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SUBBUNDLES OF THE TANGENT BUNDLE
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R. E. STONG

ABSTRACT.   This paper studies pairs   (M, £)  where  M is a closed mani-

fold and   j-   is a fc-dimensional subbundle of the tangent bundle of M  in terms

of cobordism.

1. Introduction. The purpose of this note is to analyze pairs (M, £) where

M is an «-dimensional manifold and  £ is a fc-dimensional subbundle of the tan-

gent bundle of M, k < n, in terms of cobordism.

In §2, the cobordism class of M is analyzed and the main result is

Proposition. A class a G 9Î„  is represented,by a manifold Mn whose

tangent bundle has a k-dimensional subbundle, k < n, if and only if either

(a) k is even, or

(b) k is odd and wn(a) = 0.

In section §3, the case  k — 1, i.e., i- a line bundle, will be studied more

closely. One defines a homomorphism 6: 9ln(POj) —> Z2  as follows.  If a G

5^,(50^, choose a manifold M"  and map /: M" -*■ BOx   representing a.  Let

i G HliBOx ; Z2) be the nonzero class, and let  0(a) be the characteristic number

{wniM) + v,w/'(i) + • • • + w„_r(Mx/*(o)r + • • •+</*(0)n} m ■

Letting  7 be the universal line bundle over BOl, the class a is the class of the

pair  (M, f*iy)), and interpreting ^(POj) as the cobordism classes of «-mani-

folds with a line bundle, one has

Proposition. A class a E ^(POj) is represented by a pair (M", £)

where  % is a sub-line-bundle of the tangent bundle of M if and only if 0(a) = 0.

Note.  In order to make this result seem plausible, one should note that the

given characteristic number is the «th Stiefel-Whitney number of tm - f*(j),

which is an (n - l)-plane bundle if f*(y) is a subbundle of tm.

In §4, the problem is stabilized, and the main result is

Proposition. A class a = [M, f] E yin(BOk) is represented by a pair

(M\ £') with tm, ® 1 ^ %' © i ® 1  where tj'  is a« n - k plane bundle if
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186 R. E. STONG

and only if every Stiefel-Whitney number of a involving a class w.(t - f*(y))

for i > n - k is zero.

In §5, the case  k = 2  is studied more closely.

The author is indebted to the National Science Foundation for financial sup-

port during this work.

2. The cobordism class of M.

Lemma 2.1. If M"  is a closed n-manifold and £fc  is a subbundle of the

tangent bundle of M with k odd, then wn[M] = 0; ¿a, M has evenEuler

characteristic.

Proof. If n is odd, wM[M] = 0, so one may assume n even. Let k =

2p + 1, n - k = 2q + I and let n be a complement of % in r, the tangent

bundle of M, so that  % © n = r. Then

wn[M] = w„(t)[M]

= w2P + ia)Uw2<7 + 1(T7)[M],

= (Sqxw2pm + Wtm U w2pß)) U w2q + í(r¡)[M]

= {Sqlw2p(%) Dw2q + 1(v)+ (w, (r) + wt (tj)) U w2p(£) U w2q+1 (V)}[M]

= {Sql w2p(%) Uw2,+ 1 (ri) + vx (r) U w2p(%) U w2(? +, (t?)

+ w2p(0(-,5e71w2(7 + 1(T?)}[M]

= {^(T) U +Sql}{w2p(Ç)w2q + l(v)}[M]

but cup-product with the Wu  class Uj(r) = Wj(t) gives Sq1, and so this

vanishes.   □

In order to prove the converse, one needs some examples of manifolds. For

this, one may use the result of [5, 3.4] :

Lemma 2.2. Let 72P(nls n2, • • •, nt), t > 1, be the bundle of lines in the

fibers of Xx 8 • • • © \ over RP(nt) x • • • x RP(nt), where \ is the pull-

back of the canonical bundle over RP(n¡).  Then RP(nx ,• • •, nt) is a closed

manifold of dimension n + t - 1  where n = nl + • • • + nt, and is indecom-

posable in W^ if and only if

is odd

* + ' - A +... + /» +1 - A
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One now defines manifolds X"  of dimension n  for n ¥= 2s — 1   and

n =£ 2 as follows:

(a) if n = 4s, s > 1,

X" =/?P(l,...,l,0),

2s

(b) if « = 4s + 2, s > 1,

A™ =FP(1,---, 1,0,0,0),

2s

(c) if n =2pi2q + 1) -\,p, q > 0,

X" =RPi2P, l,---, 1,0).

