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ABSTRACT. In this paper, we introduce and study the class 4 » o<p

< ) in a dual B‘-algebra A. We show that, for 1 < p < oo, Ap is a dual

A'-algebra which is a dense two-sided ideal of A. If 1 < p < o, we obtain
that Ap is uniformly convex and hence reflexive. We also identify the conju-
gate space of Ap 1<p< °°.). This is a generalization of the class Cp of com-
pact operators on a Hilbert space.

1. Introduction. Let H be a Hilbert space and LC(H) the algebra of all
compact operators on H. Then LC(H) is a simple dual B*-algebra and every
simple dual B*-algebra is of this form. The class C, of compact operators in
LC(H) has many interesting properties and has been studied in various articles
(e.g., see [2], [3] and [4]). The present work is an attempt to introduce a simi-
lar class of spaces in an arbitrary dual B*-algebra.

Let A be adual B*-algebra. The class A, (0<p <) is introduced in
§3. After establishing some crucial inequalities, we show that 4, (1 <p <)
is a dual A*-algebra which is a dense two-sided ideal of A. In §4, we study the
algebras A, and A4,. We obtain that every proper H *.algebra is of the form
A, and 4, ={xy:x, y €A,}. §5 is devoted to showing the uniform convexity
in 4, (1 <p <). Finally we identify the conjugate space of 4, (1 <p <)
in §6.

In this paper, our approach is elementary and the techniques are not new.
In fact, they are borrowed from [3], [4], [10] and [11]. The author is grateful
for these invaluable references.

2. Notation and preliminaries. Definitions not explicitly given are taken
from Rickart’s book [7].

For any set E in a Banach algebra A4, let I(E) and r(E) denote the
left and right annihilators of E, respectively. Then A is called a dual algebra
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if for every closed right ideal R and every closed left ideal I, we have r(/(R))
=R and I(r()) =L See [5] and [7] for some of its properties.

An idempotent e in a Banach algebra A is said to be minimal if ede is
a division algebra. In case A is semisimple, this is equivalent to saying that
Ae (eA) is a minimal left (right) ideal of A.

Let A be a Banach algebra. A bounded linear operator S on A4 is called
a right centralizer if S(xy) = (Sx)y forall x,y in 4. Foreach a in A4,
the operator L,: x > ax (x € A) is a right centralizer on A.

Let H be a Hilbert space with an inner product (,). If x and y are
elements in H, then x ® y will denote the operator on H defined by
x®y)h)=(h, yx forall h in H.

In this paper, all algebras and linear spaces under consideration are over the
field of complex numbers.

NoTATION. In this paper, A will denote a dual B*-algebra with norm
=11

We shall ofter use, without explicitly mentioning, the following fact: For
any orthogonal family {e,} of hermitian idempotents of A4, Z, e,x is sum-
mable in A, and especially when {e,} is a maximal family, x = Z, e, x for
all x in A (see [5, p. 30, Theorem 16]).

Let B be aclosed commutative *-subalgebra of 4 and e a minimal
idempotent in B. It follows easily from [7, p. 261, Lemma (4.10.1)] that e
is hermitian. Also if f is any other minimal idempotent in B, then fe =
ef=0. If B is maximal, then e is a minimal idempotent in A.

LEMMA 2.1. Let e be a hermitian minimal idempotent in A, a € A,
and {fg} a maximal orthogonal family of hermitian minimal idempotents in A.
Then |laell® = Z; I faell.

PROOF. Since A is a dual B*-algebra, it follows from [7, p. 259, Theorem
(4.9.24)] and [7, p. 269, Corollary (4.10.20)] that 4 = (Z, LC(H,)),, where
LC(H,) is the algebra of all compact operators on a Hilbert space H,. It is
easy to see that e GLC(H,\O) for some Ay. Let {f,}={ f}n LC(H,\O).
Then we can write f7 =X, ® x, with x, € H, and llx,yll = 1. Similarly
e=yQ®y with y GH,\O and |Iyll = 1. Since {f,} is a maximal orthogonal
family of hermitian minimal idempotents in LC(H,\O), it follows easily that
{x,} is a complete orthonormal set in H"o' Put b =ae. Then b E LC(HAO)
and be =ae. Hence '

llaell? = lleb™bell = II(y ® »)b*b(y ® )l = lIbyll*.

