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BORDISM INVARIANTS

OF INTERSECTIONS OF SUBMANIFOLDS
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ALLAN HATCHER AND FRANK QUINN(l)

ABSTRACT. This paper characterizes certain geometric intersection prob-

lems in terms of bordism obstructions.   These obstructions give a setting in

which to study such things as parametrized ft-cobordisms (pseudoisotopy), and

surgery above the middle dimension and on fibrations, where such intersection

problems arise.

0. Introduction.  Suppose P and  Q are cosed manifolds (smooth or PL)

embedded or immersed in a manifold M. We give two techniques for changing

the intersection of P and Q in M by ambient isotopy or regular homotopy

of Q. The first, generalizing lemmas of Stallings and Wall, characterizes the

dimensions in which modifications of P n Q (for example, making P and  Q

disjoint) by homotopy of Q c» M are realized by ambient isotopy or regular

homotopy of ß c_> M. The second method, generalizing the classical Whitney

procedure for cancelling pairs of isolated double points, characterizes the possible

changes in P n Q in terms of a bordism group for a metastable range of dimen-

sions. As a particular case, when P and Q are sufficiently highly connected,

the bordism group is the ^-dimensional framed bordism group of the loop space

of M, where k = dim(P n Q). For example, in the classical case k = 0 this

gives the integral group ring Z[7TjM]. A similar but more complicated bordism

invariant is obtained for the problem of modifying self-intersections of an immer-

sion of Q by regular homotopy.

In view of applications to parametrized versions of the /¡-cobordism theorem

and surgery theory, we consider in the final section the situation when P, Q, and

M are fibered over some manifold, with all immersions, embeddings, etc., fiber

preserving. We show in this case that the fibered theory is identical with the

unfibered. As an immediate simple application we give some remarks on sections

of metastable PL and vector bundles.

Since this paper was written, we have discovered that it overlaps two theses
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written at the University of Paris at Orsay in 1971.  First, Theorem 1.1 is a

special case, with a shorter proof, of a result in the third cycle thesis of A. Tineo

[10].  Second, the techniques of § §2 and 4 are similar to those used by J. P.

Dax [11], who considers the problem of homotoping maps to embeddings, rather

than regularly homotoping immersions to embeddings. His results extend those

of Haefliger [1], while ours are oriented toward the immersion and isotopy prob-

lems considered in [6] and [7].

1. Homotopy of Q.  We work throughout in either the smooth or PL

category.

Suppose /: P —► M, g: Q —► M are differentiable or PL maps which are

transversal. Then we denote the transversal pullback {(p, q) G F X Q\f(p) =

g(q)}   together with its induced manifold structure by / <f\g.

I.I.Theorem.   Suppose ip:Pp—>Mm  and Íq-Qq—*Mm  are immer-

sions (embeddings) of closed manifolds P, Q, and M. If iG  is homotopic to a

map transversal to ip with pullback N, and m > q + p/2 + 1, then Íq  is

regularly homotopic (ambient isotopic) to an immersion (embedding) transversal

to ip with pullback N.

Proof.   Let H: QX I —► M be the homotopy specified in the theorem,

so that H0 = Íq  and H1 <f\ ip = N. We may assume that the singular set

2 H = {x G Q X / \H is not an immersion (embedding) at x}

is a subcomplex of dimension  2q - m + 1  (2q - m + 2). (For the PL case

see Starlings [6] or Hudson [4] on general position.)  For K C Q X / define the

shadow

sh(/Q = {(x, t) G Q X I\(x, t') G K for some  t' < t}.

Case I. dim sh(2//) < codim P, or m > q + p\2 + 1 (m > q + p/2 +

3/2 for embeddings). In this case we can approximate H so that sh(EH) n

H~1(P) =0. This is done by composing H with a small ambient isotopy of

M which carries #(sh(2.fY)) off P.

Now since âvÇLH)  is "convex upwards", there is a function <¡>: Q —► /

so that the closure of {(x, t)\t > <p(x)}  is a neighborhood of sh(S//)  disjoint

from H~1(P) and so that <t>(x) = 0 if (x,0)EZH.  Then H':QXI-^M,

H'(x, t) = H(x, t<p(x)) is a regular homotopy (isotopy) of ig. Moreover

(H[)~1(P) = A7, since this is the only intersection of the graph of <t> with

H-\P).
Case II. Embeddings, with dim sh(S//") < codim P, or m> q + p/2 + 1.

If codim P = dim sh(2.//) then in general position we will still have  "ZH n
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H~1(P) = 0, but there may be isolated intersections of H~1(P)  with the shad-

ows of top dimension cells of 2//, which consist of immersed double points.  If

p < m — 1, then in general position H~l(P) will intersect the shadow of at

most one of each pair of double points-just move H~1(P) slightly near one

double point of each pair-and, after excising from  "LH small neighborhoods of

these isolated double points whose shadows intersect H~1(P), we can proceed

as before.

