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THE MULTIPLICATIVE COUSIN PROBLEM AND A ZERO SET
FOR THE NEVANLINNA CLASS
IN THE POLYDISC
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SERGIO E. ZARANTONELLO

ABSTRACT. Let £ be a polydomain in C", the Nevanlinna class
N(S) consists of all holomorphic functions f in £ such that log+ Ifl
has an n-harmonic majorant in €. Let U™ be the open unit polydisc
{zec™ 1zj1< 1,00, Iz,1< 1} THEOREM 1. Given an open cover-
ing (na)QEA of the closure [T of the polydise, consisting of polydo-
mains, and for each aEA a function f, EN(RQ, N v ) such that for all
a,BE 4, fafﬂ is an invertible element of N(, nlnﬁ N U™). There exists
a function F € N(U ) such that for all a € A4, Ffa is an invertible ele-
ment of N(ﬂa nu" ). This result enables us to find the following sufficient
condition for the zero sets of N(U"): THEOREM 2. Let f be a holomor-
phic function in U", n » 2. If there exists a constant 0 <r < 1 and a con-
tinuous function n: [r, 1) = [r, 1) such that

i< 1Zgl oo +1z, 41
! <1 n-1

Jor all points (zy, ++~ ,2,) satisfying \z;|>r, +oe, lz,1>r and
f(z TR zn) = 0, then f has the same zeros as some function F € N(U").

In the above if E“-A-u n(x) < 1, then Z(f) is a Rudin variety in which case
there is a bounded holomorphic function with the same zeros as f.

I. Introduction. The theory of functions in the polydisc U™ has many
peculiarities of its own and is not a mere generalization of the one variable case.
This becomes evident when we consider the zero set problem. In complex di-
mension one, the Blaschke condition is necessary and sufficient for a sequence to
be the zero set of a bounded holomorphic function in the disc; also the zero
sets of H” (U) and of N(U) are the same. In higher complex dimensions
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this is no longer true. The zero sets of H*(U™) and of N(U") (the Nevan-
linna class of functions in the polydisc) are different (Rudin [4]), and the
generalized Blaschke condition is necessary but no longer sufficient for an analytic
set (the zero set of a holomorphic function) to be the zero set of a function in
N(U™) (Chee [2], {3]).

In this article we find a geometric condition on an analytic set so that it
is the zero set of a function in N(U™"). Our method of attack is first to solve
the multiplicative Cousin problem for N(U") and then to find the restriction on
the geometry of the analytic set.

The motivation for this approach is the connection between the possibility
of solving the multiplicative Cousin problem with bounded data in U” (Stout
[6]), and the sufficient condition for the zero sets of HT(U™) given by Rudin
in [5]. To establish this connection, first observe that if an analytic set in U”"
is “locally” determined by bounded holomorphic functions, the quotient of any
two of which is an invertible bounded holomorphic function in the intersection
of their domains, then the solution to the multiplicative Cousin problem is a
bounded holomorphic function whose zero set is the given analytic set. In com-
plex dimension two it is easy to see [7] that the condition given by Rudin on
an analytic set implies that it is locally the zero set of bounded holomorphic
functions with the compatibility conditions mentioned above. Although com-
bined this gives a lengthier proof, the method of first solving a Cousin type prob-
lem, and then obtaining a condition on the zero set can be used in other contexts.
In [7] it was used to extend Rudin’s result to the product of two annuli. In the
present article our concern is with the Nevanlinna class N(U™).

This paper consists of three sections. The multiplicative Cousin problem
for N(U™) is solved in §III, from this it follows that if f is holomorphic in
U™, and its zero set is locally determined by bounded holomorphic functions
(there is an open covering {V,} of the closure of f —1(0), and for each a,

a bounded holomorphic function f,, with the same zeros as f in ¥V, N un),
then f has the same zeros as some function F in N(U"). Observe that we
do not require that fo‘f‘g‘l be an invertible element of H™(V, N Vg N U");
if we did then F would be in H=({U").

In §IV we obtain a geometric condition on the zero set of a holomorphic
function f in U™ so that it is locally given by bounded holomorphic functions,
and thus agrees with the zero set of some function F in N(U"). Actually, not
only will the zero sets agree, but also F will recapture the zeros with the same
multiplicity regarding f. Finally in §1I we prove a technical result which we
use in §III: That in an appropriate polydomain, if a positive n-subharmonic
function has “local” n-harmonic majorant then it must have a global one.

This work was based on the author’s doctoral thesis under the direction of
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Professor Walter Rudin, whose guidance and encouragement he wishes to acknow-
ledge.

II. Subharmonic and n-subharmonic functions.

(2.1) Preliminaries. In what follows, by an analytic arc we will mean a
simple regular analytic arc; similarly a closed analytic curve will be a simple regu-
lar analytic closed curve.

A domain will be a connected open set £ C C, its topological boundary
will be denoted by 9%, and its closure by . If Q isa bounded domain whose
boundary consists of finitely many separated simple closed curves, each one
composed of a finite number of analytic arcs, it has a Green’s function
%@, z,), and the following conditions hold:

@) If T is an open analytic arc in 3%, then Vg% (z, z4)! is a strictly
positive and continuous function of z in I

(i) If ¢ is subharmonic in a neighborhood of £, its least harmonic
majorant in & will be ug(z) =J, q #(@) Vg (z, w)ldm(w).

In (i) and (ii) Vg% (z, z,) denotes the gradient of g(z, z,). Its absolute
value Vg (z, z,)! is equal to the interior normal derivative of g%z, z,). The
measure m in (ii) is the measure induced by 1/2m arc length on 9%Q2.

If a subharmonic function ¢ has a harmonic majorant in a domain £, its
least harmonic majorant (whether it is given as in (ii) or not) will be denoted by

. Suppose that £, is an ascending sequence of subdomains of 2, whose
umon is §,and ¢ is subharmonic in £ with least harmonic majorants u¢

Q
in each §,. Then u," is an increasing sequence of harmonic functions which

either converges to u,if g exists, or diverges at every point.

We will call the boundary of a domain nice, if it consists of -finitely many
separated simple closed curves, each composed of a finite number of analytic
arcs.