Similarly [If, bell = Iy, x,)I. Since fgae =0 if fg & {f,}, by Parseval’s
identity we have
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- Tifgaell? = Ziifpell = Liy, %) = By12 = llell®,
8 ¥ Y

This completes the proof.
The following lemma is useful in this paper and it is similar to [10, p. 29,
Lemma 1].

LEMMA 22. Let a €A and {e,}, {fg} any two maximal orthogonal
Jamilies of hermitian minimal idempotents.in A. Then

> llae,II? = }ﬂ:naf,,u2 = 2lla*flR.
a B

PROOF. We note first that ||fae,ll = lle,a*fall. If Z, llae,|® is sum-
mable, then by Lemma 2.1, we have

CORPIIN LR Ifyae,l2 = T L llega® I = T lla*f 2.
@ . @ B « B

Hence, in particular, Zg llafyll> = 2z, Ila*fﬁllz. The lemma now follows from
.1).

Suppose b is a normal element in 4. Let B (resp. B') be a maximal
commutative *-subalgebra of A containing » and {ey,} (resp. {e,}) the
maximal orthogonal family of hermitian minimal idempotents in B (resp. B').
Then be, = e be, = k,e, for some constant k,. Similarly be , =k e, for
some constant k. Let K (resp. K") be the set of all nonzero k, (tesp. k).
We note that k°'1 may be equal to ke, for some «, # a,. However we
consider them as different elements in K.

LEMMA 23. The set K is either finite or countable and K = K'. The set
of all distinct constants in K is precisely the set of all nonzero constants in the
spectrum of b.

PROOF. Let B, be the intersection of all maximal commutative *-sub-
algebras of A containing b. Let {fp} be the maximal orthogonal family of
hermitian minimal idempotents in B,. Since B, is a dual B*-algebra, b =
Zg bfg = Zg Ngfg, where Ag are constants. Therefore there exists only a count-
able number of fB for which bfﬁ # 0. Also, for each nonzero )\50, the set
{AB: 7\6 = )\Bo} if finite. It is now easy for us to write b = E;":l A, f,, where
A, are distinct nonzero constants and {f,} is an orthogonal family of hermitian
idempotents in B, such that A, f, = bf,. Note that f, is not necessarily
minimal. Since B is dual and f, € B, it is well known that

[, = e°‘"1 oo +ea”p, where eanle{ea} @i=1,2,+*+,p)
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Considering the right ideal f,4 of A4, by [1, p. 497, Theorem 2.2], the number

n, is independent of the choice of B. Since bf, =\,f,, we see easily that

2.2) be, =M\,e, @i=1,2,+-,p)
~ ni ni
If f,= €, +oeee 4 e, (m # n), then it follows from (2.2) that
1 q
{e"‘ml’ cee, e,,,mq} N {ea,"l, cee, eanp} =g,

because A, #A,,. Also

b= NS, =206, ++*+e, )
n n "p

Let E be the set of all such €, - Then E is countable. For simplicity, we
p
write E={e;,e,,***} and b =2 _, k,e,, where ke, =be, and k,#0
(because A, #0). Let {e,} ={e,} — E. We show that be, =0 forall 7.
In fact, since b = Z, be, = X, be,, it follows that Z, be, = 0. Let F, be
the multiplicative linear functional on B corresponding to the maximal modular
ideal B(1 —e,) of B. For any fixed 7,, we have be,o = k"oe‘fo’ for some
constant k‘Yo' Then

kyy = Fy (b0, ) = g_‘ Fy (bey) =F, (; be.,) =0.

