TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 200, 1974

SUBBUNDLES OF THE TANGENT BUNDLE
BY

R. E. STONG

ABSTRACT. This paper studies pairs (M, §¥) where M is a closed mani-
fold and ¢ is a k-dimensional subbundle of the tangent bundle of M in terms
of cobordism.

1. Introduction. The purpose of this note is to analyze pairs (M, £) where
M is an n-dimensional manifold and ¢ is a k-dimensional subbundle of the tan-
gent bundle of M, k < n, in terms of cobordism.

In §2, the cobordism class of M is analyzed and the main result is

PROPOSITION. A class a € N, is represented by a manifold M"™ whose
tangent bundle has a k-dimensional subbundle, k < n, if and only if either

(@) k is even, or

() k isoddand w,(a) = 0.

In section §3, the case k = 1, ie., £ a line bundle, will be studied more
closely. One defines a homomorphism 6: N,(BO,) — Z, asfollows. If a €
RN, (BO,), choose a manifold M™ and map f: M" — BO, representing a. Let
ieH (BO,; Z,) be the nonzero class, and let 6(c)) be the characteristic number

WD) + W, (DS +2 oo+ W O O) + -+ Q)M

Letting vy be the universal line bundle over BO,, the class « is the class of the
pair (M, *(y)), and interpreting R, (BO,) as the cobordism classes of n-mani-
folds with a line bundle, one has

PROPOSITION. A class o € N,(BO,) is represented by a pair (M", &)
where & is a sub-line-bundle of the tangent bundle of M ifand only if 0(a)=0.

Note. In order to make this result seem plausible, one should note that the
given characteristic number is the nth Stiefel-Whitney number of 7,, — f*(7),
which is an (n — 1)-plane bundle if f*(y) is a subbundle of 7,,.

In §4, the problem is stabilized, and the main result is

PROPOSITION. A class a = [M, f] € N, (BO,) is represented by a pair
WM, &) with 1)y ®1 = ¢ ®n' ®1 where o' isan n — k plane bundle if
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186 R. E. STONG

and only if every Stiefel-Whitney number of a involving a class wy(r — f *)
for i > n —k is zero.

In §5, the case k =2 is studied more closely.
The author is indebted to the National Science Foundation for financial sup-
port during this work.

2. The cobordism class of M.

LEMMA 2.1. If M" is a closed n-manifold and £* is a subbundle of the
tangent bundle of M with k odd, then w,[M] = 0;ie, M has even Euler
characteristic.

ProoF. If n is odd, w,[M] = 0, so one may assume n even. Let k =
2p +1,n—k=2q +1 andlet n be a complement of & in 7, the tangent
bundle of M, so that § @ n = 7. Then

w,[M] = w,(n)[M]
= Wyp+1() U Wwyq 11 M),
= (5q' Wy, (&) + Wy (&) U wy, () U wyg . (M)
= {Sq'w,, (&) Uw, gy 1 ) + w1 (1) + Wy () U Wy (8) U Wag 4y (DHIM]
= {5q'W,,(B) Vw41 () 0, (1) Uwyp(§) Uy y (1)
+wy,(®) U Sa'w,, ., m}M]
= {0,(7) U + 854" Hw,, ()W, g 11 (DHM]

but cup-product with the Wu class v,(7) = w,;(r) gives Sq!, and so this
vanishes. O

In order to prove the converse, one needs some examples of manifolds. For
this, one may use the result of [5, 3.4]:

LemMA 22. Let RP(n,, n,,*++,n,), t > 1, be the bundle of lines in the
fibers of \; @+++® N\, over RP(n;)x ««+x RP(n,), where \; is the pull-
back of the canonical bundle over RP(n;). Then RP(n,,*«<,n,) is a closed
manifold of dimension n + t —1 where n=n, ++-++ n,, and is indecom-
posable in N, if and only if

(n +t—2> +.“+(n +t—2>
n; n,

is odd.
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One now defines manifolds X™ of dimension n for n # 2¥ —1 and
n # 2 as follows:
(@ if n=4s, s>21,

Xn =RP(1"..’ 190):
Na—

2s
) f n=45+2,521,

X" =RP1,--+,1,0,0,0),
P(w )
2s

() if n=2PQ2q +1)-1,p, ¢>0,
X" = RP(2?,1,+++,1,0).
N—
2Pq-1

The above criterion immediately shows that these manifolds are indecomposable
in N,.

