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THE MULTIPLICATIVE COUSIN PROBLEM AND A ZERO SET

FOR THE NEVANLINNA CLASS

IN THE POLYDISC

BY

SERGIO E. ZARANTONELLO

ABSTRACT.  Let  SI  be a polydomain in  c", the Nevanlinna class

N(Sl)  consists of all holomorphic functions / in  Í!   such that  log   1/1

has an n-harmonic majorant in  SI.  Let   U     be the open unit polydisc

{z g c": Izj l< 1, • • • , \zn l< l}.  THEOREM 1.   Given an open cover-

ing  (Sla)a^A   of the closure   Un  of the polydisc, consisting of poly do-

mains, and for each  a G A   a function fa e N(Sla C\ Un)  such that for all

a, ß e A, fçjâ1   is an invertible element of N(Sla n SI g D Un).   There exists

a function  F e N(Un)  such that for all  as. A, Ff~     is an invertible ele-

ment of N(Sla DU).  This result enables us to find the following sufficient

condition for the zero sets of N(Un):   THEOREM 2.  Let f be a holomor-

phic function in   Un, n > 2.  // there exists a constant 0 < r < 1   and a con-

tinuous function 17: [r, 1)-* [r, 1)  such that

^<*\-—!-)

for all points (zj, • • • , z„)  satisfying   Izj I > r, • • • , \zn I > r and

/(Zj, • • • , z„) = 0, then f has the same zeros as some function  F e N(Un).

In the above if lim^^.jTj(x) < 1, then   Z(f) is a Rudin variety in which case

there is a bounded holomorphic function with the same zeros as f.

I. Introduction. The theory of functions in the polydisc  U" has many

peculiarities of its own and is not a mere generalization of the one variable case.

This becomes evident when we consider the zero set problem. In complex di-

mension one, the Blaschke condition is necessary and sufficient for a sequence to

be the zero set of a bounded holomorphic function in the disc; also the zero

sets of H°°{U) and of N(U) are the same. In higher complex dimensions
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this is no longer true. The zero sets of H°°(U") and of N(Un) (the Nevan-

linna class of functions in the polydisc) are different (Rudin [4] ), and the

generalized Blaschke condition is necessary but no longer sufficient for an analytic

set (the zero set of a holomorphic function) to be the zero set of a function in

JV(tf") (Chee [2], [3]).

In this article we find a geometric condition on an analytic set so that it

is the zero set of a function in N(U" ).  Our method of attack is first to solve

the multiplicative Cousin problem for N(U" ) and then to find the restriction on

the geometry of the analytic set.

The motivation for this approach is the connection between the possibility

of solving the multiplicative Cousin problem with bounded data in  U"  (Stout

[6] ), and the sufficient condition for the zero sets of H°°(Un) given by Rudin

in [5]. To establish this connection, first observe that if an analytic set in  U"

is "locally" determined by bounded holomorphic functions, the quotient of any

two of which is an invertible bounded holomorphic function in the intersection

of their domains, then the solution to the multiplicative Cousin problem is a

bounded holomorphic function whose zero set is the given analytic set. In com-

plex dimension two it is easy to see [7] that the condition given by Rudin on

an analytic set implies that it is locally the zero set of bounded holomorphic

functions with the compatibility conditions mentioned above. Although com-

bined this gives a lengthier proof, the method of first solving a Cousin type prob-

lem, and then obtaining a condition on the zero set can be used in other contexts.

In [7] it was used to extend Rudin's result to the product of two annuli. In the

present article our concern is with the Nevanlinna class N(JJn ).

This paper consists of three sections. The multiplicative Cousin problem

for N(U") is solved in §111, from this it follows that if / is holomorphic in

Un, and its zero set is locally determined by bounded holomorphic functions

(there is an open covering {Va}  of the closure of /-1(0), and for each o¡,

a bounded holomorphic function fa with the same zeros as / in  Va C\ U" ),

then / has the same zeros as some function F in N(U" ). Observe that we

do not require that faffl   be an invertible element of H°°(Va n V& n Un);

if we did then F would be in H°°(U").

In §IV we obtain a geometric condition on the zero set of a holomorphic

function / in  Un  so that it is locally given by bounded holomorphic functions,

and thus agrees with the zero set of some function F in N(U"). Actually, not

only will the zero sets agree, but also F will recapture the zeros with the same

multiplicity regarding /.   Finally in §11 we prove a technical result which we

use in §111:  That in an appropriate polydomain, if a positive n-subharmonic

function has "local" «-harmonic majorant then it must have a global one.

This work was based on the author's doctoral thesis under the direction of
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Professor Walter Rudin, whose guidance and encouragement he wishes to acknow-

ledge.   .

II.  Subharmonic and n-subharmonic functions.

(2.1) Preliminaries.   In what follows, by an analytic arc we will mean a

simple regular analytic arc; similarly a closed analytic curve will be a simple regu-

lar analytic closed curve.

A domain will be a connected open set  £2 C C, its topological boundary

will be denoted by  3£2, and its closure by  £2. If £2 is a bounded domain whose

boundary consists of finitely many separated simple closed curves, each one

composed of a finite number of analytic arcs, it has a Green's function

gn(z, z0), and the following conditions hold:

(i) If T is an open analytic arc in   3£2,then   Wgn(z, z0)l is a strictly

positive and continuous function of z  in  T.

(ii) If <(> is subharmonic in a neighborhood of £2, its least harmonic

majorant in  £2 will be «"(z) = f3n<p(oo)Ngn(z, co)ldm(oj).

In (i) and (ii) Vifn(z, z0) denotes the gradient of gn(z, z0). Its absolute

value IVgn(z, z0)l is equal to the interior normal derivative of gn(z, z0). The

measure m  in (ii) is the measure induced by  1/27T arc length on   3 £2.

If a subharmonic function 0 has a harmonic majorant in a domain £2, its

least harmonic majorant (whether it is given as in (ii) or not) will be denoted by

«9. Suppose that £2„  is an ascending sequence of subdomains of £2, whose

union is £2, and <¡> is subharmonic in  £2 with least harmonic majorants uAn
si

in each £2n. Then u^n  is an increasing sequence of harmonic functions which

either converges to «" , if  u" exists, or diverges at every point.

We will call the boundary of a domain nice, if it consists of finitely many

separated simple closed curves, each composed of a finite number of analytic

arcs.