Finally, if p > m — 1  and m > q + p/2 + 1   then m > 2(q + 1), so

"Lu consists entirely of isolated double points. In general position no two of

these double points will lie on the same level Q X {s}, and H itself will be the

desired isotopy.   D

Previous versions of this theorem have been given by Stallings, when P, Q

are spheres and p + q = m > 5   [6, p. 246], Wall, generally when p + q = m

[8], and Laudenbach, when N = 0  [5]. Our proof is essentially that of Stallings

and Wall.

Theorem 1.1 implies that in the given dimension range if an embedding or

immersion is homotopic to a map disjoint from a submanifold, then it is isotopic

or regularly homotopic to a disjoint map. We next give a proposition showing

this statement remains valid for immersions outside this range, and an example

to show it generally fails for embeddings.

1.2. Proposition. Suppose iQ:Qq-^-Mm and ip:Pp-+Mm are

immersions and Q is closed. If q + m — 1 and ig is homotopic to a map

disjoint from P, then it is regularly homotopic to an immersion disjoint from P.

Proof.  Let H be the homotopy, with H0=iQ  and Jr71(ß)nP = 0.

The derivative of Íq  gives an injective bundle map di^ : tg —► tm  covering

Íq. Since homotopic bundles are isomorphic, we get a homotopy of bundle in-

jections covering H. In particular, over Q X {1}  we get H1: Q —► M - P

covered by a bundle injection b: tg —► Tm-p- ^v the immersion classification

theorem [2], [3] if q < m — 1, H1   is homotopic to an immersion i¿  in

M - P with derivative homotopic to b. Considered as an immersion in M, how-

ever í'q  is homotopic to i\,  and has a covering homotopy of the derivative. By

the classification theorem again the two immersions are regularly homotopic, pro-

vided q < m — 2. If q = m  the result is trivial.   D

1.3. Example. There are embeddings

I,: SkXS"X S'^S1 X S2k XS"XS!

and
i2: S2k XS"-+S1X S2k XSnX S>

for all n>0,j> 0, and k > 1, such that I.   is homotopic to a map disjoint
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from /2,but i2  is not homotopic to a map disjoint from i1.

This example, a generalization of one of Laudenbach [5], satisfies all but

the dimension requirements of 1.1 with ij = íq, i2 = ip, and N = 0.  The con-

clusion of 1.1 for the case of embeddings and ambient isotopies fails, since the in-

verse of an ambient isotopy of /,   off i2  would give a homotopy of i2  off

/j. In the notation of 1.1 we get an example for every p and q with m <

q + p/2 + 1, m - p> \, and m - q > 2.

Construction of 1.3.   Let z2  be the standard inclusion of a factor.  For

ix   map Dk+l  in S1 X S2k  by taking the disc around the S1   factor to inter-

sect itself in an arc. This gives a "self-linked" embedding of dDk+l = Sk.

Explicitly 7!  is obtained as follows:  S1 X S2k D S1 X Ck, Ck D Rk DDk,

and S1   is considered as S'CC. Now on Dk X I define L   by

('        ( x,   if t < 1/3

e37r/r j (e(3f-i)7N72);C)    ,/3 < , < 2/3) &SlX C*.

( i • m, if t > 1/3

Now define /j = it X 1 n     f. By construction (using the disc Dk+1) it   is
s X s

homotopic to projection on S" X S} composed with an inclusion as a factor.

By including over a different point in S*   from that used for i2, this is clearly

disjoint from ij.

Next we show i2  is not homotopically disjoint from ix. The universal

cover of S1 X 52fc  is RX52fc, and the inverse image of the disc used to con-

struct i1   is a "chain" of discs. For D2k C S2k, R X D2k = RXDkXDk,

and these discs can be described by

U[2p - \, 2p + |lx Dk X {0} U[2p + 1 - j, 2p + 1 + |] X {0} X Dk

where p G Z. Now fold up by projecting to   [0, 1] X S2k  by

ft y)_* f{f-lñ,m   even     \    \
v>v>-+ {\i-t + [t},[t} odd/'7-

This projects the boundary spheres of the chain of discs exactly to two linked

discs Dk ,D2  with boundaries on opposite ends of  [0, 1] X S2k. It is not

hard to see that the inclusion   [0, 1] X S2k - (Dk U D\) —> [0, 1] X S2k

is homotopy equivalent to the standard map Sk X Sk —► S2k  of degree one.

Now a homotopy of i2 disjoint from ix would, after lifting to the cover and

folding, give a lift of the map S2k X S" —>52fe X Sn X S' to Sk X Sk X Sn X Sf.

In particular, it would give a right inverse for the map Sk X Sk —► iS2fc. This is

impossible because, among other things ir2k(S2k) is infinite, while n2k(SkXSk)-

2ir2k(Sk) is always finite.
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2. Bordism of P n Q. Let /: P —>M, g: Q —-> M be maps of topological

spaces. The homotopy pullback is F(/, #) = {(p, q, 9)\pGP,qEQ, and 0: [0,1]

—+M with 6(0)=f(p), 6(l) = g(q)}. This gives a homotopy commutative

diagram

E(f, g) —^^ a

fs

M
f

which is universal in the sense that if h j : X —► P, h2 : X —> Q are maps, and a

homotopy /Tij ~ gh2 is given, then there is a natural map /: X—*E(f, g) so that

Aj =/£/, A2 =gEj, and the homotopy from fht to gft2 is / composed with the

homotopy from ffE to gg¿. For example, if /, g are transversal maps of mani-

folds, then there is a natural map / iTi g —► E(f g).