The manifolds X” have the additional property that, for each integer
k < n, the tangent bundle of X" has a k-dimensional subbundle. In fact, for
n # 5, the tangent bundle of X" is a Whitney sum of line bundles.

To see this, let A be the canonical line bundle over RP(n,,*++,n,) and
m: RP(ny,*++,n,) —> RP(n;) x+++x RP(n,) the projection. Let A; denote
7*(\;) and 7; the pullback of the tangent bundle of RP(n;). Then

TRP(ny, e mp) = T TRP(n X+ xRP(n,) DU =TH @2 DT, O
where u is the bundle along the fibers. Then
LOI=QAON)D---®A®N) and 7,01 =(n; + 1)\

where [ is the trivial line bundle. If n;, =0 or 1, 7; is trivial, since the tan-
gent bundles of RP(1) = S! and RP(0) = point are trivial. Adding the trivial
7; with n; =1 to other 7; or u represents them as sums of line bundles.
For n =5, RP(2,1,0) has tangent bundle 7, @ I @ u which is a line
bundle and two 2-plane bundles, while in all other cases there are at least two
Ps and the tangent bundle is a sum of line bundles.
One now has

PROPOSITION 2.3. A class o €N, is represented by a manifold M"
whose tangent bundle has a k-dimensional subbundle, k < n, if either:

(@) k is even, or

(b) k is odd and w,(c) = 0.
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PROOF. Every class a €R,, is represented by the disjoint union of mani-
folds

RP(2) x+++x RP(2) x X"! x+++x X"s

—~—

q

with 2q +n; +++++n,=n For any integer £ <n of the form 2u +v
with 4 <gq, v <n; +++-+ ng, this component has a subbundle of its tangent
bundle of dimension k In particular, every even integer can be put in this form,
and every odd integer will be of this form except for the component [RP(2)]"/?
which has w, #0. O

This completes the proof of the proposition given in the introduction.

REMARK. If £ is the line bundle over RP(1) and X is the line bundle
over the Klein bottle RP(¢ @ [), then the 5-manifold RPQ\ @ 3) is indecom-
posable in N, and has tangent bundle a sum of line bundles. This manifold could
be used in place of X5 and so five plays no special role.

3. Line bundles.

LeMMA 3.1, If M" is a closed n-manifold, ¢ a sub-line-bundle of the
tangent bundle of M and f. M — BO, classifies &, then 0([M, f]) = 0.

PrROOF. Let n be a complement in 7 for £ Then w(n) = w(r)/w(}),
so since n isan (7 — 1)-plane bundle

0 = W,(m) = Wy(?) + W, @IW @) +2 2+ (W, )

Since w,(¥) = f*@) and w;(r) = w;(M), this gives 6([M, f]) =0. O

In order to prove the converse, one needs to analyze the bordism of BO,.
Henceforth, classes of N (BO,) will be denoted [M, £] where M is a closed
manifold and £ is a line bundle over M. There is a homomorphism of R,
modules, called the Smith homomorphism,

A: R,(B0,) — R, (BO,)

of degree — 1 assigning to [M, §] the class [V, ¢§iN] where N C M is the
codimension one submanifold of M dual to &. Specifically, if f: M — BO, =
RP(=) classifies & f maps M into some RP(n) and may be homotoped in
RP(n) to be transverse regular on RP(n — 1), with N then taken to be the
inverse image of RP(n —1).

Letting 1 = [point, /] € N,(BO,), there are unique classes x, = [M’, £']
€ N(BO,), i =0, with

1) x4 =1,

() Ax; = x;_4,and

(3) for i >0, M’ bounds.
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These classes form a base for N, (BO,) as N, module. (A proof of this state-
ment, or more precisely, its complex analogue appears in [2, (5.3)].)

