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HOMEOMORPHISMS BETWEEN BANACH SPACES

BY

ROY PLASTOCK(l)

ABSTRACT.   We consider the problem of finding precise conditions for a

map  F  between two Banach spaces  X, Y  to be a global homeomorphism.

Using methods from covering space theory we reduce the global homeomor-

phism problem to one of finding conditions for a local homeomorphism to satisfy

the "line lifting property."   This property is then shown to be equivalent to a lim-

iting condition which we designate by (L).   Thus we finally show that a local

homeomorphism is a global homeomorphism if and only if (L) is satisfied.   In par-

ticular we show that if a local homeomorphism is

(i) proper (Banach-Mazur) or

(ii) ¡Q infi^ii^ l/||[F'(x)]_  lids = ~   (Hadamard-Levy), then (L) is satisfied.

Other analytic conditions are also given.

Introduction. Suppose we have a continuous (or continuously differentiable)

map F between two Banach spaces X and  Y.  We ask what additional assump-

tions must be imposed upon F to insure that it is a homeomorphism (diffeomor-

phism) of X onto  TI We observe that if F is a homeomorphism then in par-

ticular it is a local homeomorphism.  Also if F is a diffeomorphism, then by the

chain rule F'(x) is an invertible linear map for every x.   Since these conditions

are necessary for our problem, we shall always assume that our map F is either

a local homeomorphism or, if F eC1(Ar), that F'(x) is invertible.  Thus we ask

when such a map is a homeomorphism (diffeomorphism) of X onto  Y.

Using Lemma 1.1 we shall see that we can reduce our problem to a more

fundamental one: that of determining when a given local homeomorphism F is a

covering space map of X onto  Y.   In § 1 we present the following solution to

this question (Theorem 1.1):

If F:D Ç X—*- Y is a local homeomorphism (where X and Y are

Banach spaces, D open), then (Z), F) is a covering space of FiD) if and

only if F "lifts lines."

We next introduce a simple analytic criterion, condition (L), which insures

Received by the editors January 18, 1973 and, in revised form, May 8, 1973.

AMS (MOS) subject classifications (1970). Primary 47H99, S4C99, SSA10.

Key words and phrases. Covering space.

(!) Research partially supported by the AFOSR.

Copyright O 1974, American Mathematical Society

169



170 ROY PLASTOCK

that F lifts lines.  More precisely, we show (Theorem 1.2) that a map is a global

homeomorphism if and only if it is a local homeomorphism and satisfies condition

(L). Thus, in view of Theorem 1.2, we are led to determine precise conditions

which insure that a map satisfies condition (L).

In § 2 we impose conditions which lead to direct consequences of Theorem

1.2, the simplest being the conditions of Banach and Mazur:  F:X—► Y is a

homeomorphism if and only if F is a local homeomorphism and a proper map.

Our investigation continues in §3 in the spirit of the Hopf-Rinow theorem

of differential geometry. Here we give a definition of completeness in a Banach

space setting which enables us to verify condition (L) under various analytic con-

ditions imposed on a map F.   Global homeomorphism theorems are proven for a

special class of quasi-conformal maps (see Zoric [16]) and also the Hadamard-Levy

theorem is deduced as a special case of Theorem 3.1 (which gives analytic criteria

that insures completeness according to Definition 3.2).

§4 is devoted to global homeomorphisms between finite-dimensional Euclid-

ean spaces.  In particular, if IJacobian F| >a > 0, what additional assumptions

must be imposed upon F to insure that it is a global homeomorphism?  Several

answers are given using the Hadamard-Levy theorem.

The background references for this chapter are [1], [2], [4], [5], [6], [8],

[9], [10], [12], [13], [14], [16].  Further references can be found in these

papers.

1.  Local homeomorphisms and covering spaces. Our approach for attacking

the global homeomorphism problem is motivated by the following well-known

result:

Lemma 1.1. Let X and  Y be connected, locally pathwise connected

spaces.  Furthermore, let  Y be simply connected.   Then F is a homeomorphism

of X onto   Y if and only if (X, F) is a covering space of Y.

In order to apply Lemma 1.1 to our problem we must find precise condi-

tions for determining when a local homeomorphism is a covering space map.

Let X and  Y be Banach spaces, D ÇX open and connected.