Hence it follows that be, =0 for all v. Consequently K = {k,}. Similarly

we can show that K' = {k,}. Therefore K = K'. Now the last part of the

lemma follows easily from [7, p. 111, Theorem (3.1.6)] . This completes the proof.
Let b, {e,} and {e,} be asin the proof of Lemma 2.3. Then

b=13%, ke, =Z, kue, is called a spectral representation of b. By Lemma

23, {k,} is independent of {e,}. Alsoif k, #k, forall n, then k, =0.
Suppose a is a nonzero element in 4. Let a*a =X, r,e, be a spectral

representation of a*s. We claim that

(23) a= 2 ae,

In fact, since Z, e, is summable and a*a =73, a*ae, = I, e,a%e, =
Z, 7€, it follows that (@ — 2, ae,)*@ — =, ae,) = 0. Hence a = I, ae,,
We note that ae, # 0; for otherwise r,e, =a*ze, = 0.

Since a*a is a positive element, 7, >0 for all n. Put k, =+/r, > 0.
We show that X, k,e, is summable in 4. In fact, for any two positive integers
mn (m<n), 12, kel? =27, rell. Since Z, r.e, issummable, so
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is Z, k,e,. Put
24) [a] = Z knen‘
n

Then [a]* =[a] and [a]? =a*a. Hence [a] = (a*a)". Foreach x in A,

n 2 n 1 */n .
i_Zm ki laex|| = i_zm k; aeix) (i_zm k; aeix>
s = = =
n n 2
= | 3 xPex||=|| 2 ex|| <lxIP.
i=m i=m

Since X, e,x is summable in A4, sois =, k, 'ae,x. Define a mapping W on
4 by )

(26) Wx = 2 k;lae,x  (x €A).

Then it follows from (2.3), (2.4) and (2.5) that W[a]=a and [IW|l = 1.

We note that age,a* # 0; for otherwise rZe, = a*ae,a*a=0. Put f, =
k,%ae,a*. Since (0) # f,A Cae,A and ae, # 0, it follows from [7, p. 45,
Lemma (2.1.8)] that f, 4 =ae,A is a minimal right ideal of 4. Hence we
see that {f,} is an orthogonal family of hermitian minimal idempotents in A.
By (2.3), aa* = =, ae,a* = =, kK2f, and so it is a spectral representation of
aa* by the proof of Lemma 2.3. For each x in A, by a similar argument in
(2.5), we have

2 2

> xl| <uxie.

i=m

n

-1, %
Y kyleas
i=m

@2.7)

Since Z, f,x is summable, so is =, k,;'e,a*x. Therefore we can define a
mapping W* on 4 by

(2.8) W =3 k;le,a*x  (x€A).
n

It follows easily from (2.4) and (2.7) that W*a =[a] and |IW*||=1. Also
both W and W?* are right centralizers on A. We shall refer to the operator W
as the partial isometry associated with a.

We remark that similar concepts were introduced in [9].

3. The p-classin A. As before, A will be a dual B*-algebra with norm
lI*1l. Suppose a is a nonzero element in A. Let a*a =X, r,e, be a spectral

representation of a*a and k, =+/r,. Since a*z is a positive element in 4,
r, >0 and so k, >0. We define
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a, = (X )" 0<p<w),
(3.1) D (n n) ( p )

bl, =max{k;:n=1,2,+}

For a =0, we define al, =0 (0 <p<).
REMARK. By Lemma 2.3, Ialp is well defined. .
DEFINITION. For0<p <, let 4, ={a€4: lal, < oo},
REMARK. For 0<p <o, |a|p>0 and Ialp =0 ifand only if a = 0. Also
|kal, = |kl lal, for any constant k.
We now have some elementary properties of lal,.

LEMMA 3.1. Let a bean elementin A and 0 <p < oo, Then
@ llall = lal, < lal,. Thus A, = A.
@) lal, = lle]l,. Hence a € A, if and only if [a] €4,
(iii) If p<gq, then lalp > lal, and so A, CA,
(v) If e is a hermitian minimal idempotent in A, then lel, =1 and so
eEAr
) lal, = la‘lp. Hence a € A, if and only if a*€A4,.

PROOF. Let a*a =3, r,e, be a spectral representation of a*a and
[a] ==, k,e, with k, =+/7,.

(i) This follows from |lall> = lla*all and [7, p. 112, Corollary (3.1.7)].

(i) This follows from [a] = [[a]] = Z, k,e,.

(iii) and (iv). This is clear.