(2.2) Lemma. Let SI be a bounded domain, bounded by finitely many

separated analytic closed curves. Let SI1 and £22 be subdomains of £2 with

nice boundaries, such that:

(i) £2 = SI1 U £22,

(ii) 3£2 = int(3£2! n 3£2) U int(3£22 n 3£2), where int indicates interior

with respect to  3£2.

// z0 G SI1 n £22, there exists a constant A > 0, such that for any posi-

tive subharmonic function  (¡> in a neighborhood of £2:

0) u%(z0)<A[uf(z0)+uf(z0)].



294 S. E. ZARANTONELLO

// 3' ccomPact int(3£21 n 3£2), 3" ccomPact int(3£22 n 3£2) are such

that 3' U 3" = 3£2, then a value for the constant A is

(2)       A =
supwe3nIV,?n(z0,co)l

min(infw6a. %" \z0, w)l, infwea» IVg"2(z0, w)l)

such that 3' U 3" = 3£2. Fix z„ G £2! n £22

Proof.  Let 3'CcomPact int(3£21 n 3£2) and 3" C comPact int(3£22 n 3£2)

that

Let

M=   sup  IVgn(z0,w)l,    m'=  inf IVgnl(z0,co)l,
UË3ÎI U63

/n"=inf   lvgn (z0,w)l,     /M = min(m',«î").
wea

Since 3£2 is analytic, and both int(3£2 n 3£2!) and int(3£2 n 3£22) are unions of

open analytic arcs, it follows that 0<m<°° and 0<Af<°°. Hence for any

positive subharmonic 0 in a neighborhood of £2 we have
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JdSl = d ua

< f , 0(«) I V^n (z0, co) I dm (co) +   f   0(co) I V#n (z0, 0))\dm (co)
•'d 3"

< M f   0(co) cfm (co) + M f    ç6(co) ton (co)

"[/   0(co)lVg"1(zo, co)ldm(co) + f    c6(co)IV^"2(z0, w)l<fc»(«jl

M\\       <Ku)\Vga\z0,ü>)\dm(c¿)
*-JdSll

t-f      0(co)IV^2(zo,co)ldm(co)l
an2 • J

m

m

+

= f[Mf(z0) + Wf(z0)],

which proves our claim.

Our next goal is to extend (2.2) when 0 is positive subharmonic in £2 (but

not necessarily defined in a neighborhood of £2). In order to do so, we will need

the following lemma.

(2.3) Lemma. Let U be a domain bounded by finitely many separated

closed analytic curves, and V be a subdomain of U with a nice boundary. Fix

z0 G V, and define, for each integer n>Q,Un—{z&U: gu(z, zQ) > 1/n} and

vn = vnun.
If r is an open analytic arc common to both bU and dV, and K is a com-

pact subset of r, there existan integer nn andan open set W containing K, such

that for each n>n0 the Green's functions g n(z,z0) and g (z,zQ) can be ex-

tended to harmonic functions in W. Moreover W can be chosen so that on W

these extensions are uniformly bounded.

Proof. Denote the disc centered at the origin and of radius R by D(0, R).

Let V' be a subdomain of £>(0,1), and T ' an open arc in dD(0,1) n bV'. Let

rn be an increasing sequence approaching 1, and define V'n= V' nD(0,r„). If

V'n denotes the union of V'n, its reflection with respect to 3D(0, rn) and V' n

3D(0,r„), then any harmonic function in V'n which vanishes on VnC\dD(0,rn)

can be extended to a harmonic function in V'n (by the reflection principle). It is

clear that ii K' is a compact subset of T', one can find an open set W' containing

K' and an integer n0 such that W' C V'n, for every n > n0. Thus, any harmonic
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function in V'n which vanishes on V' n dD(0,rn) can be extended to a harmonie

function in  W', whenever n > n0.

Suppose that  U, V, T, K, etc. are as in the statement of the lemma.  The

boundary of U is analytic, so we can extend (by reflection) gu(z, z0) to a

harmonic function in a domain containing U — {z0}.  Let C be the component

of 3 ¿7 containing T, then if N is sufficiently large there will be components

CN of {z: gu(z, z0) = l/N)   and C_N  of {z: gu(z, z0) - - 1/N}, both

closed analytic curves, enclosing a doubly connected domain D which con-

tains  C on which

- l/N <gu(z, z0) < + l/N.   For the sake of simplicity denote gu(z, z0) by

g(z). Since £ is harmonic in D with continuous boundary values  l/N on Cjy-

and — l/N on C_jy-, MNg{z) + & is the harmonic measure of C-Ar with re-

spect to D.  It can be seen (p. 247 of [1]) that if g* is the multivalued har-

monic conjugate of g in D, there exists a constant  c < 0  such that  $ =

exp  c(g + í£*)   maps   D, one-to-one conformally, onto the annulus

{coGC:ec/JV< lcol<e-c/JV}.  Let  V = $(F n/)), F„ = $(F„ nfl), r' =

4>(r), and Ä"' = <E>(*0- Then V' is a subdomain of D(0, 1) and  T' is an

open arc in W D 3D(0, 1), also  V'n = V n £>(0, ec/"), if « > N.   Since we

are in the same setting as in the beginning of the proof, there exist n0> N and

an open set  W' containing K', such that any harmonic function in  V'n, n >

n0, vanishing in  3D(0, ecl"), can be extended to a harmonic function in  W'.

If we let  W = $~1(W'), it will follow that each g "(z, zn) can be extended to

a harmonic function on  IV whenever n>n0. Also, since each g ■  is extend-

ed by reflection, and in D C\V„  (empty, unless n>N)0<gv<gu< l/N <
v v

1, we will have for the extension of g " (which we also denote by g ") that

\g "(z, z0)l< \¡N < 1  whenever zGIf and n>n0.   D

We now prove an extension of (2.2).
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(2.4)   Lemma.   Let £2, £2*,£22  be as in (2.2). Fix z„ G £2* n £22  and

define    £2„ = {z G £2: £n(z, z0) > 1/«}, £2¿ = £2J n £2„, £22 = £22 n £2„.

There exist an integer n0 and a constant A > 0, such that for any posi-

tive subharmonic function  0 in  £2:

u%n(.z0)<A[uf»(z0) + uf»(z0)].

1 1

If both Uq    and u^     exist, so does u^fand

u$(z0)<A[uf(z0) + uf(zQ)].