(2.2) LemMA. Let Q be a bounded domain, bounded by finitely many
separated analytic closed curves. Let Q! and Q* be subdomains of S with
nice boundaries, such that:

@) e =9a!'va?

(i) 3R = int (02! N 3Q) U int(d02 N 3X), where int indicates interior
with respect to 9S2.

If z5€ Q! N Q2 there exists a constant A > 0, such that for any posi-
tive subharmonic function ¢ in a neighborhood of Q:

1) uD(z0) A Gg) +u2 o)l
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If ' ceompact int@Q! N 3aQ), 9" CeompPact nt (302 N dQ) are such
that 9' VU 3" = 3, then a value for the constant A is

@ A= SUP,can lVgn(zo, w)l

nﬁn(infwearIVg“l(zo, w)l, inf ,cqn IVgnz(zo, w))

AT
y —I;]I B
3' )_ N
L U]
T |
,\'[ LR =
/Fl - Z N
9L \
L -/ \\ oY
all L 1]
— L
\T Q¢ j
N /
N 4

ProOF. Let 3’ Ccompact jnt(Ql N 3Q) and 9" CCOMPat int(dQ2 N aQ)
such that 3'Ud" =9Q. Fix z, €Q! N Q2.
Let

M= sup M%), m'= inf 'y, w)l
weEIN wed'

2
"=inf Mg (zy,w)l, m=min(m’ m").
wed

Since 92 is analytic, and both int(3Q N Q') and int(d2 N 3Q22) are unions of
open analytic arcs, it follows that 0 <m <eo and 0 <M <°, Hence for any
positive subharmonic ¢ in a neighborhood of £ we have
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ug@o) = | $(w) Vg% (zy, w)ldm(w)

aQ=93'vd”
< [, 91V o, @)ldm@) + [ 6()1Vg% 2, )l dm ()

<M fa | $(w)dm(w) + M f |, H(w)dm(w)
<H[S., w9 eo, wlame + [ 61052 o, wlame]
<%,’[fm, () IVg®' (g, w)ldm(w)

+f K o, lan)]

=Y 19 o) +u2’ ol

which proves our claim.

Our next goal is to extend (2.2) when ¢ is positive subharmonic in £ (but
not necessarily defined in a neighborhood of £). In order to do so, we will need
the following lemma.

(2.3) LEMMA. Let U be a domain bounded by finitely many separated
closed analytic curves, and V be a subdomain of U with a nice boundary. Fix
2o €V, and define, for each integer n>0,U, ={z € U: Pad 2 29) > 1/n} and
V,=VnUu,.

If T isan open analytic arc common to both dU and 0V, and K isa com-
pact subset of T, there exist an integer n, and an open set W containing K, such
that for each n>n,, the Green’s functions g ”(z z,) and g V(z, z,) can be ex-
tended to harmonic functions in W. Moreover W can be chosen so that on W
these extensions are uniformly bounded.

PrOOF. Denote the disc centered at the origin and of radius R by D(0,R).
Let V' be a subdomain of D(0, 1),and '’ an open arc in aD(0,1) N3V, Let
r, be an increasing sequence approaching 1,and define ¥, = V' ND(0,r,). If
'17,', denotes the union of V,, its reflection with respect to 3D(0,7,,) and V' N
0D(0,7,,), then any harmonic function in I{é which vanishes on ¥, N 3D(0,7,)
can be extended to a harmonic function in V,, (by the reflection principle). It is
clear that if K' isa compact subset of I'’, one can find an open set W' containing
K' and an integer n, such that W' C V., for every n>n,. Thus, any harmonic
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function in ¥V, which vanisheson ¥’ N3D(0,7,) can be extended to a harmonic
function in W', whenever n > n,.

Suppose that U, V, T, K, etc. are as in the statement of the lemma. The
boundary of U is analytic, so we can extend (by reflection) gY(z, z,) toa
harmonic function in a domain containing U — {zy}. Let C be the component
of oU containing T, then if N is sufficiently large there will be components
Cy of {z: gU(z, z,) =1/N} and C_p of {z: gU(z, zy) = — 1/N}, both
closed analytic curves, enclosing a doubly connected domain D which con-
tains C on which

—1/N<gYC, zo,) <+ 1/N. For the sake of simplicity denote 2, z,) by
g(z). Since g is harmonic in D with continuous boundary values 1/N on Cy
and — 1/N on C_y, %Ng(z) + % is the harmonic measure of C_, with re-
spect to D. It can be seen (p. 247 of [1]) that if g* is the multivalued har-
monic conjugate of g in D, there exists a constant ¢ <0 such that ® =
exp c(g + ig*) maps D, one-to-one conformally, onto the annulus
weC: N <lwl<e®N}, Let V'=®¥ ND),V,=®V,ND),T'=
@), and K'= ®K). Then V' is a subdomain of D(0, 1) and TI'' is an
open arc in 3V’ N 3D(0, 1), also ¥V, = V' N D(0, e°/™),if n>N. Since we
are in the same setting as in the beginning of the proof, there exist ny, >N and
an open set W' containing K', such that any harmonic function in V,,n >
ng, vanishing in  dD(0, €°/™), can be extended to a harmonic function in W'.
If we let W=&'(W"), it will follow that each g "(z, z,) can be extended to
a harmonic function on W whenever n = n,. Also, since each gV" is extend-
ed by reflection, and in D N ¥V, (empty, unless n > N) 0 <glV<gU<iNn<
1, we will have for the extension of gV” (which we also denote by g ") that
lgV”(z, zy)I<1/N<1 whenever zEW and n=>n, 0O

We now prove an extension of (2.2).
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(24) Lemma. Let Q,Q', Q2 beasin (2.2). Fix zy € QN Q2 and
define Q,={z€Q: g%z, 2y)>1/n}, Q=01 NQ, R2=02nQ,.

There exist an integer n, and a constant A > 0, such that for any posi-
tive subharmonic function ¢ in .

