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LINEAR CONTROL PROBLEMS WITH

TOTAL DIFFERENTIAL EQUATIONS WITHOUT CONVEXITY

BY

M. B. SU RY ANARAY AN A

ABSTRACT.   Neustadt type existence theorems are given for optimal con-

trol problems described by Dieudonné-Rashevsky type total differential equations

which are linear in the state variable.   The multipliers from the corresponding

conjugate problem are used to obtain an integral representation for the functional

which in turn is used in conjunction with a Lyapunov type theorem on convexity

of range of integrals to derive the existence of a usual solution from that of a

generalized solution, which thus needs no convexity.   Existence of optimal so-

lutions is also proved in certain cases using an implicit function theorem along

with the sufficiency of the maximum principle for optimality in the case of

linear systems.   Bang bang type controls are shown to exist when the system is

linear in the control variable also.

Introduction.  In the study of optimization problems described by linear

differential systems, one feels that the existence of optimal solutions can be proved

even without underlying convexity hypotheses.  This vague feeling has been made

precise by L. Neustadt [8] for one-dimensional problems and by the author [9c]

for hyperbolic systems in the two-dimensional case.  It is the purpose of this

paper to establish similar existence theorems for optimal solutions for Mayer

systems described by linear Dieudonné-Rashevsky type partial (total) differential

equations.

Two types of theorems are presented on the existence of optimal solutions.

The first type theorem is based on the criterion proposed by Cesari [2d], namely,

the necessary and sufficient condition for an admissible pair to be optimal (in the

case of a linear system) is that the corresponding minimum condition ("minimum

principle")   [2d] be satisfied a.e. in G, the time-domain. The existence of

optimal solutions is seen in the text of this paper, to follow from the existence

of a measurable function k(x, y) which satisfies an auxiliary condition leading
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to the minimum condition mentioned above.  The existence of the required

measurable function «(x, y) is proved using the implicit function theorem of

E. J. McShane and R. B. Warfield [6].

The second type theorem uses the fact that the Mayer type functional can

be expressed entirely in terms of the solutions of the corresponding linear conju-

gate problem   These representations of the functional are then used in conjunction

with a Lyapunov-type theorem on integrals as in Cesari [3], to obtain a usual so-

lution for the present optimization problem in correspondence with every general-

ized solution having the same value for the functional. Since generalized solutions

exist without convexity, the same is therefore true for usual solutions.  The bang

bang phenomenon of L. Neustadt [8] is also observed.

Existence of solutions of the linear conjugate problem is assumed in the

existence theorems for optimal solutions, and this is not restrictive in view of the

previous studies (see author [9b], [9c] and J. B. Diaz-Lopez [5]). An example to

illustrate this fact, is provided at the end of the paper.

2. Notations. We shall follow the basic notations of Cesari [2d]. Thus, let

G be a Sobolev domain in the xy-plane E2 ; and let, for each (x, y) G G,

U(x, y) be a closed subset of Em.  Let T denote the set of all measurable func-

tions u(x, y) = (u1, • • • , um) with u(x, y) G U(x, y) a.e. in G.  Let Wp(G),

1 < p < °°, be the Sobolev class of functions z G LAG) with the generalized

derivatives zx  and zy  also belonging to Lp(G). Let Í2  denote a class of pairs

(z, u), z(x, y) = (z1, • • • , z"), u(x, y) = (u\ • ■ • , um) with z' G Wp(G),

1 < p < °o, i = 1, • • • , n, and u G T, satisfying differential equations and

boundary conditions as follows:

We require that   [z, u]   in Í2  satisfy the  2«  first order partial differential

equations linear in the state variable

dz'/dx "T,A^x, y)zi + Cfx, y, u),

(2.1) '

Sz'/dy =2>,y(x, y)z' + Dfic, y, u),      i = 1, ■ ■ ■ , n,
i

where Au and 7?i;- are in L„(G) and C¡,D¡ arein Lp(G), for each i = 1,

• • • , n  and for each u G T.  Further, Ct and D¡ are assumed to be continuous

in « G U(x, y), for each (x, y) G G. Let B = BG denote the boundary of G

and let us assume that B can be divided into finitely many nonoverlapping parts

sh, h = 1, • • • ,7V, which will be referred to as sides of G.   Usual conventions

are assumed on the orientations of components of B.