Proof.  If n  is sufficiently large, the boundary of £2n  will consist of

separated analytic closed curves, both £2„  and  £22  will have nice boundaries,

and the union of the interiors (with respect to  3£2„) of 3£2n n dSl1   and of

3£2„ fi 3£22  will be all of 3£2„.  So by (2.2), if 0 is any positive subharmonic

function in  £2:

(2.4.1) uj "(z0) < AK [iiJ "(z0) + uj"(z0)].

Let 3; ccomPact int(3£2„ n 3£2„1), d¡¡ ccomPact int(3£2„ n 3£22), and

à'n u ^"n = <^n> ^^ *• constant ^4n  in (2.4.1) will be given by >1„ =

M„/m„, where M„ = supzean   lVg""(z, z0)l, m„ = infze3- lVg""(z, z0)l,

™ñ = infzea„ 'Vg   "(z, z0)l. and mn = min(m„, m£).

Choose now 3' ccomPact int(3£2 n 3ft1) and 3" ccomPact int(3£2 C\ 3£22),

such that 3£2 = 3' U 3". By (2.3), there exists an open set W' containing 3' and

an integer n'0, such that for any n > n'0, the Green functions  g   " can be extend-

ed as harmonic functions to W', and \g "(z, z0)Kl for all zEW and n>

n'0. This follows from (2.3) since 3', in general, will be a finite union of compact

sets, each contained in an open analytic arc of 3£2* n 3£2. Similarly we can find

an open set W" containing 3", and an integer n"0, with the same properties as
n2

W' and «Ó, but with respect to the Green functions g  "(z,z0) instead.

Since 3' U 3" = 3£2, we can choose W' and W" such that W' n £2 C SI1

and W/"n£2C£22.
si1 sii

The extensions of g  "(z,z0) to W', which we also denote by g "(z,z0),

are uniformly bounded in W', for n > n'0. Therefore there exists a subsequence
si1

8    k, converging uniformly on compact subsets of W' to a harmonic function «

Since for any zG£21,g  n(z,zQ) increases to gn (z, z0), we must have «(z) =
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gn (z, z0), in  £2' C\W', and hence, for all z G W' (recall that we can extend

gn\z,z0) to  W).

Since any convergent subsequence of g   n   converges to ga , and

si1 ,
since the functions g "   are uniformly bounded in    W , it follows that

lim„_KX,g  "(z, z0)=ga (z,z0) uniformly for z in compact subsets of W'.

Let ¿7' and t7" be two relatively compact open subsets of W' and W"

respectively, such that

(i) 3'C U' and 3" C U".

(Ü) iV^^z.Zo)! >0 for all z G V, and IVgn2(z,z0)l >0 for all

zGt/".

Since limn_>00g  "(z, z0)=gn (z,z0) uniformly on compact subsets of

W1, we will have the same type of convergence for the gradients. Thus if m =

infze9' IVg  (z, z0)l, for all sufficiently large n:

(2-4-2) inf   I Vjfn"(z,z0)I >m'/2>0.
zeu'

Similarly, if m" = infzS3» lVgn (z, z0)I, for all.sufficiently large n:

(2.4.3) W   I Vg""(z, z0)l > w"/2 > 0.
zeu"

We next observe that /*"(z, z0) =ga(z, z0) - 1/n. Hence Vgn"(z, z0) =

v>n(z, z0). So if M = supze3n Ngn(z, z0)l, for sufficiently large values of n:

(2.4.4) sup     Nga"(z, z0)l < 2M.
zea«,,

Now choose n0, so that for all n > nQ (2.4.1), (2.4.2), (2.4.3), (2.4.4) hold,

and such that 3£2„ O (U' U U") = 3£2„.
For each n>nQ,let 3„ ccomPact ¿7'n 3£2„ and 3^ ccomPact C/"n3£22,

with 3„ U 3^ = 3£2„. Then by (2.4.1) we have, letting m = min(m', m"), for all

n>n0:

(2.4.5) M0n"(zo) < (4M/m) [uf"(zQ) + uf"(z0)\.

If m"    and m"    exist, taking limits on both sides of (2.4.5), we will have

««(z0) < (4M/m) [uf(z0) + uf(zQ)] < «

proving the existence of «".  D

Remarks. In (2.2) and (2.4), we assumed that 3£2 consisted of separated

analytic closed curves. If instead 3£2 is nice (that is, finitely many disjoint closed

Jordan curves, each composed of finitely many analytic arcs), and {£2, £2', £22}
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satisfies all other requirements for (2.4), we can map £2 one-to-one conformally

onto a domain whose boundary consists of closed analytic curves. Let x be the

conformai map, then x extends to a homeomorphism between the closure of £2

and x(£2), and the triple {x(£2), X^1), X(^2)} will satisfy all requirements for

(2.4). Thus we have

(2.5) Corollary.   Let £2 be a bounded domain with nice boundary. Let

£2*, £22 be two subdomains of £2 with nice boundaries, such that

(i) £2 = £21U£22,
(ii) 3£2 = int(3£2 n 3£2!) U int(3£2 n 3£22).

Let z0 G £2' C\ SI2. There is a constant A>0 such that if 0 is a positive

subharmonic function with least harmonic majorants u^    and u^   ,in SI1 and

SI2 respectively, then it has a least harmonic majorant «" in SI, and «"(z0)<

A[uf(z0) + uf(z0)].

(2.6) Definition. Let 0 be an open set in C". A function 0 defined on

0 is said to be n-subharmonic if

(i) 0 is upper semicontinuous.

(ii) 0 is subharmonic in each variable separately.

A function h in 0 is said to be n-harmonic if:

(i) h is continuous.

(ii) h is harmonic in each variable separately.

Suppose that £2", £2", • •• ,£26 are n domains in C, with nice boundaries.

If 0 is an n-subharmonic function in a region containing £2" X £2^ X • • • X £26,

its least n-harmonic majorant is given by

"0(zl•••• 'zn)= /      •"   f       «(«i."* ,ww)IVina(z1,w1)l«"
an*        •'an6

I V¿f°S(z„, co„)| dm{oi¿ • • • dm(uH).

If { £2"}, • • • , { £2f;} are sequences of domains with nice boundaries, increas-

ing to £2a, • • • , £26 respectively, and 0 is an n-subharmonic function in £2a X

• • • X £25, with n-harmonic majorants u^^ in each polydomain Slk X • • •

X Slk, then u^^ is an increasing sequence of n-harmonic functions which either

converges to the least n-harmonic majorants of 0 in £2" X • • • X £26, if it exists,

or diverges otherwise at every point.

