{0 or PL}. This is indeed an involution since A is represented by I2f =
f1X— AM, *) framed by (wIf)(wf)* b= (wf) Y(wf)*b=>0.

In terms of this involution we have

)\(iQ, ip) = (- 1)(m—p) (m-a) AGp, iQ)-
The sign comes from permuting »(P, M) and v(Q, M), the loop inverse on
AWM, *) = E(*P, * Q) is induced by interchange of P and Q, and the refram-
ing by w is the result of pulling back the framing of vy over E(*P, * )
from iP(*P) rather than iQ(* Q). ¢

Change of one of the choices of orientation at *_, »

p %o O * just changes

the sign of A(ip, iQ).
For the self-intersection obstruction the corresponding bordism group is
QLT AWM, X Wy [T @ v IT* @ oyl

where v = p(Q, M) and the Z/2 action on the loop space is loop inverse as
above. Now however v is framed, so f;",,, f;p are isomorphic. If we re-
parameterize by (v,v,) — (v; + v,, v; —v,), the involution I * becomes
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trivial on the first factor, multiplication by — 1 on the second. Stably, then
[ffve £y vl/I* is isomorphic to m — q copies of the canonical line bundle

v over RP*. On the twofold cover A(M, *) X W, =AM, *) of
AM, *) X, W,, vy, has a framing, and the involution given by I and w
covers the involution I. Thus f *vM/w :e/w on A(M, ¥) X W,. The self-
intersection group is therefore
QLAM, )X, W,5 7™~ B el w).
We sum all this up as a proposition.

3.1. ProrosITION. If P and Q are (k + 1)-connected then a choice
of basepoints, orientations, and connecting paths as above gives isomorphisms

QF Eip, ip); v®, M) ®v(Q, M) O vpy) ~ Qfr (A(, »)),
QI Eg ig) X, Wys £y v O V1T ® f*uy/w

~ ir(A(M’ *) X2 wz; Y"1 @ e/w).
Denote the image of [ip M in] by AGp, iQ) if k>p+q—m,and
lig M iQ] by u(iQ) if k>2q —m. Then if the paths from ip(*,) or
iQ( *Q) are changed by a loop o, A(ip, iQ) becomes w, (0)0 A(ip, i) OF
A(ip:ig)o~" and p@p) becomes w, (0)oi(ig)o~". Finally

)\(iQ, ip) =(- 1)(m—p)(m—q)m.

We next give formulas relating the invariants A\ and p. First some definitions:
3.2. DerFINITION. If ¢¥ isa (block,PL, or vector) bundle over a closed mani-
fold Q9, then the “Euler class”

XQ) € QF (25 ¢ Dvy)
is the bordism class of the intersection of two copies of the zero section of §.

Here we have used the canonical identification E (IQ . lQ)= 0.
Next let the homomorphisms

cpt QLA #) X, Wy3 7% @ efw) — QL (A, *)),
dy: QI AM, #) — Q (AL, #) X, Wy3 7" @elw)
be induced by the natural double cover and inclusion respectively. Finally, if iQl

and in are immersions with chosen paths to * €M, let ig L#0, be the immer-
sion obtained by connected sum along the chosen paths.

3.3. ProrosITION. For immersions of (2q — m + 1)-connected q-mani-
folds, the invariants \ and p satisfy:
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m Mg, ig,#0,) = Mg, »ip,) + Mg »ig )

® Nig,»ig ) =(1D"""Nig . ip,),

®) ulg, wo,) =Hlg ) +ulp,) +dp_o(Nig,, ig,);
) Mg 1) = Cm_q(HEQ)) +X((Q, M),
where

X(w(@Q, M) € QY _,,(Q;v(Q M) ®vpy) = QL. (%) C QYL (AM, #)).
The homomorphisms ¢; and d; are related in the following ways:

3.4. PROPOSITION. Foreach k
1) ¢ di @) =a+(—1)*a for a€ QL (AWM, ),
(2) thereis a long exact sequence

[+
QIAM, %) X, Wys 75+ @ efw) ————> QL (AWM, +))

'\3 d,

QL (AM, *) X, W,: v ®elw)
with 9 of (graded) degree — 1.

ProoF. We first define the map 9 using the representation W, =S~ =
Uk Sk If f: X— AM, %) X, W,,b: vy —> o ©efw represents an element of
the self-intersection group, then the image of f lies in some A(M, *) Xy §'. Con-
tained in A(M, #) X, §' is A(M,*) X, S'~! asa subspace with neighborhood the
total space of the line bundle 7. Then 3[X, f, b] is defined to be the transversal
pullback of this subspace. Note that the number of copies of ¥ in the normal bun-
dle increases by one.

The proof of exactness is straightforward. For example, if d;(a) =0, then
there is a bordism of dj, of a representative of @ to zero. Essentially applying the
d construction to the bordism gives an element b with ¢;, () =a. O

We can apply 2.2 and 2.3 to give an embedding criterion for a family of immer-
sions. Suppose i,,*** ,i, are immersions of closed g-manifolds Q,,***,Q, in
M, with basepoints, orientations, and paths chosen as above.
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3.5. THEOREM. If m>3q/2+ 1 and each Q; is (29 — m + 1)-connected
then {i;} is regularly homotopic to a family of disjoint embeddings if and only if

(1) NGjyi) =0 in Qf,_,,(AM, ) foreach j#k,

(D) uG) =0 in Q,_, (AM, %)X, Wy;¥"~9 ®e/w) for each j.