Next we define "framed bordism with coefficients in a bundle". Let X be a

space with a (PL or vector) bundle £ over it. Define £l£(X; £) to be the bordism

groups of manifolds mapping to X, together with a stable bundle isomorphism of

the normal bundle with the pullback of £. This is natural with respect to maps

covered by stable bundle maps. The example which will arise is i2£r(F(/, g); vp ®

Vq ®tm). The indicated bundle is a shorthand for fE vp ® gE vG ® fBf  tm

(v and t are normal and tangent bundles respectively). Generally to simplify

formulas we will omit notation indicating pullback of bundles.

If % is a ^-dimensional bundle over X, and e the trivial bundle, then

&*(X; %) — lim 7T, +/- 7(| ® e'~k). This is a version of the usual Pontrjagin-Thom

theorem (T denotes Thorn spaces). Thus the group depends only on the fiber

homotopy type of %.

2.1. Proposition. If f:Pp —*Mm and g: Qq —*Mm are transversal maps

of closed manifolds, then the transversal pullback f(fï g determines a bordism

class [f(fig] in Çlpy+q_m(E(f, g);vP® vQ® tm) which is an invariant of the

homotopy classes of f and g.

Proof. The universal property of E(f g) gives a map of /fp g to E(f g).

Further, the transversal pullback of homotopies of / or g will also map to E(f g)

giving a bordism between the pullbacks of homotopic maps.

To obtain the bundle isomorphism data, consider f(f\ g as (fX g)_1(AM),

the pullback of the diagonal AM  under fXg:PX Q —> M X M.  Then there is

a natural splitting

"/fa" vPxQ®v(f^g,PXQ)-vP®vQ®TM.   U



332 ALLAN HATCHER AND FRANK QUINN

If / and g are immersions, the bundles vp® Vq® tm and v(P, M) ®

v(Q, M) ® vM are stably isomorphic over E(f g). We will use the second bun-

dle from now on, since it arises more directly from the geometry of the situation.

2.2.   Theorem. // ip: Pp —► Mm  and iQ:Qq-^Mm  are transversal

immersions (embeddings) of closed manifolds in M,  m>p + q/2 + 1, m >

q + p/2 + 1, and N is equivalent to ip <f\ iG  in

^fp\q-m WQp, iQ)\ v(P, M) ® v(Q, M) ® vM),

then there is a regular homotopy (ambient isotopy) of iG  to an immersion

(embedding) í'q  transversal to ip with ip fp i¿  diffeomorphic to N.

Proof of 2.2. (i) To begin, we put Íq  in general position with respect

to ip so that ip fp ¡q  is embedded in M by ip and Iq ; ip fp iQ  can then

be identified with ip(P) n Íq(Q). This is accomplished by making P and  Q

disjoint from the self-intersections of the other in M. For this general position

suffices if dim(self-intersections of P) < codim Q or 2p - m < m - q, and

dim(self-intersections of Q) < codim P or  2q - m < m - p.

Next, let  W be a bordism realizing the equivalence of ip fp iQ  and N

in Slpfr+q_m(E(ip,iQ)\v(P,M)®v(Q,M)®vM). Thus we have a map H:

WXI-+M restricting to H0: W X {0} —► ip(P) and Ht: W X {1} —► iQ(Q)

with H\(ip (f\ ¡q) X I the constant homotopy.

(if) Approximate H0  by an embedding in iP(P) extending the inclusion

ip (f\ iG c_> M and disjoint from the self-intersections of P. This is possible if

dim W < p/2, dim W + dim (self-intersections of P) < p.  Similarly, make Hx

an embedding.

(iii) Approximate H by an embedding (with (ip fp ig) X / pinched to

ip íp i'    c» M) extending H0  and Hl   and intersecting iP(P) and ig(ß)

only at H0  and Hx. This uses dim(W XI)< m\2 and dimiW X /) <

codim P, codim Q.

(iv)  SpUt v(W X I, M) as v(W, Q) ® v(W, P)XI compatibly with the

natural splitting v(ip (p ig, M) « v(ip ip ig, Q) ® v(ip fp ig, P). This is done

as follows. By hypothesis

vw « v(W, M)®vM** v(P, M) ® v(Q, M)®vM,

so v(W, M) ® e « v(P, M) ® v(Q, M). Since v(W, M) ® e « v(P, M) ®

v(W, P) ® e also, v(Q, M) « v(W, P) ® e. Now

v(WXI,M)®e®e** v(W, M)®e^ v(W, Q) ® v(Q, M)®e

which equals v(W, Q) ® v(W, P) ® e ® e. Destabilizing, v(W X I, M) «
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v(W, Q) ® v(W, P) which,-taking into account our convention of omitting no-

tation for pullbacks of bundles, is really v(W, Q) ® v(W, P) X I. Note that

destabilizing is well defined since v(W, Q) and  v(W, P) are stable bundles

(dim W < dim v(W, Q), dim v(W, P)).