(2.7) Lemma. Let SI be a domain in C anci £2*, £22, be two subdomains

of SI, such that {SI, SI1, SI2} satisfy the hypothesis of (2.5). Let Slß, • • • , £28

be domains in C with nice boundaries, and 0 be a positive n-subharmonic function

in SI X £2" X • • • X £26 with n-harmonic majorants hx in SI1 X £2? X • • • X £2S,

and h2 in £22 X £2^ X • • • X £26. Then 0 has an n-harmonic majorant in SI X

£2'3X---X£2S.
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Proof. (2.5) is the particular case n = 1 of the above.

Suppose n>2. Fix (z°,z°, ••• ^^^(Sl1 C\Sl2)XSlßX •••X£2S. For

each k=\,2,"-   define £2fc = {zx G £2\gn(zx, z°) > l/k}. Similarly, define

£2^, •••, £2*; and for every k let 3>fc  be a function in £2 defined by

**(*!) = /       •"/    s<P(zx,c2,--',œn)\Vga\zlœ2)\'"
dSlí dSlk

V¿r" (z°n, œn)\dm(cox) • • • dm(co„).

Each 4>fc  is positive and subharmonic in  £2. Moreover, if z1G£21,

*k(z1)<A1(r„z|, •••,««), and if zx G SI2, $>k(zx)<h2(zx,z%, • • • ,z°),

for every k = 1, 2, • • • . Therefore, by (2.5), there exists a constant A > 0,

such that for every k:

f       %(ux)\Vgn(z°x,ü>x)\dm(ux)
* Oil t.

<lim f     *t(co1)IVi«í»f, «,)!<*».(«!)

<J4[/i1(z?,---,z») + n2(z?,.-.,z»)].

Therefore

lim   f       •••   f      <K^i,'" ,un)Ngnk(zi,"i)\--
k-oo •'3nfc        Jan6

ns
IVs   k(z„, w„)l <*w (coi) • • • dm(co„)

is finite, and 0 has an n-harmonic majorant in SIX Sl& X. - • • X SI6 .  D

(2.8) Definition.   Let 0 be an n-harmonic function in some open set

0 C C", n > 1. We say that 0 has local n-harmonic majorants if there is an

open covering {0.}/er of Ü, and on each set  0, n 0 an n-harmonic majorant

h¡ of 0.

Our aim is to show that for certain classes of product domains (domains

if n = 1) it is the same for an n-subharmonic function to have an n-harmonic

majorant, or local n-harmonic majorants.

We will start by establishing a pattern for partitioning a circle domain.

(2.9) Notation.   Let £2 be a bounded domain in C whose boundary

consists of separated circles. Assume that the outer circle is centered at the

origin and has radius one. We associate with  £2 a sequence of partitions, as

follows.

The sets of the first partition are   £2} ={z G £2: Re z < S}   and £2^ =

{z G £2: Re z > - §„}, where  0<8x<Vi is chosen so that both £2}   and
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£22  have nice boundaries. This can be done if we make sure that the lines

Re z = 8 x   and  Re z = — S x   are not tangent to any of the circles that compose

the boundary of £2.

The second partition is a refinement of the first.  The sets which are con-

tained in £2}   are  £22 = {z G £2} : Im z < 52}  and £22 = {z G £2} : Im z > - 62},

where S2 is chosen so that £22 and £22 have nice boundaries. In an analogous

way we define £2|  and £2^, as the sets of the second partition which are con-

tained in £2i.

In this manner, dividing alternatively with respect to the real and imaginary

parts, we have a sequence of partitions for £2. The composing sets are connected

open sets with nice boundaries. Also the diameters of the sets of the nth partition

approach zero as n  gets large.

(2.10) Theorem. 1er Sla, Slß, • • • , £28  be n bounded domains in C,

whose boundaries consist of finitely many separated nondegenerate Jordan curves.

Then any positive n-subharmonic function 0 in  £2a X £2^ X • • • X £25   with

local n-harmonic majorants has an n-harmonic majorant.

Proof. We can assume that each domain £2a, • • • , £25   is bounded by

circles and that the outer circles have radius one and are centered at the origin

(circle normalization theorem).

Suppose  0 does not have an n-harmonic majorant in  £2a X • • • X £25 .

Decompose  £2a  as in (2.9). Then by (2.8) 0 cannot have n-harmonic major-

ants on both SI1 j X £2^ X • • • X £26   and Sl12X SlßX --• X Sls . De-

composing £2g  as £2a, we cannot have n-harmonic majorants on both  £2' x X

SI1, X • • • X SlR   and SI1, X SI1. X • • • X SlR . Choose the polydomain where
ßl 6 al ß2 b r

0 does not have an n-harmonic majorant, and continue this process. The diameter

of the polydomains on which there is no «-harmonic majorant eventually decreases

to zero. But there is an open covering {Ö.}  of £2a X £2» X • • • X £26 , such

that on each  0.- O (£2a X • • • X £25 ) 0 has an n-harmonic majorant.  One of

the polydomains on which 0 has no n-harmonic majorant will fall inside some
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Oi n (£2a X • • • X £26 ), which is a contradiction. Therefore  0 must have an

n-harmonic majorant.    D

III. The multiplicative Cousin problem for N(U").

(3.1)  Notation and definitions. The field of complex numbers will be

denoted by  C, and the domain of integers by Z.  tV will be the open unit disc

and  T its boundary.

For any positive integer n, and any set S C C, S"  will be the cartesian

product of n  copies of S.  A point in C"  will be denoted by  (zx,z2, *•' ,

z„), and sometimes by z = (zx,z), where z = (z2, • • • ,zn). C"  will be en-

dowed with the usual algebraic and topological structures.

Let zEUn  and co G T", then the n-dimensional Poisson kernel

1-1 z. |2

ll-z„¿oJ2i

will be denoted by P(z, co). The class of complex Borel measures on  T"  will

be denoted by M(Tn), and mn  will represent the Haar measure on  T".

If m EM(T") and f(z)=f „ P(z, u)dß(w% where zEU",f will be

called the Poisson integral of ju and represented by P [dß].

Let £2 be an open set in C ". H(Sl) will be the class of holomorphic

functions in £2, H°°(Sl) the class of bounded holomorphic functions in £2,

N(Sl) the class of functions / G H(Sl) such that log + l/l has an n-harmonic

majorant, and n*(£2) the class of functions fEH(Sl) suchthat   I Re/I (the

absolute value of its real part) has an n-harmonic majorant.  If £2 is the poly-

disc U", N(U") can be characterized as the class of holomorphic functions /

in  ¿7"  for which

sup     f    log+ l/(rco)lc?m„(co)<°°,
0<r< 1   JTn

and k1(UH) as the class of holomorphic functions in  U"  whose real parts are

Poisson integrals of measures in M(Tn).