Definition 1.1. F:D—> Y lifts lines in F(D)  if and only if for each line

L(t) = (1 - t)yt + rv2  in F(D) and for every point xa G F~l(yj) there is a

path Pa(t) such that Pa(0) = xa  and F(Pa(t)) = L(t).

A simple connectedness argument shows that if F is a local homeomorphism

and F lifts lines in F(D), then the path Pa(t) in Definition 1.1 is unique.

Theorem 1.1. Let DÇX be open and connected, F:D—*-X.   The fol-

lowing are necessary and sufficient conditions for (D, F) to cover F(D):
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(i) F is a local homeomorphism, and

(ii) F lifts lines in F(£)).

Proof. The necessity follows from the properties of a covering space. To

prove the sufficiency, we first observe that if v G F(7)), we can find an r so

that Biy; r)= {z\ \\z -y\\ < r] Ç F(£>), and that any radius in B can be de-

scribed by a line 7z(r) = v + trz, ||z|| = 1, 0 < t < 1, which can be lifted.  Let

x&F~liy),

O* = {Pit) I Fí/tY» = Lzit), V \\z|| = 1, 0 < t < 1, and 7>(0) = x}.

Let Ox = 0*  considered as a point set, i.e., Ox = {x\x = 7>(7),PG O*}

iOx # 0 by (ii)). By intuitively thinking of Ox  and Biy; r) as the spokes of

a wheel, we shall show that these sets satisfy the conditions given in the definition

of a covering space, i.e., we show that the Ox ix€F~l(y)) are disjoint, open

sets mapped homeomorphically onto B(y;r) by F  and F-1(ß(y;r)) =

U*eF-l(y)°jc-

(a) Each Ox  is mapped onto B(y;r) since any y &Biy;r) lies on

some radius L; hence there is a path Pit)GO* and a   F   so that F(F(7))

= y. By definition of Ox, P(J) G Ox.

(b) Each Ox  is mapped homeomorphically onto B(y;r). If not, let xx =£

x2EOx  and F(xt) = F(x2) = y. By definition of Ox, xt   and x2   lie on

paths Pj   and P2  which are not identical, for otherwise their image would be a

radius which would intersect itself.  Hence F(Pj(r)) and FiP2it)) are distinct

radii. Thus y = y,  and so Fix,) = FiPfiJ) = F(P(0)) my m F(/J2(í2)) =

F(x2).  Hence it = 0 and r2 = 0 (otherwise the image of F,(r) (/ = 1, 2)

would be a radius which intersects itself), and so xl = x2 = x, a contradiction.

The continuity of the inverse will follow from the fact that F\0    is a local

homeomorphism and thus an open map (see (d) below).

(c) Ox, x G F~l(y), are disjoint, for if x G Ox   n Ox    with x1 =£ x2,

then x = Plitl) = P2it2). The images of Pl   and F2  under F must be the

same radius, for otherwise the radii would intersect and so F(x) = F(xx) =

F(x2) = v.   By part (b), x =xl = x2 — a contradiction.  Thus FiP^t)) =

F{p2ÍJ)) = Lit), and so ¿(ft) = 7(i2) which implies that tt = r2 (= T).

Hence we conclude that Fj(f) = P2(r) and, in particular, JCj = x2. Thus the

Oxs are disjoint.

(d) Each Ox  is an open set in D.   For if uGOx,u¥=x,  then there is

a path Pit) (0 < t < 1) in Ox  with initial point x  and terminal point u

such that FiPit)) = (1 - f)y + tv (where v = Fix), v = F(h)).

By (b) above, F is one-one on Pit). This together with the compactness

of the path P(t) enables us to find an open set S containing P(t) so that F



172 ROY PLASTOCK

is a homeomorphism on S to the open set F(S). To show that u is an interior

point of Ox, we first find an open ball B(v; 5) ÇF(S) with the property that

the line (1 -f)y + tw is in F(S) whenever w is in B(v;8). If this were not

the case we would find sequences tt (0 < t¡ < 1) and w¡ —*■ v so that (1 -t¡)y

+ t¡w¡ = y¡ £ F(S). However a suitable subsequence of the y¡ converges to a

point (1 - T)y + Iv   which is in F(S), thus contradicting the openness of

F(S). Thus F~1(B(v;5))r\S is an open set in Ox  containing u.  The interi-

orness of the remaining case u = x follows directly from hypothesis (i).