Q al a2
Uy "(zg) S Alug "(zo) +uy "(29)]-

1 2
If both ug and ug exist, so does ug,and
1 2
uQ o) SA[UG (o) +ug (o)l

Proor. If n is sufficiently large, the boundary of €, will consist of
separated analytic closed curves, both Q) and Q2 will have nice boundaries,
and the union of the interiors (with respect to 3Q,) of 92, N3} and of
3R, N 322 will be all of 0Q,. So by (2.2),if ¢ is any positive subharmonic
function in :

@4.1) udn(20) < A U (ze) + 4 (z)]

Let 3, ComMPact jnt(3Q, N YY), 9, CeomPact int(3Q, N 3N?2), and
9, U0, =0%,, then the constant A4, in (2.4.1) will be given by 4, =

1
M,/m,, where M, 25uPzean IVg?n(z, z)l, m;, = in inf,ea7 Vg (e, z)l,

n

n = infyepr Ivg®n(, zo)l, and m, —mm(m,,, my).

Choose now 9’ C°™Pact jnt3Q N aN!) and 3" CO™P jnt(dQ N 3N2),

such that 82 =9"'U d". By (2.3), there exists an open set W' containing ' and
al
an integer no, such that for any n = no, the Green functions g ™ can be extend-

ed as harmonic functions to W’,and g 'l'(z, z)I<1 forall zEW and n >
ng. This follows from (2.3) since d',in general, will be a finite union of compact
sets, each contained in an open analytic arc of 32! N 3. Similarly we can find
an open set W" containing 3", and an integer ng, with tl;e same properties as

m

W' and ng, but with respect to the Green functions gn"(z, z,) instead.
Since ' U 9" = 39, we can choose W' and W" such that W' NQ C Q!
and W' NQCQ2,
1 1
The extensions of ga"(z z,) to W', which we also denote by gn"(z Z4)s

are uniformly bounded in W', for n>ng. Therefore there exists a subsequence
ol
& "k converging uniformly on compact subsets of W’ to a harmonic function A.

1
Since for any z € Q! ,gn"(z, z,) increases to g% (2, 2,), we must have h(z) =
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1
g% (, z,), in Q! N W', and hence, for all z € W' (recall that we can extend

g% l(z, zy) to W').

1 1
Since any convergent subsequence of gn" converges to g"z , and
1
Q
since the functions g " are uniformly bounded in W', it follows that

1
lim,_, ., gn”(z, zy) =g% l(z, z,) uniformly for z in compact subsets of W',
Let U' and U" be two relatively compact open subsets of W' and W"
respectively, such that
(i) al C UI and a" C U”.
1 -
(i) Vg% (z,2o)| >0 forall z€T’,and IVgﬂz(z, zy)1 >0 for all
zeU".
. . 1
Since lim,,_, g“”(z, z5)= g2 l(z, z,) uniformly on compact subsets of
W', we will have the same type of convergence for the gradients. Thus if m'=

inf,ey WG '@ z)|, for all sufficiently large n:
1
(242 inf IVg®5(z,z,)l > m'/2> 0.
zeU’
Similarly, if m" = inf, y» IVng(z, zo)l, for all sufficiently large n:

2
(24.3) inf 1VE®n(z, z0)l > m"[2> 0.
z€U

We next observe that gﬂ”(z’ Zy) =gﬂ(z’ zo) — 1/n. Hence Vgn"(z' Zy) =
Vg (z, 2y). Soif M=sup,cyq Vg (z, z,)|, for sufficiently large values of n:

2
(4.9 sup lVgn"(z, zg)l < 2M.
F{=19 0

Now choose n,, so that for all n=>n, (2.4.1), (2.4.2), (2.4.3), (2.4.4) hold,
and such that 32, N(U'VU")=9Q,,.

For each n>ny, let 9, C°™Pact ' N9QL and 3, CmPt " N a2,
with 3}, U3, =0,. Then by (2.4.1) we have, letting m = min(m’, m"), for all
n=ng:

(24.5) un(zg) < @Mm) [ (zg) + udA Gz,

If u;’l and ugz exist, taking limits on both sides of (2.4.5), we will have
1 2
ug(z0) < (4Mfm) [ug " (@2o) + ug " (o)) <

proving the existence of uf; . O

REMARKS. In (2.2) and (2.4), we assumed that 982 consisted of separated
analytic closea curves. If instead 9% is nice (that is, finitely many disjoint closed
Jordan curves, each composed of finitely many analytic arcs), and {2, Ql %}
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satisfies all other requirements for (2.4), we can map £ one-to-one conformally
onto a domain whose boundary consists of closed analytic curves. Let x be the
conformal map, then X extends to a homeomorphism between the closure of £
and x(S2), and the triple {x(2), x(R'), x(22)} will satisfy all requirements for
(2.4). Thus we have

(2.5) CorROLLARY. Let § be a bounded domain with nice boundary. Let
Q1, Q2 be two subdomains of S with nice boundaries, such that
i) o=9luQ?,
(ii) 982 = int(d02 N 3R!) U int(aQ N 302).
Let 2, €Q' N Q2 There s aconstant A>0 such that if ¢ is a positive
subharmonic function with least harmonic majorants ug ! and ugz, in Q! and
Q? respectively, then it has a least harmonic majorant u$ in Q,and u (z,) <

AL @) +ud ).

(2.6) DEFINITION. Let ( be an open setin C". A function ¢ defined on
0 is said to be n-subharmonic if

(i) ¢ is upper semicontinuous.

(ii) ¢ is subharmonic in each variable separately.
A function h in O is said to be n-harmonic if:

(i) h is continuous.

(ii) A is harmonic in each variable separately.

Suppose that %, QF, <+, Q% are n domainsin C,with nice boundaries.
If ¢ is an n-subharmonic function in a region containing £% X 8 X +++ X Q8,
its least n-harmonic majorant is given by
Ug(zy,* 0 ,2,) = j;ﬂa s fan5 dwy, 0, w,,)lVgna(zl, w e

1Ve%° (z,,, wp)l dm(w,) * + + dm ().