Note that (1) and (2) are independent of the choices of orientations, etc.

To conclude this section we display the dependence of these groups on
m,(M, *). Using either the left or right action of m,(M, *) on A(M, *)
we have A(M, ») = A(EI, ¥) X m,(M, %), where M denotes the universal
cover of M and A(f{, ¥) is naturally identified with the identity component of
AM, *). Selecting the right action of (M, *), we can write QL (AM, %)) asa
group ring:

QLN +) ~ Qf (A, ¥) [r,(M, *)].

Under this isomorphism a € Q' (A(M, *)) corresponds to a sum Za,0,where a,
is the part of @ 0~! supported by the identity component of A(M, *). With this
convention we have m,(M, *) actingon Q' (AL, ¥)[r,(M, )] by (Za,0)r=
Za,or and 7(Za,0)=Z(a,) 70, where ()" denotes TEﬂl(M *) acting on
Qf’(A(M %)) by conjugation. Also,Za, 0= Zw,(0)a,0~

3.6. COROLLARY.
QIAM, ) ~ Z[n,(M, +)]
and
QI AM, ) = @2 X 1,(M, »)) [7, (M, +)].
For self-intersections, since w: AM, *) — {0 or PL} is the product of its
restriction @ to A(IT{,';') and w,: m (M, *) — Z/2, we have

QLAM, #) X, Wy5 v* © e/ w)

~ QI (MM, %) X, Wy Y791 @ ¢/35) [, #)].

Note that the group in which the coefficient of ¢ lies depends on w,(0), so
this is not actually a group ring.

4. Isotopy and regular homotopy of subbundles. In this section we consider
fiber regular homotopy (isotopy) of fiberwise immersions (embeddings) of differen-
tiable or PL bundles.

To fix notation, we suppose Ey, E, Ep are smooth or PL locally trivial fiber
bundles over a compact manifold R¥. The fibers are M™, PP, Q9 respectively,
and we assume P, Q closed. ip: Ep — E,,; and igt E, — E,, are bundle maps
which are immersions (embeddings) in each fiber.
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Q > M ¢ P

4.1. THEOREM. If iQ is fiber homotopic to a map transversal to ip with
pullback N, by a homotopy fixed over dR,and m>q + (p +k)/2 + 1, then
there is a fiber regular homotopy (isotopy) fixed over R from iQ to an immer-
sion (embedding) transversal to ip with pullback N.

ProOF. The proof of 1.1 will carry over to the fibered case provided that the
approximations of H: EygXI—Ey which put it in general position can be made
in a fiber preserving way.

Locally the bundles Ep, Ey,and Ej, are trivial and H takes the form (m, h):
RXQXI—RXM,P). Since ZH C Zh, to make sh(ZH ) disjoint from
H~1(R X P), for example, it suffices to make sh(Zh) disjoint from A~ !(P). The
condition dimsh(Zh)<codimP isjust m>q + (p +k)/2+ 1 for immersions,
m>q+ (p +k)/2 + 3/2 for embeddings. So approximating h to make
sh(Zh) Nh=1(P) = & leads to a fiberwise deformation of sh(ZH) off
H~1(R X P). Likewise, Case Il of 1.1 translates to this setting.

It is then straightforward to fit together local fiberwise deformations of H which
put it in general position above pieces of R over which the bundles are trivial, to
make H globally in general position with respect to Ep.

Note that if P, Q, and M in 1.1 are replaced by Ejp, EQ, and E,,,
the dimension restriction m >q + p/2 + 1 becomesjust m>q + (p + k)/2 +
1. That is, the dimension hypothesis is really the same in the fibered case as in
the unfibered case.

Next the bordism results of §2 are generalized to this setting. Since we
now allow Ep, Ey, and Ey, to have boundaries (over OR), we myst modify
our hypotheses accordingly. Recall the natural map ip ig—E (@ps iQ)
covered by a bundle isomorphism

Suppose given another manifold N with such a map to E(ip, iQ) and bundle
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isomorphism which agree on the common boundary N = 8(ip M iQ).

4.2. THEOREM. If m>p + (q + k)2 + land m>q + (p + k)/2 +1 then
ig is fiber regularly homotopic (isotopic) holding boundary fixed to a fiber im-
mersion (embedding) iy with ip M iy = N, if and only if [ip M i Ud(-N)]
is zero in

Qs q+k—m(E Gp, ip); v(Ep, Ep) ® v(Ey, Epp) © Ve, )

PROOF. Asin 2.1, even a homotopy of Ig to such a map implies vanish-
ing of the invariant. For the converse we construct a fiber homotopy and apply
4.1.