The openness of Ox  and hypothesis (i) implies that F\0    is a local ho-

meomorphism.

(e) F-\B(y;r)) = \Jx&F_l(y)Ox.

Since F  l(B(y;r))Ç\JxeF_1   .Ox, it suffices to show the opposite

inclusion. So let x e F~l(B(y; r)). Let L(t) = (1 - t)F(x) + ty, 0 < t < 1.

Then L(f) S B(y; r) and so by hypothesis there is a path P(t) so that P(r)) = x

and F(P(t)) = L(t). Thus P(l)eF~l(y). Let L'(f) = L(\-f) and P'(t) =

P(\-t). Thus F(P'(t)) = L'(t),P'(0)=P(l)GF-1(y) and P'(l) = x.   So, by

definition of G?(i)» we see *hat x G 0¿>(iy

We wish to remark that, for finite-dimensional spaces, Theorem 1.1 is essen-

tially due to Hermann [17, pp. 286-290].

In view of Theorem 1.1 we now proceed in developing a method (Theorem

1.2) for determining when a local homeomorphism lifts lines.

Again we suppose that X and Y are Banach spaces, D Ç X is open and

connected.  Let F:D—* Y be continuous. We introduce the following condition:

(L) Whenever P(t), 0<t<b, is a path satisfying F(P(t)) = L(t) for

0 < t < b (where L(f) = (1 - t)yl + ty2 is any line in Y), then there is a

sequence  t¡ —► b  as /' —► °° such that limi_0oP(fi) exists and is in D.

Theorem 1.2. Let F:D ç X—> Y be a local homeomorphism.  Then con-

dition (L) is necessary and sufficient for F to be a homeomorphism of D onto Y.

Proof. The necessity is trivial, for we let P(b) = F-1(£(ô)). For the suf-

ficiency, we first show that F lifts lines. Let L(t) be any line in F(D), with

L(0)=y. Let xGF~1^).

Since F is a local homeomorphism, there is an e > 0  and a path P(t)

(=F-l(L(t))),0<t<e, suchthat F(0) = 3c  and F(P(t)) = L(t) for 0<

f<e. Let £(< 1) be the largest number for which P(t) can be extended to

a continuous path for 0 < t < K and satisfying F(P(t)) = L(t), 0<t<K.

Since F satisfies condition (L), let z = limf_>xP(f/).  By continuity, F(z) =

L(K). Let  If bea neighborhood of z  on which F is a homeomorphism.  H/Y

so that P(t¡) E W for i>N.  Also 35 > 0 and a path Q(t) defined for
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K-S <t<K + 8  so that Q(tM) = P(tM) (where M is chosen so that M>N

and K - 5 < tM < K) and F(ß(0) « ¿(f)  for K - Ô < t < K + 5.

Hence Pit) can be extended to a continuous path (which we again call

Pit)) on 0<f<£ + 6,P(0) = x   and F(P(f)) = 7,(0. 0 < t < K + S.  By

the maximality of K,  we conclude that K = 1, and hence F lifts lines.

By virtue of Theorem 1.1, (£>, F) covers F(7)). We need only show that

F(D) = y in order to apply Lemma 1.1 and thus conclude that F is a homeo-

morphism of D onto Y. So let y G Y. Choose Vj GF(7J) and let ¿(f) =

(1 - r)Vj + ty. If we retrace the steps of the first part of our proof, we find a

path Pit), 0 < r < 1, so that F(/(0) = 7(0 on 0 < t < 1. In particular,

F(P(1)) = 7(1) =y, and so F(/)) = r.

2. Direct consequences of Theorem 1.2.  In this section we impose precise

conditions upon a map F between two Banach spaces which lead to straightfor-

ward verifications of condition (L).  An application of Theorem 1.2 will then

yield the desired global homeomorphism result.

Theorem 2.1. Let F:X—* Y be continuously differentiable and also

F'(x) is invertible for all x G X.  Suppose that

(i)  ||F(x)||-*°° as  Hxll ̂~,

(ii)  || [F'(x)]-1|l **-MÏJIxll),  where Mit) is a continuous positive function

of R -> R.

Then F is a diffeomorphism of X onto   Y.