IF{QF} e { Q%1 are sequences of domains with nice boundaries, increas-
ingto Q%, -, (94 respectively, and ¢ is an n-subharmonic function in Q% X
+++ X Q8 with n-harmonic majorants Uy, in each polydomain QF X«
X Qf‘, then u, ; is an increasing sequence of n-harmonic functions which either
converges to the least n-harmonic majorants of ¢ in Q% X ¢+« X Q8 if it exists,
or diverges otherwise at every point.

(2.7) LEMMA. Let S be adomainin C and Q', Q2 be two subdomains
of Q, such that {Q, Q, Q2} satisfy the hypothesis of (2.5). Let QF,++ , Qb
be domains in C with nice boundaries,and ¢ be a positive n-subharmonic function
in QX QBX «++ X Q8 with n-harmonic majorants hy in Q' X QFX +++ X Q°,
and hy in Q32X QX +++ X QP. Then ¢ has an n-harmonic majorant in S X
QX oo X Q8.
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PROOF. (2.5)is the particular case n =1 of the above.

Suppose n > 2. Fix (29,23,+++,29) €@ NQ)X QF X +++ X Q8. For
each k=1,2,+++ define Q, ={z, €QIg®(z,,29)>> 1/k}. Similarly, define
Qf, -+, and for every k let &, bea functionin  defined by

8
Qk(zl)=f B ee o f s ¢(zl’w2’oo' ’wn)IVgn (zg’wz)locn
af 2l

lVg"s(zi’,, wp)ldm(e,) + * * dm(w,).

Each @, is positive and subharmonic in Q. Moreover, if z, € Q1,
®.(z,)Shy(zy,29,°* ,20), and if z, €Q?, &,(z,) <h,(z,,29,*** ,z0),
for every k= 1,2, * . Therefore, by (2.5), there exists a constant 4 > 0,
such that for every k:

f D, (0,) Vg2 (22, w,)ldm(w,)
30,

< lim j'm] B, (w,)1Vg2 @S, w,)ldm(w,)

jroo
<A[h,(z‘l’, cee ,zg) + hz(z‘l’, s z?,)].
Therefore

Q
lim eeo e f ¢(wl,coo ,w”)IVg k(zl,wl)loco
" 2l

k>0
)
Vg™ (2 Wy )l dim (w,) * + + dm(w,)

is finite, and ¢ has an n-harmonic majorantin 2 X QF X -+ X Q%. O

(2.8) DEFINITION. Let ¢ be an n-harmonic function in some open set
0 CC",n=>1. We say that ¢ has local n-harmonic majorants if there is an
open covering {0;};e; of 0, and on each set 0; N 0 an n-harmonic majorant
h, of ¢.

Our aim is to show that for certain classes of product domains (domains
if n=1) it is the same for an n-subharmonic function to have an n-harmonic
majorant, or local n-harmonic majorants.

We will start by establishing a pattern for partitioning a circle domain.

(2.9) NotaTiON. Let £ be a bounded domain in C whose boundary
consists of separated circles. Assume that the outer circle is centered at the
origin and has radius one. We associate with £ a sequence of partitions, as
follows.

The sets of the first partitionare Q) ={z €Q: Rez <8} and Q) =
{z€Q:Rez>—5,}, where 0<38, <% is chosen so that both Q] and
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Q! have nice boundaries. This can be done if we make sure that the lines
Rez =0, and Rez=—§, are not tangent to any of the circles that compose
the boundary of £2.

The second partition is a refinement of the first. The sets which are con-
tained in Q] are Q2 ={z€9Q]:Im2<3,} and Q] ={z€Q}: Imz>-35,},
where &, is chosen so that ©2 and Q3 have nice boundaries. In an analogous
way we define Qg and QZ, as the sets of the second partition which are con-
tained in j.

o

o

In this manner, dividing alternatively with respect to the real and imaginary
parts, we have a sequence of partitions for . The composing sets are connected
open sets with nice boundaries. Also the diameters of the sets of the nth partition
approach zero as n gets large.

(2.10) THEOREM. Let S, 8%, , 8 be n bounded domains in C,
whose boundaries consist of finitely many separated nondegenerate Jordan curves.
Then any positive n-subharmonic function ¢ in £, X Qﬁ X eoe X Qs with
local n-harmonic majorants has an n-harmonic majorant.

ProOF. We can assume that each domain £, , £, is bounded by
circles and that the outer circles have radius one and are centered at the origin
(circle normalization theorem).

Suppose ¢ does not have an n-harmonic majorant in £, X ++ X Q5.
Decompose 2, as in (2.9). Then by (2.8) ¢ cannot have n-harmonic major-
antson both @1, X QX +++ X Q5 and Q;ZX X ¢+ X Q. De-
composing 2 as £, we cannot have n-harmonic majorants on both Q; 1 X
SZ;, X eeeX Q, and Q:‘ L X Q;z X +++ X Q4. Choose the polydomain where

¢ does not have an n-harmonic majorant, and continue this process. The diameter
of the polydomains on which there is no n-harmonic majorant eventually decreases
to zero. But there is an open covering {0;} of £, X 25X «++ X §;, such
that on each 0; N (R, X *** X ;) ¢ has an n-harmonic majorant. One of
the polydomains on which ¢ has no n-harmonic majorant will fall inside some
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Oj N (84 X+« X Q5 ), which is a contradiction. Therefore ¢ must have an
n-harmonic majorant. O

III. The multiplicative Cousin problem for N(U™).

(3.1) NOTATION AND DEFINITIONS. The field of complex numbers will be
denoted by C, and the domain of integers by Z. U will be the open unit disc
and T its boundary.

For any positive integer n, and any set S C C, S” will be the cartesian
product of n copies of S. A pointin C" will be denoted by (@zy,25,00,
2,), and sometimes by z = (z,,2"), where z' = (z,,*+*,2,). C" will be en-
dowed with the usual algebraic and topological structures.

Let zEU" and w € T", then the n-dimensional Poisson kernel

l—lzll2 1—lz,I?
Il —z,@,12 Il —z,0,2

will be denoted by P(z, w). The class of complex Borel measures on T" will
be denoted by M(T"), and m, will represent the Haar measure on T".

If p€MT") and f(2) =L n P(z, w)du(w), where z € U, f will be
called the Poisson integral of u and represented by P [du].