Let a denote the arclength parameter on B starting from fixed arbitrary

points of B, 0<ff<Z,, where /  is the total Jordan length of B. Then
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o = a(x, y)  for  (x, y) E B,  and we shall denote by z'ia)  or z^aix, y)) the

values of z' for (x, y) E B,  i = 1, • • • , «.  We require that the pairs (z, «) in

£2  satisfy the boundary conditions:

(I)  For each « = 1, ■ • • , N and for each / of a collection   {i}n   of

indices i = 1, • • • , «  depending on h  (which may be empty), let

ZX°) = Vhi(°)   for aGsh  (ae)-

Here, ^>ni(o) are functions on sh   of class Lp(sn).

We shall consider the problem of minimum in £2  of the functional

(2.2) I[z, «] - £ ¿ f  ftiOjyW dx + ßÄ/(oy(a) (fy],
ft=i j=i   sft

where Pni(o), Qni(a) are given functions Phi, Qhi E L (sh) for some q > 1,

\¡p + llq<\, h = l,--- ,N, i= l,--- ,«.

Let r = r(a) denote the tangent vector along the side sh   and let  cos tx,

cos ty  denote the direction cosines of t.  Then, cix = (cos tx) do and dy =

(cos ty)da so that if irhi(o) = Phi(o) cos(rx) + Qhi(a) cos(ty), i = 1, • • • , «,

then

/i=l  j=1    sh

If a side sft   of G is a segment parallel to the >>-axis (resp. x-axis) then

Pn¡ (resp. Qhi) can be given arbitrary values. We may assume them to be iden-

tically zero.   Boundary conditions (I) and the expression (2.2) for the functional

do not interfere, that is, we assume that, for every pair h, i with i E {i}n, the

corresponding functions Pni, Qhi are identically zero.

As usual, we say that a pair (z, u) in  Q, is optimal for the functional

(2.2) if 7[z, u] <7[z, u]  for every pair (z, u) in Í2.

3. The Hamiltonian.  If X = (X,, • • • , X„), ju « fjttj, • • • , /xn)  denote

any two real vector variables and (x, y) E G, z = (z1, • • • , z") E E", u =

(ii1, • • • , um) E Uix, y), we define M = {(x, y, «)|(x, y)EG,uE U(pc, y)}

and the Hamiltonian 77 as the real-valued function defined on M x E3n,

n

Hix, y, u,z,\u)=Yl frjfj(x, y, u, z) + Ujgjix, y, u, z)]
;=i

(3.1) =ÊË[\V + ̂ -Vi/= i /= i

+ ¿ PV9*, y, u) + itjDft, y, u)].
/=!
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4. The linear conjugate problem. We shall denote by X(x, y) = (Xx, • • • , \),

u(x, y) = (Uj, • • • , nn) any pair of functions defined in G, \, /i¿ G Wp(G),

i = 1, • • • ,n; we shall denote by Ahi(o) the expression

(4-l) \i(°) = ~ M/(CT) c°s öc + X,(a) cos ty,      o G sn,

where / = 1, • • • , n, h = 1, • • • , N. We shall assume that Xf, ¡it, i = 1, ■ • • ,

n, satisfy the system of n first order partial differential equations

(4.2) &T + *¥ * - feT = 2- <V* + %*/<>•

/'= 1,- • • , n, (x, ̂ )ec, a.e.,

with boundary conditions

(4.3) \i(o) = *hl{a),      oGsn, a.e.,

for every h — 1, • • • , TV, and for each / G {/}fc. Note that the values of An¡

are not assigned on sh  for i G {i}h.  Ifaside sh   is a segment parallel to the x-

axis then cos ty = 0; cos tx — ± 1  so that (4.3) reduces to '- n¡(o) = Phi(o),

oGsn,iG {/}/,. Similarly, if a side sh  is a segment parallel to the 7-axis, then

cos tx = 0, cos ty = ±1   and (4.3) becomes X,(a) = Qhl(o), oGsh,iG{i]h.

Relations (4.2) and (4.3) represent the form of the conjugate problem for

the ptoblem of minimum under consideration as determined by Cesari [2d], with

the remark that, in the present situation, the solutions (X,-, u,), 1 = 1, • • • , n, if

they exist, are independent of the control variable u, and the state variable z.

We make the following general assumptions:

(II) The linear system of partial differential' equations (4.2), (4.3) has some

solution (X, m)  with X,-, u,- G Wq(G), i = 1, • • • , n,   Up + 1/q < 1.

(III) For every choice of the function u(x, y) = (u1, ■ • ■ , um), u G Y,

the system (2.1), with boundary conditions (I) has some solution z(x, y) =

(z1, • • • , z"), with z1' G Wlp(G), i = 1, ■ • • , n, and (z, u) G SI.