2i>C7-l

The above criterion immediately shows that these manifolds are indecomposable

in V*.

The manifolds X" have the additional property that, for each integer

k < n, the tangent bundle of A"1  has a fc-dimensional subbundle. In fact, for

n =£ 5, the tangent bundle of X"  is a Whitney sum of line bundles.

To see this, let X be the canonical line bundle over RP{nl,' ' -, nt) and

■rt: RPQtl,' • •, nt) —> RPint) x • • • x RPQit) the projection. Let X,- denote

7r*(XI) and rt the pullback of the tangent bundle of FP(«,). Then

TRP(«!,-••,«,) - 7r*TÄP(«1)X...XßP(„f) ® M = f.  ©•••© Tf ©/i

where ¡i is the bundle along the fibers. Then

/i © / =s (X ® Xt) © • • • © (X ® Xf)   and   t¡ ® I = (n¡ + 1)X¿

where / is the trivial line bundle.  If «¿ = 0 or  1, Tj is trivial, since the tan-

gent bundles of F-P(l) = Sl   and PP(0) = point are trivial.  Adding the trivial

Tf with «j. = 1  to other t¡ or ¡x represents them as sums of line bundles.

For n = 5, RP{2, 1, 0) has tangent bundle t1 ® I ® ß which is a line

bundle and two 2-plane bundles, while in all other cases there are at least two

Ts and the tangent bundle is a sum of line bundles.

One now has

Proposition 2.3. A class a G ^ is represented by a manifold M"

whose tangent bundle has a k-dimensional subbundle, k < n, if either:

(a) fc is even, or

(b) fc is odd and wni<x) - 0.
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Proof. Every class a G <Hln  is represented by the disjoint union of mani-

folds

RP(2) x • • • x RP(2) x X"1 x • • • x x"s
"*- iw i. ii    m

°

with 2q + nj +• • • + ns — ft   For any integer i<n  of the form  2u + v

with m < q, v < «j +' " + ns, this component has a subbundle of its tangent

bundle of dimension  k.   In particular, every even integer can be put in this form,

and every odd integer will be of this form except for the component   [RP(2)] "I2

which has wn + 0.   a

This completes the proof of the proposition given in the introduction.

Remark.  If % is the line bundle over RP(l) and X is the line bundle

over the Klein bottle RP(% © I), then the 5-manifold RP(\ © 3)  is indecom-

posable in $1* and has tangent bundle a sum of line bundles. This manifold could

be used in place of Xs  and so five plays no special role.

3. Line bundles.

Lemma 3.1. If Mn is a closed n-manifold, % a sub-line-bundle of the

tangent bundle of M and f: M -> BOx   classifies %, then 6([M, /]) = 0.

Proof. Let tj be a complement in r  for  f. Then w(n) = w(t)Iw(%),

so since n  is an (n - l)-plane bundle

0 - W„(7J) = W„(T)  + W^WWi®  +• • • + (W,(8)".

Since Wj(£) = /*(/) and w¡(t) = w¡(M), this gives 8([M, /]) = 0.   □

In order to prove the converse, one needs to analyze the bordism of BOx.

Henceforth, classes of JlJBO^ will be denoted   [M, £]   where M is a closed

manifold and  % is a line bundle over M.  There is a homomorphism of sJl„t

modules, called the Smith homomorphism,

A: ^(BO,) -+ %(BO,)

of degree - 1  assigning to   [M, %]   the class   [/V, %\N\   where TV C M is the

codimension one submanifold of M dual to  |.  Specifically, if /: M —> B01 =

RP(°°) classifies f, / maps M into some RP(n) and may be homotoped in

RP(n) to be transverse regular on RP(n - 1), with N then taken to be the

inverse image of RP(n - 1).

Letting  1 = [point, /] G ^(BO^, there are unique classes x¡ = [M1, £']

G %(BOx), i >0, with

(1) x0 = 1,

(2) Ax i =*,_!, and

(3) for i > 0, M' bounds.



SUBBUNDLES OF THE TANGENT BUNDLE 189

These classes form a base for ^(POj) as 9?#  module.  (A proof of this state-

ment, or more precisely, its complex analogue appears in [2, (5.3)].)