Let ©Q be an open setin C”. H(2) will be the class of holomorphic
functions in Q, H*(S2) the class of bounded holomorphic functions in £2,
N(Q) the class of functions f € H(2) such that log*Ifl has an n-harmonic
majorant, and h!(S2) the class of functions f € H(2) such that [Re f| (the
absolute value of its real part) has an n-harmonic majorant. If Q is the poly-
disc U”, N(U") can be characterized as the class of holomorphic functions f
in U™ for which

sup f log* If(rw)ldm,(w) < o,
o<r<t "
and h!(U"™) as the class of holomorphic functions in U™ whose real parts are
Poisson integrals of measures in M(T™).

We say that F is locally in N(S2) if there exists an open covering {2}
of § such that for each a, f restricted to 2, N Q belongs to N(2, N Q).
The class of functions locally in N(S2) will be denoted by Ny o (). Similarly
we define hl o (). Observe that both IRe fl.and log* If| are n-sub-
harmonic. From (2.10), it follows for a suitable polydomain £2, that

(3.1.1) Ny oc () =N(EQ),

(B.12) hloc @) =hr1(Q).

The class Ny o (§2) has the structure of an algebra. We denote the group
of its invertible elements by inv N ¢ (). It is easy to see that if Q is
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simply connected, then f€inv Ny oc (S2) if and only if f=expg with g€
hll,oc (Q). Clearly, A'(22) has the structure of a vector space.

REMARK. For a class of holomorphic functions in an open set £ C C",
invariance under unitary maps is desirable. This will not be the case with the
classes defined above unless € is a polydomain. Except for a few instances, these
classes will be considered only over polydomains.

All other notation introduced in this section will be standard.

The following lemma closely resembles Lemma 1.2 of [6].

(3.2) LeMMA. Let f€ER'(U™),and let N, and \, be disjoint arcsin T.
Define Vi’ j=1,2,to0 be the union of U, the interior of )\j, and the exterior of U
in the Riemann sphere S2.

Then, for all z € U", we may write f(z) =f,(z) +f,(z), where f; €
HV; X U1, f,€n'(U"),f,€n'(S* - U)X U"~1),and f,€r' (X U"T)
for some open set Q; in C containing )\j.

PROOF. Let E={k€Z":k; >0,+*+,k, >0,0r k,<0,+**,k,<O0}.

Given k €Z",let EY(k)={j€Z": k; <j,,*** .k, <j,} and
E-(K)={j€Z: k, =], "k, Z]n}.

Let z€U" and w € T"; the series expansion for the Poisson Kkernel is

P, )= 3 1z, %1 et |z [Fn (Zl -) ...(’m—)

kez;n 1 n 13'1—[001 Tz_mTwn s

and we define
z, _ \F1 z k
(G2l) K@z w)= 3 lz; *1 ... Iz,, [*n (——l- wl) RX (—n- w, "
kEE Iz, Iz, |
It can be seen that
2

K(z, w) = Re — — — 1}..

(3.2.2) ( ) ;(1 —_ zlwl) cee (l —_ znwn) z

Let f be the given function, and write it as f=f'+ f", where
'@, 25,00,2,)=f(0,25,°++,2,) and f"=f—f". The function f' is
clearly in AY(S2 X U™~ 1), so it suffices to prove the lemma with f replaced
by f".

Let f"=u + iv. Since f" € h'(U"), there is a measure p € M(T")
such that u =P[du]. Soif 0<p,,***,p, <1, we may write

i0 i0 A 4l |k, |
(3.2.3) u(ple l’ cee pne ﬂ) = kgE ”’(k)pl 1'¢ee pn n eiklol e eiknan'

But f"(0,2,,°**,2,)=0,and u=Ref", so we must have
4, ky,*** ,k,) forall choices of k,,*** ,k,. Thus the summation in (3.2.3)
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extends over the set E¥(1,0,+++ ,0)UE~(~1,0,+++,0).

Let h be areal function in C*(T) which vanishes identically in a neigh-
borhood of A; and is identically one in a neighborhood of A,. Then h(w,) =
e Wi, C, =C_pyand le, |=0(m=2).

Define

_ 2
f®= [, 1 [(1 —G) e (=) l] v

and

— 2 —
£,) = fT (1 —h(ey) [(1 SR 1] du(w)..

Clearly each g; is holomorphic in V; X U™, and for some imaginary
n

constant v,f =g, +g&, + 7.
Proof that g, € h'(U"). Let z € U™, then

Reg, ()= [ h(w))k(z w)du(w)
T

(324) =, f kG, w)du()
T

+ i f [T + T, wit ] k@, w)du(w).
m=1"7"

Let u, and v, be measuresin M(T") such that the Fourier transfclrm
W, is the characteristic function of {k €Z": —m + 1<k, <-1} and v,
is the characteristic function of {k €Z": 1<k, <m — 1}. Both u, and
v, are the zero measures.

For some absolute constant C, u,, and »,, have norms no larger than
Clog(1 + m).

Let A4,,,foreach m=1,2, -+, be a measure on T" defined by
d4,, = ¢, wT [du — d(uen,,)] + 6, @7 [du - d(uev,,)].

If 14,1 is its total variation, we have

4, <2Clull le,, |1 +1og( + m))

forevery m=1,2,+++. Thus Z7_, l4,,Il <e,s0 Z_, 4, isameasure
in M(T™).

Since f o [, wT + ¢, W] k(z, w)du(w) =J T,,P(z, w)dA,,(w), substitut-
ing in (3.2.4) we have Re g,(z) = [ o P(z, w)do (w), where 0 = cou +
Zr -1 A,. Being Reg, the Poisson integral of a measure, it follows that

(3.2.5) g En\(UM).
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Proof that g, €h'((S% - U)X U""!). Let z €U™. Then

gl(zl, z') -g(1/zy, z')
2
0oz (=)

= [ h@)PG;, @) du(w).
Tn
Taking real parts:
Re g,(z;,2') ~ Re g (1/7;, z")
(3.2.6) o
= [ h@)P@,, ©)1 +KE, @) due).
Tn

But it vanishes off E, so the second term above equals
f _h(@,)P@y, @) (1 + P, &) du().
T

If we take absolute values on both sides of (3.2.6), we then obtain

Reg,(z,,z")~Reg, (z_.l, z)
1

< f Ih(w )Pz, w,)(1 + P(E', w"))dlul(w).
Tn

The last term above is n-harmonic, and since g; € RY(U™), it follows that
IRe g,(1/Z,, 2')| has an n-harmonic majorant in U™ which we will denote
by ¢.