We say that F is locally in N(Sl) if there exists an open covering {£2a}

of £2 such that for each a,/ restricted to  £2^ n £2 belongs to A^(£2a n £2).

The class of functions locally in iV(£2) will be denoted by A^q,-. (£2).  Similarly

we define h^Qç. (SI). Observe that both   I Re/I.and log+l/l are n-sub-

harmonic.  From (2.10), it follows for a suitable polydomain  £2, that

(3.1.1) 7VLOC(£2) = iV(£2),

(3.1.2) n[oc(£2) = n1(£2).

The class NhOC (SI) has the structure of an algebra. We denote the group

of its invertible elements by inv A^LOC (£2).  It is easy to see that if £2 is
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simply connected, then f E inv NLOC (SI) if and only if / = exp g with g E

wloc (^)- Clearly, «^£2) has the structure of a vector space.

Remark.   For a class of holomorphic functions in an open set £2 C C",

invariance under unitary maps is desirable. This will not be the case with the

classes defined above unless £2 is a polydomain. Except for a few instances, these

classes will be considered only over polydomains.

All other notation introduced in this section will be standard.

The following lemma closely resembles Lemma 1.2 of [6].

(3.2) Lemma. Let f Eh1 (U"),and let \x and X2 be disjoint arcs in T.

Define V,,j = 1,2, to be the union of U, the interior of X-, and the exterior of U

in the Riemann sphere S2.

Then, for all zEU",we may write f(z) =fx(z) +f2(z), where f¡ E

H(VjX Un-1),fjEh1(U"),f¡Eh1((S2 -U)X U^^and fjEh^SljX U"-1)

for some open set Slj in C containing \..

Proof. Let E = {kEZ":kx >0, •'• ,kn >0, or fc,<0,«" ,kn<0}.

Given k E Z", let E+(k) = {/ G Z": kx </«,**•, kn </„}   and

E~(k) = {j EZ: kx> j x, "• ,kn>jn).

Let z EU"  and co G T"; the series expansion for the Poisson kernel is

and we define

(3.2.1) k(z,co)= Z f*/1 ••• K.»*,(t^5í) ' *•• (r-^n) "■
k<=E V 1^1 I        ' Wzn\     "/

It can be seen that

,,_.. K(z, co) = Re!-=—-^--lt..
(3.2.2) \(\-zxo>x)---(\-znun)      [

Let / be the given function, and write it as / = /' +/", where

f'(zx,z2, • • • ,z„) =/(0,z2, • • • ,zn) and /" =/-/'. The function /' is

clearly in hx(S2 X Í/"-1), so it suffices to prove the lemma with / replaced

by /".

Let /" = m + iv.   Since   /" G h1 (If1), there is a measure ßEM(T")

such that u = P[dp]. So if 0 < px, • • • , p„ < 1, we may write

(3 2 3) "0»ie   *. * * * > Pne    ) ■ X, mWPi '   * • • P„ " e""- e  " ".

But /"(0, z2, • • • , zn) = 0, and « = Re /",  so we must have

M(0, k2, • • • , k„) for all choices of k2, • • • , fc„. Thus the summation in (3.2.3)
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extends over the set E+(l, 0, • • • , 0) U E~(- 1, 0, • • • , 0).

Let n  be a real function in  C°°(T) which vanishes identically in a neigh-

borhood of Xj   and is identically one in a neighborhood of X2. Then n(co1) =

^~cmcor,cm=c_m,and   lcml = 0(m"2).

Define

gx(z) = f     n(cot) [        - 2 _        - l] dß(v),
JTn J_(l - COjZj) • • • (1 - co„z„)       J

and

g2(z) = /    (1 - h(ux)) I"        -        2 -        - l] cfp(co)..
JTn (_(1 - colZl) • • • (1 - co„z„)       J

Clearly each g, is holomorphic in  VX Un~1, and for some imaginary

constant y, f" = gx + g2 + y.

Proof that gxEh1(Un). Let z G U", then

Res,(z)=   f    h(ux)k(z, co)dM(co)
J   n

T

(3.2.4) = ^o   f    £(z, co)djn(co)
•'j.n

+   Z    f       [^m<  + Cm"? ] KZ, co)iffl(co).
m=lJr"

Let jum   and vm   be measures in M(T") such that the Fourier transform

Hm   is the characteristic function of {k EZn: - m + I <.kx < — 1}  and  i>m

is the characteristic function of {fc G Z": 1 < fcj <m — 1}.  Both iZj   and

vx   are the zero measures.

For some absolute constant  C, pm   and  i>m  have norms no larger than

C log(l + m).

Let /4m, for each m = 1, 2, • • • , be a measure on  T"  defined by

dAm = cm<¿i W - ¿(M*Mm)] + cmZim [dix - dQi*pm)].

If  \\Am II is its total variation, we have

IUm||<2C||Ml| |cj(l +log(l +m))

for every m = 1, 2, • • • . Thus  2™ = 1 IUmll < °°, so  I,'m=xAm   is a measure

in M(Tn).

Since /T„ [cmco7 + cmw™]/:(z, u)dp.(u) = fT„P(z, co)c£4m(co), substitut-

ing in (3.2.4) we have  Re gx(z) = f „ P(z, co)cia(co), where  o = c0[i +

£™ = 1 Am. Being Re #t   the Poisson integral of a measure, it follows that

(3.2.5) g1Eh1(U").
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Proof that gx Eh1^2 -U)X t/""1).  Let zEU". Then

gx(zx,z')-g(Uzx,z')

=  f    h(ux)P(zx,o>x)--=-r-=-dß(u).
JTn       v     x (1 - C0izx) •••(!- co„z„)

Taking real parts:

Regx(zx,z')-Regx(Uzx,z')

(3.2.6) -
= J     h(œx)P(zx, cox)(l + K(z', co'))d/z(co).