Proof. By Theorem 1.2, it suffices to show that F satisfies condition (L).

By the construction of Theorem 1.2 and the inverse function theorem, it suffices

to show that condition (L) is satisfied for paths P(t) which are continuously dif-

ferentiable on 0 < t < b.   So suppose P(t) is defined on 0 < t < b,  is contin-

uously differentiable and satisfies

(1) F(7>(0) - 7(0 (= (1 - OJi + ty2) for 0 < t < b.

By (i), S — F-1(7(0)0<f<i   is a bounded set, and so   {/J(0)o<r<&  *s bounded.

Since P(t) is continuously differentiable, we can apply the chain rule to (1) and

thus

F'(P(f))P'(f) = v2-v1=z,      0<t<b.

Therefore P'(t) = [F'(P(t))]-lz, 0 < t < b.   By (ii), 3C so that  ||[F'íTt»)]-1!!

<C for 0<t<b.   Let  t, —* b.

HtM) - P(tN) =X7 F'(0 dt =¡^ [F'iPit))] "»z dt.

So
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\ntM) -P(tN)\\ <jtN  ||[F'(P(t))] -11| ||z || dt < C||z|| \tM - tN |.

Thus {P(t¡)} is a Cauchy sequence, and so condition (L) is verified, as was to be

shown.

The next theorem is originally due to Banach and Mazur [1].

Definition 2.1. A continuous map F between two topological spaces X

and  Y is proper if and only if F~l(Q is a compact set in X whenever C is

a compact set in  Y.

Theorem 2.2. Let X and  Y be Banach spaces, F:X—* Y.  Then F is

a homeomorphism of X onto  Y if and only if F is a local homeomorphism

and a proper map.

Proof. The necessity is obvious for if F is a homeomorphism, then F~1

is continuous and thus maps compact sets into compact sets. Hence F is proper.

Suppose now that F is a local homeomorphism and F is proper.  By vir-

tue of Theorem 1.2, it suffices to show that F satisfies condition (L) in order to

conclude that F is a homeomorphism.  So suppose P(t) is defined on  0 < t

< b  and satisfies F(P(t)) = L(f) for 0 < t < b.   Let t¡ -* b.   Since S =

{/(í)}0<f<i   is compact, so is F~1(S) and it contains the sequence P(tt).

Hence there is a subsequence  t¡. —► b  such that P(t¡) —* x, and so condition

(L) is satisfied.

Corollary 2.1. F: R^—»-R^ is a diffeomorphism if and only if F G

C1^) and F satisfies (i) det F'(x) # OVx, and (if) ||F(x)||-► °° as

llxll—>«.

Proof. We observe that if F is a diffeomorphism, then an application of

the chain rule shows that F'(x) is invertible and thus det F'(x) ¥= 0. Also, (ii)

is equivalent to the condition that F~X(B) is a bounded set whenever B is a

bounded set. This in turn is equivalent, for continuous maps between finite-

dimensional Banach spaces, to properness. Thus the proof of the corollary follows

immediately from Theorem 2.2.

It is interesting to note that if (i) is replaced by the weaker hypothesis (i*)

det F'(x) > 0 (¥= 0), then (i*) and (ii) imply that F maps RN  onto itself (in

general, such a map will not be one-one). The proof of this remark, along with

further generalizations, is to be found in [15].

Corollary 2.2. Let F be a local homeomorphism of the reflexive space X

into  Y. If(i) ||F(x)||—>°° as  \\x\\—>°° and (ii) whenever xn—► x weakly,

and F(xn)—► y strongly implies xn—* x strongly, then F is a homeomor-

phism of X onto  Y.
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Proof. We shall show that (i) and (ii) imply that F is proper. The proof of

the corollary is then a consequence of Theorem 2.2.

Let the sequence xnEF~l(Q, C a compact set in Y. By (i), F-1^ is

bounded. Since X is reflexive there is a subsequence (after renumbering) xn which

converges weakly to some x.   As C is compact, we may assume (by passing to

an appropriate subsequence and renumbering) that the sequence F(x„)  converges

strongly to some y EC.   From (ii) we conclude that x„  converges strongly to

x.   By closedness, xGF_1(C) and so F~liC) is compact as was to be shown.

The following theorem is due to Browder [4] :

Theorem 2.3. F : X —► Y is a homeomorphism of X onto Y if and only

if F is a local homeomorphism and a closed map.