LeEMMA 32. For i >0, x; is the class of the canonical bundle \ over
RP(1,0,-¢+,0) ( —1 0%).

Proor. In [1, (2.2)], RP(1,0,++-,0) (i =1 0’s) is denoted
RP( & (i — 1)), where £ is the canonical line bundle over RP(1), and is shown
to bound. In [4, p. 160] it is shown that for any vector bundle p over M, the
submanifold dual to A over RP(p @ [) is RP(p), from which the behaviour
of A follows. O :

For i > 1, the tangent bundle of RP(1,0,°++,0) i—10%) is 1 ®u=
A ® 7*(§) @ (i — 1), which contains a copy of A,s0 6(x;)) =0 if i > 1.

Now if £ is a line bundle over M, and N is a closed manifold, 3} (¢) is
a line bundle over M x N, with [N] « [M, &] = [M x N, n}(¥)] giving the
module structure of N, (BO,). If N has dimension n, it is immediate that
O[N] - M, £]) = w,[N] - 6(IM, £]).

Since 6(xy) = 6(x,) = 1, one then has

Lemma 33. 0(Z; [IN"]1x) = w,(V™ + w,_ V" ).

ProPOSITION 34. If a €N, (BO,) with 6(a) =0, then a = [M, §]
where & is a sub-line-bundle of the tangent bundle of M.

PrOOF. Let a =21, a;x; with a; EN,_;. Then w,(@y)=0,w,_;(2,)=0,
forif n isodd w,(@y,)=0 for dimensional reasons while w,_;(@,)=6(e)=0 and
if n iseven w,_;(a;) =0 for dimensional reasons while w,(@,)=0(c) =0. By
[1, (4.5)] there are manifolds N” and N”! fibered over S!, with [N"7¥] =
a; i = 0, 1. Choose manifolds N1 representing a; for i > 1, and let

M"=N"U W xRPO) U U " x RP(1,0,-+,0)
i>1 N———
i-1
and let ¢ be the line bundle over M whose restriction to N" is trivial, to
N7=1 x RP(1) is the pullback of the canonical bundle over RP(1) and to
Nty RP(1,0,++,0) isthe pullback of A. Then a = [M, £].

Since N™ fibers over S!, the pullback of 7_, is a trivial line bundle in
7,n- Since Nn=1 x RP(1) fibers over S! x S, its tangent bundle contains
a trivial 2 plane-bundle, but if &' is the canonical bundle over RP(1), 2¢' =2
so the tangent bundle contains two copies of the pullback of £’. As noted, A is
a subbundle of the tangent bundle of RP(1,0,°++,0) G —1 0’s) if i > 1.

Thus § is a subbundle of the tangent bundle of M. O

Combining this with Lemma 3.1 gives the second proposition of the intro-
duction.
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Now restricting attention to oriented manifolds one has

PROPOSITION 3.5. 4 class o € Q,, is represented by an oriented manifold
M"™ whose tangent bundle contains a line bundle if and only if the Stiefel-Whitney
number w,(a) is zero.

A class a € Q,(RP(«)) is represented by a pair [M", £§] where § isa
sub-line-bundle of the tangent bundle of the oriented manifold M if and only if
the Stiefel-Whitney number 6(a) is zero.

ProoF. These conditions are clearly necessary. To see that they are suffi-
cient, consider a € , for which w,(¢) =0 and choose a representative M"
for a. Using surgery, one may replace M by the connected sum of its compo-
nents; i.e., may assume M connected. If n is odd, the tangent bundle has a
nonvanishing section, while if n is even, such a section exists if and only if the
Euler class of the tangent bundle X(r) is zero. Since M is connected, X(r) =
x@)a, where x(M) is the Euler characteristic of M and o is a generator of
H"M; Z) = Z. Mod 2, x(M) is w,(x) so x@M) iseven, and by forming the
connected sum'of M with copies of SP x S? for suitable p, g > 0, one obtains
anew M with xM) =0 alsoin a. [Note If n =2,a=0 and M may be
taken empty or S! x S! while if n = 2k, k > 1, the connected sum with
§2 x S§"2 increases x by 2 while that with S! x "1 decreases it by 2.]
Thus every « € Q, with w,(a) = 0 is represented by a manifold M" for which
Ty contains a trivial line bundle.