5. Integral representation. If (z, u) is a pair in £2, if (X, ju) is a solution

of (4.2) and (4.3), the corresponding conjugate problem, then,

N

ZUM")*
/j=li=l    sh

N

h= 1 «{ft* ""* A= 1 « {i}Ä     **

since  ithi(o) = 0 for a G s^, i G {/}A  and ffÄ((a) = \t(o) for ff G sh, i G

Í0A. Then,
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l\z, "1 = £ £ f KiW(o)do~ £Z     f A„.(a)z'(a),

■ £ £ J ["/^'(«O«* + ¥<>>'(*) *>]
,= 1/,= 1     sft

ËE Í wyphfp)da
h=lië{i}nJSh

and by Green's theorem,

(5.1)        7 = * + £ fG [(X,4 + /i,-4) + (Xf, + ßiyy] (x, y) dx dy
¿=i

where

(5.2) "=£   £   /  Ahi(oypni(o)da.
h=li<E{i}h "sh

In view of the conditions (2.1), (4.2), (4.3) the above equation becomes

1=*+£ fit Mi*'+*v>+w+^ - (§■)*]

=»+£ £ J0<w+*v^+£ fjM+wù

n      n

1=1 y=l

so that

7[z, «] = * + £ f„ Ia<Ck, ^)C,(x, y, u(x, y))
(5.3) i=i JG

+ íi,(x, jO^A ^. "(*. y))] dx dy

Remark 2.   The integral representation (5.3) of the functional will be used

in §8 below.

Remark 3.   It is to be observed that if (zv ux) and (z2, u2) denote

any two pairs in Í2  and if (X, u) is the solution of (4.2), (4.3) (independent

of (z, u)), then the above argument can be applied to zx - z2 = z, and the

following increment formula is obtained for A7 = 7[zj, ux ] - I[z2, u2].
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A7 =  JG [H(x, y, zv uv \ fi)- H(x, y, zv u2, X, fi)] dx dy

(5-4)      = L Ê Mx> yWfc y-u0~ c¿x> y> "2))
G 1=1

+ ßt(x, y)(D¡(x, y.uj- D((x, y, u2))].

6.  Minimum condition.  A pair  (z, u) G £2  together with a solution (X, fi)

(with X,-, uf G Wq(G), i = 1, • • • , h) of the corresponding conjugate problem

(4.2), (4.3) is said to satisfy the minimum property provided

H(x, y, z(x, y), u(x, y), X(x, y), /i(x, y))
(6.1)

< 77(x, y, z(x, y), u, X(x, y), jufx, y))

for all « G U(x, y) and almost all (x, y) G G.

In the present case, the inequality above is guaranteed by the following

auxiliary condition:

T¡ [Xyfx, y)Cf(x, y, u(x, y)) + pfic, y)Dj(x, y, u(x, y))]

(6-2)

for all m G {/(x, jO  and almost all (x, j) G G.

Theorem 1. If (z, w) G Í2 and (X, n) is a solution of (4.2), (4.3) then

(z, «) is optimal if (z, u, X, u) satisfies the minimum condition (6.1).

Proof.  The condition (6.2) (which is equivalent to (6.1)) implies that the

integrand in (5.4) is > 0 for almost all (x, y) G G.  Hence A7 > 0, that is,

7[z, u] < I\z, u\.

Remark 4.   The above condition (6.1) is also necessary for optimality if

U(x, y) = U is a fixed compact subset of Em  (see Cesari [2d] ).

Theorem 1 above can be used to prove the existence of optimal solutions,

by showing that there exist control functions satisfying the minimum condition

(6.2). We need the following statement of the implicit function theorem (see

McShane and Warfield [6] and Cesari [3] ).

Proposition 1.   Given any two metric spaces R and S of which R is

a countable union of compact subspaces, and given a measure space G, let

F: R —► S be any continuous function and let 6: G —*■ S be any measurable

function with  6(G) C F(R).  Then there exists a measurable map r\: G —*■ R

such that 6 = Fr¡ that is 6(x) = F(r¡(x)), all xGG.

Theorem 2. Let G be compact and let U(x, y) be a compact subset of
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E"1 for each (x, y)EG and let M = {(x, y, u)\u E U(x, y), (x, y) E G} be

closed.  Let assumptions (II) and (III) hold.  Let

n

Fix, y, u) = £ \(*. /¡Cfic, y, u) + p/x, y)Dj(x, y, u)
y=i

be continuous on M.   Then there is an optimal pair (z, u) E Í2.