Proof. To prove the necessity we need only notice that if F is a homeo-

morphism; then F_1   is continuous and so F maps closed sets into closed sets.

To prove the sufficiency, we need only show that F satisfies condition (L)

and then apply Theorem 1.2 to conclude that F is a homeomorphism of X on-

to  Y.

We now show that F satisfies -condition (L). So suppose that Pit) is de-

fined on 0 < t < b  and satisfies F(P(0) = 7(0  for 0 < t < b.   Let S =

{Pit)}0<t<b.   By hypothesis F(5) is closed. Thus since 7(f) G F(5),  for all

f < b,  then by continuity 7(6) G F(5). Hence 3x G S so that F(x) = 7(6).

Since xG5, 3i:.  so that P(t¡)—*■ x.   Since  0<t¡<b,   there exists a subse-

quence t¡ —► 7.  We claim J = b (and thus condition (L) is satisfied by  t¡. —►

b and /(f,-.)—>-x).  However, by continuity, Lit ) = Lib) and so T = b.

Let us remark that since a proper map is in particular a closed map, we

could have deduced Theorem 2.2 as a corollary of Theorem 2.3.  However, we

preferred to prove it directly in order to illustrate the type of arguments that one

can use in verifying condition (L).

Corollary 2.3. Suppose F:X —>Y is a local homeomorphism.  Further-

more, suppose F satisfies the following:

(1) ||F(x)||->°° as  Hxll ̂~.

(2) There exists a compact operator K:X —► Y such that the operator

5(x) = F(x) + 7T(x) satisfies the following condition: For any xt  and x2  with

Hxjll and \\x2\\<R we have  ||£(x2) - B(xY)\\ > 0(||x2 -xt \\;R)>, where

<¡>(r; R) is continuous, real-valued and strictly increasing with respect to r> 0

for each R>0 and 0(0; R) - 0.

If the above conditions are satisfied, then F is a homeomorphism of X

onto  Y.
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Proof. We shall show that F is a closed map and then use Theorem 2.3 to

conclude the desired result. Let C Ç X be closed, and let the sequence x¡GC

be such that F(x¡) —*y.   By (1), the sequence x¡ is bounded (by M) and

since K is compact, there is a subsequence xn   suchthat K(xn)—*y.   Hence

B(xn¡) *y y + y-   Suppose 3e0 > 0  such that  \\x„. - xm .|| > e0 > 0  for all

n¡, mv Then \\B(xn.) - B(xm .)|| > o>(Jxnj - xm\\; 2M) > i(e0, 2M)>0, which

is a contradiction since  \\B(xn.) - B(xm .)|| —* 0. Hence there is a subsequence

of xn   which converges to some x,  and x G C since  C is closed.  Thus

F(x) = y by continuity, and so F(C) is closed, as was to be shown.

3. Completeness and global homeomorphisms.  In differential geometry

there is an intimate connection between the continuation of paths of finite length

and the completeness of a finite-dimensional manifold with respect to a given

metric (Hopf-Rinow theorem [17]).

Since our condition (L) is concerned with the ability of certain paths to

have a continuation, we shall formulate a notion of completeness which is suitable

for our investigation which takes place in a general Bannach space.  As before,

Theorem 1.2 will be our main tool in deducing global homeomorphism results.

Again, let X and  Y be Banach spaces.  Let B(x) > 0 be a real-valued

continuous function on X.   Let P(t) be a path (in X) of class C1 on 0<í<¿>.

Definition 3.1. The arc length of P with weight B is

Lb0(P)=£ B(P(t))\\P'(t)\\dt.

Definition 3.2. X is complete with respect to arc length with weight B if

and only if Lq(P) < °° => limf_>öF(r) exists and is finite whenever P(t) isa C1

path on  0 < t < b.

We remark that if X = RN, then Definition 3.2 is equivalent to the usual

notion of R^ being complete with respect to the conformai metric induced by

the tensor ds2 = [B(x)]2 dx2  (see Hartman [11]).

With B(x) as above, we prove the following sufficient condition for com-

pleteness:

Theorem 3.1. Let h(s) = tofM<sB(x). If Jq h(s)ds = °°   then X is

complete with respect to arc length with weight B.

