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ABSTRACT.   In this paper, we introduce and study the class  A„ (0 < p

< »)  in a dual B*-algebra  A.  We show that, for   1 < p < », a„   is a dual

A -algebra which is a dense two-sided ideal of A.   If   1 < p < °°,  we obtain

that  A„   is uniformly convex and hence reflexive.   We also identify the conju-

gate space of A- (1 < p < <*>).   This is a generalization of the class  C_   of com-

pact operators on a Hilbert space.

1. Introduction.  Let H be a Hilbert space and LC(H) the algebra of all

compact operators on H.  Then LCÇff)  is a simple dual j8*-algebra and every

simple dual jB*-algebra is of this form. The class Cp  of compact operators in

LCQf) has many interesting properties and has been studied in various articles

(e.g., see [2], [3] and [4] ). The present work is an attempt to introduce a simi-

lar class of spaces in an arbitrary dual 5*-algebra.

Let A  be a dual 5*-algebra.  The class Ap (0 < p < °°) is introduced in

§3.  After establishing some crucial inequalities, we show that A    (1 < p < °°)

is a dual ,4*-algebra which is a dense two-sided ideal of A.  In §4, we study the

algebras A1   and A2. We obtain that every proper //*-algebra is of the form

A2  and A1 = {xy: x, y €A2}-   §5 is devoted to showing the uniform convexity

in Ap (1 < p < °°).  Finally we identify the conjugate space of Ap (1 < p < °°)

in §6.

In this paper, our approach is elementary and the techniques are not new.

In fact, they are borrowed from [3], [4], [10] and [11]. The author is grateful

for these invaluable references.

2. Notation and preliminaries.  Definitions not explicitly given are taken

from Rickart's book [7].

For any set E in a Banach algebra A, let 1(E) and r(E) denote the

left and right annihilators of E, respectively. Then A  is called a dual algebra
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if for every closed right ideal R  and every closed left ideal I, we have rQ(R))

= R  and l(r(J)) = I.   See [5] and [7] for some of its properties.

An idempotent e in a Banach algebra A  is said to be minimal if eAe is

a division algebra.  In case A  is semisimple, this is equivalent to saying that

Ae (eA) is a minimal left (right) ideal of A.

Let A  be a Banach algebra.  A bounded linear operator S on A  is called

a right centralizer if S(xy) = (Sx)y for all x, y in A. For each a in A,

the operator La: x -+ax (x EA) is a right centralizer on A.

Let H be a Hilbert space with an inner product ( , ).  If x  and y are

elements in 7/, then x ® y will denote the operator on H defined by

(x ® y)(h) = (ft, 7)x for all ft in #.

In this paper, all algebras and linear spaces under consideration are over the

field of complex numbers.

Notation.   In this paper, A  will denote a dual 2?*-algebra with norm

11-11.
We shall öfter use, without explicitly mentioning, the following fact:  For

any orthogonal family {ea} of hermitian idempotents of A, 2a e^ is sum-

mable in A, and especially when {ea}  is a maximal family, x = 2a eax for

all x in A  (see [5, p. 30, Theorem 16]).

Let B be a closed commutative *-subalgebra of A  and e a minimal

idempotent in B. It follows easily from [7, p. 261, Lemma (4.10.1)] that e

is hermitian. Also if / is any other minimal idempotent in B, then fe =

ef =0.  If B is maximal, then e is a minimal idempotent in A.

Lemma 2.1.   Let e be a hermitian minimal idempotent in A, aEA,

and {/»} a maximal orthogonal family of hermitian minimal idempotents in A.

Then   \\ae\\2 = 2ß \\fßae\\2.

Proof.  Since A is a dual Z?*-algebra, it follows from [7, p. 259, Theorem

(4.9.24)] and [7, p. 269, Corollary (4.10.20)] that A = (2X LCQix)\, where

LC(HX) is the algebra of all compact operators on a Hilbert space Hx. It is

easy to see that eELC(Hx ) for some X0.  Let {fy} = {fß} n LC(HX ).

Then we can write / = xy ® xy with xyGHx    and  ||x7l| = 1.  Similarly

e = y ® y with y EHX    and  \\y\\ = 1.  Since {fy} is a maximal orthogonal

family of hermitian minimal idempotents in LC(HX ), it follows easily that

{xy} is a complete orthonormal set in Hx . Put b = ae.  Then b G LC(HX )

and be = ae.  Hence

Ikell2 = \\eb*be\\ = \\(y ® y)b*b(y ® y)\\ = \\by\\2.