Lemma 3.2. For i > 0, x¡ is the class of the canonical bundle  X over

RPÇi, 0,---,0) ii -1 0's).

Proof. In [1, (2.2)], RPQ., 0, • • •, 0) (i - 1 0's) is denoted

RPi% © (i - 1)), where £ is the canonical line bundle over PP(1), and is shown

to bound.  In [4, p. 160] it is shown that for any vector bundle p  over M, the

submanifold dual to  X over RP(p © 0 is PP(p), from which the behaviour

of A follows.   D

For i > 1, the tangent bundle of RP(\, 0,« • •, 0) (i - 1 0's)  is  1 © p =

X ® 7T*(£) © (i - 1)X, which contains a copy of X, so  6(x¡) =0  if i > 1.

Now if % is a line bundle over M, and N is a closed manifold, tt^(£)  is

a line bundle over M x N, with   [N] - [M, £] = [M x N, 7rjfr(£)]   giving the

module structure of yiJBO^.  If N has dimension n, it is immediate that

6([N].\M, Sl) = wH\N]'0m £])•
Since 0(xo) = 0(Xj) = 1, one then has

Lemma 3.3. 0(2,. pV"-']x() = wn(Nn) + w^N"-*).

Proposition 3.4. If a E ^„(POt) with 0(a) = 0, then a = [M, %]

where % is a sub-line-bundle of the tangent bundle of M.

Proof. Let a = 2/L1aix/ with a, E %_t. Then w„(ao) = 0,w„_1(a1) = 0,

for if « is odd w„(a0) = 0 for dimensional reasons while wn_j(aj) = 0(a) = O and

if« ¡seven wrl_lial) = 0 for dimensional reasons while wn(a0) = 0(a) = 0. By

[1,(4.5)] there are manifolds N* and A™-1   fibered over S^with   [A/"-''] =

Of, i = 0, 1.  Choose manifolds A"-'  representing a(. for í > 1, and let

Mn = Nn U (TV"-1 x FP(1)) U    (J  (N"-' x FP(1, 0, • • •, 0))

f-i

and let % be the line bundle over M whose restriction to Nn is trivial, to

A"-1 x ÄP(1) is the pullback of the canonical bundle over -RP(1) and to

A/""' x RPil, 0, • • •, 0) is the pullback of X. Then a = [M, %].

Since Nn  fibers over Sl, the pullback of t ¡   is a trivial line bundle in

t n. Since Nn~i x -RP(l)  fibers over S1 x 5x, its tangent bundle contains

a trivial 2 plane-bundle, but if £'  is the canonical bundle over -RP(1), 2%' = 2

so the tangent bundle contains two copies of the pullback of |*. As noted, X is

a subbundle of the tangent bundle of ÄP(1, 0, • • •, 0) (i - 1 0's)  if i > 1.

Thus % is a subbundle of the tangent bundle of M.    □

Combining this with Lemma 3.1 gives the second proposition of the intro-

duction.
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Now restricting attention to oriented manifolds one has

Proposition 3.5. A class a G Sln  is represented by an oriented manifold

M"  whose tangent bundle contains a line bundle if and only if the Stiefel-Whitney

number wn(a) is zero.

A class a G £ln(RP(°°)) is represented by a pair   \M", £]   where  £ is a

sub-line-bundle of the tangent bundle of the oriented manifold M if and only if

the Stiefel-Whitney number 6(a) is zero.

Proof. These conditions are clearly necessary. To see that they are suffi-

cient, consider a G £in  for which wn(a) = 0 and choose a representative M"

for a. Using surgery, one may replace M by the connected sum of its compo-

nents; i.e., may assume M connected. If «  is odd, the tangent bundle has a

nonvanishing section, while if n  is even, such a section exists if and only if the

Euler class of the tangent bundle X(j) is zero. Since M is connected, X(j) =

yfM)o, where   x(^0 is the Euler characteristic of M and a  is a generator of

H"(M; Z) =* Z.   Mod 2, x(M) is wn(a) so  x(M) is even, and by forming the

connected sum of M with copies of Sp x Sq  for suitable p, q > 0, one obtains

a new M with xC^O = 0 also in a.   [Note.  If n = 2, a = 0 and M may be

taken empty or S1 x í1  while if n = 2 k, k > 1, the connected sum with

S2 x Sn~2   increases  x by 2 while that with S1 x 5"_1   decreases it by 2.]