Proof. Let P(f) G C1 [0, b) and LbQ(P) <°°. Let 0 < S < b.  For any

partition  0 = i0 < fj < ••• < tN = S  of  [0, S], let t¡< T¡ < t¡+,   be that

number for which supf.<i<f     II P'(r)H = HP'iT,)!!.  By the mean value theorem,

we have
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Li(P)=i0B(P(t))\\P'(t)\\dt

= limXTW,)) ¡mm iti+ , -1¡)

> Iim£^P(f,))(||P(f<+1)J| - UP(f,)||)

=/o6/i(P(0)d||P(OII,

this last equality following from the fact that f%B(P(t))d\\P(f)\\ is defined since

git) = IIP(f)II  is of bounded variation on   [0, S].  So we have that

« > J"* BiP{t)) \\P\t)\\ dt >fl P(P(0) d||P(0ll

(1) >fnS      inf        P(x)c7||P(0ll
Jo ll*IKIIi>(f)ll

rs r\\P(&)\\
=)0K\im\\)d\\P(t)\\=fm Ks)ds.

By hypothesis, this implies that {P(0}o</<&  is bounded. Also /¿* h{s) ds = °°

implies that  sup {s\his) > 0} = °°, and since his) is nonincreasing, we have that

P(x) is bounded from below on any bounded set.  In particular, P(P(0) is

bounded from below by some number X > 0, for all 0 < t < b.

Let t¡ —*■ b, it¡ < ti+ j). Then

t mt+ x) -p(f,oii < i   sup   iip'(oii(f/+1 - f,)
j=i i=itt<t<ti+i

(2)

</f,"+1 llP'm dt < X Jo B(-m) V*® ■dt < °°-

Hence 3x  so that P(t¡)—*-x  as tt—*b.

Thus lim P(t¡) exists for any increasing sequence tt —► b,  and is in fact

unique for such sequences (since from any two such sequences we can form a

new increasing sequence containing the original ones as subsequences).  Hence

limi_J.6P(0 exists as every sequence P(t¡) has a unique limit point which is inde-

pendent of the sequence  t¡.

An immediate consequence of Theorem 3.1 is the following theorem due to

Hadamard [10]:

Theorem 3.2. 7ef X and Y be Banach spaces, F:X—* YEC1(X) and

F'(x) is invertible for all x E X. If

C°° 1
Jo   ¿ft. ||[F(x)]-MI * = °°*

then F is a diffeomorphism of X onto   Y.

Proof. Since F is a local diffeomorphism, then in view of Theorem 1.2,
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we need only show that F satisfies condition (L). To this end we apply Theorem

3.1 as follows:

Suppose P(t) is defined on 0 < t < b  and satisfies F(P(t)) = L(t) for

0 < t < b.  If we look at the proof of Theorem 1.2, we see that it suffices to

show that F satisfies condition (L) only for those paths P(f) that are constructed

by the method used in Theorem 1.2. Also, if P(t) is such a path, we may assume,

by the inverse function theorem, that P(t) is continuously differentiable on 0 <

t < b.   Since F(P(t)) = L(t) on 0 < t < b,  we use the chain rule and get

F'(P(t))P'(t) = L'(t) (= z). Thus P'(t)=[F'(P(t))]-lz  for 0 < t < b.   Let

B(x) = l/||[F'(x)] -1||.  By our hypothesis, combined with Theorem 3.1, we have

that X is complete with respect to arc length with weight B.   Also,

Lb(F)=f*B(P(t))\\P'(t)\\dt

■^[^]-'|l[f,ffl"',|a<tl4

Thus, by Definition 3.2, F satisfies condition (L).

Let us remark that one can use Theorem 2.1 when the integral condition of

Theorem 3.2 fails.

Corollary3.1. IfF:X—* YeC\X), F'(x) is invertible for all x&X

and further there exists M>0 so that, for each x E X,   ||F'(x)z|| >M\\z\\ for

all z,  then F is a diffeomorphism of X onto  Y.

Proof. IIF^z|| >M\\z\\ for all z implies that \\[F'(x)]-l\\<HM for

every x.   Hence

f "   inf   -ß.—- > f " Mdt = -.
Jo   M<t ||[F'(x)]-Ml     Jo

So by Theorem 3.2, F is a diffeomorphism of X onto  Y.