Proof.  Let i(x, y) = min [F(x, y, u)\u E U(x, y)]. Then i(x, y) is de-

fined and measurable on G.   Applying the implicit function theorem to the pair

of functions F: M —► El   and /: G —*■ E1, it follows that there is a measurable

function «  on G with u(x, y) E U(x, y) and F(x, y, u(x, y)) = i(x, y) <

F(x, y, u) for all u E U(x, y), for almost all (x, y) E G.  Thus, u  satisfies

(6.2).  Let z E (Wp(G))n  guaranteed by (III) corresponding to this «, with

(z, u) E Í2. This (z, u) is then, by Theorem 1, the required optimal pair.

Remark 5.   Even though Theorem 2 shows the existence of optimal so-

lutions without convexity requirement, the hypotheses of compactness of f/(x, y)

and continuity of F(x, y, u) are rather stringent. These hypotheses are consid-

erably relaxed by following a different approach shown below.

7. Generalized solutions. Let us assume the notations of §2 and consider

the differential system

z'x=^Aijz' + Ciix,y,u);
(7.1) /

.     _ (x,y)EG a.e.,

4=£v "^a*'^")'/
with boundary data

(7.2) z'io) = <phi(o),      oEsh,   iE {i}h.

We assume control constraints of the form

(7.3) uix, y) E U(x, y)   a.e. in G

where  Uix, y) is a closed subset of E™   for each (x, y)EG.  A pair of func-

tions (z, u), z E iWpiG))n, uET,  satisfying (7.1)—(7.3) is referred to as a "usual

solution" of the differential system.

Let p(x, y) = (p1, • • • , pr) be a measurable function defined on G such

that p'(x, y) > 0, i = 1, • • • , r,  p1 + • • • + pr = 1, (x, y) E G.   Let ux,

' ' ', ur be measurable on G, with values at (x, y) in  f/(x, y). Then, the

pair (z, v) with v = (p, ux, • • • , ur) and z(x, y) = (z1,- • • , z") is said to

be a generalized solution of the differential system (7.1), (7.2) if
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4 - AC*. y> *> w)m Z V + Z p'ctf*. y* "/).
/= 1 7= 1

(7.4)
n r

4 ■ /afr ?• z- ») - Z V + Z P^iC*. y. "/).
7=1 7=1

and if the boundary conditions (7.2) hold.

Let  Í2*  denote the set of all such generalized solutions   [z, v].  Let Í2'

denote a closed class of generalized admissible pairs, that is £2' C Í2*  and when-

ever   [zk, vk] G Í2', k = 1, 2, ■ • • , zk —► z weakly in (Wp(G))n, and there is

a measurable v such that   [z, v] G £2*, then there is also (another) measurable

function v such that   [z, v] G Í2'.

Since the control variable does not appear explicitly in the definition (2.2)

of the functional I, it is defined also for generalized solutions, and in this case

it is denoted by 7[z, v]. Let us recall that a generalized optimal pair relative to

Í2'  is an element   [z, u]   of Í2'  such that 7[z, v] < 7[z, v] for all  [z, v ] G Í2'.

Let  V(x, y) = {v(x, y)\v = (p1, • • • , pr, ul, • • • , ur), u,{x, y) G U(x, y),

p'(x, y) > 0, p', u¡ measurable, i = 1, • • •, r,  2£_ y p'(x, y) = 1}  and let

Q(x, y, z) = (flt /2)(x, y, z, V(x, y)) for (x, y, z) G G x E". Thus,

Q(x,y,z)= \(^A2)
/"= 1 7= 1

f2 = Zv/+Zp/Z)^^"/).
7=1 7=1

Pf(x, y) > 0, measurable,

Z Pf(x' & " *' "/*• ^ measurable,
7-1

w/x, ^) G (7(x, j), /= 1, ••• ,r>

for (x, y, z) G G x £*.

By a well-known Carathéodory argument (see Cesari [3]), for r > 2n + 1,

the sets ß(x, y, z) are convex.  Let us assume that they are also closed. Then,

since the differential system (7.4) (and in particular the functions fx   and f2)

are linear in z, it is seen that the closure theorem (6X0 of Cesari and Suryanarayana

[4] can be applied.   [Note that the condition (Fp) of the same paper [4] is

satisfied by r/,,/2).]

Now, we are in a position to prove the following:

Theorem 3.  With the above notation let G be bounded; let M =

{(x, y, v)\vG V(x, y)} and Q(x, y, z) be closed for (x, y, z) G G x E". Let
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{z}n> = {z|3u with iz,v)EO!} be weakly compact in  iWpiG))". (£2'  isa

closed class of generalized admissible pairs.)  Then the functional I[z, v]   attains

its minimum in  S2'.