(v) We can assume that a # 0. Put f, =k, 2ae,a*. Then aa* =
z, K2f, is a spectral representation of aa* (see §2). Therefore it follows that
la“lp = lal,. This completes the proof of the lemma.

Let a be a positive element in 4 and B, the intersection of all maximal
commutative *-subalgebras of A4 containing a. If {fp} is the maximal orthog-
onal family of hermitian minimal idempotents in B,, then a = Zpafg=
2g N\gfg, where Ag are nonnegative constants.

DEFINITION. For 0 <p <o, we define a? = Z; Ny fj.

REMARK. Let a =X, ke, = Z, k,e, be a spectral representation of a.
If aP exists, then by the proof of Lemma 2.3 aP = I, khe, = Z, kbe, is
a spectral representation of a”.

LEMMA 3.2. Let a be a positive elementin A and 0<p, g <o If
a? exists, then k|, Jq = lald

Proor. This is clear.
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LEMMA 33. Let a€A and 0 <p <o Then the following statements
are equivalent:

@ a€4,.
(i) [a)?€4,.
(ii) [a]p/2 €4,.
If any of these conditions holds, then laly = Zg ||fg[alPf,ll, where {fg}
is a maximal orthogonal family of hermitian minimal idempotents in A.

ProoF. Let [¢] =Z, ke, = Z, ke, be a spectral representation of
[a].

(i) <= (ii) This follows from the equality Ial; =3, kb =[a]?|,.

(i) <= (iii) This follows from the equality I[a}P|, = Z, k& = [[alP/?]3.

If any of these conditions holds, then by Lemma 2.2, we have

lalp =3 k2 = 3 ll[aP'2e, I
= 2 llalP2f 1 =2 1f, [a1?fll.
8 8

This completes the proof.

LeEMMA 34. Let a be a positive element in A and f a hermitian mini-
mal idempotent in A. Then

@ NfePfll = NfaflIP 1 <p <o)
@) 1&PFI <llfafIP (0 <p<1).

PrROOF. Let a =X, k.e, be a spectral representation of a.

(i) Clearly we can assume that 1 <p <o, Then by Holder’s inequality and
Lemma 2.1. we have

Naf Il = lla%F 12 = X lleya%f I = 22 k,lle, f1I?
< (): kzlleafllz)l/p(z II%,fII’)"’“"’P

1/p
= (E Ileaa”/zfllz) IFIR)P=DIp = || faPf i,
Q
(i) Replacing @ by 4P and p by 1/p in (i), we get (ii).

LEMMA 35. Let a€ A p and {fg} be a maximal orthogonal family of hermi-
tian minimal idempotents in A. Then

@) lalp <Zg llafglP 1<p<2).
(i) lalf > 24 llafylP (2<p<e).

If [a] =Z, ke, isa spectral representation of [a], then Ialg =
Z, llae,llP (0 <p < e).
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Proof. (i) If 1<p<2, then by Lemma 3.4(ii), we have [If;[a]?f5ll <
I f5lalf5lIP7% = llafgllP. Therefore (i) follows now from Lemma 3.3.

(ii) This can be proved similarly.

If [a]=Z, k,e,, then llae,ll = lle,a*ae,lI” = k,. Therefore |a|§'=
2, llae,lIP (0 <p <e°). This completes the proof.

LEMMA 3.6. Suppose a,b €A and 1<p <, then the following state-
ments hold:

() If a€A, and S is a right centralizer on A, then Sa € A, and
ISalp <|ISl Ialp.

(i) If a€A, and b €A, then Iablp < Il Ialp and lbalp <lizll lal,.
Hence ab and ba are in Ap.

(iii) If a, b arein Ap, then lablp < lalp lblp.

Proor. Clearly we can assume that 1 <p <es,
(i) Suppose 1<p<2. Let [a] =Z, k,e, be a spectral representation
of [a]. Then by Lemma 3.5, we have

ISal} < 3 11(Sa)eg PP <IISIP 2 llaey [P = (S|P a2,
a 2

If 2<p<o, let [Sa] =Z, ke, be aspectral representation of [SA]. Then
by a similar argument, we have |Sal, <|ISI| lal,. This proves @).

(ii) This follows easily from (i) and Lemma 3.1(v).

