THE p-CLASS IN A DUAL B*-ALGEBRA

BY

PAK-KEN WONG

ABSTRACT. In this paper, we introduce and study the class A_p ($0) in a dual <math>B^*$ -algebra A. We show that, for $1 , <math>A_p$ is a dual A^* -algebra which is a dense two-sided ideal of A. If $1 , we obtain that <math>A_p$ is uniformly convex and hence reflexive. We also identify the conjugate space of A_p ($1). This is a generalization of the class <math>C_p$ of compact operators on a Hilbert space.

1. Introduction. Let H be a Hilbert space and LC(H) the algebra of all compact operators on H. Then LC(H) is a simple dual B^* -algebra and every simple dual B^* -algebra is of this form. The class C_p of compact operators in LC(H) has many interesting properties and has been studied in various articles (e.g., see [2], [3] and [4]). The present work is an attempt to introduce a similar class of spaces in an arbitrary dual B^* -algebra.

Let A be a dual B^* -algebra. The class A_p $(0 is introduced in §3. After establishing some crucial inequalities, we show that <math>A_p$ $(1 \le p \le \infty)$ is a dual A^* -algebra which is a dense two-sided ideal of A. In §4, we study the algebras A_1 and A_2 . We obtain that every proper H^* -algebra is of the form A_2 and $A_1 = \{xy: x, y \in A_2\}$. §5 is devoted to showing the uniform convexity in A_p $(1 \le p \le \infty)$. Finally we identify the conjugate space of A_p $(1 \le p \le \infty)$ in §6.

In this paper, our approach is elementary and the techniques are not new. In fact, they are borrowed from [3], [4], [10] and [11]. The author is grateful for these invaluable references.

2. Notation and preliminaries. Definitions not explicitly given are taken from Rickart's book [7].

For any set E in a Banach algebra A, let l(E) and r(E) denote the left and right annihilators of E, respectively. Then A is called a dual algebra

Received by the editors November 16, 1973.

AMS (MOS) subject classifications (1970). Primary 46C05; Secondary 46K99.

Key words and phrases. Dual B^* -algebra, hermitian minimal idempotent, uniform convexity, proper H^* -algebra.

if for every closed right ideal R and every closed left ideal I, we have r(l(R)) = R and l(r(I)) = I. See [5] and [7] for some of its properties.

An idempotent e in a Banach algebra A is said to be minimal if eAe is a division algebra. In case A is semisimple, this is equivalent to saying that Ae (eA) is a minimal left (right) ideal of A.

Let A be a Banach algebra. A bounded linear operator S on A is called a right centralizer if S(xy) = (Sx)y for all x, y in A. For each a in A, the operator $L_a: x \to ax$ $(x \in A)$ is a right centralizer on A.

Let H be a Hilbert space with an inner product (,). If x and y are elements in H, then $x \otimes y$ will denote the operator on H defined by $(x \otimes y)(h) = (h, y)x$ for all h in H.

In this paper, all algebras and linear spaces under consideration are over the field of complex numbers.

NOTATION. In this paper, A will denote a dual B^* -algebra with norm $\|\cdot\|$.

We shall ofter use, without explicitly mentioning, the following fact: For any orthogonal family $\{e_{\alpha}\}$ of hermitian idempotents of A, $\Sigma_{\alpha} e_{\alpha} x$ is summable in A, and especially when $\{e_{\alpha}\}$ is a maximal family, $x = \Sigma_{\alpha} e_{\alpha} x$ for all x in A (see [5, p. 30, Theorem 16]).

Let B be a closed commutative *-subalgebra of A and e a minimal idempotent in B. It follows easily from [7, p. 261, Lemma (4.10.1)] that e is hermitian. Also if f is any other minimal idempotent in B, then fe = ef = 0. If B is maximal, then e is a minimal idempotent in A.

Lemma 2.1. Let e be a hermitian minimal idempotent in A, $a \in A$, and $\{f_{\beta}\}$ a maximal orthogonal family of hermitian minimal idempotents in A. Then $||ae||^2 = \Sigma_{\beta} ||f_{\beta} ae||^2$.

PROOF. Since A is a dual B^* -algebra, it follows from [7, p. 259, Theorem (4.9.24)] and [7, p. 269, Corollary (4.10.20)] that $A = (\Sigma_{\lambda} LC(H_{\lambda}))_0$, where $LC(H_{\lambda})$ is the algebra of all compact operators on a Hilbert space H_{λ} . It is easy to see that $e \in LC(H_{\lambda_0})$ for some λ_0 . Let $\{f_{\gamma}\} = \{f_{\beta}\} \cap LC(H_{\lambda_0})$. Then we can write $f_{\gamma} = x_{\gamma} \otimes x_{\gamma}$ with $x_{\gamma} \in H_{\lambda_0}$ and $||x_{\gamma}|| = 1$. Similarly $e = y \otimes y$ with $y \in H_{\lambda_0}$ and ||y|| = 1. Since $\{f_{\gamma}\}$ is a maximal orthogonal family of hermitian minimal idempotents in $LC(H_{\lambda_0})$, it follows easily that $\{x_{\gamma}\}$ is a complete orthonormal set in H_{λ_0} . Put b = ae. Then $b \in LC(H_{\lambda_0})$ and be = ae. Hence

$$||ae||^2 = ||eb^*be|| = ||(y \otimes y)b^*b(y \otimes y)|| = ||by||^2.$$

Similarly $||f_{\gamma}be||=|(by, x_{\gamma})|$. Since $f_{\beta}ae=0$ if $f_{\beta} \notin \{f_{\gamma}\}$, by Parseval's identity we have

$$\sum_{\beta} ||f_{\beta}ae||^2 = \sum_{\gamma} ||f_{\gamma}be||^2 = \sum_{\gamma} |(by, x_{\gamma})|^2 = ||by||^2 = ||ae||^2.$$

This completes the proof.