Now turning to Q,(RP()), one has Q (RP(>)) = Q, @ ﬁ*(RP(w))
and ?i*(RP(W)) =N, ;. Aclassinthe Q, summand of Q,(RP(<)) is repre-
sented by a manifold M” with trivial line bundle, and 6([M, 1]) = w,(r), [M])
so that by the above, a class « in the ., summand is represented by a sub-
bundle if and only if 6(c) = 0. The summand RN,_, of Q,(RP(<)) is realized
as follows. If BERN,_,,let N ! be a manifold in B and let M" be the
real projective space bundle RP((¥ @ 1) where & is the determinant bundle of
the tangent bundle of N and let A be the canonical line bundle over RP(¢ & 1).
Assigning to B the classof [M,\] gives the isomorphism R,_, = §n(RP(°°)).
Now 0([M,\])=w,_;(, and if 6([M, \]) =0, B is represented by a manifold
N whose tangent bundle has a section and so A is a subbundle of the tangent
bundle of RP(( © 1). Noting that 6 vanishes on the £, summand if n is
odd and on the ﬁ*(RP(w)) summand if n is even, one sees that every class in
the kernel of @ is realized by a subbundle of the tangent bundle.

4. Stabilization. One now considers stabilization of the subbundle problem.
This permits the use of homotopy theoretic techniques.
One may consider a manifold M” together with an isomorphism 7,, ®
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j= £ ® 0" % @ j where j denotes a trivial j plane bundle. By stability the
existence of an isomorphism is independent of j if j = 1. The manifold M"
with this structure bounds if M = 9V where 7, ® (j—1) = p* ® o"**' @
(j — 1) is a compatible decomposition; i.e., p restrictsto & and o to n @ 1.
Assuming ¥V has no closed components, ¥V has the homotopy type of an n-di-
mensional complex, so 7, = p @ o, but this need not be compatible with the
chosen isomorphism along M unless j > 1.

Let ¢," : BO, x BO, — BO be a map classifying the complement of the
Whitney sum v, © v, of the universal bundles (converted to a fibration). The
structure on M is precisely a lift of the normal map of M to BO, x BO,_,;,
while that of V isalift to BO; x BO,_; .-

The techniques of bordism of manifolds with normal structure [3] give that
the bordism group of manifolds M™ of the giren type is the image of the stable
homotopy homomorphism

ﬂf(T(BOk X Bon_k)) - ﬂf(T(Bok x Bon—k+l»

where T(BO, x BO,) is the Thom spectrum associated with the fibration ¢¥.
Specifically, if one takes the induced fibration
E ——— BO, x BO,

|

BO,— BO
then 75(T(BO, x BO,)) = lim,_,., 7, (T(7*(y,))). One may also describe
these groups as ‘
e (T(BO, x BO,)) = Jim 70 (70, @ 1)
where 7, 7, are the universal s and ¢ plane bundles over the Grassmann mani-

folds G, and G,,.
One may now consider the homomorphism

73(T(BO, x BO,_;)) — lim 73(T(BO,, x BO,))

7S(T(BO, x BO)).

One has m; x ©: BO, x BO — BO, x BO, which is a homotopy equivalence,
and induces an equivalence T(BO; x BO) = BO,"" A MO and hence

73(T(BO, x BO)) = N,(BO,).
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This describes the forgetful homomorphism assigning to M™ with its structure the
bordism class of (M, §).

One now embarks on a program of analyzing the stable homotopy groups
involved.