Similarly  \\fybe\\ = \{by, xy)\.  Since fßae = 0 if fß & {fy}, by Parseval's

identity we have
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Zll/^ll2 =H\\fybe\\2 = T\(Py.xy)\2 = \\by\\2 = \\ae\\2.
ß 7 7

This completes the proof.

The following lemma is useful in this paper and it is similar to [10, p. 29,

Lemma 1 ].

Lemma 2.2.   Let aEA and {e&}, {fß} any two maximal orthogonal

families of hermitian minimal idempotents in A.   Then

DKiP-Zw.iP-ritffUft.
a ß ß

Proof.   We note first that  \\fßaea\\= \\eaa%\\. If Sa ||aea||2  is sum-

mable, then by Lemma 2.1, we have

(2.1)    ZUaeJ2 =ZZ \\fßaea\\2 = Z £ \\eaa%\\2 = Z ll«%ll2.
a aß ß    a ß

Hence, in particular,  Z^ \\afß\\2 = 2„ llalli2. The lemma now follows from

(2.1).

Suppose b  is a normal element in A.  Let B (resp. B') be a maximal

commutative *-subalgebra of A  containing b  and  {ea} (resp. {ew}) the

maximal orthogonal family of hermitian minimal idempotents in B (resp. B').

Then bea = eabea - kaea  for some constant ka.  Similarly bew = kweu   for

some  constant ku.  Let K (resp. K') be the set of all nonzero ka  (resp. /t^).

We note that ka    may be equal to  ka    for some  at # a2.  However we

consider them as different elements in K.

Lemma 23.   The set K is either finite or countable and K = K'.   The set

of all distinct constants in K is precisely the set of all nonzero constants in the

spectrum of b.

Proof.   Let B0  be the intersection of all maximal commutative *-sub-

algebras of A  containing b.  Let {fß} be the maximal orthogonal family of

hermitian minimal idempotents in B0.  Since B0  is a dual 5*-algebra, b =

2(3 bfß = 2ß ^ßfß, where Xß are constants.  Therefore there exists only a count-

able number of fß for which bfß ¥= 0.  Also, for each nonzero \ß , the set

{\ß:'\ß = 'kß } if finite.  It is now easy for us to write b = S"=1 A„/„, where

X„  are distinct nonzero constants and {/„} is an orthogonal family of hermitian

idempotents in B0  such that X„/„ = bfn. Note that fn  is not necessarily

minimal.  Since B is dual and /„ E B, it is well known that

fn = ecLni + * ' * + e<*„ , where ean¡ E {ej  (z = 1, 2, • • •, p).
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Considering the right ideal fnA  of A, by [1, p. 497, Theorem 2.2], the number

np  is independent of the choice of B. Since bfn = A„/„5 we see easily that

(2.2) bea    = \nea (i = 1, 2, • • •, p).

If fm = e„      +'" +en      (m* n), then it follows from (2.2) that
"(H[ ma

{ea    , • • •, ea    } n {e     , • • •, ea   } = 0,
mi ™q "i "p

because  An=£Xm.  Also

Ô=Z X„/„=Zx„(e       +•••+««„)•
n "l "p

Let ^ be the set of all such e     . Then E is countable.  For simplicity, we
%

write E = {el,e2,' • ' } and ô = Z~=1 knen, where Ä„en = &?„ and kn^0

(because X„ # 0).  Let {ey} = {ea} - E. We show that bey = 0 for all 7.

In fact, since b = Za bea = Z„ ften, it follows that  Z7 bey = 0.  Let Fa  be

the multiplicative linear functional on B corresponding to the maximal modular

ideal B(\ - ea) of B.  For any fixed y0, we have bey   = ky ey , for some

constant ft„ . Then
'0

*ro - W ' ? V^} * ̂ 0  (f S = °-    "
Hence it follows that bey = 0  for all 7.  Consequently K = {kn}. Similarly

we can show that K' = {kn}. Therefore K — K'. Now the last part of the

lemma follows easily from [7, p. Ill, Theorem (3.1.6)]. This completes the proof.

Let b, {ea} and {en} be as in the proof of Lemma 2.3.  Then

b = Za kaea = Z„ knen  is called a spectral representation of b. By Lemma

2.3, {kn} is independent of {en}. Also if ka # fc„  for all n, then fca = 0.

Suppose a is a nonzero element in A.  Let a*a = Z„ rnen  be a spectral

representation of a*a. We claim that

(2.3) a = Z flc„.
n

In fact, since  Z„ aen  is summable and a*a = Z„ a*ae„ = 2„ ena*aen =

Z„ r„en, it follows that  (a - Z„ aen)*(a - Z„ aen) = 0.  Hence a = ZM ae„.