Steps (i)—(iv) allow us to build a simple model for the desired deformation

of ig.  First extend the embedding  W X I c_» M to include a small collar

neighborhood to obtain  W+ X I+ c_ M. Let (x, y, t) G v(W + , Q) ®

v(W + ,P)XI be coordinates for  v(W+ X I +, M), so that  W+ X I+  has

coordinates (0, 0, t), Q has coordinates (x, 0, 0), and P has coordinates

(0, v, 4>) for some function (¡>: W+ —► I+  with <j)~l(0) = ip fp ig  and

(¡>~1(1)=N. Let  \¡/: v(W + , Q)—►/ equal zero away from  W and one near

W.  Then (x, 0, 0) H* (x, 0, s\p(x)), 0 <s < 1, provides an isotopy of iQ  near

W which replaces ip fp iQ  by N.    D

Remarks. (1) The regular homotopy (isotopy) constructed not only ends

with an immersion (embedding) having the desired intersection N, but the inter-

section  W of the regular homotopy (isotopy) itself can be preassigned. Thus

for example, any element of the bordism group can be realized as the intersection

of a regular homotopy (isotopy) between two disjoint immersions (embeddings).

(2) Example 1.3 gives counterexamples to the statement of 2.2 for embed-

dings outside the given dimension range.

(3) If P, Q, M have boundary, then 2.2 can be modified to hold a neigh-

borhood of the boundary fixed (the invariant is defined via a difference con-

struction, see 4.2), or to allow part of the boundary to vary using a relative

bordism group.

A little elaboration is required to treat self-intersections. Suppose i : Q —►

M is an immersion which is self-transversal in the sense that i X i: (Q X Q - AQ)

—*■ MX M is transversal to the diagonal AM. In this case define the self-inter-

section i fp i to be the manifold {(qv ¿72)|t7j + q2  and i(qx) = i(q2)}/Z/2.

Here  /Z/2 means divide out by the free Z/2 action interchanging (ql,q2)

and (q2, qx). The self-inverse image (i fp i)*  is (i X i)~l(AM) - AQ   and

double covers i fp i.  If j has no triple points, then i fp i is a submanifold of

M, while (i fp i) Ä  is a submanifold of Q.

The homotopy pullback

F(i,0->Q

also has a Z/2 action, not free, by interchanging the copies of Q.  Explicitly



334 ALLAN HATCHER AND FRANK QUINN

this is I = (p, q, 6) = (q, p, 6'1) where 0_1 denotes the path with reversed

parametrization (0-1(r) = 0(1 - t)). The natural map (i fp i) A —* E(i, i) is

equivariant. The freeness of the action on (i fp i)A is captured as follows: Let

W2 be a free acyclic Z/2 complex (e.g., W2 = S" with the antipodal map, so

W2/Z/2 = RP°°)~ Let E(i, i) X2 W2 denote the quotient of the product by the

diagonal Z/2 action. The map E(i, i)X2 W2 is universal in the following sense:

given a map g: X —► M, a double cover it: X—► X, a map h: X —* Q, and a

homotopy from i ° h to g ° n, then there is a canonical map f:X —►
A

E(i, i) X2 W2  such that X is induced from the double cover of E(i, i) X2W2,

and the maps g, h, and the homotopy from i o h to g ° tt are all given by

composing / with the corresponding maps and homotopy defined on

E(i, i) X2 W2.

The natural map /: i fp i —* E(i, i)X2W2  will be our characteristic bordism

element once some bundle information is included.

Denote the normal bundle v(Q, M) by u, then as before the stable nor-

mal bundle of (i fp i) A  is naturally isomorphic with the pullback of /* v ®

f*v® f*vM from E(i, i). The involution on E(i, i) is covered by the

bundle involution / * which interchanges the two factors / * v and f* v, and

an involution co of f*vM.

Taking the quotient, we have constructed a stable bundle map

"tm —■ If!» ®/M//' ®/*V"-(2)

2.3  Theorem. Ifi:Qq—*-Mm  is an immersion of a closed manifold

with m > 3q/2 + 1 and N is equivalent to i fp i in

ßß-m (*fc 0 X2 W2; ([f*v ®f2%]/I*) ® (/%/"»>

then i is regularly homotopic to an immersion with self-intersection N.

Proof. Let W be a bordism of the indicated sort between i (fi i and

A^, and let  W be its double cover. Suppose first that this is a trivial cover:   W =

W+ U W_  and Z/2 interchanges the two pieces. Approximate  W —► Q by an

embedding (keeping i ffi i fixed), then 2.2 applies to a neighborhood Q+  of

W+ in Q to isotope it to have intersection A^ with Q - Q+. This gives an

immersion with self-intersection N.
A

In the general case when  W —► W is not a trivial cover, it is still locally

trivial and the theorem will follow by applying the above considerations locally.