But ß   vanishes off E, so the second term above equals

f     h(œx)P(zx, Wl)(l + P(z, co'))cfM(co).
t"

If we take absolute values on both sides of (3.2.6), we then obtain

Re^ZpzVRegYi-^Al
\ i    /1

<  f     \h(a>x)\P(zx,ux)(l + i>(z',co'))rflpl(co).
•'íT.n

The last term above is n-harmonic, and since gx E n!(i7"), it follows that

iRe gx(\¡~zx, z')\ has an n-harmonic majorant in  U"  which we will denote

by 0.
Suppose now that

z = (zx,z')E((S2-Ü)XU"-1);

then   \Re gx(zx, z')\<4>(\lz,z').  Since <p(l/z~x,z') is n-harmonic in (S2 - U) x

U"~1,it follows that:

(3.2.7) gxEh1((S2-Û)XU"~1).

Proof that   gx E nJ(£2j X U"'1).   The function   h    was chosen so

that it vanishes identically in some neighborhood T of Xx. With center at some

point of Xj, take a circle  C, such that the portion of T enclosed by  C con-

tains Xj, and is contained in  T. We also impose on C the following condi-

tions:  if £', £"  are the points where  C intersects  T, hv is the n-harmonic

majorant of  iRe^l in  ¿7", and h  2  -   that of  iRe^l in  (S2-V)X
S   —U

t7"_1,then the nontangential limit of hu(zx,   0, • • • , 0)   and of

^-y^1'^'"' '^ exist as  zt  aPProacnes t' or £'•



S. E. ZARANTONELLO

Let  Slx   be the disc bounded by C, and let  W = U U (S 2 - U) U T.  It

can be seen, by its definition, that gx EH(W X c7"_1). Our goal then is to

prove that   iRegj I has an n-harmonic majorant in £2j X tV"-1.

If 0 < r < 1, and (z,, z) ESlxX i/""1, we have

Regx(zx,rz')

(3.2.8)      = /c / b_i Re *,«, rco')Pc(Zl, %)P(z', u')dmn_x(u>')dmx$)

where Pc(zx,%) is the one-dimensional Poisson kernel for the disc  £2,   and

nij   is the Haar measure on C.  This follows because  Re gx(zx, rz) is a con-

tinuous n-harmonic function for (z,, z') in Slx X U"'1, and as such must be

the Poisson integral of its boundary values.

Also, if £ G U, we have   \Regx(%, rco')l< A^ßf, reo'), and hence:

f     , \Xeg1(£,ru>')\dmH_l(u>,)< f        hrj(k,ru')dmn_x(œ')

-Äuß,0,"« ,0).
Similarly, if ?GS2 - £/:

f lRe*1«,r«')l<»nll_1(«,)< f       Av      %ruf)4mm_lia')
JTn-l JTn-l  si_~

= As2__(?,0,..-,0).

Since the nontangential limits of both hu(^, 0, 0, • • • ,0) and of

A 2  - (|, 0, • • • , 0) exists as £ approaches either  %' or  £", for some con-
s — u

stant M, any  {■ G C, and any  0 < r < 1, we have

f'    , ^gx(^,ro}')\dmn_x(u')<M.

Thus, for any  0<r< 1:
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(3.2.9) f    f \Rsgx(t,ro>')\dmn_x(u')dmx(%)<M<<*>.

The above now implies that there exist a sequence rk  increasing to   1, and

a measure  X G M(C X T"-1), such that the measures

Res.d, rku)dmn_x(cj')dmx(%)

approach dX(|, co') weakly as rk  approaches  1. Thus, taking limits on both

sides of (3.2.8), we obtain

Re^.z') =   f Pc(z   %)P(z', coVXß, co'),
jcxt"~1

for all points (zx, z) G £2 X U"'1. Hence

(3.2.10) gxEh1(SlxXU"-1).

In an analogous way, we prove that g2 E h1 (U"), g2Eh\(S2 -Ü)X U"'1)

and g2Eh1(Sl2X U"*1) for some open disc  £22  containing X2. Then if we

set fx = gx   and f2 = g2 + y, f" =fx +f2  gives us the desired decomposition

of/".    D

For the following lemma, set:

Xx ={z E C": z;. = X; + iy¡, - % <x, < 1;

Ufa I* •*• , \xn\, lyx\,'" , lv„l< 1},

X2 ={z E C": Zj = Xj + iy¡, -1 <xx< %;

\x2\,--- ,\xn\,\yx\,'" ,lv„Kl}.

(3.3)   Lemma.   // /Ghx(Xx n X2), then we may write, for all zEXx<~î X2,

/(z)=/,00+/200 ™here A 6*'^,) and /2 GA1^).

Proof.   Let a be a conformai map from  ¿7 onto {x + iy EC: \x\<l,

\y\ < 1}, and  ß from  c7 onto {x+iy EC: \x\< H, \y\ < 1}. We con-

sider ß extended to a homeomorphism between the closures of its domain and

its range.

Let Aj = {% + iy: \y\ < 1}, A2 = { - Vi + iy: \y\< 1}, and let X,,

X2 be the preimages of A!,A2 under ß. Let Vx and V2 be the domains

of the Riemann sphere S2  constructed from Xx   and X2  as in (3.2):

Vx = UUint\xD(S2 - Ü)   and    V2 = UU int X2 U (52 - £/).

Using the reflection principle we can extend ß to a conformai map ßx

from  Kj   onto {x + iy: - Vi < x < \ + lA, \y\< 1}:  given a point z, Izl >
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1, we define ßx(z) = 1 - /3(l/z).  Similarly ß can be extended to a conformai

map j32  from  V2  onto {x + iy: - 1 - H < x < #, lj»l< 1}.

Define "*: Un-*Xxr\X2  by 4>(zx, z2, •••,*„)- 03(z,), a(z2), • • •

a(zn)), and let   $;. be the extension, induced by |3y-, of $ to   VjX U"~~l.

Then the range of <I>y  contains Xj for ; = 1,2.

Let / be the function of our lemma, and set G = F ° $. Since G G

h^U"), by (3.2) we have G = GX + G2, where GjEH(Vf X U"'1), G¡ E

h\Un), GjEhx((S2- V)X [/"-^.and GjEhx(SljX U"-1) where £2;

is an open set containing X.-.

If we define fj = Gf ° <£., on Xx O X2  we will have / = fx +f2, where

/;• Gh\Xx n Z2),   /y G h\Xj -Xxn X2)   and   4 G tf&^Çl, X t/""1)).

Since <Ï>/-1(£2/X U"-1) = ßJ-\Slj)X {x + iy: \x\< 1, \y\< 1}"-I,and

ßj'1(Slj)    is the intersection of an open set containing Ay- with XxHX2,it

follows that fj is locally in h%(Xj). Therefore, by (3.1.2), f¡ E h}(X¡), for

/=1,2.   D

As a corollary to this, we have

(3.4) Corollary.   // F is an invertible element of N(XX n X2),

then on Xx n X2  we may write F = FXF2  where Fj is an invertible ele-

ment of N(Xj).