Proof.  Let i = inîa>I[z, v]. Then, there is a sequence   [zk, vk] E Í2'

suchthat I[zk,vk]—* i.   Since   {z}n'  is weakly compact, there is a subsequence,

say still   {zk} and an element z E iWpiG))n   such that zk —> z weakly in

iWlpiG))n. By a known Sobolev theorem  (see C. B. Morrey [7]), zk^*z

strongly in (¿p(G))"  and zfc|3G —> z|3G  strongly in (¿p(aC))". Applying the

closure theorem mentioned above, we obtain a measurable function v(x, y) such

that   [z, v] E Í2*  and hence by the closedness of Í2',  the existence of a measur-

able function u(x, y) with   [z, v] E SÏ. Furthermore 7[zfc, vk]   depends only

on zk and since  "boundary values" of zk  converge strongly to those of z, it

follows that 7[z, v] = i.   This proves the theorem.

Remark.   For a variety of conditions guaranteeing weak compactness of

{z}n   and other details, see Cesari [2a] — [2c], [2e].

8. Existence of usual solutions without convexity. If for every generalized

solution of the differential system (7.1), (7.2) there is also a usual solution where

the functional 7 takes the same value, then by Theorem 3, §7, it would follow

that usual optimal solutions exist in any closed class of "usual" admissible pairs.

The following Lyapunov-type theorem on the range of vector-integrals, is needed

in this connection.

Theorem 4. Let gl,'",f be fixed elements of (7j(G))n.  Let ßC

G be a fixed measurable subset. Let R= {f E E" If = ZJL x ¡Q.¿; Q¿, i = 1,

'••,r disjoint measurable, U/=iß, = ß}  (that is, R is the set of all values

of the integral 'Er¡=1fQ_gl, as Q¡ describes a decomposition of Q into disjoint

measurable subsets).

Let S = {f E E" | ? = SJ= j fQ ifJg¡)ix, y)dxdy; p/ measurable, pfix, y) >

0,/ = 1, • • • , r, s;=1 p'\x, y) = 1}.  Then R = S.

Proof.  See Cesari [2f] and [3].

Theorem 5. Let G, Uix, y), <pni, A = iA¡¡), B = (t3¿/), C = (C,.), D = (D¡)

be as in §2. Let hypotheses (II) and (III) hold (see end of §4). 77ze«, for every

generalized solution [z, v], there is also a usual solution (w, u) with I[z, v] =

I[w,u].

Proof.   By definition (z, v) satisfies (7.4) which can be written as

zx = Az + P; z   = Bz + ß where
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/> = (/>,,-••, />„),       Pt = Z p'Cfx, y, u,);
7=1

r

Q - 02,, • • •, e„),   ß/ ■ Z p^x*. * «/)•
7=1

Applying the representation (5.3) for 7, we obtain

n

where i> is given by (5.2).  Thus,
n r

1 = v + Z Sr Z p'CWx, 7. "/) + hHx- y> u¡))dxdy.
i=i  a /=i

Using Theorem 4 above, it is possible to obtain a decomposition G¡ of G, j =

1, • • ■ , r, into disjoint measurable subsets G;-  such that

r    r      "

I = v + HL 53 VhcI*> y> "/)+ ihHx> y- "/)]Ä **■
7= 1    "V J= 1

Let w(x, 7), w(x, y), (x, y)GG be the usual solution (admissible pair) defined by

wx = Aw + C(x, y, u);        wy = Bw + £>(x, j, 11),   (x, y)GG a.e.,

w = (w1, • • • , wO; ¿ = 04/;); Ä = (£,,); C = (Q; Z> = (Dt),

^V) = fhi(a)>      oGsh,iG \j}h,

u(x, y) = ii;(x, y),   for (x, y)GGf, j = 1,-- • ,r.

Clearly u(x, y) = ti .(x, 7) G {/(x, ;>) for (x, y) G G¡, j = 1, • • • , r.   Since u is

measurable, in view of the hypothesis (III) such a pair (w, u) exists. Applying

the representation (5.3) once again, for I(w, u) we obtain

i[w, u] = v+ J Z x/c<(*' '• ")+ vfifa y> ")
G,=l

= » + Z L Z [\ci(.x- y> "/)+ ̂W*. y, «/)] ¿x #
/= 1     °7 i= 1

= 7[z, v].

Hence   [w, u]   is the required usual solution.