Put a handlebody structure on (W, i ffi i); then the inverse image in (W, (i (f\ i)A)

is a handlebody structure in which disjoint handles are interchanged by the  Z/2

(2) We would like to thank the referee for correcting an error in our description of

this bundle.
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action. Now we can embed a pair of the lowest dimensional handles disjointly,

and use the discussion above to obtain a regular homotopy in a neighborhood of

one handle disjoint from the other which moves across the handle. This gives a

new situation (W', i' fp i') with one fewer handle. Induction on the number

of handles completes the proof.   D

Remark.   The bordism class of iíf\ i in n2frq_m(E(i, i)X2 W2;

([f*v ® f*v] ¡I*)® (f*vMlu>)) is not an invariant of the homotopy class of

i, but only of the regular homotopy class. For example, a self-transverse immer-

sion i: S"—*S2"  with i (f\ i consisting of one point is homotopic to an em-

bedding but not regularly homotopic to one. (The bordism group in this case is

Z or Z/2, depending on the parity of n.) This example also shows that the

analogue of 1.1 for self-intersections of immersions is false.

To get a homotopy invariant we would have to allow maps Q —*■ M

having singularities. This is the situation studied by Haefliger [1].  Haefliger's

theorem presumably would fit into this context by using a relative bordism group

to allow for the singularities.

3. Highly connected submanifolds. In this section we elaborate on the

bordism invariants of the preceding section when P and Q are highly connected.

In particular, the bordism groups will be seen to depend only on M, and not on

P, Q, or the immersions ip, Íq. In this case the obstructions for different im-

mersions can be compared, and formulas similar to those of [7, §5] are derived.

If M is also highly connected, the bordism obstruction group collapses to

^p+q-mi*)- In this case our results generalize a theorem of Wells [9].

Let  *   G P, *   G Q, and * G M be basepoints and choose paths from

*p(*p) and ig(*g) to *. The basepoints induce a map F(* , * )—►

E(ip, ig), and the paths give a homotopy equivalence

E( V V - C(I, 0,1;M, ip(*p), ig(*g)) =^ A(M, *).

(Here A(M, *) denotes the loopspace of M at  *.)  Choose orientations of P

at  * , ß at  *  , and M at  *. Via the paths from iP(*p) and Íq(*0) to

*, these induce framings of v(P, M)  at iP(*p) and  v(Q, M) at *'g(*0)-

The orientation of M at  *  gives a framing of vM at  *  which pulls back

along the paths to framings of vM at iP(*p) and Iq(*0)- Choosing the

framing of vM at i0(*), there is then induced a framing of v(P, M) ®

v(Q, M) ® vM over E(*p, *Q) — A(M, *). Thus we have a map

£# (A(M, *)) -* £llr(E(ip, ig); v(P, M) ® v(Q, M) ® vM).
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This map is ^-connected if P and  Q are (k + l)-connected.  So having

made the choices above we may identify

[ip fr ig] G nfr+q_m(E(ip, ig); v(P, M) ® v(Q, M) ® vM)

with an element "k(ip, iQ) G Q.fr+q_m(A(M, *)) provided P and Q are

(p + q - m + l)-connected. We shall next discuss the dependence of X(iP, ig)

on the choices.

There is a natural two-sided action of tt^M, *) on  nir(A(M, *)) via

composition of loops on the left or on the right. Rechoosing the path from

ip(* ) to  * by aG7Tj(M, *) changes X(iP, ig)  by left multiplying by

03^0)0. The sign  coj (o), which is +1  or  -1  according to whether  a pre-

serves or reverses orientation in M, measures the change in the orientation of

v(P,M). Rechoosing the path from ig(*  )  to   <  by  a changes X(ip, ig)

by right multiplying by o~ '.  There is no sign change here since orientation

changes of v(Q, M) and vM given by cot(a) cancel.

Now we investigate the effect of interchanging P and Q. Let  go:

A(M, *) —► {0 or PL}  be the loop of the classifying map for vM. Note that

cjj   above is just  n0(co): ir0(A(M,*))—+tt0{0 or PL}. Let I: A(M, *) —►

A(M, *) denote loop inverse. From these we define an involution on

Q.ir(A(M, *)),   X —► X, as follows:  If X is represented by /: X—► A(M, *),

with b a framing of X, then  X is represented by / ° f: X—♦ A(M, *) with

X framed by (co/) • b, i.e., with the framing b_ changed by co/: X—►

{0 or PL}. This is indeed an involution since  X is represented by I2f =

f: X-+A(M, *) framed by (co//)(co/) • b = (cof)~l(uf) • b = b.

In terms of this involution we have

KtQ,ip) = (- i)^-p^m-q)mP,iQ).

The sign comes from permuting  v(P, M) and  v(Q, M), the loop inverse on

A(M, *) - E(*p¡ *  ) is induced by interchange of P and  Q, and the refrain-

ing by  co is the result of pulling back the framing of vM  over F(* , *  )

from iP(*p) rather than ig(*  ).

Change of one of the choices of orientation at  *p>*0»or  * just changes

the sign of \(iP, ig).