Proof.   If both F and F'1  are in JV^, n X2), then log+IFI and

log-IFI have n-harmonic majorants in Xx DX2. Soif F = exp/ and / =

u + iv, I« I must have an n-harmonic majorant; i.e.,fEh1(Xx n X2). Lemma

(3.3) now asserts that f = fx + f2  where fjEh1(Xl). If we set Ff =

expfjj =1,2, then clearly each F, is an invertible element of N(Xj), and

F = FXF2.   D

Next we prove the multiplicative Cousin problem with A^-data.

(3.5) Theorem. Let {Va}a(=A   be an open covering of U", and for

each a let fa G N(Va n U"). If for all a and ß, fjj1  is an invertible

element of N(Va C\V&C\ Un), then there exists F G N(U") such that for all

a E A, Ff~1  is an invertible element of NLOC (Va n U").

Remark.   If each  Va n U"  is a poly domain as described in (2.10), then

the conclusion above would be in terms of   N(Va n U")   instead of

•^loc (Va n u")- This wil1 be ^ case in tne application of the result

we give in the next section. Also, it is always possible to find a refinement of

the given covering consisting of adequate polydomains.

Proof.   It is more convenient to work in a polycube than in a polydisc.
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Let

X\ ={z G C: Zj = Zj + iyj, - Kx, < &

\x2\,-" ,\xn\,\yx\,->- , \yn\<l},

X2 ={z G C": Zj = Xj + iyf, - Î4<xl < 1,

Ual, — , \xn\, 1^1, ••• , \yn\<\),

and X = X\ \JX\.

As we just mentioned, we will prove the theorem for the polycube X.

Suppose the theorem is not true.  If there were functions Fj G A(^j) such

that for every a EA  and / = 1, 2, Ftf~x belonged to  inv;VLOC(.X'j n Va),

then FxF2-1=Fxf-1faF^1 would be imNLOC(X¡nX2r\Va) for every a.

Thus FXF2X would be in invNLOC(XxnX2) = imN(XxDX2).

Then, by (3.4) we would have F2FXX =G2XGX where GjEinvN(X{),

/ = 1, 2. If we define F = FXGX on X\, F = F2G2 on X2, it is clear that

FEN(X) and that, for each a E A, Ff~1 G inv NLOC (Va n X). But this is

not possible, since we assumed the theorem not to be true. Thus both Fx   and

F2  cannot exist. Suppose Fx   does not exist, and define

X\ ={z GX\: - K <yx < 1},    X\ = {z GX\: - \<yx < %}.

Arguing as before, the Cousin problem cannot be solved on both of these poly-

cubes; so on one of the above, call it x\2, the induced problem is unsolvable.

Iterating this procedure, proceeding cyclicly through the real coordinates of
1 k Ic

C ", we obtain a nested sequence X¡ D X2 2 D • • • D Xmm D • • •  of poly-

cubes with diameters eventually decreasing to zero, on none of which we are

able to solve the induced problem.  Since {Va}aeA   is an open covering of X,
k

for some aG^l  and some integer m  we will have Xmm C Va. But then fa
k

solves the induced Cousin problem on Xmm,a contradiction. Thus the theorem

must be true.   D

IV. A zero set for N(U").

(4.1)   Notation and definitions.  The zero set of a function / in

H(Sl) will be denoted by Z(f). Two functions fx, f2 EH(Sl) are said to

have the same zeros if there exists a zero free holomorphic function A G H(Sl)

such that /j =/2A; thus multiplicities are taken into account.

We will say that the zero set of / G H(Sl) is locally given by bounded

holomorphic functions if there exist an open covering {Va} of Z(f) in C"

and for each a a function /_ EH°°(Va n £2) with the same zeros in   Va O

£2 as /
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Let  £2 be a poly disc and / G H(SÎ). Then Z(f) is said to be a Rudin

variety if it is bounded away from the essential boundary of £2  (the cartesian

product of the boundaries of its coordinate discs).  If this is the case, Rudin

proved in [5] that / has the same zeros as some F E H°°(Sl).

Finally, let  0 < r < R < °° and define:

U(r)={zEC: \z\<r],      T(r)={zEC: \z\ = r},

Q(r,R)={zEC:r< \z\<R}.

We will denote  ¿7(1) and  T(l) by  U and  T respectively.

Recall that for any set S C C,S"  denotes the cartesian product of n

copies of S.

(4.2)   Lemma. Let Slx,m,,,Sln  be simply connected domains in  C.

Let fx  and f2  be bounded holomorphic functions in  SlxX •••XSln.   Then

if fxf2x  defines a holomorphic function in  Slx X • • • X £2n, ir must belong

to N(Slx X • • • X £2„).

Proof.   There is no loss of generality if we assume that  £2- = U, for each

/ = 1, • • • , n, and that  \\fx L - l/2L = 1.

Case I. /2(0, • • • , 0) # 0.  Let r < 1  and  co G Tn. Then

log+
/i(«o)

/(rco)
< log+ \fx(ru)\ + log+ ¡-r^|<- logl/2(rco)l.

fTn l0S

Integrating, and applying Jensen's inequality:

/i(rco)
cAn„(co)<-

T'/2(rco)
dm„(co) <- j" n logl/2(rco)ldm„ <- logl/2(0, • • • , 0)1.

Since the above holds for all r < 1, it follows that fxf2x E H(U").

Case II. /2(0, • • • , 0) = 0.  Since f2 ¥> 0, for some  (ax, • • • , a„) G

U" f(ax, - • ' , an) ± 0.   For each   1 < / < n  let X/CO = (z + (¡Ml + a¡z).

Then if * » &,, • • • , X„): U" -* U"; we observe that (fxf2x) • * G N(U"),

since it satisfies the requirement of Case I. Therefore   /2/2_1 = [(fif2l) ° *]

o í>-1 EN(U").

(4.3)  Corollary. Let Slx, • • • , £2n be domains in  C, whose

boundaries consist of finitely many separated nondegenerate Jordan curves. Let

/j  and f2  be bounded holomorphic functions in  Slx X • • • X £2„.   77ien if

fxf2x  defines a holomorphic function in  Slx X • • • X £2„, it must belong to

N(Slx X • ' • X £2„).