The following lemma is useful in this paper and it is similar to [10, p. 29, Lemma 1].

LEMMA 2.2. Let $a \in A$ and $\{e_{\alpha}\}$, $\{f_{\beta}\}$ any two maximal orthogonal families of hermitian minimal idempotents in A. Then

$$\sum_{\alpha} ||ae_{\alpha}||^2 = \sum_{\beta} ||af_{\beta}||^2 = \sum_{\dot{\beta}} ||a^*f_{\dot{\beta}}||^2.$$

PROOF. We note first that $||f_{\beta}ae_{\alpha}|| = ||e_{\alpha}a^*f_{\beta}||$. If $\Sigma_{\alpha} ||ae_{\alpha}||^2$ is summable, then by Lemma 2.1, we have

$$(2.1) \quad \sum_{\alpha} ||ae_{\alpha}||^2 = \sum_{\alpha} \sum_{\beta} ||f_{\beta}ae_{\alpha}||^2 = \sum_{\beta} \sum_{\alpha} ||e_{\alpha}a^*f_{\beta}||^2 = \sum_{\beta} ||a^*f_{\beta}||^2.$$

Hence, in particular, $\Sigma_{\beta} ||af_{\beta}||^2 = \Sigma_{\beta} ||a^*f_{\beta}||^2$. The lemma now follows from (2.1).

Suppose b is a normal element in A. Let B (resp. B') be a maximal commutative *-subalgebra of A containing b and $\{e_{\alpha}\}$ (resp. $\{e_{\omega}\}$) the maximal orthogonal family of hermitian minimal idempotents in B (resp. B'). Then $be_{\alpha} = e_{\alpha}be_{\alpha} = k_{\alpha}e_{\alpha}$ for some constant k_{α} . Similarly $be_{\omega} = k_{\omega}e_{\omega}$ for some constant k_{ω} . Let K (resp. K') be the set of all nonzero k_{α} (resp. k_{ω}). We note that k_{α} may be equal to k_{α} for some $\alpha_1 \neq \alpha_2$. However we consider them as different elements in K.

LEMMA 2.3. The set K is either finite or countable and K = K'. The set of all distinct constants in K is precisely the set of all nonzero constants in the spectrum of b.

PROOF. Let B_0 be the intersection of all maximal commutative *-subalgebras of A containing b. Let $\{f_\beta\}$ be the maximal orthogonal family of hermitian minimal idempotents in B_0 . Since B_0 is a dual B^* -algebra, $b=\Sigma_\beta \, b f_\beta = \Sigma_\beta \, \lambda_\beta f_\beta$, where λ_β are constants. Therefore there exists only a countable number of f_β for which $b f_\beta \neq 0$. Also, for each nonzero λ_{β_0} , the set $\{\lambda_\beta \colon \lambda_\beta = \lambda_{\beta_0}\}$ if finite. It is now easy for us to write $b=\Sigma_{n=1}^\infty \, \lambda_n f_n$, where λ_n are distinct nonzero constants and $\{f_n\}$ is an orthogonal family of hermitian idempotents in B_0 such that $\lambda_n f_n = b f_n$. Note that f_n is not necessarily minimal. Since B is dual and $f_n \in B$, it is well known that

$$f_n = e_{\alpha_{n_1}} + \cdots + e_{\alpha_{n_p}}$$
, where $e_{\alpha_{n_i}} \in \{e_{\alpha}\}$ $(i = 1, 2, \cdots, p)$.

Considering the right ideal $f_n A$ of A, by [1, p. 497, Theorem 2.2], the number n_p is independent of the choice of B. Since $bf_n = \lambda_n f_n$, we see easily that

(2.2)
$$be_{\alpha_{n_i}} = \lambda_n e_{\alpha_{n_i}} \quad (i = 1, 2, \dots, p).$$

If $f_m = e_{\alpha_{m_1}} + \cdots + e_{\alpha_{m_q}}$ $(m \neq n)$, then it follows from (2.2) that

$$\{e_{\alpha_{m_1}},\cdots,e_{\alpha_{m_q}}\}\cap\{e_{\alpha_{n_1}},\cdots,e_{\alpha_{n_p}}\}=\varnothing,$$

because $\lambda_n \neq \lambda_m$. Also

$$b = \sum_{n} \lambda_{n} f_{n} = \sum_{n} \lambda_{n} (e_{\alpha_{n_{1}}} + \cdots + e_{\alpha_{n_{p}}}).$$

Let E be the set of all such $e_{\alpha_{n_p}}$. Then E is countable. For simplicity, we write $E=\{e_1,e_2,\cdots\}$ and $b=\sum_{n=1}^\infty k_n e_n$, where $k_n e_n=be_n$ and $k_n\neq 0$ (because $\lambda_n\neq 0$). Let $\{e_\gamma\}=\{e_\alpha\}-E$. We show that $be_\gamma=0$ for all γ . In fact, since $b=\sum_\alpha be_\alpha=\sum_n be_n$, it follows that $\sum_\gamma be_\gamma=0$. Let F_α be the multiplicative linear functional on B corresponding to the maximal modular ideal $B(1-e_\alpha)$ of B. For any fixed γ_0 , we have $be_{\gamma_0}=k_{\gamma_0}e_{\gamma_0}$, for some constant k_{γ_0} . Then

$$k_{\gamma_0} = F_{\gamma_0}(be_{\gamma_0}) = \sum_{\gamma} F_{\gamma_0}(be_{\gamma}) = F_{\gamma_0} \left(\sum_{\gamma} be_{\gamma}\right) = 0.$$

Hence it follows that $be_{\gamma} = 0$ for all γ . Consequently $K = \{k_n\}$. Similarly we can show that $K' = \{k_n\}$. Therefore K = K'. Now the last part of the lemma follows easily from [7, p. 111, Theorem (3.1.6)]. This completes the proof.