Suppose now that

z2=(z,,2)E((S2 - U)X U™,

then IRe g,(z,, z")I < ¢(1/z z'). Since ¢(1/2;,2") is n-harmonic in ($? — U) x
U™~ 1, it follows that:

(327 g ER(S? -T)X U™ Y,

Proof that g, € h'(Q, X U"'). The function h was chosen so
that it vanishes identically in some neighborhood I' of A;. With center at some
point of A, take a circle C, such that the portion of T enclosed by C con-
tains A,, and is contained in I'. We also impose on C the following condi-
tions: if £, &" are the points where C intersects T, hy is the n-harmonic
majorant of IReg,| in U”",and hs 2_g that of IRe g,| in (§2-TD)X
U™, then the nontangential limit of hy(z,, 0, *** , 0) and of

hsz_U(zl,O, *++,0) exist as z, approaches £ or .
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Let ©, be the disc bounded by C,andlet W=UU (2 -T)UT. It
can be seen, by its definition, that g, EH(W X U "=1), QOur goal then is to
prove that [Re g;| has an n-harmonic majorant in Q, X U"~!.

If 0<r<1,and (z;,z')€EQ, X U"1, we have

Re g,(z,, rz')
(32‘8) = fC an—l Re 81(& rw')PC(zh E)P(Z', w') dmn—l(w') dml(s)

where Po(z,, &) is the one-dimensional Poisson kernel for the disc €2, and
m, is the Haar measure on C. This follows because Re g,(z,, 7z") is a con-
tinuous n-harmonic function for (z,, z') in QXU n-1and as such must be
the Poisson integral of its boundary values.

Also, if £ €U, we have [Re g,(¢,rw')I < hy (%, rw'), and hence:

fT .y Re gyt re)ldm,_ () < fr"-' hy(, re'ydm,_,(«")

=hU(£s 09 cee ,0)°

Similarly, if ¢ €82 - U:

f IRe g, (¢, rw")ldm,_ (") < ho, G re)dm, (@)
-1 rn-1 Sz’_U

=hs:_ﬁ (s’ 0’ coe ,0).

Since the nontangential limits of both A (%,0,0, <+, 0) and of
hoa &0, 000, 0) exists as ¢ approaches either ¢’ or &", for some con-

stant M,any ¢ € C,and any 0<r <1, we have

_['n . IRe g, (¢, rw)ldm,_,(w") <M.
-

Thus, forany 0<r<1:
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(3.29) _[Cf . IRe g, (¢, rw)ldm,,_ (w"ydm, () <M <.
T

The above now implies that there exist a sequence 7, increasing to 1, and
a measure A € M(C X T"~1), such that the measures

Re g, ¢, ryw')dm, _ (w")dm (§)

approach d\(§, w') weakly as 7, approaches 1. Thus, taking limits on both
sides of (3.2.8), we obtain

Reg,(z,,2) = f

g1 76 DPE )G, &),

for all points (z,, z") € 2 X U"~!. Hence

(3.2.10) g ER(Q, X U™ D).

In an analogous way, we prove that g, €h'(U"™), g, €h'((S* - T)X U"™1)
and g, €h'(Q, X U"™!) for some open disc £, containing A,. Then if we
set f, =g, and f, =g, +v, f" =f, +f, gives us the desired decomposition
of f.. O

For the following lemma, set:

X ={z€C":z]-=xj+i,)/'l-,--’/z<xl <1;

byl eee, dx, 0, Dy beee Iy, 1 <13,
X,={z€C z;=x;+1y;, - 1<x; <¥%;

gl eee, I, 0 dyglyeee, ly,I<1}.

(3.3) LemMA. If fER'(X, N X,), then we may write, for all z € X,N X;,
@) =f,@) +f,@) where f, En'(X,) and f, ER'(X)).

PrOOF. Let a be a conformal map from U onto {x +iy €C: IxI<1,
¥yl < 1}, and B from U onto {x +iy €C: IxI< %, |y| <1}. We con-
sider § extended to a homeomorphism between the closures of its domain and
its range.

Let A, ={%+iy: Iyl <1}, A, ={-%+iy: lpI<1},andlet A,

A, be the preimages of A;, A, under §. Let V, and V, be the domains
of the Riemann sphere S2 constructed from A, and A, asin (3.2):

V,=UUint\, U(S2-T) and V,=UUVint?, U (S2-T).

Using the reﬂection-principle‘we can extend § to a conformal map B,
from V; onto {x +iy: —%<x<1+1%, lyl<1}: given a point z, lzI>
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1, we define B,(z) =1 — §(1/z). Similarly B can be extended to a conformal
map B, from V, onto {x +iy: -1 —%<x<¥%, lyl<1}.

Define ‘®: U" — X, NX, by ¥(,,2,, " ,2,) = B,), oz,), ***
o(z,)), and let <I>,- be the extension, induced by B;, of ® to VJ X yn-i,
Then the range of ®; contains X; for j=1,2.

Let f be the function of our lemma, and set G =F o &, Since G €
h'(U™), by (3.2) we have G =G, + G,, where G; € H(V; X U""1),G; €
h'(U™), G, €R'((S? - U)X U""1),and G; €h'(Q; X U"™") where &
is an open set containing A;.

If we define f; = G;o ®;,on X; NX, we will have f=f, +f,, where

[ERE, NX,), [EW X -X, NX,) and f €' (@71 (X UY).
Since ® (2 X U1y =g (@) X {x +iy: xI<1, IyI<1}"~1, and

B l(SZJ.) is the intersection of an open set containing A; with X; N X,, it
follows that f; is locally in hl(Xi). Therefore, by (3.1.2), f; € h'(X)), for

j=12. 0O
As a corollary to this, we have

(34) CorOLLARY. If F is an invertible element of N(X; N X,),
thenon X, N X, we may write F=F,F, where F; isan invertible ele-
ment of N(X;).