Thus every a G £2„  with wn(a) = 0 is represented by a manifold M" for which

tm  contains a trivial line bundle.

Now turning to Í2„, (RP(°°)), one has n^(RP(°°)) a SI,. © (H^RP^))

and ñ„,(7?P(«>)) St %^t, A class in the Í2„  summand of Çln(RP(°°)) is repre-

sented by a manifold M" with trivial line bundle, and 8([M, 1]) = (w„(r), [M])

so that by the above, a class a in the  £1^ summand is represented by a sub-

bundle if and only if 0(a) = 0. The summand Di?M_1   of Cln(RP(°°)) is realized

as follows.  If ß G 9ÎM_1, let Nn~x   be a manifold in ß and let M"  be the

real projective space bundle RP(% © 1) where  % is the determinant bundle of

the tangent bundle of TV and let X be the canonical line bundle over RP(% © 1).

Assigning to ß the class of [M, X] gives the isomorphism SJÎ„_1 = Q,n(RP(°°)).

Now 6([M, X]) = w„_1rj3), and if 0([M, X]) = 0, ß is represented by a manifold

N whose tangent bundle has a section and so  X is a subbundle of the tangent

bundle of /xP(| © 1). Noting that 9 vanishes on the  i2„,  summand if «  is

odd and on the i2„,(/?F(<»)) summand if n  is even, one sees that every class in

the kernel of 0  is realized by a subbundle of the tangent bundle.

4. Stabilization. One now considers stabilization of the subbundle problem.

This permits the use of homotopy theoretic techniques.

One may consider a manifold Mn  together with an isomorphism tm ©
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/ a |fc © T?"_fc © / where / denotes a trivial / plane bundle.  By stability the

existence of an isomorphism is independent of / if / > 1. The manifold M"

with this structure bounds if M = dV where rv ® (/ - 1) = pk ® o"~k+i ©

(/- 1)  is a compatible decomposition; i.e., p restricts to  | and a to rj © 1.

Assuming   V has no closed components, V has the homotopy type of an «-di-

mensional complex, so rv = p © a, but this need not be compatible with the

chosen isomorphism along M unless / > 1.

Let 0*: BOk x BOr -* P0 be a map classifying the complement of the

Whitney sum yk © yr of the universal bundles (converted to a fibration). The

structure on M is precisely a lift of the normal map of M to BOk x BOn_k,

while that of  F is a lift to BOk x P0„_k+1.

The techniques of bordism of manifolds with normal structure [3] give that

the bordism group of manifolds M"  of the gi 'en type is the image of the stable

homotopy homomorphism

irsniTiBOk x BOn_k)) t-+ 7rf(/(PG\ x BOn_k+l))

where  TiBOk x BOr) is the Thorn spectrum associated with the fibration 0*.

Specifically, if one takes the induced fibration

-»  BOk x BOr

f

BOs-* BO

then TtliTiBOk x BOr)) = Um,.— t„+í(^*(7s)))- One may also describe

these groups as ■

ir*(T(BOk x BO,)) =   lim   nn+s+t(Tiys ® yt))
S,f-*oo

where 7^, yt are the universal s and f plane bundles over the Grassmann mam-

folds Gks and Grt.

One may now consider the homomorphism

7tsn(T(BOk x PO„_fc)) -* lim Trf (P(POÄ x P0,))

11
<(r(«o, x so».

One has 7r j x © : BOk x BO -* BOk x PO, which is a homotopy equivalence,

and induces an equivalence  TiBOk x BO) = P0¿" A MO and hence

7rf(r(POfc x BO)) = XniBOk).
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This describes the forgetful homomorphism assigning to M" with its structure the

bordism class of (M, £).

One now embarks on a program of analyzing the stable homotopy groups

involved.

Lemma 4.1. Let ys be the universal s plane bundle over Grs, s>r, and

let p be an odd prime.  Then H'(T(ys); Zp) = 0 for i <r + s.

Proof. One has the inclusion Gr s C Gr+ j s with Gr+1 s obtained by

attaching cells of dimension (r + 1) and higher. This induces an inclusion of

Thorn spaces T(ys\Grs) C T(ys\Gr+1 s) and the cofiber has cells of dimension

r + 1 + s and higher. From the exact cohomology sequence

H'(T(ys\GrtS); Zp) a P(T\yJGr+lJ; Zp)   if  i < r + s.