Let b, $\{e_{\alpha}\}$ and $\{e_n\}$ be as in the proof of Lemma 2.3. Then $b = \sum_{\alpha} k_{\alpha} e_{\alpha} = \sum_{n} k_{n} e_{n}$ is called a spectral representation of b. By Lemma 2.3, $\{k_n\}$ is independent of $\{e_n\}$. Also if $k_{\alpha} \neq k_n$ for all n, then $k_{\alpha} = 0$.

Suppose a is a nonzero element in A. Let $a^*a = \sum_n r_n e_n$ be a spectral representation of a^*a . We claim that

$$(2.3) a = \sum_{n} a e_{n}.$$

In fact, since Σ_n ae_n is summable and $a^*a = \Sigma_n$ $a^*ae_n = \Sigma_n$ $e_na^*ae_n = \Sigma_n$ r_ne_n , it follows that $(a - \Sigma_n ae_n)^*(a - \Sigma_n ae_n) = 0$. Hence $a = \Sigma_n ae_n$. We note that $ae_n \neq 0$; for otherwise $r_ne_n = a^*ae_n = 0$.

Since a^*a is a positive element, $r_n > 0$ for all n. Put $k_n = \sqrt{r_n} > 0$. We show that $\Sigma_n k_n e_n$ is summable in A. In fact, for any two positive integers m, n (m < n), $||\Sigma_{i=m}^n k_i e_i||^2 = ||\Sigma_{i=m}^n r_i e_i||$. Since $\Sigma_n r_n e_n$ is summable, so

is $\Sigma_n k_n e_n$. Put

$$[a] = \sum_{n} k_n e_{n}.$$

Then $[a]^* = [a]$ and $[a]^2 = a^*a$. Hence $[a] = (a^*a)^{\frac{1}{4}}$. For each x in A,

(2.5)
$$\left\| \sum_{i=m}^{n} k_{i}^{-1} a e_{i} x \right\|^{2} = \left\| \left(\sum_{i=m}^{n} k_{i}^{-1} a e_{i} x \right)^{*} \left(\sum_{i=m}^{n} k_{i}^{-1} a e_{i} x \right) \right\|$$

$$= \left\| \sum_{i=m}^{n} x^{*} e_{i} x \right\| = \left\| \sum_{i=m}^{n} e_{i} x \right\|^{2} \leq \|x\|^{2}.$$

Since $\Sigma_n e_n x$ is summable in A, so is $\Sigma_n k_n^{-1} a e_n x$. Define a mapping W on A by

$$(2.6) Wx = \sum_{n} k_n^{-1} a e_n x (x \in A).$$

Then it follows from (2.3), (2.4) and (2.5) that W[a] = a and ||W|| = 1.

We note that $ae_na^* \neq 0$; for otherwise $r_n^2e_n = a^*ae_na^*a = 0$. Put $f_n = k_n^{-2}ae_na^*$. Since $(0) \neq f_nA \subset ae_nA$ and $ae_n \neq 0$, it follows from [7, p. 45, Lemma (2.1.8)] that $f_nA = ae_nA$ is a minimal right ideal of A. Hence we see that $\{f_n\}$ is an orthogonal family of hermitian minimal idempotents in A. By (2.3), $aa^* = \sum_n ae_na^* = \sum_n k_n^2 f_n$ and so it is a spectral representation of aa^* by the proof of Lemma 2.3. For each x in A, by a similar argument in (2.5), we have

(2.7)
$$\left\| \sum_{i=m}^{n} k_{n}^{-1} e_{n} a^{*} x \right\|^{2} = \left\| \sum_{i=m}^{n} f_{i} x \right\|^{2} \leq ||x||^{2}.$$

Since $\Sigma_n f_n x$ is summable, so is $\Sigma_n k_n^{-1} e_n a^* x$. Therefore we can define a mapping W^* on A by

(2.8)
$$W^*x = \sum_{n} k_n^{-1} e_n a^*x \qquad (x \in A).$$

It follows easily from (2.4) and (2.7) that $W^*a = [a]$ and $||W^*|| = 1$. Also both W and W^* are right centralizers on A. We shall refer to the operator W as the partial isometry associated with a.

We remark that similar concepts were introduced in [9].

3. The p-class in A. As before, A will be a dual B^* -algebra with norm $\|\cdot\|$. Suppose a is a nonzero element in A. Let $a^*a = \sum_n r_e e_n$ be a spectral representation of a^*a and $k_n = \sqrt{r_n}$. Since a^*a is a positive element in A, $r_n > 0$ and so $k_n > 0$. We define

(3.1)
$$|a|_{p} = \left(\sum_{n} k_{n}^{p}\right)^{1/p} \quad (0
$$|a|_{\infty} = \max \{k_{n} : n = 1, 2, \cdots\}.$$$$

For a = 0, we define $|a|_p = 0$ (0 .

REMARK. By Lemma 2.3, $|a|_p$ is well defined.

DEFINITION. For $0 , let <math>A_p = \{a \in A : |a|_p < \infty\}$.