Theorem 6 (Existence of usual optimal solutions). Let G, U(x, y),

M.ip.A, B, C, D be as in §2 and let hypotheses (II) and (III) hold.  Let G be

bounded, and M be closed.  Let the sets Q(x, y, z) = {(çlt J2)l?i — Az +

C(x, y, u); f2 = Bz + D(x, y, u), u G U(x, y)} be closed. Let SI be a closed
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class of admissible pairs of usual solutions satisfying the following condition:

(V)  77ze set   {z(x, y), C(x, y, uix, y)), Dix, y, uix, y)): iz, u) E Í2} is

bounded in L -norm for p > 1  and bounded by an L ̂ function for p = 1.

77ze«, the functional I[z, u]   attains its minimum in  Í2.

Proof.  Under the said hypotheses, the conditions of Theorem 3 are met

and hence there exists a generalized optimal solution. Using Theorem 5, there

exists also a usual solution where the functional takes the same value.  This usual

solution is then the required optimal solution in £2.

Remark 1.   It is to be noted that under condition (V) both sets   {z}n

and   {z}rj'  are weakly compact in (Wp(G))".  Here   {z}n   denotes the set of

usual trajectories while   {z}n>  is the set of generalized trajectories.

Remark 2.   If G = [a, a + h] x [b, b + k]   is a rectangle, then weak

compactness of {z}n  implies that of  {z}n>.

Indeed, if z  is a generalized trajectory, then there exists controls w(x, y),

j = 1, • • •, r, such that,

r r

zx=Az + 21 Pjc(x> y> "/);   zy = Bz + £ PjD(x, y, u,),
(8.1) /=i /=i

z(x, b) = ipx(x); z(a, y) = <p2(y).

Using assumption (II), we can find usual solutions z-  satisfying

zjx = Azj + C(x, y, Uj);     zjy = Bz¡ + Dix, y, u¡),

(8.2)
z;(x, b) = yxix);        zfa, y) = <p20).

By formal integration and using (8.1), (8.2) we get

(8.3)

zQc, y) = Vi (*) + exp I f*A d9^fat. P¡ exp j- f*A de} izjx - Azf) d%

= *2iy) + exp \$\b de}fb ¿ Pj exp {- ^B dd) izjy - Bz¡) dr¡.

Now, if  {zk} is a sequence of generalized admissible trajectories, let zfc/- be the

corresponding usual trajectories given by (8.2).  Since   {z}n   is weakly compact

by assumption, there exist z*G(H^(G))"   and subsequences, say zkj- still, / =

1, •••, r, such that zk,—*zf weakly in (W¿(G))".  Let z*ix,y) be defined

by (8.3) with z¡ replaced by z*. Using the linearity of the right-hand side of

(8.3), it is seen that zk—*■ z* weakly in (K^(G))". This proves weak compact-

ness of  {z}a:
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9.  Bang bang phenomenon.

Lemma.  Let G C E2  and U C Em   be two given compact sets.  Let

C(x, y, u) = (Cx,- • • , Cn) map G x U into E" and be measurable in  (x, y) E

G and continuous in uEU.  Let U' = C(x, y, U) = {C(x, y, u)\u E U}.  Let

V be a closed subset of U such that co(i/') = co(K') where   V' = C(x, y, V)

and co stands for convex hull.   Then for each measurable function «(x, y) from

G into  U there exist measurable functions p¡ix,y), u¡ix,y), j- 1, ■ ■ • ,

« + 1, such that

n + \

C(x, y, uix, y)) = £ P/(*. yYKx, y, w/x, y)\
/=i

(9.1) Ujix, y) E V,   Pjix, y)>0,   ; = 1, ■••,« + 1,

Hpj(x,y)=\,   (x,y)EG.

Remarks. 1.  Since  U and   V are compact so are  £/'  and  V'  as well as

co(<7')  and co(K').

2.  By a theorem of Carathéodory, for  Q C E",  any point of co(ß)  can

be written as a convex combination of at most « + 1  points of Q.

Proof of lemma.  Given u: G —+ U, u(x, y) E U and hence

C(x, y, uix, y)) EU' C co(C/') = co(F')  and hence there are functions p-(x, y)

and Ujix, y),j = 1, •••,« + 1, such that

n+l

Qpc, y, uix, y)) = £ P,(*> y)c(x> y. "/(*. JO)
/=i

with  Xpj = 1, Pj > 0, ^(x, ^) G K   It remains to prove that p¡ and w;- can

be chosen to be measurable. To this end, we use the implicit function theorem

(see Proposition 1, §6) as follows:  Let R = {(x, y, p, u)|(x, y) E G, p =

Ol>*" 'Pn+l)> y = ("l>*,'."n-rl)>P/>0>"ie ^,/= 1, ••',« + 1,

2p,- =1}. Clearly Ä  is a compact subset of Er where /■ = 3+«+m+ nm.