PrRoOF. Ifboth F and F~! arein N(X, N X,), then log* IF| and
log™ IF| have n-harmonic majorants in X, NX,. Soif F=expf and f=
u + iv, lul must have an n-harmonic majorant; i.e., f € A}(X ; NX,). Lemma
(3.3) now asserts that f=f, +f, where f; €h'(X)). If we set F;=
exp f;,j =1, 2, then clearly each F; is an invertible element of N(X), and
F=FF, 0O

Next we prove the multiplicative Cousin problem with N-data.

(3.5) THEOREM. Let {V,},c, be an open covering of U™, and for
each o let f,ENWV,NU"). If forall aand B, f, fg 1 s an invertible
element of N(V, N Vg N U™), then there exists F € N(U") such that for all
a €A, FfZ' is an invertible element of Ny g (V, NU™).

REMARK. If each ¥, N U™ is a polydomain as described in (2.10), then
the conclusion above would be in terms of N(V, N U") instead of
Nyoc (Vo NU™). This will be the case in the application of the result
we give in the next section. Also, it is always possible to find a refinement of
the given covering consisting of adequate polydomains.

Proor. It is more convenient to work in a polycube than in a polydisc.
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Let
X} ={zeC”:zl.=z,.+iyj,—l<xl <.
byl e oo, Ix, Dyl eee Iy, 1< 1),
X2 ={z€Chz;=x+1y;,- %h<x, <1,

xylyeee,Ix,  ly dy ooy, 1<13,
and X =X} uxi

As we just mentioned, we will prove the theorem for the polycube X.
Suppose the theorem is not true. If there were functions F; GN(X"]) such
that for every a €4 and j =1, 2, F;f; " belonged to inv Ny oc(X; N V),
then F\F; ! =F ,f-1f F;! would be invNy oo (X{ NX2NV,) forevery .
Thus F,F;! would be in invN} oc (X1 N X3 =invN(X]! NnX2).

Then, by (3.4) we would have F,Fy! =G5 !G, where G; € invN(X}),
j=1,2. If we define F=F,G, on X!, F=F,G,on XZ,it is clear that
FEN(X) and that, for each @ € 4, Ff;! €inv Ny oc (V, N X). But this is
not possible, since we assumed the theorem not to be true. Thus both F, and
F, cannot exist. Suppose F; does not exist, and define

Xi={zeX}:-%<y <1}, X}={zeXxl:-1<y, <H}

Arguing as before, the Cousin problem cannot be solved on both of these poly-
cubes; so on one of the above, call it X’;z, the induced problem is unsolvable.

Iterating this procedure, proceeding cyclicly through the real coordinates of
C", we obtain a nested sequence Xll D X:2 DeeedD X,’:,'” D+« of poly-
cubes with diameters eventually decreasing to zero, on none of which we are
able to solve the induced problem. Since {V,},c, is an open covering of X,

for'some a €A and some integer m we will have X,’;’" CV,. Butthen f,

. . k e
solves the induced Cousin problem on X, ™, a contradiction. Thus the theorem
must be true. 0O

IV. A zero set for N(U™).

(4.1) NOTATION AND DEFINITIONS. The zero set of a function f in
H(2) will be denoted by Z(f). Two functions f, f, € H(Q2) are said to
have the same zeros if there exists a zero free holomorphic function h € H(S2)
such that f, = f,h; thus multiplicities are taken into account.

We will say that the zero set of f€ H(S) is locally given by bounded
holomorphic functions if there exist an open covering {V,} of -Z_f—j in C"
and for each « a function f, EH"(V, N Q) with the same zerosin ¥V, N
Q as f.
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Let © be a polydisc and f€ H(2). Then Z(f) is said to be a Rudin
variety if it is bounded away from the essential boundary of 2 (the cartesian
product of the boundaries of its coordinate discs). If this is the case, Rudin
proved in [5] that f has the same zeros as some F € H*(S2).

Finally, let 0 <r <R << and define:

Ur)={z€C: IzI<r}, T@¢)={z€C:lzl=r},

0, R)={z€C: r< IzI<R}.
We will denote U(1) and 7(1) by U and T respectively.
Recall that for any set S C C,S” denotes the cartesian product of n
copies of S.
(4.2) LEMMA. Let Q,,°*+, 8, be simply connected domains in C.
Let f, and f, be bounded holomorphic functionsin S X <+ X Q,. Then
if fify l. defines a holomorphic function in Q, X « <+ X Q,, it must belong

to N(©2; X =++ X Q).
PRrOOF. There is no loss of generality if we assume that Qi = U, for each

j=1,++,n,and that If, 1, =If,l, =1.
Case 1. £,(0,+++,0)#0. Let r<1 and wE€T". Then

| fierw)
f (rw)

+

log ‘ <log* If,(rw)l + log* sz—(-i:m< = loglf,(rw)l.

Integrating, and applying Jensen’s inequality:

f log* f109)
" f. 2 w)

Since the above holds for all 7 < 1, it follows that f,f;! € H{U™).

Case II. f,(0,+++,0)=0. Since f, # 0, for some (@;,***,a,) €
U'f(@y,***,a,)#0. Foreach 1 <j<n let x;(z) = (z +a)/(1 +72).
Then if ® = (X;,*** ,X,): U" — U"; we observe that (f,f; ') e ® EN(U"),
since it satisfies the requirement of Case I. Therefore f,f; ! = [(f1f5 1) ° @]

o &~ e N(UM).

(4.3) COROLLARY. Let ,,°*<*, S, be domainsin C, whose
boundaries consist of finitely many separated nondegenerate Jordan curves. Let
f1 and f, be bounded holomorphic functionsin S, X «+ X &,. Then if
hiy v defines a holomorphic function in 2, X +*+ X Q,,, it must belong to
Ny X oo X Q).

dm,(w) <= an loglf,(rw)ldm, <-loglf,(0, -~ , 0)l.