REMARK. For $0 , <math>|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0. Also $|ka|_p = |k| |a|_p$ for any constant k.

We now have some elementary properties of $|a|_n$.

LEMMA 3.1. Let a be an element in A and 0 . Then

- (i) $||a|| = |a|_{\infty} \le |a|_{p}$. Thus $A_{\infty} = A$.
- (ii) $|a|_p = |[a]|_p$. Hence $a \in A_p$ if and only if $[a] \in A_p$.
- (iii) If $p \le q$, then $|a|_p \ge |a|_q$ and so $A_p \subseteq A_q$.
- (iv) If e is a hermitian minimal idempotent in A, then $|e|_p=1$ and so $e\in A_n$.
 - (v) $|a|_p = |a^*|_p$. Hence $a \in A_p$ if and only if $a^* \in A_p$.

PROOF. Let $a^*a = \sum_n r_n e_n$ be a spectral representation of a^*a and $[a] = \sum_n k_n e_n$ with $k_n = \sqrt{r_n}$.

- (i) This follows from $||a||^2 = ||a^*a||$ and [7, p. 112, Corollary (3.1.7)].
- (ii) This follows from $[a] = [[a]] = \sum_{n} k_{n}e_{n}$.
- (iii) and (iv). This is clear.
- (v) We can assume that $a \neq 0$. Put $f_n = k_n^{-2} a e_n a^*$. Then $a a^* = \sum_n k_n^2 f_n$ is a spectral representation of $a a^*$ (see §2). Therefore it follows that $|a^*|_p = |a|_p$. This completes the proof of the lemma.

Let a be a positive element in A and B_0 the intersection of all maximal commutative *-subalgebras of A containing a. If $\{f_{\beta}\}$ is the maximal orthogonal family of hermitian minimal idempotents in B_0 , then $a = \Sigma_{\beta} a f_{\beta} = \Sigma_{\beta} \lambda_{\beta} f_{\beta}$, where λ_{β} are nonnegative constants.

DEFINITION. For $0 , we define <math>a^p = \Sigma_{\beta} \lambda_{\beta}^p f_{\beta}$.

REMARK. Let $a=\Sigma_{\alpha} k_{\alpha}e_{\alpha}=\Sigma_{n} k_{n}e_{n}$ be a spectral representation of a. If a^{p} exists, then by the proof of Lemma 2.3 $a^{p}=\Sigma_{\alpha} k_{\alpha}^{p}e_{\alpha}=\Sigma_{n} k_{n}^{p}e_{n}$ is a spectral representation of a^{p} .

LEMMA 3.2. Let a be a positive element in A and 0 < p, $q < \infty$. If a^q exists, then $|a^q|_{p/q} = |a|_p^q$.

PROOF. This is clear.

LEMMA 3.3. Let $a \in A$ and 0 . Then the following statements are equivalent:

- (i) $a \in A_n$.
- (ii) $[a]^p \in A_1$.
- (iii) $[a]^{p/2} \in A_2$.

If any of these conditions holds, then $|a|_p^p = \Sigma_\beta ||f_\beta[a]^p f_\beta||$, where $\{f_\beta\}$ is a maximal orthogonal family of hermitian minimal idempotents in A.

PROOF. Let $[a] = \sum_{\alpha} k_{\alpha} e_{\alpha} = \sum_{n} k_{n} e_{n}$ be a spectral representation of [a].

(i) \iff (ii) This follows from the equality $|a|_n^p = \sum_n k_n^p = |[a]^p|_1$.

(ii) \iff (iii) This follows from the equality $|[a]^p|_1 = \sum_n k_n^p = |[a]^{p/2}|_2^2$.

If any of these conditions holds, then by Lemma 2.2, we have

$$\begin{split} |a|_{p}^{p} &= \sum_{\alpha} k_{\alpha}^{p} = \sum_{\alpha} ||[a]^{p/2} e_{\alpha}||^{2} \\ &= \sum_{\beta} ||[a]^{p/2} f_{\beta}||^{2} = \sum_{\beta} ||f_{\beta}[a]^{p} f_{\beta}||. \end{split}$$

This completes the proof.

LEMMA 3.4. Let a be a positive element in A and f a hermitian minimal idempotent in A. Then

- (i) $||fa^p f|| \ge ||faf||^p$ $(1 \le p < \infty)$.
- (ii) $||fa^p f|| \le ||faf||^p$ (0 < $p \le 1$).

PROOF. Let $a = \sum_{\alpha} k_{\alpha} e_{\alpha}$ be a spectral representation of a.

(i) Clearly we can assume that 1 . Then by Hölder's inequality and Lemma 2.1, we have

$$\begin{aligned} ||faf|| &= ||a^{1/2}f||^2 = \sum_{\alpha} ||e_{\alpha}a^{1/2}f||^2 = \sum_{\alpha} k_{\alpha}||e_{\alpha}f||^2 \\ &\leq \left(\sum_{\alpha} k_{\alpha}^p ||e_{\alpha}f||^2\right)^{1/p} \left(\sum_{\alpha} ||e_{\alpha}f||^2\right)^{(p-1)/p} \\ &= \left(\sum_{\alpha} ||e_{\alpha}a^{p/2}f||^2\right)^{1/p} (||f||^2)^{(p-1)/p} = ||fa^pf||^{1/p}. \end{aligned}$$

(ii) Replacing a by a^p and p by 1/p in (i), we get (ii).