LEMMA 4.1. Let 7, be the universal s plane bundle over G, ¢, s>r, and
let p bean odd prime. Then H' ’(T('ys); Zp)=0 for i<r+s

PROOF. One has the inclusion G, CG,,, , with G, , ; obtained by
attaching cells of dimension (# + 1) and higher. This induces an inclusion of
Thom spaces T(v,|G, ) C T(7,|G, ) and the cofiber has cells of dimension
r +1 + s and higher. From the exact cohomology sequence

BTG, ) 2,) = H(T()G, 41, Z,) if i<r+s.
Thus
BTG, ) Z,) = HT@,|G, 4,0 2,) i i <r+s,t>0,
but for ¢ large this is H/(MO; Z,) which is zero. O
LEMMA 42. n3(T(BO, x BO,)) isa 2 groupif i<k +r.

PROOF. Let 7, v, be the universal bundles over G, ; and G, ,, s and ¢
large. Then T(y, ® 7)) = T(v,) A T(x,) and H'(T(v, ® 7,); Z,) =0 if
i<k+r+s+t if p isodd. By the mod C Hurewicz theorem m,(T(v, ®7,)
isa 2 groupif i<k+r+s+t o

Thus, for r > n -k + 1, 715(T(BO,, x BO,)) isa 2 group, and the prob-
lem is entirely a 2 primary problem.

In order to begin the 2 primary analysis, one analyzes a cofibration of
spectra

T(BO, x BO,) = T(BO, x BO,,,) = X

which one realizes by a cofibration T(y, ® v,) = T(y, ® 7;) — X where 7v,,
v, are universal bundles over G, ,, G, , and 7; is the universal bundle over
G,i1,p With s and ¢ being large.

First, consider G,,, , asthe space of r +1 planesin R™*!*7 with
. D(Y,41) = G,4,,, the projection of the disc bundle. Letting S(v,.,) be
the unit sphere bundle, one has a cofibration

D(@* (IS, +1))  D(@*(7y) D(m*(vy)
SIS, 41)  S@*())  DE*(ISA,44)) Y SE* (V)
I I f

A B (o
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Since D(ﬂ*(y;)) is identifiable with D(y,,, © 7;), C is the Thom space of the
trivial bundle 7,,,.® 7}, and C = Zr++! @G, 4) isthe (- +1¢ +1)fold

suspension of G, , With a base point adjoined. Since = isa homotopy equiv-
alence, B = T(v}).

Finally, S(v,,,) may be considered as pairs (@, x) with @ an ¢ + 1)-
plane in R™1+? and x a unit vector in a. Assigning to (e, x) the point
x € §™** defines a fibration p: S(y,,,) = S"*?. The inverse image of
x € S™? js the space of r planesin R™+1+? orthogonal to x, i.., S(7,;,)
is the Grassmann bundle of r planes in the fibers of the tangent bundle of S”*%.
The inclusion G, , = G,,, , may then be considered as factoring via the inclu-
sion as a fiber in S(v,4,). The inclusion of the fiber G,, — S(7,,,) induces
isomorphisms in homotopy and homology in dimensions less than » + ¢ — 1, and
so the inclusion T(y,) — A is a homotopy equivalence (for the prime 2) in
dimensions less than » + 2¢ — 1. Since ¢ is large, one then obtains a cofibra-
tion

T(‘yt) — T(‘Y't) —_ 2r+t+|(G *).

r+1,t
Smashing with T(y,) gives a cofibration sequence

Ty, ® 1) = T, ® 7) = T) AZHHI G )

(ie., X may be identified with T(y) A =™+ ”“(Gr+l +) for the prime 2,

having isomorphic mod 2 cohomology up to dimension s +r +2¢ —1 induced
by a map of spaces).
; ret+l rt+l
One now considers T(y,) A Z (Gr+1,’r) as = T(yy) A GH_ .

1,¢
and analyzes the maps

Gis = Gistritr1 > Gmshrer+1

inducing
preetl T(Yp) = Tsqrst41) = MOy pys4y

(m being large). The maps of Grassmannians induce isomorphisms in mod 2
cohomology in dimensions less than or equal to k and hence the Thom spaces
have isomorphic mod 2 cohomology in dimensions less than or equal to
k+s+r+e+1.