For the self-intersection obstruction the corresponding bordism group is

aC(MM, *)X2W2; [fl*v®f2*u]/I* ® /*Vco,

where  v = v(Q, M) and the Z/2  action on the loop space is loop inverse as

above. Now however v is framed, so flv,f2*v are isomorphic. If we re-

parameterize by (u,u2)—► (Uj + v2, Uj - v2), the involution /    becomes



BORDISM INVARIANTS OF INTERSECTIONS OF SUBMANIFOLDS 337

trivial on the first factor, multiplication by  — 1  on the second.   Stably, then

[/i v ®f*v]/I* is isomorphic to m - q copies of the canonical line bundle

y over RP°°. On the twofold cover A(M, *) X W2 at A(M, *) of

A(M, *)X2 W2,vM has a framing, and the involution given by / and co

covers the involution /. Thus f*vM/co — e/co on A(M, *)X W2. The self-

intersection group is therefore

Sl?(A(M, *)X2W2; ym-« ® e/co).

We sum all this up as a proposition.

3.1.   Proposition. // P and Q are (k + \)<onnected then a choice

of basepoints, orientations, and connecting paths as above gives isomorphisms

Of (E(iP, ig); v(P, M) ® v(Q, M) ® vM) * Í2* (A(M, *)),

n?mQ, iQ) X2 W2; [f* v ®f*v]/I* ©/*V"

« Slfkr(A(M, *) X2 W2; ym-q ® e/co).

Denote the image of  [ip if» ig]   by X(iP, ig)  if k>p + q - m, and

[ig ffi ig]   by p(Íq) if k>2q - m.  Then if the paths from iP(*p) or

ig(*g) are changed by a loop  a, X(ip, ig) becomes cOjf^aXO'j,, ig) or

X(ip, ig)a-1  and pQq) becomes co1(o)opt(ÍQ)o~1. Finally

MÍQ,ip) = (-Ü(m-p)(m-q)KiP,iQ).

We next give formulas relating the invariants X and p. First some definitions:

3.2. Definition. If ?k is a (block, PL, or vector) bundle over a closed mani-

fold Qq, then the "Euler class"

X(0^nfr_k(Q;i®pQ)

is the bordism class of the intersection of two copies of the zero section of f.

Here we have used the canonical identificationF(lg. lg)— ß.

Next let the homomorphisms

ck: nC(A(M, *) X2 W2; yk ® e/co) -♦ n{r(A(M, *)),

dk: Sl?(A(M, *)) -> S2£r(A(M, *) X2 W2; yk ® e/co)

be induced by the natural double cover and inclusion respectively. Finally, if ig

and ig    are immersions with chosen paths to * G M, let ig #g    be the immer-

sion obtained by connected sum along the chosen paths.

3.3. Proposition. For immersions of (2q -m + \)-connected q-mani-

folds, the invariants X and p satisfy:
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W WQl. î'ô2#e3) - WQl,tQj) + XiQl, iQ3),

(2) KÍQ2JQ1) = (-Vm-qWQ1>ÍQ2)>

& ^e1#ß2) -MqJ +mOÔ2) + dm_q(MQl. Iq2))>

(4) X(iQ, ig) = cm _q(ji(iQ)) + x(v(Q, m,

where

X(v(Q, M)) G ̂ {q_m(Q; v(Q, M) ® vM) « n{q_m(*) C n£_M(A0f, *)).

The homomorphisms ck and dk are related in the following ways:

3.4. Proposition. For each k

(1) ckdk(a) = a + (- l)ka for a G Q$(hQt, *)),

(2) there is a long exact sequence

Sllr(A(M, *) X2 W2; yk+1 ©e/co)   *""  > toC(\(M, *))

9

£llr(A(M, *) X2 W2: yk ©e/co)

with 9 of (graded) degree —1.

Proof.  We first define the map 9 using the representation W2 = S°° =

Ufc Sk.   If /: X —» A(Af, *) X 2 R/2, b : vx —» yk ® e/co represents an element of

the self-intersection group, then the image of / lies in some A(M, *)X2 S1. Con-

tained in A(Af, *) X2 Sl is A(M, *)X2 S'~x as a subspace with neighborhood the

total space of the line bundle y. Then 9 [X, f, ft]  is defined to be the transversal

pullback of this subspace. Note that the number of copies of y in the normal bun-

dle increases by one.

The proof of exactness is straightforward. For example, if dk(a) = 0, then

there is a bordism of dk of a representative of a to zero. Essentially applying the

9 construction to the bordism gives an element b with ck+l(b) = a.   D

We can apply 2.2 and 2.3 to give an embedding criterion for a family of immer-

sions. Suppose i., • • • , in are immersions of closed c7-manifolds Ql,'" ,Qn in

M, with basepoints, orientations, and paths chosen as above.
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3.5. Theorem. If m>3q/2+ 1 and each ß- is (2q - m + l)-connected

then {ij} is regularly homotopic to a family of disjoint embeddings if and only if

(1) X(i/,ik) = 0 in i2£,_m(A(M,*)) for each j±k,

(2) mO}) = 0 in n{rq_m(A(M,*)X2 W2; y™" q ® e/co) for each j.

Note that (1) and (2) are independent of the choices of orientations, etc.