LEMMA 3.5. Let $a \in A_p$ and $\{f_\beta\}$ be a maximal orthogonal family of hermitian minimal idempotents in A. Then

- (i) $|a|_p^p \le \Sigma_\beta ||af_\beta||^p \ (1 \le p \le 2).$
- (ii) $|a|_p^p \geqslant \Sigma_\beta ||af_\beta||^p$ $(2 \leqslant p \leqslant \infty)$.

If $[a] = \sum_n k_n e_n$ is a spectral representation of [a], then $|a|_p^p = \sum_n ||ae_n||^p$ (0 .

PROOF. (i) If $1 \le p \le 2$, then by Lemma 3.4(ii), we have $||f_{\beta}[a]^p f_{\beta}|| \le ||f_{\beta}[a]^2 f_{\beta}||^{p/2} = ||af_{\beta}||^p$. Therefore (i) follows now from Lemma 3.3.

(ii) This can be proved similarly.

If $[a] = \sum_n k_n e_n$, then $||ae_n|| = ||e_n a^* a e_n||^{1/2} = k_n$. Therefore $|a|_p^p = \sum_n ||ae_n||^p$ (0 . This completes the proof.

LEMMA 3.6. Suppose $a, b \in A$ and $1 \le p \le \infty$, then the following statements hold:

- (i) If $a \in A_p$ and S is a right centralizer on A, then $Sa \in A_p$ and $|Sa|_p \le ||S|| |a|_p$.
- (ii) If $a \in A_p$ and $b \in A$, then $|ab|_p \le ||b|| |a|_p$ and $|ba|_p \le ||b|| |a|_p$. Hence ab and ba are in A_p .
 - (iii) If a, b are in A_p , then $|ab|_p \le |a|_p |b|_p$

PROOF. Clearly we can assume that $1 \le p < \infty$.

(i) Suppose $1 \le p \le 2$. Let $[a] = \sum_{\alpha} k_{\alpha} e_{\alpha}$ be a spectral representation of [a]. Then by Lemma 3.5, we have

$$|Sa|_{p}^{p} \leq \sum_{\alpha} ||(Sa)e_{\alpha}||^{p} \leq ||S||^{p} \sum_{\alpha} ||ae_{\alpha}||^{p} = ||S||^{p}|a|_{p}^{p}.$$

If $2 \le p < \infty$, let $[Sa] = \sum_{\alpha} k_{\alpha} e_{\alpha}$ be a spectral representation of [SA]. Then by a similar argument, we have $|Sa|_p \le ||S|| |a|_p$. This proves (i).

- (ii) This follows easily from (i) and Lemma 3.1(v).
- (iii) This follows from (ii) and Lemma 3.1(i).

LEMMA 3.7. Let $a \in A_p$ and $\{f_\beta\}$ a maximal orthogonal family of hermitian minimal idempotents in A. Then

PROOF. Let W be the partial isometry associated with a and $b = W[a]^{\frac{1}{2}}$. Then $a = W[a] = b[a]^{\frac{1}{2}}$. It follows from Cauchy's inequality that

(3.3)
$$\sum_{\beta} \|f_{\beta} a f_{\beta}\|^{p} \leq \left(\sum_{\beta} \|f_{\beta} b\|^{2p}\right)^{\frac{1}{2}} \left(\sum_{\beta} \|[a]^{\frac{1}{2}} f_{\beta}\|^{2p}\right)^{\frac{1}{2}}.$$

By Lemma 3.3 and Lemma 3.4, we have

(3.4)
$$\sum_{\beta} ||[a]^{\frac{1}{2}} f_{\beta}||^{2p} = \sum_{\beta} ||f_{\beta}[a] f_{\beta}||^{p} \leq \sum_{\beta} ||f_{\beta}[a]|^{p} f_{\beta}|| = |a|_{p}^{p}.$$

By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

(3.5)
$$\sum_{\beta} ||f_{\beta}b||^{2p} \leq \sum_{\beta} ||f_{\beta}(bb^{*})^{p}f_{\beta}|| = |b^{*}|_{2p}^{2p} = |b|_{2p}^{2p}$$
$$\leq |[a]^{\frac{1}{2}}|_{2p}^{2p} = |a|_{p}^{p}.$$

Substituting (3.4) and (3.5) into (3.3), we get (3.2). This completes the proof.

In order that $|\cdot|_p$ be a norm on A_p $(1 \le p \le \infty)$, it is sufficient now to show the triangle inequality.

Lemma 3.8. Let $a, b \in A_p$, then $|a+b|_p \le |a|_p + |b|_p$ $(1 \le p \le \infty)$. Hence $a+b \in A_p$.

PROOF. We can assume $1 \le p < \infty$. Write $[a+b] = \sum_{\alpha} k_{\alpha} e_{\alpha}$ and $[a+b] = W^*(a+b)$ (see (2.8)). Then by Lemma 3.5, Lemma 3.7 and Minkowski's inequality, we have

$$\begin{aligned} |a+b|_{p} &= \left(\sum_{\alpha} \|e_{\alpha}[a+b]e_{\alpha}\|^{p}\right)^{1/p} \\ &\leq \left(\sum_{\alpha} \|e_{\alpha}W^{*}ae_{\alpha}\|^{p}\right)^{1/p} + \left(\sum_{\alpha} \|e_{\alpha}W^{*}be_{\alpha}\|^{p}\right)^{1/p} \\ &\leq |W^{*}a|_{p} + |W^{*}b|_{p} \leq |a|_{p} + |b|_{p}. \end{aligned}$$

This completes the proof.

Now we have the main result of this section.

THEOREM 3.9. For $1 \le p \le \infty$, A_p is a dual A^* -algebra which is a dense two-sided ideal of A.