(iii) This follows from (ii) and Lemma 3.1(i).

LEMMA 3.7. Let a eAp and { fB} a maximal orthogonal family of
hermitian minimal idempotents in A. Then

(3.2) %j fgafglP <lalf (1 <p <)

PrROOF. Let W be the partial isometry associated with a and b = W[a]'/’.
Then a = W[a] = b[a]*. It follows from Cauchy’s inequality that

3.3 P < b?P)* AfIPPYA,
(.3 BZ I faafll (%: Il ) (% lila] %7, )

By Lemma 3.3 and Lemma 3.4, we have

(34) %: lI[a]*£, 1177 = BZ Il fglalfglP <Z; £ Lal 2fll = lal,

By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

; lIfgb 1127 < BZ fs®b* Pyl = b*135 = bI3E

(3.5)

< I[a]%lgg = lal.
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Substituting (3.4) and (3.5) into (3.3), we get (3.2). This completes the proof.
In order that | Ip be a norm on 4, (1 <p < =), it is sufficient now to
show the triangle inequality.

LEMMA 38. Let a, bEA
Hence a + b GAP.

p» then la + bl, < lal, + 161, (1<p<)
PROOF. We can assume 1 <p <o, Write [a +b] =Z ke, and [z +]

= W*@ + b) (see (2.8)). Then by Lemma 3.5, Lemma 3.7 and Minkowski’s in-
equality, we have

la +bl, = (E lle, [ + b] eallp)l/”
a
* p\1/p
< (? Ileaw*aea“P)l/P + (E: lle, W*be, i )

< |W*al, + IW*bl, < lal, + b,
This completes the proof.
Now we have the main result of this section.

THEOREM 39. For 1 <p <o, A_ isa dual A*-algebra which is a dense

two-sided ideal of A.

14

PROOF. By a similar argument in the proof of [4, p. 265, Corollary 3.2],
we can show that 4, is complete. (We use maximal orthogonal families of
hermitian minimal idempotents instead of orthonormal bases.) Hence A4, isan
A*-algebra which is a two-sided ideal of A. It follows from Lemma 3.1(iv) that
A » contains the socle S of 4. Since S isdense in A, so is Ap. We claim
that, for each a in Ap, a belongs to the closure of a4 p in A p* In fact,
let [a] =2, ke, be a spectral representation of [2] and W the partial
isometry associated with a. Put f, = E;'=l e, (n=1,2,++). Then

oo oo 1/p

> ke = ( > kf’) .

i=n+1 p i=n+1

Since a GAp, it follows that |a — afnlp -0 as n -, Hence by [5, p. 29,

Lemma 8 (3)], 4, is a dual algebra. This completes the proof.
We shall need the following result.

Ia - afnlp < I[a] - [a]fnlp =

COROLLARY 3.10. Let {e,} be any orthogonal family of hermitian minimal
idempotents of A and x (—:Ap (1 <p <), then z, ex is summable in |°Ip
and especially when {e.,} is a maximal family x = Z, e, x in A,.

ProoF. This follows from Theorem 3.9 and Theorem 5.2 in [12].
Finally we remark that many statements and proofs in this section are similar
to those given in [4] and [11].
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4. The algebras 4, and A,. We have a characterization of a proper
H*.algebra.

THEOREM 4.1. The algebra A, is a proper H*alg2bra. Conversely, every
proper H*algebra is of the form A, for some dual B*lgebra A.

PrOOF. Let a,b €4, and {f;} a maximal orthogonal family of hermi-
tian minimal idempotents in 4. Then fﬁb"‘af‘i = hpf‘, for some constant Ag.
We claim that Zg A, is absolutely summable and independent of the choice of
{fg}. In fact, let x, y € Afs. Then y*x = (_x, Y)gfp for some constant
(x, ). It follows from [7, p. 261, Theorem (4.10.3)] and [7, p. 263, Theorem
(4.10.6)] that (x, y); defines a complete inner product on Afg such that
&, x)g = lixl>. Now by Lemma 2.2 and the proof of [10, p. 30, Lemma 4], we
can show that 25 Ag is absolutely summable and independent of {fB}° Define

@.1) @ b)= % N (@ bEA)

Then by the proof of [10, p. 31, Lemma 5], (,) is an inner product on 4,
such that (xa, b) = (@, x*b) and (ax, b) = (g, bx*) forall x in A. Also
Ialg = (@, @). Therefore A, is a proper H*-algebra.