To conclude this section we display the dependence of these groups on

7rj(M, *). Using either the left or right action of ir^M, *) on A(Af, *)

we have A(M, *) — A(M, *0 X tr^M, *), where M denotes the universal

cover of M and A(M, *) is naturally identified with the identity component of

A(M,*). Selecting the right action of n^M, *), we can write ndr(A(M, *)) asa

group ring:

aC(A(M, *)) * np(A(M, *)) [tt^m, *)].

Under this isomorphism a G Q,lr(A(M, *)) corresponds to a sum 2aCTff, where aa

is the part of a • a~1 supported by the identity component of A(M, *). With this

convention we have tt^M, *) acting on Sl(ï(A(M,'*))[ir1(M, *)]  by (2aCTo)r =

2aaOT and rÇLaaa) = Z(gg)Trg, where ( )T denotes têî,(JIÎ,*) acting on

Q,%(A(M,'*)) by conjugation. Also, I,aao= 'Eco1(o)äao~1.

3.6. Corollary.

ß£(A0#,»))«Z f^flf,«)]
an ci

fifr(A(AÍ, *)) « (Z/2 X 7t2(M, *)) [tt^M, *)].

For self-intersections, since co: A(M, *)—*{0 or PL} is the product of its

restriction co to A(M,^*) and co^ -n^M, *) —> Z/2, we have

Sl?(A(M, *) X2 W2; yk ©e/co)

« i#(A(M, *) X2 W2; yk+"i ® e/Z ) [n^M, *)].

Note that the group in which the coefficient of a lies depends on C0j(a), so

this is not actually a group ring.

4. Isotopy and regular homotopy of subbundles. In this section we consider

fiber regular homotopy (isotopy) of fiberwise immersions (embeddings) of differen-

tiable or PL bundles.

To fix notation, we suppose EM, Eq, Ep are smooth or PL locally trivial fiber

bundles over a compact manifold Rk. The fibers are Mm,Pp,Qq respectively,

and we assume P, Q closed. ip:Ep—>EM and ¡q'-Eq—>EM are bundle maps

which are immersions (embeddings) in each fiber.
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ß->M*-F

4.1. Theorem. If Íq is fiber homotopic to a map transversal to ip with

pullback N, by a homotopy fixed over 9F, and m>q +(p + k)/2 + 1, then

there is a fiber regular homotopy (isotopy) fixed over dR from iq to an immer-

sion (embedding) transversal to ip with pullback N.

Proof. The proof of 1.1 will carry over to the fibered case provided that the

approximations of H: Eq XI—*-EM which put it in general position can be made

in a fiber preserving way.

Locally the bundles Fp, Fg.and EM are trivial and H takes the form (tiQ.h):

RXQXI-+RX(M,P). Since 2# C 2/z, to make sh(Sff) disjoint from

H~l(R X P), for example, it suffices to make sh(ZÄ) disjoint from h~l(P). The

condition dimsh(SA)<codimP is just m > q + (p + k)/2 + 1 for immersions,

m>q + (p + k)/2 + 3/2 for embeddings. So approximating   h   to make

sh(SA) nh~1(P) = 0 leads to a fiberwise deformation of   sh(2//)   off

H~1(R X P). Likewise, Case II of 1.1 translates to this setting.

It is then straightforward to fit together local fiberwise deformations of H which

put it in general position above pieces of R over which the bundles are trivial, to

make H globally in general position with respect to Fp.

Note that if   P, Q, and   M   in 1.1 are replaced by Fp, Fg, and EM,

the dimension restriction m > q + p/2 + 1  becomes just m > q + (p + k)¡2 +

1. That is, the dimension hypothesis is really the same in the fibered case as in

the unfibered case.

Next the bordism results of §2 are generalized to this setting.  Since we

now allow Fp, Fg, and EM to have boundaries (over 9F), we must modify

our hypotheses accordingly.  Recall the natural map ip fn ig —► E(ip, ig)

covered by a bundle isomorphism

%ñiQ — "(FP, EM) ® v(EQ,EM) ® vEm.

Suppose given another manifold N with such a map to E(ip, ig) and bundle
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isomorphism which agree on the common boundary  bN = 9(ip (\) ig).

4.2.  Theorem. If m>p + (q + k)\2 + land m>q + (p + k)/2 +1 then

ig  is fiber regularly homotopic (isotopic) holding boundary fixed to a fiber im-

mersion (embedding) ig  with ip ffi ig = A7, if and only if [ip ffi iQ U 9(- N)]

is zero in

^r+q+k-m(EQp,iQ);KEP,EM)® v(EQ,EM)® vEm).

Proof. As in 2.1, even a homotopy of ig to such a map implies vanish-

ing of the invariant. For the converse we construct a fiber homotopy and apply

4.1.

Let W be a bordism from ip (ft Íq to N trivial over 9 (ip ffi ig). Then

we have maps jp: W—>EP and /gX/: W—^Fg X / with /gx/(^o * {0}) =

ip <fi Íq, Íqxj(Eq X {1}) = N, and we have a homotopy h: ipjp — igïï/gx/

constant on ip <f\ Íq, where  n: EqX I—»-Fg  denotes the projection.  All

this data is trivial over  9(ip <f\ ig).