PROOF. By a similar argument in the proof of [4, p. 265, Corollary 3.2], we can show that A_p is complete. (We use maximal orthogonal families of hermitian minimal idempotents instead of orthonormal bases.) Hence A_p is an A^* -algebra which is a two-sided ideal of A. It follows from Lemma 3.1(iv) that A_p contains the socle S of A. Since S is dense in A, so is A_p . We claim that, for each a in A_p , a belongs to the closure of aA_p in A_p . In fact, let $[a] = \sum_{i=1}^{\infty} k_i e_i$ be a spectral representation of [a] and A_p in A_p . Then

$$|a - af_n|_p \le |[a] - [a]f_n|_p = \left| \sum_{i=n+1}^{\infty} k_i e_i \right|_p = \left(\sum_{i=n+1}^{\infty} k_i^p \right)^{1/p}.$$

Since $a \in A_p$, it follows that $|a - af_n|_p \to 0$ as $n \to \infty$. Hence by [5, p. 29, Lemma 8 (3)], A_p is a dual algebra. This completes the proof.

We shall need the following result.

COROLLARY 3.10. Let $\{e_{\gamma}\}$ be any orthogonal family of hermitian minimal idempotents of A and $x \in A_p$ $(1 \le p \le \infty)$, then $\Sigma_{\gamma} e_{\gamma} x$ is summable in $|\cdot|_p$ and especially when $\{e_{\gamma}\}$ is a maximal family $x = \Sigma_{\gamma} e_{\gamma} x$ in A_p .

PROOF. This follows from Theorem 3.9 and Theorem 5.2 in [12].

Finally we remark that many statements and proofs in this section are similar to those given in [4] and [11].

4. The algebras A_1 and A_2 . We have a characterization of a proper H^* -algebra.

THEOREM 4.1. The algebra A_2 is a proper H^* -algebra. Conversely, every proper H^* -algebra is of the form A_2 for some dual B^* -algebra A.

PROOF. Let $a, b \in A_2$ and $\{f_\beta\}$ a maximal orthogonal family of hermitian minimal idempotents in A. Then $f_\beta b^* a f_\beta = \lambda_\beta f_\beta$ for some constant λ_β . We claim that $\Sigma_\beta \lambda_\beta$ is absolutely summable and independent of the choice of $\{f_\beta\}$. In fact, let $x, y \in A f_\beta$. Then $y^* x = \langle x, y \rangle_\beta f_\beta$ for some constant $\langle x, y \rangle_\beta$. It follows from [7, p. 261, Theorem (4.10.3)] and [7, p. 263, Theorem (4.10.6)] that $\langle x, y \rangle_\beta$ defines a complete inner product on $A f_\beta$ such that $\langle x, x \rangle_\beta = \|x\|^2$. Now by Lemma 2.2 and the proof of [10, p. 30, Lemma 4], we can show that $\Sigma_\beta \lambda_\beta$ is absolutely summable and independent of $\{f_\beta\}$. Define

$$(4.1) (a, b) = \sum_{\beta} \lambda_{\beta} (a, b \in A_2).$$

Then by the proof of [10, p. 31, Lemma 5], (,) is an inner product on A_2 such that (xa, b) = (a, x*b) and (ax, b) = (a, bx*) for all x in A. Also $|a|_2^2 = (a, a)$. Therefore A_2 is a proper H^* -algebra.

Conversely, let B be a proper H^* -algebra. Then B is a dense two-sided ideal of some dual B^* -algebra A. We can show that $B = A_2$ and this completes the proof.

LEMMA 4.2. Let 1/p+1/q=1, where $1\leqslant p,\ q\leqslant \infty$. If $a\in A_p$ and $b\in A_q$, then $ab\in A_1$ and $|ab|_1\leqslant |a|_p|b|_q$.

PROOF. Suppose first that $2 \le p < \infty$, $1 < q \le 2$. Let $[b] = \sum_{\alpha} k_{\alpha} e_{\alpha}$ be a spectral representation of [b]. Also write $[ab] = W^*ab$. Then by Lemma 3.3, Lemma 3.5 and Hölder's inequality, we have

$$|ab|_{1} = \sum_{\alpha} ||e_{\alpha}[ab]| e_{\alpha}|| = \sum_{\alpha} ||e_{\alpha}W^{*}abe_{\alpha}||$$

$$\leq |W^{*}a|_{p}|b|_{q} \leq |a|_{p}|b|_{q}.$$

By a similar argument, we can show that (4.2) holds for $1 , <math>2 \le q < \infty$. We now identify A_1 .

THEOREM 4.3. $A_1 = \{xy: x, y \in A_2\}.$

PROOF. If $a \in A_1$, then by Lemma 3.3, $[a]^{\frac{1}{2}} \in A_2$. Let W be the

partial isometry associated with a. Then $a = W[a] = (W[a]^{\frac{1}{2}})([a]^{\frac{1}{2}}) \in \{xy : x, y \in A_2\}$. The converse follows from Lemma 4.2 and this completes the proof.

Let $a \in A_1$. Then by Theorem 4.3, $a = c^*b$ for some b, c in A_2 . Define

(4.3)
$$tr a = (b, c) (a \in A_1),$$

where (b, c) is given by (4.1).

LEMMA 4.4. Let $a \in A_1$, $\{f_\beta\}$ a maximal orthogonal family of hermitian minimal idempotents in A and $\lambda_\beta f_\beta = f_\beta a f_\beta$. Then $\operatorname{tr} a$ is well defined, $\operatorname{tr} a = \Sigma_\beta \lambda_\beta = \Sigma_\beta (a f_\beta, f_\beta)$ and $|\operatorname{tr} a| \leq |a|_1$.