Conversely, let B be a proper H™algebra. Then B is a dense two-sided
ideal of some dual B*-algebra A. We can show that B =4, and this completes
the proof.

LEMMA 42. Let 1/p+1/g=1, where 1<p, q <o, If a€A, and
bE€A,, then ab€ A, and |abl; <lal,bl,.

PROOF. Suppose first that 2 <p <eo, 1 <q <2. Let [b]=Z, k,e,
be a spectral representation of [b]. Also write [ab] = W*ab. Then by Lemma
3.3, Lemma 3.5 and Hélder’s inequality, we have

labl, = 3 lley[ab] egll = 3 lle,Wabe,l
“4.2) @ a

*
<|Wal,bl, <lal,Ibl,.
By a similar argument, we can show that (4.2) holds for 1 < <2 2<qg<oo,
We now identify 4,.

THEOREM 43. A, = {xy: x, y €A4,}.
PROOF. If a€4,, then by Lemma 3.3, [a]% €4,. Let W be the
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partial isometry associated with a. Then a = Wla] = (W[a]*)([e]*) € {xy:x, y €4,}.
The converse follows from Lemma 4.2 and this completes the proof.

Let a €A,. Then by Theorem 4.3, a = c*» for some b, ¢ in 4,.

Define ‘

4.3) tra=((b,¢) @EA),
where (b, ¢) is given by (4.1).

LEMMA 44. Let a €A, {f;} a maximal orthogonal family of hermitian
minimal idempotents in A and \gfg = feafs. Then tra is well defined,
tra =3, 7\5 = Eﬁ(afﬁ,fﬁ) and |tr a| < lal,.

PROOF. By the proof of Theorem 4.1, 2,2, is absolutely summable and
independent of {fg}. It is clear that tra=2;A; = 2 (afg, fg)- Therefore
tra is well defined. By Lemma 3.7, ltr al < Zg |l fpafyll < lal;.

5. The uniform convexity of 4, (1 <p <). Foreach a in 4, we
define a linear operator L, on A, by

5.1 L(x)=ax (x€A4,).

Since laxl, <llall Ixl,, it follows that L, is bounded on A,. Let (,) be
the given inner product on A4,.

LemMA 5.1. Let a be a positive element in A. Then L, is positive and
Lr=(L) (0<r<e)

ProOF. This is clear.
We now establish [4, p. 260, Lemma 2.6] for 4,.

LEMMA 5.2. Let a and b be two positive elementsin A and 0 <r <o,
If @+b),da" and b" arein A,, then
0 tr@+b)y <tra"+trd” O<r<1i.
) tr@+dy=>tra" +trd” (1 <r<eo).

PrOOF. We assume first that 0 <r<1. Let S=L,, T=L, and
U=L,,,. Then by the proof of [4, p. 260, Lemma 2.6], there exist operators
C and D on A4, such that

<1, IDI<1, CU%=5% DU%=T*,
U = url2ctcu’? + utitp*purl?,

Let {f},} be a maximal orthogonal family of hermitian minimal idempotents in
A. Then by Lemma 5.1, we have
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tr(@+bY =2 (@+bYfp fp) = 2 (UTy fp)
(5.2) 8 8
= %‘_‘, (CUf,, CUfg) + }B_‘, (DU™f,, DUT2Sy).

Since C(a + b)Y/ €A, and CU'*fz = Cla + bY'?fp, it follows from (5.2)
that
tr @ +b)" = 0@ +bY"?2 + D@ + bY/?2
(5.3)
= [(C@@ +bY")*2 + I(D@ + bY'*)*2.
Let a=3,k,e, be a spectral representation of a. Since (C(@ + b)/?)*e,
(CU?)*e, = (a + bY!?C*,, it follows from [4, p. 252, Lemma 2,1] that

((C@ +bY'*)*e,, (C@@ + bY'*)*e,) = (@@ + b)Y C*e,, C*e,)
< (@ +b)C%,, C%,) = (aey, e,) =k, = @ey, €,).