Let S = {(x, y, z)|(x, y) G G, z G £""} = G x E". Then 5 is a closed subset of

E2+n. Let F:R-+S be defined by F(x, ;>, p, u) = (x, j, zZ^pfix, y, u¡)).

Clearly F is a continuous function. Let 6: G—► S be defined by  ö(x, y) =

(x, y, C(x, j', «(x, y)))  where u(x, >») is the given measurable function.  Since

uix, y) E U, ö(x, y) E FiR) for each (x, y) G G, as observed earlier.  Further,

6 is measurable.  Hence by the implicit function theorem there is a measurable

function t?: G —*■ R,

r)(x, y) = (x, y, p(x, y), u(x, y)),      v = (w,, • • • , un+ x),

such that 6 — Fr¡, that is,

C(x, j-, uix, y)) = Lp/x, 7)C(x, y, «y(x, .y))
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and 17  is measurable implies that p¡ and u¡ are measurable.  Further,

ufx, y)GV.

Theorem 7. Let G be a Sobolev domain in E2 and let G be the union

of a countable family of compact subsets.  Let U be a fixed compact subset of

Em.  Let Aijt Bljt Cp D¡, Pni, Qhi, i, j = 1, • • • , n,  be as in §2.  (In particular

C and D are continuous on  U.) Let the hypotheses (II) and (III) hold.  Let

U" = C(x, y,U)x D(x, y, V)

■ {(%, n) GE2"^ = Cfic, y, u), m = Dfx, y, u), uGU).

Let  V be a closed subset of U and let  V" be defined as  U"  (with  U re-

placed by  V) that is  V" = C(x, y, V) x D(x, y, V). Let co(U") = co(K").

77ien, for every admissible pair (z, u) there is an admissible pair (z, u)

where the functional given by (2.2) takes the same value, and furthermore

u'(x, y) G V for almost all (x, y) G G.

Proof.  Given the admissible pair (z, u), the functional I can be repre-

sented by (5.3) as

I\z, u] = v+Z(r [\(x, yJCfx, y, u(x, y))

(5.3)
+ pfic, y)D¡(x, y, u(x, y))] dx dy.

But, using the above lemma with C replaced by (C, D), there exist measurable

functions p¡(x, y), ufa, y),j = 1, • • • , 2n + 1, such that pj(x, y) > 0,

ufa, y) G V, j = 1, • • • , 2n + 1, 2p;(x, y) = 1, (x, y) G G and such that

Qx, y, u(x, y)) = ~Lp¡(x, y)C¡(x, y, u¡(x, y)) and similarly for D. Thus,

n     2n + l    .

7[z, u] = v + X     EL P/& y)l\(x, y)Ct(x, y, ufa, y))
/=!    /=!    ,G

+ íi,(x, y)D,{x, y, u¿(x, y))] dx dy

which by using Theorem 4 can be written as follows in terms of a decomposition

G- of G, y = 1, • • • , 2/1 + 1, into disjoint measurable sets.

n     2ii+l

/[z, u] = v + X)   Z JG to y> "/) + »tD¿x> y>M/)] <** dy-
1— 1      /'= 1 7

Proceeding similar to proof of Theorem 5, we define u   as equal to u¡ in Gf

and define z'  as a corresponding solution of (2.1) with boundary conditions (I).

Assumption (III) guarantees the existence of a z'.  Then (z, u) is admissible

and since v (see (5.2)) is independent of u, we have 7[z, u] = 7[z', «'].  Fur-

ther u'(x, y)GV for all (x, y) G G.
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Remarks.   1.  If C/ is a compact set and  V is the set of extreme points

of U, then it is known that co(U) = co(F).  If C(x, y, u) = C(x, y) • u  and

D(x, y, u) = D(x, y) ■ u  are linear in u, then we also have  co(i/") = co(K")

and the above theorem applies giving us the existence of optimal bang bang type

controls.

2.  Following Neustadt [8] one may show that the set   {7[z, u]\(z, u)

admissible}  of "attainability" is closed and convex.