PROOF. By the proof of Theorem 4.1, $\Sigma_{\beta} \lambda_{\beta}$ is absolutely summable and independent of $\{f_{\beta}\}$. It is clear that $\operatorname{tr} a = \Sigma_{\beta} \lambda_{\beta} = \Sigma_{\beta} (af_{\beta}, f_{\beta})$. Therefore $\operatorname{tr} a$ is well defined. By Lemma 3.7, $|\operatorname{tr} a| \leq \Sigma_{\beta} ||f_{\beta}af_{\beta}|| \leq |a|_{1}$.

5. The uniform convexity of A_p (1 . For each <math>a in A, we define a linear operator L_a on A_2 by

$$(5.1) L_a(x) = ax (x \in A_2).$$

Since $|ax|_2 \le ||a|| |x|_2$, it follows that L_a is bounded on A_2 . Let (,) be the given inner product on A_2 .

LEMMA 5.1. Let a be a positive element in A. Then L_a is positive and $L_a r = (L_a)^r \ (0 < r < \infty)$.

PROOF. This is clear.

We now establish [4, p. 260, Lemma 2.6] for A_p .

LEMMA 5.2. Let a and b be two positive elements in A and $0 < r < \infty$. If $(a + b)^r$, a^r and b^r are in A_1 , then

(i)
$$\text{tr } (a+b)^r \le \text{tr } a^r + \text{tr } b^r \ (0 < r \le 1).$$

(ii)
$$\operatorname{tr} (a+b)^r \ge \operatorname{tr} a^r + \operatorname{tr} b^r \ (1 \le r < \infty)$$
.

PROOF. We assume first that $0 < r \le 1$. Let $S = L_a$, $T = L_b$ and $U = L_{a+b}$. Then by the proof of [4, p. 260, Lemma 2.6], there exist operators C and D on A_2 such that

$$||C|| \le 1$$
, $||D|| \le 1$, $CU^{1/2} = S^{1/2}$, $DU^{1/2} = T^{1/2}$, $U^{r} = U^{r/2}C^{*}CU^{r/2} + U^{r/2}D^{*}DU^{r/2}$.

Let $\{f_{\beta}\}$ be a maximal orthogonal family of hermitian minimal idempotents in A. Then by Lemma 5.1, we have

(5.2)
$$\operatorname{tr} (a+b)^{r} = \sum_{\beta} ((a+b)^{r} f_{\beta}, f_{\beta}) = \sum_{\beta} (U^{r} f_{\beta}, f_{\beta})$$
$$= \sum_{\beta} (CU^{r/2} f_{\beta}, CU^{r/2} f_{\beta}) + \sum_{\beta} (DU^{r/2} f_{\beta}, DU^{r/2} f_{\beta}).$$

Since $C(a+b)^{r/2} \in A_2$ and $CU^{r/2}f_{\beta} = C(a+b)^{r/2}f_{\beta}$, it follows from (5.2) that

(5.3)
$$\operatorname{tr} (a+b)^{r} = |C(a+b)^{r/2}|_{2}^{2} + |D(a+b)^{r/2}|_{2}^{2}$$
$$= |(C(a+b)^{r/2})^{*}|_{2}^{2} + |(D(a+b)^{r/2})^{*}|_{2}^{2}.$$

Let $a = \Sigma_{\alpha} k_{\alpha} e_{\alpha}$ be a spectral representation of a. Since $(C(a+b)^{r/2})^* e_{\alpha} = (CU^{r/2})^* e_{\alpha} = (a+b)^{r/2} C^* e_{\alpha}$, it follows from [4, p. 252, Lemma 2,1] that

$$((C(a+b)^{r/2})^*e_{\alpha}, (C(a+b)^{r/2})^*e_{\alpha}) = ((a+b)^rC^*e_{\alpha}, C^*e_{\alpha})$$

$$\leq ((a+b)C^*e_{\alpha}, C^*e_{\alpha})^r = (ae_{\alpha}, e_{\alpha})^r = k_{\alpha}^r = (a^re_{\alpha}, e_{\alpha}).$$

Therefore $|(C(a+b)^{r/2})^*|_2^2 \le \operatorname{tr} a^r$. Similarly $|(D(a+b)^{r/2})^*|_2^2 \le \operatorname{tr} b^r$. Hence by (5.3), we have $\operatorname{tr} (a+b)^r \le \operatorname{tr} a^r + \operatorname{tr} b^r$. The case $1 \le r < \infty$ can be proved in a similar way and the proof is complete.

By using maximal orthogonal families of hermitian minimal idempotents and a similar argument in the proof of [4, p. 259, Lemma 2.5], we have:

LEMMA 5.3. Let a be a positive element in A and b a hermitian element in A such that a + b and a - b are positive. Suppose $(a + b)^r$, $(a - b)^r$ and a^r are in A_1 . Then

(i)
$$\text{tr } (a+b)^r + \text{tr } (a-b)^r \le \text{tr } a^r \ (0 < r \le 1).$$

(ii)
$$\operatorname{tr} (a+b)^r + \operatorname{tr} (a-b)^r \ge \operatorname{tr} a^r \ (1 \le r < \infty).$$

Now we have the following result.