We first change jp and h  so they are fiber preserving with respect to ttm .

The composition irMh is a homotopy   7rp/p — ttqïïJqXI, so in the diagram

)p
W X {0}-► Ep

WXl >R

■

we can apply the homotopy lifting property for 7rp to get a homotopy of jp

to jp with TTpjp = iïq1TJqXI. Homotopy-composing this homotopy with the

inverse homotopy of h, we obtain a homotopy from iP/P to igtf/gx/ whose

projection is (- iiMh) • (iiMh). This homotopy is homotopic to the constant

homotopy, so applying the lifting property for nM we get h': ipj'p — ig7r/gX/

with TTMh' the constant homotopy.  All this can be done preserving triviality on

ip ffi ig U 9(ip ffi ig) X /.

We can assume jQXI is an embedding (since dim W< Vi dim(Fß X /))

with TqTJqxi m general position.  Then since  dim W< Vi dim Fp, we can

approximate the new jp by an embedding in a fiber preserving way.  Let /gX/:

F —>EqX I be an embedding of a tubular neighborhood of W in Fg X /,

with F0=Tqxi(EqX {0}).  Let Tm'-f~*em be projection on  W followed
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by jp, but with the projection damped out near F0  (partition of unity) so that

on   F0 jM = igii JqXI, using the isomorphism

F0 « v(iP fp ig, Fg) * v(Ep, EM)\ip fp ig.

The fiber preserving homotopy h  naturally extends to h: jM— igtf 7gX/, con-

stant on F0. Justas h  and jP were made fiber preserving, h   and   /M  can be

made fiber preserving too.

The new  jM is transverse to Fp only near F0.  To make  jM  transverse

away from F0  we perturb it near  W (but away from F0) by adding

v(Ep, EM)\W using the isomorphism  v(Ep, EM)\W « v(W, Eq X I) = F given

by the bundle data.  Since the fibers of v(Ep, EM) can be taken to lie in the

fibers of nM, this perturbation jM of jM   will still be fiber preserving with

respect to itM.

We can now define H: Fg X / —► EM. Near the core of F it is given

by  j'M. Proceeding radially outward to the boundary of F we first damp out

the perturbation of jM and then follow the homotopy h: jM — 'o^/ox/> so

that on the boundary of F,H is ig7r /gX/. Then ig7r can be used to define

H on EqX I - F.  The homotopy H is fiber preserving, equals ig  on

Fg X {0}, is constant on 9Fg X /, and is transverse to ip on a smaller neigh-

borhood F'CF of W.

The considerations of the proof of 4.1 can be applied to make H trans-

verse to ip everywhere preserving fibers and holding it fixed on F' U Fg X

{0}. Thus H~l(Ep) = WUV with  V disjoint from  W and from EQ X {0}.

Now imitate the proof of 1.1 to excise from EqX I i neighborhood of the

(upward) shadow of V disjoint from  W.  The restriction of H to the re-

mainder of Fg X / is a fiber homotopy of ig  transverse to ip with pullback

W, and 4.1 applies to produce a fiber regular homotopy or isotopy.   D

We remark again that the proof constructs a fiber regular homotopy

(isotopy) of Eq intersecting Fp exactly in  W, which may also be preassigned.

The fibered analogue of the self-intersection case follows easily from this,

as 2.3 does from 2.2. Again the dimension restrictions and obstructions are the

same as the unfibered cases, so we will not give a statement.

As a sample application of this theory we use 4.2 to consider existence and

uniqueness of nonzero sections of a bundle.  Recall from §3 the definition of

the bordism Euler class of a bundle over a manifold as the intersection of two

sections of the bundle.

4.3.   Corollary. If % is a PL or vector bundle of dimension m over

a closed k-manifold R  with m > k/2 + 1, then  % has a nonvanishing section
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iff X(%) — 0 in í2^m(F;|© vR). If £ has a nonvanishing section and

m > k\2 + 2, then isotopy classes of nonzero sections (isomorphism classes

of l-dimensional subbundles) correspond bijectively with  Qj£_       (F;£© vR).

Proof.   By 4.2, x(£) = 0 implies there is a fiber isotopy of any section

to one disjoint from the zero section.  If % has a section we map

£lky_m + l(R; £ ® vR) to nonzero sections by finding a fiber isotopy taking the

section to another one, so that the intersection of the isotopy with the  0-section

is a representative of the given bordism class. 4.2 shows that with the given

dimension restriction this is well defined and a bijection.  D

Corollary 4.3 is just a new proof of the (well-known) fact:

4.4.   Corollary. The sequences

Bon _ , — *o„ -* Ty0n,     BSOn   ^Bso^ TySOn,

are homotopy fibrations up to dimension  2n — 2.

Here  Tyx denotes the Thorn space of the universal X bundle over Bx,

Bx —► Tyx  the natural inclusion. Homotopy fibration means, for example, the

sequence induces a long exact sequence of homotopy groups up to the given

dimension, or that it has the lifting property for nullhomotopic maps of (2n — 3)-

complexes.
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