The next corollary pertains to a class of maps that are related to quasi-con-

formal maps.

Corollary 3.2. Suppose F:X—> YGC1(X) and F'(x) is invertible VxG

X. Also suppose that there are continuous, positive nondecreasing real-valued func-

tions M(t), M(t) so that

|| F'(x)|| < M(\\x ||) and  || [F'(x)] ~! || < M(||x||).

Then if M(f)M(f) < \(t) for all real t where \(f) > 0 and ¡ol/\(t)dt = °°,

F is a diffeomorphism of X onto  Y.
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Proof.

'1^(0)11 || [F'OOr11|<    sup     ||F'(z)||.    sup     lltfiz)]-1!!
HzlKllyll lUIKIIvll

<M(IWI)M(IWI)<X(||j||).

Thus

i/ll[i"Cv)]_1ll>IIF'(O)||/X0WD.

So by virtue of Theorem 3.2, F is a diffeomorphism of X onto  Y.

Corollary 3.3. Let H be a Hilbert space and F : H —► 77 G C\H). Fur-

thermore suppose there is a positive real-valued function X(x) such that iF'Q¿)z, z)

> X(x)||z||2.  Then if f£ ini^x^<tXix) dt = °°,  F is a diffeomorphism of 77 on-

to itself.

Proof. By the Lax-Milgram theorem, F'(x) is invertible and || [F'(x)] ~1 ¡| <

1/X(x). Thus F is a local diffeomorphism. Also

ÍT   inf   „rwAn   m dt > f "   inf    X(x)dt ■ °°.
Jo   o*Kí||[P»]_1II Jo   l»l<*

Hence Theorem 3.2 is applicable.

4. Global homeomorphisms between finite-dimensional spaces. For X = R^,

we have the following slightly stronger version of Theorem 3.1.

Theorem 4.1. Let his) = inf||Xn=iP(x). If f£ h{s)ds = <»,  then RN is

complete with respect to arc length with weight B.

Proof. Let P(0 G C1 [0, b) and suppose 7*(P) < «. Let 0 < 5 < b.

Following the proof given in Theorem 3.1, we have that °° > /|pL)g Ks) ds.

Hence {P(0)o<f<&  *s bounded.  Since P(x) is a continuous, real-valued func-

tion on R^, it maps bounded sets into bounded sets. Thus P(P(0)  is bounded

from below by some positive number (since P(x)  is positive).  Again, as in Theo-

rem 3.1, we find that if t¡ —► b,  then

£ iip(f/+1) -p(if)ii < {J*p(p(o) iinon dt < ~
í—i

and thus we conclude that limf_ft Pit) exists and is finite.

Theorem 4.2. Suppose  F : RN —*■ RN, F E C1^) and also F'(x) is in-

vertible for all xERN. If

f"   inf    (l/ll[F'(x)]-1|l)A = ~,
•"»    \M\ = t

then F is a diffeomorphism of RN onto itself.



180 ROY PLASTOCK

Proof. The proof mimics that of Theorem 3.2, except that we use Theorem

4.1 in place of Theorem 3.1.

Lemma 4.1. Let L:RN —*■ RN be an invertible linear operator.  Then

Idet/I \(L-lx,y)\<\\x\\ ||v|| HZT^C« - l)-C"-»)/a

for all x,ye RN.

Proof. See [7, Part II, p. 1020].

Corollary4.1. Let F:RN-+RN eC1^). Suppose that (i)  |detF'(x)|

>a>0, and (ii) \\F'(x)\\<M.   Then F is a diffeomorphism of RN onto  RN.

Proof. From Lemma 4.1, we have that

(1) Idet F'(x)| |([F'(x)]~1z, w)\ <c(«) ||z|| |by|l WF'QQW»-1,

where c(ri) = (n- l)-<«-0/*.  Choose z so that  ||z|| = 1, and let  w =

[F'(x)]~1z.  With these choices, (1) becomes

|detF'fX)| lirF'OOr'zll2 <c(«)||[F'(x)]-1z|| \\F'(x)\\n-1.

Using hypotheses (i) and (ii) we have that

\\[F'(x)]-lz\\<c(n)Mn-1la, for all  ||z|| = 1.

Hence

|| [F'(x)] ~1\\< cQiyM" ~lla, for each jc.