‘PrOOF. We can decompose &, X +++ X &, asa finite union of prod-



THE MULTIPLICATIVE COUSIN PROBLEM 311

ucts of simply connected domains. By (4.2), f, f;~ 1 js the Nevanlinna class
of each one of these products. But then, f; f[l islocally in N(Q2, X «*+ X Q,),
therefore by (3.1.1) f,f; 1 ENQ, X ==+ X Q,). O

Suppose now that f € H(U™), and that its zero set is locally given oy
bounded holomorphic functions. This means that there is a collection {V, },e 4
of open sets such that Z(f) c U V,,and such that for each « there is a
function f, € H”(V, N U") with the same zeros as f in ¥V, NU". Let W
be an open set satisfying Z(f) C W C W C U V,,; then the functions f,, to-
gether with the constant function e(z) = 1,Vz € U™ — W, constitute data for
Theorem (3.5). This can be seen since it is possible to find a refinement of the
covering {V,,,C" — W} e, of U" consisting of products of simply connec-
ted domains, and on the overlap of any two of these, the quotient of the corre-
sponding bounded holomorphic functions will be an invertible element of the
corresponding Nevanlinna class. The solution of the multiplicative Cousin
problem then provides us with a function F € N(U") with the same zeros as f.

Our goal now is to find geometric conditions on Z(f) so as to assure
that it is locally given by bounded holomorphic functions.

(4.4) THEOREM. Let n=>?2 andlet f€ H(U"). If there exist a con-
stant 0 <r <1 and a continuous function n: [r, 1) — [r, 1), such that

IN [+ oo+ 1IN, .|
l)\n|<n( : n-1 )\” 1)

for all points (\;,*** ,N,) €EZ(f) N Q*(r, 1), there is a function F € NU")
with the same zeros as f.

ProoF. Fix r<r'<1 and let
c=sup (n(x):r<x<1-(-7r)xn-1)}.

If Ay, M) EZU) NI, DX QE F)X Q' i(, 1)] forany 1<
i<n — 1, we have

A+ eee N,
l7\n|<n( 1 p— Mot )< c<l1.

Therefore Z(f) N [@~1(r, 1) X O, r)X @*~1(r, 1) X Q(c, 1)] =¢&. This
says that the zero set of f in U™! X U(r') X U™ is a Rudin variety

(Z(f) is bounded away from the essential boundary T'~! X T(') X T of
U=1X UG') X U*™Y). Thus, for each 1 <i<n — 1, there exists a function
F,€H>(U'' X U('") X U""") with the same zeros as f in U~ X
ue')yx um-i,
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The polydomains {U*~! X U(")X U""'},c;<n_, do not cover all of
U™. However if we add to this collection the polydomain Q"~i(r, 1) X U, we
do have an open covering of U™. It is clear that we can enlarge these sets so
that they determine an open covering of U" and such that the intersection of
the enlargement of each open set with U™ is the given open set.

Our next step is to construct a function ¢ € H=(Q"~(r, 1) X U) which
recaptures the zeros of f in Q" !(r, 1) X U.

If we fix z' € Q" !(r, 1), then the function f(z’, *) has finitely many
zeros in U, denote these by al(z'), oo, ak(z')(z'), counted according to
multiplicities, and define

k') , ,
@41 @)= [[G-aE) @=C.2,)€00 )X ).
i=1
Clearly ¢ is bounded in its domain. Our goal will be to show that it is
holomorphic and with the same zeros as f. The proof will be similar to that of
the Weierstrass preparation theorem.
Let p be arbitrarily chosen so that r < p <1, and let d = sup{n(x):

r<x < p}. Define foreach p=0,1,2,+++ and e Q" (@, p),

L J' Dn f (Z '9 £)
i “ipi=a f(, 8
where Dn denotes differentiation with respect to z,. Note that Sy(z") is the
number of zeros of f(z',+) in U (there are only finitely many since they all
must lie outside of TI—(E)—) Also observe that the functions S, are holomorphic
in @Q"~1(r, p). Since S, is an integer valued continuous function, it must be
a constant; i.e., So(z') = k for all z' € Q"~!(r, p). Then in (4.4.1) k(z') is
independent of 2.

For fixed z', ¢(z) is a polynomial in z,, which can be written in the
form

S, = £P dt,

$@)=zk + b,z + - +5,(2).

We must show that each b, is holomorphic in Q" ~1(r, p). But Sp(z') =
a,(z')? + + -+ + & (z')? is holomorphic in Q"~1(, p), and for each 1<
i<k —ib;=8;+8;_yb, + -+ +5,b,_; (Newton’s identities). Thus b,,
s+, by are holomorphic in Q" 1@, o).

Since for every p <1, ¢(z) is holomorphic in Q(r, p)"‘l X U, it follows
that it must be holomorphic in Q(r, 1)*~! X U. By its definition it is clear
that ¢ has the same zerosas f in Q" !(r, 1) X U;ie. fo~! isa zero free
holomorphic function.

Since f¢~! and jF{", 1 <i<n -1, are zero free holomorphic func-
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tions, the same will be the case with F;F;! and F;¢~!. Thus, by (4.4.3),
forall 1<ij<n-1, 1"",.1"]-‘l and Fi¢>‘l will be invertible elements of the
corresponding Nevanlinna classes. Theorem (3.5) then shows that there exists a
function F € N(U") with the same zeros as f in U”.

REMARKS. If n(x) is bounded away from 1, then Z(f) is a Rudin
variety, and therefore there exists F € H”(U") with the same zeros as f.

The conclusion of (4.4) would be the same if we replace the condition

N[+ eee + N
|>\,,J<n< : — )

by

I>\,,I<n<”\’|+ cee N 1INy I H oo+ Ix,,l>
n-1
for some 1<k <n,and all points (A;,***,\,) EZ(f) N Q"(, 1).

The condition of Theorem (4.4) is not a necessary one, for if B(z) is an
infinite Blaschke product and f(z,, z,) = B(z;) then the zero set of f does
not satisfy this condition although f isin H*(U?2).

Finally, with regard to Theorem (4.4), an open question is whether the
function F can always be chosen in H=(U"). O
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