Thus

S'OlJJGrJk Zp) = H\T(ys\Gr+ttS); Zp)   if i < r + s, t > 0,

but for  t large this is H'(MOs; Zp) which is zero.   P

Lemma 4.2. nf(T(BOk x BOr)) is a 2 group if i < k + r.

Proof. Let ys, yt be the universal bundles over Gk s and Gr t, s and t

large. Then  T(ys © yt) = T(ys) A T(yt) and W(T(ys © 'yt); Zp) = 0  if

i<k + r+s + t Up is odd. By the mod C Hurewicz theorem Tr¡(T(ys © yt))

is a  2 group iîi<k+r+s + t.    G

Thus, for r > n - k + 1, Tt^(T(BOk x BOr)) is a  2 group, and the prob-

lem is entirely a 2  primary problem.

In order to begin the  2 primary analysis, one analyzes a cofibration of

spectra

T(BOk x BOr) -> T(BOk x BOr+l) ^ X

which one realizes by a cofibration T(ys © yt) —*■ T(ys © y't) —*■ X where ys,

yt are universal bundles over Gk s, Gr t and y't is the universal bundle over

Gr+lt, with s and t being large.

First, consider Gr+lt as the space of r + 1  planes in Rr+1 + t with

it: D(yr+ j ) —► Gr+ j t the projection of the disc bundle.  Letting S(yr+l) be

the unit sphere bundle, one has a cofibration

D(n*(y't)\S(yr+i))       D(n*(it)) D(ir*(Yt))

5(jr*(yf)|S(7r + 1))        S(it*(y't))        Z)(îr*(yi)|5(7r+1)) U S(ir*(yt))

II II II
^73 C
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Since Diir*iy't)) is identifiable with 7}(yr+1 © y't), C is the Thorn space of the

trivial bundle yr+l,® y't, and C ss Sr+f+1 (G      ♦) is the (r + r + l)-fold

suspension of Gr+lt with a base point adjoined.  Since it is a homotopy equiv-

alence, P s 7(7 't).

Finally, 5(7r+1) may be considered as pairs (a, x) with  a  an  (r  +   1)-

plane in Rr+l + t and x a unit vector in a. Assigning to  (a, x) the point

x G 5r+í defines a fibration p: Siyr+l) -* Sr+t. The inverse image of

x G Sr+t is the space of r planes in Rr+1+t orthogonal to x, i.e., Siyr+l)

is the Grassmann bundle of r planes in the fibers of the tangent bundle of Sr+t.

The inclusion Grt —*■ Gr+l t may then be considered as factoring via the inclu-

sion as a fiber in Siyr+1). The inclusion of the fiber Gr t —*■ 5(7r+ j ) induces

isomorphisms in homotopy and homology in dimensions less than r + t - 1, and

so the inclusion Tiyt) —* A   is a homotopy equivalence (for the prime  2) in

dimensions less than r + 2t - 1.  Since t is large, one then obtains a cofibra-

tion

Tiyt) - THt) -* 2r+t+1iGr+i;t).

Smashing with 7"(7S) gives a cofibration sequence

T(ys © 7,) "► T(ys © it) - T(ys) A 2r+t+l (G^j)

(i.e., X may be identified with Tiys) A Zr+t+1iG      +)  for the prime 2,

having isomorphic mod 2 cohomology up to dimension s+r+2r-l   induced

by a map of spaces).

One now considers Tiy<) A 2H"i+1(G      +) as 2r+f+1 T(y.) A G

and analyzes the maps

inducing

Gk,s ~*■ "Tc.s+r+f+l ""* ^m,s-l-M-f-rl

' -HTsJ ^ 'Ws+r+f+i.»       ywc/s+H-H-l

(m  being large). The maps of Grassmannians induce isomorphisms in mod 2

cohomology in dimensions less than or equal to fc and hence the Thorn spaces

have isomorphic mod 2  cohomology in dimensions less than or equal to

Jfc+í +I- + Í + 1.

Thus X may be identified with MOs+r+t+l A (Gr+lt)+   in. dimensions

less than or equal to fc + s + r +1 + 1 (in mod 2 cohomology). In particular,

in dimensions less than or equal to fc+s+r + f + 1 77*(Z; Z2) is a free

module over the Steenrod algebra and

*l+t+iC*) « »i+^iWrtr+i+l A(Gr+M)+)-  îcf_^(Gr+1>f)
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if i+s+t^k+s+r + t, i < k + r (for 2 primary structure).