Thus, by Corollary 3.1, F is a diffeomorphism of RN  onto R^.

Corollary4.2. Suppose F.rF—* Rn is continuously differentiable. Also,

suppose that (i)  I det F'(x) \ > a > 0, and (ii) is quasi-conformal, i.e., UM 3

\\F'(x)W\\[F'(x)]-l\\<M, for all x.   Then F is a diffeomorphism of RN

onto RN.

Proof. By Lemma 4.1, we have, with c(ri) = (« - l)_(n"1)/2,

(1) Idet F'(jc)| laF'C*)]-^, w)\ <c(n) \\z\\ \\w\\ \\F'<x)\\n-1.

Choosing z = w and ||z|| = 1, (1) becomes

(2) Idet F'(x)\ \([F'(x)]-lz, z)| <c(«)||F'(x)||"-1,      V||z|| = 1.

Taking sup(|r|,=1   of the left side of (2), we get

|detF'(x)| lirF'fx)]-1!! <c(n) ||F"(x)||"-x.

Using hypotheses (i) and (ii), we have

|| [F'(x)] ~l\\< [c(nyM"-1 /a]1 /"  for all X
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,NBy Corollary 3.1, F is a diffeomorphism of R    onto R

Corollary 4.2 is true under the weaker hypothesis det F'(x) =£ 0, provided

N>3 [16].

In general, the hypotheses of Theorems 3.2 and 4.2 cannot be entirely omit-

ted as the following examples show:

,x„) = (tan-1Xj, x2(l + x\)2,x3,

is a

Example 4.1. F(x) = F(Xj, ••

C1 map of R"  into R"  and

'.*«)

F'(x) = F'(x1,...,x„) =

1
1 + x2

4xtx2(l + x2)

(1+x2)2

'n-2

Since det F'(x) =x2 + 1 > 1, F satisfies the conditions of the inverse func-

tion theorem. By looking at the characteristic polynomial of F'(x), we see that

X = 1/(1 +x2) is an eigenvalue, and so  1/X = 1 + x\ is an eigenvalue of [F'fx)]-1.

Therefore  ||[F'(x)] "'\\ > 1 + x\, and so we have that

i
inf

llxIKf
1/(1 + Í2).

ll[F'(x)]-

Since Jq dt/(l + f2) < °°, F does not satisfy the hypotheses of Theorems 3.2

and 4.2 and we observe that F is one-one, but not onto.

Example 4.2. A second example of a univalent map which is not onto is

the famous example of Fatou and Bieberbach [3, p. 45].  This is an example of

an analytic map F of C2  into itself whose Jacobian (of the map considered as

mapping R4 —► R4) is identically equal to 1 and F is univalent; however, the

range of F omits a full open neighborhood of a point in C2.

Example4.3. F(Xj, x2) = e*1 (cosx2, sinx2). F isa C1 map of R2 —►

R2  which is neither one-one nor onto (it omits 0). We observe that IIF'fXj, x2)|| =

thus  l/UIF'fx^x^-MKe*1. So

1

oX\

inf <e
Jew

o
e~* dt <°°.

IUIKí  ll[F'(x1,X2)]-

Examples 4.1 and 4.2 also show that the condition  |detF'(x)| > a > 0 is

not in itself sufficient to insure that F is a global homeomorphism, for if

F(x1( x2) = (tan_1Xj, x2(l + x\)2, x3, •••', x„) then det F'(x1, x2) > 1, yet

F is not a homeomorphism of R"  onto R". However it is known [8] that if

F is a gradient map of R2  into itself, then det F'(x) < a < 0 insures that F

is globally one-one.

5. Conclusion.  If we inspect the methods that were employed in determin-

ing when a mapping between two Banach spaces is a homeomorphism, we see that
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the properties of global univalence and surjectivity were related in an intimate

way, i.e., once we showed that the map F:X—*Y is a covering space map of

the simply connected space  Y,  then F was automatically univalent by Lemma

1.1.  In the general case of a mapping F of some domain D into a Banach

space we usually have little information about F(D). Thus the assumption that

F(D) is simply connected is not viable and so Lemma 1.1 is not applicable.  In

subsequent papers we shall investigate the questions of global univalence and sur-

jectivity independently and without any assumptions on the range of the map-

ping at hand.
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