THEOREM 5.4. Let a and b be two elements in A_p and 1/p + 1/q = 1. Then

(i)
$$2^{p-1}(|a|_p^p + |b|_p^p) \le |a+b|_p^p + |a-b|_p^p \le 2(|a|_p^p + |b|_p^p)$$
 $(0$

(ii)
$$|a+b|_p^q + |a-b|_p^q \le 2(|a|_p^p + |b|_p^p)^{q/p}$$
 $(1$

(iii)
$$2(|a|_p^p + |b|_p^p) \le |a + b|_p^p + |a - b|_p^p \le 2^{p-1}(|a|_p^p + |b|_p^p) \quad (2 \le p < \infty)$$

(iv)
$$2(|a|_p^p + |b|_p^p)^{q/p} \le |a+b|_p^q + |a-b|_p^q$$
 $(2 \le p < \infty)$.

PROOF. This can be proved by using Lemma 5.2, Lemma 5.3 and the proof of [4, p. 261, Theorem 2.7]. We omit the details.

As observed in [4], we have:

COROLLARY 5.5. For $1 , <math>A_p$ is uniformly convex and reflexive.

6. The conjugate space of A_p . In this section, we always assume that $1 \le p < \infty$ and 1/p + 1/q = 1. Let A_p^* be the conjugate space of A_p . We shall show that $A_p = A_q^*$ in a natural way.

For each a, in A_p $(1 \le p < \infty)$, we define

(6.1)
$$F_a(x) = \operatorname{tr} ax \quad (x \in A_a).$$

THEOREM 6.1. For each a in A_p $(1 \le p < \infty)$, $F_a \in A_q^*$ and $||F_a|| = |a|_p$.

PROOF. By Lemma 4.2, F_a is well defined. It is clear that $F_a \in A_q^*$ and $||F_a|| \le |a|_p$. By a similar argument in the proof of [11, p. 786, Proposition 3.26], we can show that $||F_a|| \ge |a|_p$. This completes the proof.

We now establish a converse of Theorem 6.1.

THEOREM 6.2. For $1 \le p < \infty$, every continuous linear functional F on A_a is of the form F_a for some a in A_p , where F_a is defined in (6.1).

PROOF. We assume first that p=1 and $F \in A_{\infty}^* = A^*$. Then it is clear that $F \in A_2^*$. Since A_2 is a Hilbert space, by the Riesz representation theorem, there exists some a in A_2 such that $F(x) = (x, a^*) = \operatorname{tr} ax$ for all x in A_2 . By the proof of Theorem 6.1, we can show that $a \in A_1$ and so $F = F_a$.

Now we consider the case $1 and assume <math>F \in A_q^*$. Then $F \in A_1^*$. Hence by the proof of [8, p. 103, Theorem 2], there exists a right centralizer S on A_2 such that

(6.2)
$$F(y) = \text{tr } Sy \quad (y \in A_1).$$

Let $\{e_{\alpha}\}$ be a maximal orthogonal family of hermitian minimal idempotents in A and $\{E_{\gamma}\}$ the direct set of all finite sums $e_{\alpha_1} + e_{\alpha_2} + \cdots + e_{\alpha_n}$. Define F_{γ} on A_{α} by

(6.3)
$$F_{\gamma}(x) = F(E_{\gamma}x) \quad (x \in A_{q}).$$

Since $S(E_{\gamma}x)=(SE_{\gamma})(E_{\gamma}x)=((SE_{\gamma})E_{\gamma})x=(SE_{\gamma})x$ and $E_{\gamma}x\in A_1$, by (6.2) and (6.3) we have

(6.4)
$$F_{\gamma}(x) = \operatorname{tr} S(E_{\gamma}x) = \operatorname{tr} (SE_{\gamma})x \quad (x \in A_q).$$

Since $SE_{\gamma}=(SE_{\gamma})E_{\gamma}\in A_p$, by (6.4) and Theorem 6.1, $|SE_{\gamma}|_p=\|F_{\gamma}\|\leq \|F\|$. Therefore $\{SE_{\gamma}\}$ is a bounded set in A_p . Since A_p is reflexive (Corollary 5.5), we can assume that $SE_{\gamma}\longrightarrow a$ weakly for some a in A_p . Hence $ae_{\alpha}=Se_{\alpha}$ for all α . Therefore by (6.2), $F(e_{\alpha}x)=\operatorname{tr} ae_{\alpha}x$. For each x in A_q , by

Corollary 3.10, $x = \sum_{\alpha} e_{\alpha} x$ in $|\cdot|_{q}$. Hence it follows that $F(x) = \operatorname{tr} \alpha x$ $(x \in A_{q})$. This completes the proof.

REMARK. Some arguments in the above proof are similar to those in the proof of [3, p. 130, Theorem III. 12.2].

REFERENCES

- 1. B. A. Barnes, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canad. J. Math. 20 (1968), 495-504. MR 38 #534.
- 2. N. Dunford and J. T. Schwartz, Linear operators, II: Spectral theory. Selfadjoin't operators in Hilbert space, Interscience, New York, 1963, MR 32 #6181.
- 3. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, "Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 36 #3137; 39 #7447.
 - 4. C. A. McCarthy, c_n, Israel J. Math. 5 (1967), 249-271. MR 37 #735.
- 5. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15-36. MR 16, 1126.
- 6. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 249-253.
- 7. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- 8. P. P. Saworotnow, Trace-class and centralizers of an H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2305.
- 9. P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304.
- 10. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878.
 - 11. J. F. Smith, The p-classes of an H*-algebra, Pacific J. Math. 42 (1972), 777-793.
- 12. P. K. Wong, On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 437-448. MR 47 #7431.

DEPARTMENT OF MATHEMATICS, SETON HALL UNIVERSITY, SOUTH ORANGE, NEW JERSEY 07079