Being given a manifold M' with tm ©/ = £k © t?'"1" ! © (i +/ ~ k - r - 1)

representing a class in Trf(T(BOk x 7?Or+i)), / < k + r, the class in irf(X) =

9îI-_y_1(7îOr+1) obtained from the cofibration is represented by the submanifold

of M' dual to r¡r+1 with the (r + l)-plane bundle obtained by restricting n.

The map to X is induced by including T(y't) in T(y't © yr+1) and making

the maps transverse regular involves finding the submanifold dual to yr+1, from

which one has the given assertion.

On the other hand, a class in  irf(T(BOk x BOr+1)), i < k + r, is in the

image of nf(T(BOk x BOr)) if and only if it goes to zero in nf (X). Since

H*(X; Z2) is a free module over the Steenrod algebra in dimensions up to

k+s+r + t + l,a. homotopy element in ni+s+t(X) is detected by mod 2

cohomology.  Since T(ys © y't) —► X maps H*(X; Z2) isomorphically onto

the multiples of $(wr+1), the Thorn isomorphism image of wr+l, in the

H*(Gk,s x Gr+1<t; Z2) module structure, this asserts that all characteristic num-

bers involving wr+1   should vanish. Thus, one has

Lemma4.3. A manifold M1 with TM®j=*%k® r¡r+1 © (i+j-k-r-l)

representing a class in   irf(T(BOk x BOr+l)), i < k + r,   comes from

nf(T(BOk x BOr)) if and only if all characteristic numbers involving wr+i(r¡) are zero.

For r > n - k, this determines the image of

*sn(T(BOk x BOr)) -* 4(T(B0k x BOr+1)).

For r > n - k + I, this homomorphism is monic, which may be seen as follows.

Consider the homomorphism

4+AT(ßOk x BOr + 1)) - af+iOO-

Now 7rf+1(X) s %_r(BOr+1) for n + 1 < k + r, and ^n_r(BOr+i) is

generated over Z2  by the manifolds

P = Mm x TÎPrX.! © Jtx) x • • • x RP(\S © fcs) x (point)

where  X,. is the nontrivial bundle over RP(l), k¡ > 0, with m + (kt + 1) +

" - + (k. + 1) = n - r with bundle

x(i) 0...©x(s) © (r + 1 -s)

where X^ is the canonical bundle over 7?P(X; © kt). To see this, one notes

that the 7?7>(X © k), k > 0, and the point generate ^(BO t), over 9^ and

forming the products of r + 1  of these gives a 9Ï,,, generating set for sJlJBOr+l).
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One then considers the manifold

Q m Mm x PP(Xt © fct © 1) x • • • x RP(XS ® ks ® 1) x RPir + 1 - s)

of dimension m +(fcx+ 2) + • • • + (fcs + 2) + r + I -s = n-r+s + r +

1 - s = n + 1  and letting  X be the canonical line bundle over RPir +1 -s),

the submanifold dual to  X(1) © • • • © X(s) © (/• + 1 - s)X = r¡r+1   is the man-

ifold P given above, with r¡ restricting to the given bundle. Now the tangent

bundle of RP(\¡ © fc, © 1)  is X(/) ® \ © (fcf + l)X(/)  so

TQ • 1 - [^m © f>(1) © \ © *«*(1)) © * * '

© (X(s) ® \ ® fc4X(s)) © X] © 7?

where £' is an m + (fcj + 1) +• • • + (fcs + 1) + 1 = « - r + 1 < fc

bundle. Thus tq ® 1 © (fc + r - n - 1) m [£' © (fc + r - 1)] © r? = £k © V

giving a structure on Q mapping to the class of P in ^ln-r(BOr+1).

This proves that the forgetful homomorphism Tt^(JiBOk x BOr)) -*

WniBOk) is monic for r > « - fc + 1, and that

im{*£(rç&0A x BOn_k)) - ^(7-(P0fc x P0„_fc+1))}

is mapped monomorphically into  ^HniBOk) with image precisely those classes

for which all numbers involving w¡ít - f*iyk)) for i > « - fc are zero, or one

has

Proposition 4.4. A class a = [M, f] G ^„(PO^) is represented by a

manifold Mn with tm ® 1 m f*iyk) ® v"~k ® 1  if and only if all Stiefel-

Whitney numbers o/ a involving wfo - f*(yk)) for i> « - fc are zero.