Example.   (See [9a, p. 239].) Let us consider the problem of the minimum

of

7[z, u] = j" }" [A(x, y)z(x, y) + B(x, y)zx(x, y)

(8.4)
+ C(x, y)zy(x, y) + /0(x, y, u(x, y))] dx dy

with side conditions

zxx + zyy = D(x> ?>(*. y) + E(x, y)zxix, y)

(8.5)
+ Fix, y)zy(x, y) + fix, y, uix, y))t

boundary conditions

(8.6) z(x, 0) = z(x, b) - z(0, y) - z(a, y) = 0,

and constraints u(x, y)E U C Em, U fixed and closed.  Here, G is the rec-

tangle   [0, a] x [0, b]   and the functions A, B, C, D, E and F are assumed

to be in /„(G).

Introducing the new variables :x, • • • , z6  given by

zi(*. y) - /0*/o [^z + 5z*+ Czy+ W& y> "(^ y»lÄ *«

z2=zlx> z3=zly> Z4=Z; z5=zx> z6=zy>

the above problem becomes the problem of the minimum of zx(a, b) =

xh¡%z2(a, b)da + H/|z3(a, j3)cfj3 with side conditions

zlx=z2;    z2x = |, ;    z3x =Ai4+Bzs+ Cz6 + /0(x, j>, w(x, ^));

Z4x = Z5'     Z5x = %2>      Z6x = £3»

(8.7)
Zly " Z3'      Z2y = ^Z4 + BzS + Cz6 + /o(*» ^ "(*' j0)î   Z3y = £4!

z4y = z6~>    zSy = h'    z6y = ~%2 + Dz4 + EzS + Fz6 + Ax> V> "(*> 7)fc

with boundary conditions
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Zi(x, 0) = z2(x, 0) = z4(x, 0) = zs(x, 0) = 0;

(8.8) z,(0, y) = z3(0, y) = z4(0, y) = z6(0, y) = 0;

z4(x, b) = zs(x, b) = zÁa, y) - zÁa, y) = 0;

and constraints (u, %lt %2, £3, |4) G U = ¡7 x 7Í4.

The corresponding conjugate problem is given in terms of 12 multipliers

Xj, • • • , X6, |i,, • • • , ju6.  Since z2x, z6x, z3y  and zs     do not appear explic-

itly in the analysis, we choose  X2 = X6 = u3 = jus = 0 in G   The Hamiltonian

in this case is,

H = \z2 + pxz3 + (X3 + u2)G4z4 + 5z5 + Cz6 + /0)

+ X4zs + n4z6 + X5£2 + M6(7>z4 + 7jz5 + Fz6 +/- £2)

with eight multipliers and the constraints are now (u, £2) G U x El.  The related

conjugate problem is,

\x + Ply = °>       P2y = _Xl '       X3x = ~Pl J

X4x + u4>, = -(X3 + p2)A - u6 ■ D;

hx " _^4 - P6 * ̂ -(^a + P2) " £;

(8*10) M6y = -P-4 - Pe • F-(h + P2) ■ c;

\(a, y) = 0;   X3f>, y) - 1;   Xs(a, 7) = 1;   u^x, 6) = 0;

ju2(x, Ô) = 1;   u6(x, Z>) = 0;   Xs(0,y) = 0;   u6(x, 0) = 0.

Explicit expressions for one set of solutions of (8.10) are given in [9a] as

follows:

Let Xlx  be any bounded measurable function on G.  Let

Mx- y) - fa \x(.a> y) da> Pi (*» y) = -fyb xi*& ß dp";

hfr y) = S*a /I xi *(a> ß <*a *    M2(JC'7) = Jo il x* *(a> ® da dß;

m4(*. y) = - (J*<*p (/ftF^ O*) ^)_1/o 2C(*> ß exP (/ftF(x' ')<&■)#;

V6(X, y) = - [exp (- /ybF)]• /J (n4 + 2c)(exp /'p) dß;

\4(x,y) = \4(0,y)-r(2A+p6D)

where
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X4(0, y) = -a' 'F1 - f dx/* (24 + p6D) + /' (p67i + 25)1,
(8.11) L J

\s(x,y)—J*0(h+li6E + 2B)da.

In the above p4(x, y) is chosen to be independent of y.   It may be chosen to

depend on y  provided the following condition is satisfied:

/*0i4 + 2C)ix, ß) ■ exp (/^(x, r)dr)dß = 0.

The above equation guarantees the boundary conditions on p6.  The above dis-

cussion shows that hypothesis (II) of Theorem 6 is satisfied for this problem.

Regarding hypothesis (III) on the existence of solutions of the original problem,

the literature is extensive and we refer to [1] for a detailed survey. Theorem 6

now gives the existence of optimal solutions in anv closed class Í2  of admissible

pairs satisfying condition (V) of that theorem.
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