Let W be a bordism from ip M iy to N trivial over d(ip M iy). Then
we have maps jp: W—> Ep and joy ;2 W— Ep X I with j5,(Ep X {0}) =
ip M i, igy(Eq X {1}) =N, and we have a homotopy h: ipjp = ipMpy s
constant on ip M igs where w: E, XI— E, denotes the projection. All
this data is trivial over 3(ip M iy).

We first change jp and & so they are fiber preserving with respect to .
The composition my,h is a homotopy mpjp = mymjgy 1, 50 in the diagram

Ip
WX {0} — Ep

Tp

wx1 —M", g

we can apply the homotopy lifting property for 7 to get a homotopy of jp
to jp with Tpjp = ToMigx - Homotopy-composing this homotopy with the
inverse homotopy of #, we obtain a homotopy from ipjp to igMjgxy Whose
projection is (— my,h)  (my, k). This homotopy is homotopic to the constant
homotopy, so applying the lifting property for my, we get h': ipjp 2 ipmjoy;
with m,h’ the constant homotopy. All this can be done preserving triviality on
ip M ig U a@p M ig) X I

We can assume joy, is an embedding (since dim W <% dim(Ey X 1))
with mo7joxy in general position. Then since dim W <% dim Ep, we can
approximate the new jp by an embedding in a fiber preserving way. Let joy !
F —E, X I be an embedding of a tubular neighborhood of W in E, X1,
with F, = JQx I(EQ X {0}). Let ]M F — E,, be projection on W followed
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by Jjp, but with the projection damped out near F, (partition of unity) so that
on Fyjy= ign JQx 1» using the isomorphism

Fo = vGp M ig, Eg) = v(Ep, Eplip M iy

The fiber preserving homotopy # naturally extends to ¥ ]M =ign ]Qx 1> con-
stant on F,. Just as h and jp were made fiber preserving, 7 and ]M can be
made fiber preserving too.

The new 7M is transverse to Ep only near Fy. To make 7M transverse
away from F, we perturb it near W (but away from F;) by adding
V(Ep, Ep)ly using the isomorphism v(Ep, Ep)ly = v(W, Ey X I)=F given
by the bundle data. Since the fibers of v(Ep, E;;) can be taken to lie in the
fibers of my,, this perturbation };, of };, will still be fiber preserving with
respect to ;.

We can now define H: Ej X I —> Ey;. Near the core of F it is given
by ]M Proceeding radxally outward to the boundary of F we first damp out
the perturbation of ]M and then follow the homotopy n: ]M ~ ’Q"IQx 1> %0

that on the boundary of F, H is ign IQx 7- Then igm can be used to define

H on Ey XI—F. The homotopy H is fiber preserving, equals iy on
EQ X {0}, is constant on bEQ X I, and is transverse to ip on a smaller neigh-
borhood F'CF of W.

The considerations of the proof of 4.1 can be applied to make H trans-
verse to ip everywhere preserving fibers and holding it fixed on F' U Eg X
{0}. Thus H™!(Ep) = WU V with V disjoint from W and from E, X {0}.
Now imitate the proof of 1.1 to excise from Ey X I a neighborhood of the
(upward) shadow of ¥ disjoint from W. The restriction of H to the re-
mainder of Ey X1 is a fiber homotopy of ip transverse to ip with pullback
W, and 4.1 applies to produce a fiber regular homotopy or isotopy. O

We remark again that the proof constructs a fiber regular homotopy
(isotopy) of E, intersecting Ep exactly in W, which may also be preassigned.

The fibered analogue of the self-intersection case follows easily from this,
as 2.3 does from 2.2. Again the dimension restrictions and obstructions are the
same as the unfibered cases, so we will not give a statement.

As a sample application of this theory we use 4.2 to consider existence and
uniqueness of nonzero sections of a bundle. Recall from §3 the definition of
the bordism Euler class of a bundle over a manifold as the intersection of two
sections of the bundle.

4.3. COROLLARY. If § is a PL or vector bundle of dimension m over
a closed k-manifold R with m > k[2 + 1, then & has a nonvanishing section
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iff x¢)=0 in Q,{’_ m(R; £ ® vg). If & has a nonvanishing section and
m > k[2 + 2, then isotopy classes of nonzero sections (isomorphism classes
of 1-dimensional subbundles) correspond bijectively with Q,’:"_ me1 @ E S vp).

ProoOF. By 4.2, x(§¥) = 0 implies there is a fiber isotopy of any section
to one disjoint from the zero section. If & has a section we map
SZ,{’_ m+1 @& §® vp) to nonzero sections by finding a fiber isotopy taking the
section to another one, so that the intersection of the isotopy with the O-section
is a representative of the given bordism class. 4.2 shows that with the given
dimension restriction this is well defined and a bijection. O

Corollary 4.3 is just a new proof of the (well-known) fact:

4.4. COROLLARY. The sequences

Bon—l -_)Bon - T‘yon’ Bson—l _)Bson - T7S0n’

are homotopy fibrations up to dimension 2n — 2.

Here Tyy denotes the Thom space of the universal X bundle over By,
By — Tvx the natural inclusion. Homotopy fibration means, for example, the
sequence induces a long exact sequence of homotopy groups up to the given
dimension, or that it has the lifting property for nullhomotopic maps of (2n — 3)-
complexes.
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