Therefore [(C@@ + b)/?)*I2 < trd’. Similarly I(D(a + b)/?)*I2 <tr b". Hence
by (5.3), we have tr (@ +b) <tra” +trb". The case 1 <r <o can be
proved in a similar way and the proof is complete.

By using maximal orthogonal families of hermitian minimal idempotents
and a similar argument in the proof of [4, p. 259, Lemma 2.5], we have:

LEMMA 5.3. Let a be a positive element in A and b a hermitian element
in A such that a+b and a — b are positive. Suppose (a + b)Y, (@ — b)
and a" arein A,. Then
(A tr@+dy+tur@-by<tra” O<r<i).
@ tr@+b) +tr@-b)y =tra” (1<r<).

Now we have the following result.
THEOREM 54. Let a and b be two elementsin A, and 1p+1/g=1.
Then

@ 2271l + BE)<la + DB +la - b <2(lalp.+ bB)  (0<p<2)

() la+bl7 +la - bl <23alp + bP)/P (1<p<?)
(i) 2(alp + bE) <la +b +la - bl <2°7'(1aP, +16P) @<p<+)
) 2(1alf + )P <la + b + la - b @<p<).

ProoF. This can be proved by using Lemma 5.2, Lemma 5.3 and the proof
of [4, p. 261, Theorem 2.7]. We omit the details.
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As observed in [4], we have:
COROLLARY 5.5. For 1<p <<, A, isuniformly convex and reflexive.

6. The conjugate space of A4 p- In this section, we always assume that
1<p<o and 1/p+1/g=1. Let A; be the conjugate space of 4,. We
shall show that 4, = A: in a natural way.

For each a. in Ap (1 <p <), we define

6.1 Fx)=trax (x€ Aq).

THEOREM 6.1. For each a inA, (1<p<w), F,€A; and |F,|l =
kl,.

PROOF. By Lemma 4.2, F, is well defined. It is clear that F, € Aj
and || F |l <lal,. By a similar argument in the proof of [11, p. 786, Proposition
3.26], we can show that ||F,|l > lal,. This completes the proof.

We now establish a converse of Theorem 6.1.

THEOREM 6.2. For 1 <p <o, every continuous linear functional F
on A, is of the form F, for some a in A, where F, is defined in 6.1).

PrOOF. We assume first that p=1 and FE AX = 4™ Then it is clear
that F EA;'. Since A, is a Hilbert space, by the Riesz representation theorem,
there exists some @ in A, such that F(x) = (x, a*) =trax forall x in A4,.
By the proof of Theorem 6.1, we can show that ¢ €4, andso F=F,.

Now we consider the case 1 <p <o and assume FGA;‘. Then FEA].
Hence by the proof of [8, p. 103, Theorem 2], there exists a right centralizer S
on A, such that

6.2) Fy)=tSy (y€A4,).

Let {e,} be a maximal orthogonal family of hermitian minimal idempotents in

A and {E.} the direct set of all finite sums e, +e, +°°*+e, . Define
1 2 n

F,y on Aq by

6.3) F(x)=FEpx) (x€4,).

Since S(E.x) = (SE,XE,x) = ((SE,)E,)x = (SE,)x and E.,x €A4,, by (6.2)
and (6.3) we have

6.4 F(x)=tSExX)=tr SE)x (x €4,).

Since SE, = (SE,)E, € A,, by (6.4) and Theorem 6.1, |SE, |, = |IF, Il <IIF].
Therefore {SE,} is a bounded set in A,. Since A, is reflexive (Corollary 5.5),
we can assume that SE, —a weakly for some a in A,. Hence ae, = Se,

for all . Therefore by (6.2), F(e,x) = tr ae,x. Foreach x in Ag, by
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Corollary 3.10, x =Z,ex in |*|,. Hence it follows that Fx)=trax (xEAq).
This completes the proof.

REMARK. Some arguments in the above proof are similar to those in the
proof of [3, p. 130, Theorem III. 12.2].
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