Thus X may be identified with MOy, ,, 4y A G,y )" in dimensions
less than or equal to kK +s+r+¢+1 (in mod 2 cohomology). In particular,
in dimensions less than or equalto ¥k +s +r +¢ +1 H*(x; Z,) isa free
module over the Steenrod algebra and

Mypse ) E Mo MOy pipiy AN Gryy d7) = Ry 1Gryyy))
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if i+s+t<k+s+r+t i<k +r (for 2 primary structure).

Being given a manifold M’ with 7, @j=tF @t @ [ +j-k-r-1)
representing a class in n;g(T(BOk x BO,,,)), i <k +r, the class in 1r;s'(X) =
N;_,_1BO,, ) obtained from the cofibration is represented by the submanifold
of M? dualto n"*! with the (r + 1)-plane bundle obtained by restricting .
The map to X is induced by including T(y,) in T(v; ® 7,4,) and making
the maps transverse regular involves finding the submanifold dual to 7, ,, from
which one has the given assertion.

On the other hand, a class in #5(T(BO, x BO,,,)), i <k +r, is in the
image of n;g(T(BOk x B0,)) if and only if it goes to zero in Ta‘;-g(X). Since
H *(X; Z,) isa free module over the Steenrod algebra in dimensions up to
k +s +r+1¢t+1,ahomotopy element in m;, ., (X) is detected by mod 2
cohomology. Since T(y, © 7;) = X maps H *(X; Z,) isomorphically onto
the multiples of ®(w,,), the Thom isomorphism image of w,,,, in the
H*Gy s % Gpiyq, Z,) module structure, this asserts that all characteristic num-
bers involving w, ., should vanish. Thus, one has

LeMMA 4.3. A manifold M* with 7, ® j=t*® ™1 ® (+j-k-r-1)
representing a class in S (T(BOy x BO,,,)), i <k +r, comes from
ﬂ;g(T(BOk x BO,)) if and only if all characteristic numbers involving w, . ,(n) are zero.

For r 2 n — k, this determines the image of
73(TBO, x BO,)) = n3(T(BO, x BO,,,)).

For r > n — k + 1, this homomorphism is monic, which may be seen as follows.
Consider the homomorphism

w1 1(T(BO x BO, 1)) = 73 11 (X).

Now 75, ,X) =R, ,(BO,,,) for n +1 <k +r,and N,_(BO,,,) is
generated over Z, by the manifolds

P =M™ x RPQ\, ® k,)x+++x RPQ\, ® k;) x (point)

where ), is the nontrivial bundle over RP(1), k; =0, with m + (k; +1) +
*+++ (k, + 1) = n —r with bundle

A @eeedNDD(F +1-53)

where A@ is the canonical bundle over RPQ\; © k;). To see this, one notes
that the RP(\ © k), k =0, and the point generate R, (BO,), over N, and
forming the products of r + 1 of these givesa R, generating set for N,(BO, )
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One then considers the manifold
Q=M"xRPQ\, Ok, ®1)x++*x RPQA; Dk, ® 1) x RP(r +1 —5)

of dimension m + (ky + 2) +++-+ (k, +2) +r+1-s=n-r+s+r+
1-s=n+1 andletting A be the canonical line bundle over RP(r + 1 —5),
the submanifold dualto A1) @+++® A ® (¢ +1 — )\ = 9"*! is the man-
ifold P given above, with 7 restricting to the given bundle. Now the tangent
bundle of RPQ, ® k, @ 1) is AD ® A, ® (k; + AP s0

012 oM e\ ). -

OAD N DA D @ q
where £ isan m+ (k; + 1)+t G, + ) +l=n-r+1<k
bundle. Thus 7, ® 1@ (k +r-n-D=[F O Kk +r-1)] O n=4£Sn
giving a structure on Q mapping to the classof P in N,_,(BO, ).
This proves that the forgetful homomorphism n,f(T(BOk x BO,)) —
N,(BO,) is monic for r > n — k + 1, and that

im {rS(T(BO, x BO,_,)) = n5(T(BO, x BO,_, ., )}

is mapped monomorphically into R,(BO,) with image precisely those classes
for which all numbers involving w;(r = f*(v,)) for i > n -k are zero, or one
has

PROPOSITION 44. A class a = [M, f] € N, (BO,) is represented by a
manifold M™ with 7y, ® 1 = f*(7,) ® 2" % ®1 if and only if all Stiefel-
Whitney numbers of « involving wy(r — f*(v;)) for i > n —k are zero.