Proof.   We can decompose £2X X • • • X £2„  as a finite union of prod-
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ucts of simply connected domains.  By (4.2), fx f2     is the Nevanlinna class

of each one of these products. But then, fxf2~x is locally in N(Slx X ••• X £2„),

therefore by (3.1.1) fxf2x EN(Slx X • • • X £2„).   D

Suppose now that fEH(U"), and that its zero set is locally given jy

bounded holomorphic functions. This means that there is a collection {Va}ae.A

of open sets such that Z(f) C U^a, and such that for each a there is a

function faEH°°(Va n Un) with the same zeros as /in  Va n U". Let  W

be an open set satisfying Z(f) C W C W C \J Va ; then the functions fa  to-

gether with the constant function e(z) = 1, V z G U" - W, constitute data for

Theorem (3.5). This can be seen since it is possible to find a refinement of the

covering {Va, C" - W}aGA   of U"  consisting of products of simply connec-

ted domains, and on the overlap of any two of these, the quotient of the corre-

sponding bounded holomorphic functions will be an invertible element of the

corresponding Nevanlinna class.  The solution of the multiplicative Cousin

problem then provides us with a function F E N(U") with the same zeros as /.

Our goal now is to find geometric conditions on Z(f) so as to assure

that it is locally given by bounded holomorphic functions.

(4.4)  Theorem. Let n>2 and let fEH(U"). If there exist a con-

stant 0 < r < 1  and a continuous function 17: [r, 1) —► [r, 1), such that

/IX.I + --- + l\,_J\
l\, !<»?(—-, Jn       '\ n - 1 /

for all points Çkx, • • • , X„) G Z(f) n Q"(r, 1), there is a function F E N(U")

with the same zeros as f.

Proof.  Fix r < r < 1  and let

c = sup {r¡(x): r < x < 1 - (1 - r')/(n - 1)}.

If  (Xj, •• • , \)EZ(f) n [Q}-X(r, 1) X Q(r, r') X (?-% 1)]   for any  1 <

1 < n - 1, we have

'\,'<H-—1-)<c<l.

Therefore Z(f) n [Qj-X(r, 1) X Q(r, r') X O"-'-1^, 1) X Q(c, 1)] =0.  This

says that the zero set of / in  ¿7/_1 X t7(r') X U"~' is a Rudin variety

(Z(f) is bounded away from the essential boundary  T'~x X T(r') X T"'* of

t7'-1 X U(r') X U"~'). Thus, for each  1 < i < n - 1, there exists a function

F¡EH°°(U'-X X U(r') X 17"-') with the same zeros as / in t7i_1 X

U(r') X U»-*.
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The polydomains {Ul~x X U(r') X Un~'}x<i<n_x   do not cover all of

U". However if we add to this collection the polydomain  Qn~'(r, 1) X U, we

do have an open covering of Un.  It is clear that we can enlarge these sets so

that they determine an open covering of U"  and such that the intersection of

the enlargement of each open set with  U"  is the given open set.

Our next step is to construct a function 0 EH°°(Q"~x(r, 1) X ¿7) which

recaptures the zeros of / in  Q"~x(r, 1) X U.

If we fix z' G Q"~x(r, 1), then the function f(z', • ) has finitely many

zeros in  U, denote these by ax(z'), • • • , ak^z^(z), counted according to

multiplicities, and define

(4.4.1)       0(z) =  JJ (z„ - cxi(z'))      (z = (z', zn) E Q(r, 1) X U).
i=i

Clearly 0 is bounded in its domain. Our goal will be to show that it is

holomorphic and with the same zeros as /. The proof will be similar to that of

the Weierstrass preparation theorem.

Let p be arbitrarily chosen so that r<p<l,andlet d = sup{r¡(x):

r<x<p}. Define for each p = 0, 1, 2, • • •  and z E Q"-X(r, p),

c^-JLf        —/ttO-f .ft
**°     W J(£l=d    /fr',!)     *   **-

where Dn denotes differentiation with respect to zn. Note that S0(z') is the

number of zeros of f(z', • ) in  U (there are only finitely many since they all

must lie outside of U(d)). Also observe that the functions Sp  are holomorphic

in Qf~x(r, p).  Since 50  is an integer valued continuous function, it must be

a constant; i.e., S0(z') = k for all z E Q"-1^, p). Then in (4.4.1) k(z) is

independent of z'.

For fixed z', 0(z) is a polynomial in zn, which can be written in the

form

0iz) = z„-rZ,1(z')z„--1 + ---+Afc(z').

We must show that each b¡ is holomorphic in  Q?~x(r, p).  But Sp(z') =

ax(z')p + • • • + ak(z')p  is holomorphic in Q"~x(r, p), and for each  1<

i<k - ib¡ = S¡ + S¡_xbx + • ' • + Sxb{_x   (Newton's identities). Thus bx,

• ' • ,bk  are holomorphic in  Q"~x(r, p).

Since for every p < 1, 0(z) is holomorphic in  Q(r, p)"_1 X U, it follows

that it must be holomorphic in  Q(r, l)"-1 X t7.  By its definition it is clear

that 0 has the same zeros as /in Q?~x(r, 1) X ¿7; i.e. /0_1   is a zero free

holomorphic function.

Since f<f>~ '   and fFf ', 1 < i < n — 1, are zero free holomorphic func-
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tions, the same will be the case with FtFj~x   and F¡4>~x. Thus, by (4.4.3),

for all  1 < /, / < n - l,F¡Fj~x   and F¡<t>~x   will be invertible elements of the

corresponding Nevanlinna classes. Theorem (3.5) then shows that there exists a

function FEN(U") with the same zeros as /in  Í7".

Remarks.   If t¡(x) is bounded away from  l.then Z(f) is a Rudin

variety, and therefore there exists F G H°° (Un) with the same zeros as /

The conclusion of (4.4) would be the same if we replace the condition

/iXjI-r---- + \\   A\

by

//lX1l+-- + lXfc_1l+IXfc+1l+>-- + lXnlN>

'\i<n-—i-)
for some   1 < k < n, and all points (\x, • • • , X„) G Z(f) n Q"(r, I).

The condition of Theorem (4.4) is not a necessary one, for if B(z) is an

infinite Blaschke product and f(zx, z2) = B(zx) then the zero set of / does

not satisfy this condition although / is in H°°(U2).

Finally, with regard to Theorem (4.4), an open question is whether the

function F can always be chosen in H°°(U").   □
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