5. Two plane bundles. The purpose of this section is to prove

Proposition 5.1. A class a = ¡M, f] G 9Î„(P02) is represented by a

pair  \M, f]   with f*(y2) a subbundle of the tangent bundle of M if and only

if all characteristic numbers of a involving w,(t - f*(y2)) with i > n - 2

are zero.

To begin the proof, one wants manifolds M¡¿ of dimension i + 2/ for

each ii, j) and 2 plane bundles X^ over M¡¿ for which

Í0   if q >j,      p +2q=i + 2/,

1    if q = j,      p = i
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Any collection of such manifolds form a base for ^(B02) as ^  module. The

representatives will be chosen so that \j is a subbundle of the tangent bundle

of Mtj except for / = 0 and i < 3.

For / > 2, one lets

Mu = RP(\, 0,- • -, 0) x RP(\, 0,- • •, 0)

/-i I+/-1

and lets Xi;- = it*(X) © 7r*(X), where X is the canonical line bundle over RP(\, 0, • • •, 0).

For / = 1, / > 3, one lets Ml¡f = RP(l) x RP(3, 0, • • •, 0) (i - 2 0's)

and lets   \f = 7r*(?) © 7r*(X), % being the Hopf bundle over RP(l). The

tangent bundle of RP(3) is trivial and so the tangent bundle of Mit is 3 ©

7T*(X) ® 0^(£') © 0' - 2)), where %' is the Hopf bundle over RP(3). Since

2| = 2 and i > 3, \¡j is a subbundle of the tangent bundle.

For / = 0, i > 4, one lets iW/p/ = RP(3, 0, • • •, 0) (i - 3 0's) and

X/; = 1 © X.
For / = 1, / = 0, one lets M¡j = RP(2), and \j = r, the tangent bundle

of RP(2).

For / = 1, i = 1, one lets M¡} = RP(\) x RP(2), the tangent bundle being

1 © 7T*(r) - 3sjß) = (27r*(ö ® tt'kD) + ir*(ö and lets Xf>/ = [*•(© ®

ffJCO] © *?(!)•
For / = 1, i = 2, let M¡¿ be the bundle of lines in the fibers of X © 2

over RP(l, 0) = RP(% © 1) where % is the Hopf bundle over RP(1), giving

projections

n: Mu -+ 7U>(1,0),      p: RP(l, 0) -» 7îP(l).

Let  0  be the bundle along the fibers of p, r\ the bundle along the fibers of it,

and X' the canonical Une bundle over M¡j. Then

Titu - n • **CrRP(1>0)) - *« w*(fl) © 1 = (X' ® 7T*(X ©2)) © ir*(fl)

which contains a copy of \j = X' © tt*(0).

Finally, let M00  be a point with \ 0  trivial, M10 = 7?P(1) with

X10 = \ © 1, and 7¡í20 = RP(l, 0), M30 = RP(\, 0, 0) with X¿0 = X © 1.

Note that for M¡0, i < 3, X,- 0  is a subbundle of t © 2.  In particular,

if a G yip  and wp(a) =0, a is represented by a manifold 7lip  fibered over

S1 x S1   [5, Proposition 6.1] and hence tm has 2 sections, so Xi0   is a sub-

bundle of the tangent bundle of   M x M¡0.

Every class in 1ln(B02) is of the form 2 a>yj W¡¡, \j]   with a^ G

%-i-2j and every class a G Wp  has the form ß + aRP(2)Pl2, a G Z2,0G<Rp

with wp(j3) = 0. Thus if / is the 9Î# submodule of classes in ^#(ß02)
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represented by   [M, f]   with f*(y2) a subbundle of the tangent bundle of M,

then s^(P02)/7 is a Z2  vector space generated by the classes

[RP(2f] • [Mi0, X,i0]       with i < 3.

The characteristic numbers wn(r-/*(72)) and w1(t - f*(y2))-

wn_l(r - f*(y2)) (for « > 2) may be readily seen to give a homomorphism

%(B02)II -* Z2 ® Z2 (or to  Z2  if n < 1) sending the classes  [RP(2)S] •

[Mi0; \i0]   of dimension « to linearly independent elements.

This completes the proof of the proposition.
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