5. Two plane bundles. The purpose of this section is to prove

PROPOSITION 5.1. A class a = [M, f]1 € N,(BO,) is represented by a
pair [M, f]1 with f*(y,) a subbundle of the tangent bundle of M if and only
if all characteristic numbers of « involving wy(r — f*(v,)) with i >n -2
are zero.

To begin the proof, one wants manifolds M,;; of dimension i +2j for
each (4 j) and 2 plane bundles A,; over M,; for which

0 ifg>j p+2q=i+2j,
Wiy wi Oy M1 =
1 ifg=j p=i
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Any collection of such manifolds form a base for R, (BO,) as “R* module. The
representatives will be chosen so that 2, ; is a subbundle of the tangent bundle
of M;; exceptfor j =0 and i<3.

For j =2, one lets

M,; = RP(1,0,:++,0) x RP(1,0,--+,0)
4 N N
j—-1 i+j-1

andlets A;; = 7 (A) @ m;(N), where A is the canonical line bundle over RP(1,0,« * *, 0).

For j=1,i >3, 0nelets M;; = RP(1) x RP(3,0,°+,0) ( -2 0’s)
and lets A ; = m}(¢) ® 73(\), £ being the Hopf bundle over RP(1). The
tangent bundle of RP(3) is trivial and so the tangent bundle of M;; is 3 @
) © (n’z*(z') ® (i —2)), where &' is the Hopf bundle over RP(3). Since
26 =2 and i 23, )\,’, is a subbundle of the tangent bundle.

For j=0,i >4, onelets M;; = RP(3,0,°++,0) (( —3 0’s) and
A, =10N

For j=1,i =0, one lets M,; = RP(2), and Ny =T the tangent bundle
of RP(2).

For j=1,i=1,onelets M;; = RP(1) x RP(2), the tangent bundle being
1 ® 73(r) = 3n3(¢) = QnyE) © n3¢)) + n3(¢) andlets N,; = [7}(¢) @
m®] @ 13).

For j=1,i=2,let M,', be the bundle of lines in the fibers of A @ 2
over RP(1,0) = RP(¢ © 1) where £ is the Hopf bundle over RP(1), giving
projections

m Mi,] — RP(1,0), p: RP(1,0) = RP(1).

Let 6 be the bundle along the fibers of p, n the bundle along the fibers of =,
and X' the canonical line bundle over M, ;. Then

i, =10 Trpae) =10 O O 1= © 1*A D2)) ® 1)

which contains a copy of A\; =X & n*().

Finally, let M, o be a point with A, o trivial, M; o = RP(1) with
No=£¢®1,and M, 5 =RP(1,0), M3 o =RP(1,0,0) with A, = A& 1.

Note that for M;,, i <3, 7, isa subbundle of 7 & 2. In particular,
if a€ ‘Rp and wp(@) =0, « is represented by a manifold MP fibered over
S x 8 [5, Proposition 6.1] and hence 7,, has 2 sections, so A;, is a sub-
bupdle of the tangent bundle of: M x M, ,.

Every class in R,(BO,) is of the form Z o ;) [M;;, A;] with o, €
R, _;—z; and every class « € N, has the form B +aRP(2)?/?,a € Z,,EN,
with w,(8) =0. Thusif I isthe R, submodule of classes in N,(BO,)
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represented by [M, f] with f*(y,) a subbundle of the tangent bundle of M,
then N (BO,)/I isa Z, vector space generated by the classes

[RPQY] - M4, Nyp]  with i <3.

The characteristic numbers w,(r — f*(y,)) and w,(r = f*(7,)*
W,_1(T = f*(7p)) (for n =>2) may be readily seen to give a homomorphism
N, (BO)I—Z, ® Z, (orto Z, if n <1) sending the classes [RP(2)] *
M, 05 \;o] of dimension # to linearly independent elements.

This completes the proof of the proposition.
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