We note that aen ¥= 0; for otherwise rnen = a*ae„ = 0.

Since a*a is a positive element, rn > 0  for all «. Put fc„ = \Jrn > 0.

We show that  Z„ fc„en  is summable in A.  In fact, for any two positive integers

m, n (m<n), IIZ^m k¡e¡\\2 = l|2L._ r^-ll.  Since  Zn rnen  is summable, so
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is  HHk„en. Put

(2-4> [«] = Z k„e„.
n

Then   [a]* = [fl]   and   [a]2 = a*a. Hence   [a] =(a*a)Vl. For each x in A,

(2.5)

Z  fcj 1aeix ( Z fci l<»**] (Z *7laeA
\i=m I   \i=m I

Z *V r   ¿ e/* <llxl

Since  Z„ e„x  is summable in A, so is  Z„ fcn 1ae„jc. Define a mapping  W on

v4 by

(2.6)
Wx = T.Klaenx     (•*GA)-

Then it follows from (2.3), (2.4) and (2.5) that  W[a] = a and  \\W\\ = 1.

We note that aena* ¥> 0; for otherwise rnen = a*aena*a = 0. Put /„ =

k~2aena*. Since (0) ^/„^l C aen^  and aen =i¿ 0, it follows from [7, p. 45,

Lemma (2.1.8)] that fnA= aenA  is a minimal right ideal of A. Hence we

see that {/„}  is an orthogonal family of hermitian minimal idempotents in A.

By (2.3), aa* = Z„ aena* = Z„ k\fn   and so it is a spectral representation of

aa* by the proof of Lemma 2.3. For each X in A, by a similar argument in

(2.5), we have

(2.7) Z K V * t fix
i—m

-T„ „*v

<I|JC||2

Since  Z„ fnx is summable, so is Zn kn  ena x. Therefore we can define a

mapping  W* on .4  by

(2-8) W*x = T.k-1ena*x       (xEA).
n

It follows easily from (2.4) and (2.7) that  W*a = [a]   and  ||W*|| = 1.  Also

both  W and  W* are right centralizers on A. We shall refer to the operator  W

as the partial isometry associated with a.

We remark that similar concepts were introduced in [9].

3. The p-class in A.  As before, A  will be a dual 5*-algebra with norm

||' ||.  Suppose a is a nonzero element in A. Let a*a = Z„ reen  be a spectral

representation of a*a and kn = \Jrn. Since a*a is a positive element in A,

rn > 0 and so ft„ > 0. We define
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wp = (Zf)1/p    (o<p<=o),
(3.1) V n        J

bl«, =max{fc„: n = 1,2, •••}.

For a = 0, we define  |a|p = 0  (0 < p < °°).

Remark.   By Lemma 2.3, |a|p is well defined.

Definition.   For 0 < p < °°, let Ap = {aEA: \a\p < <*>}.

Remark. For 0<p<°°, |a|p>0 and |a|p=0 if and only if a = 0. Also

\ka\p = \k\\a\p  for any constant k.

We now have some elementary properties of |a|p.

Lemma 3.1.   Let a be an element in A and 0 < p < °°. Then

(i)  \\a\\ = |aL < \a\p.  Thus A„=A.

(ii)  |a|p = |[a]|p.  Hence aEAp  if and only if [a] EAp.

(iii) // p <q, then   \a\p > \a\q and so Ap CAg.

(iv)  If e is a hermitian minimal idempotent in A, then  \e\   = 1 and so

eEAp.

(v) |a|p = |a*|p. Hence aEAp if and only if a* E A p.

Proof. Let a*a = Z„ rnen be a spectral representation of a*a and

[a] = Z„ k„en with k„ = -fâ.

(i) This follows from  ||a||2 = ||a*a||  and [7, p. 112, Corollary (3.1.7)].

(ii) This follows from  [a] = [[a]] = Z„ k„en.

(iii) and (iv). This is clear.

(v) We can assume that a 4=0. Put /„ = k~2aena*. Then aa* =

Z„ k2fn   is a spectral representation of aa* (see §2).  Therefore it follows that

|a*|p = |a|p. This completes the proof of the lemma.

Let a be a positive element in' A  and  B0 the intersection of all maximal

commutative *-subalgebras of A  containing a. If {fß} is the maximal orthog-

onal family of hermitian minimal idempotents in B0, then a = Z^ afß =

Z^ \ß fß, where  X^  are nonnegative constants.

Definition.   For 0 < p < ~, we define a" = Zß Vßfß.

Remark.  Let a = Za kaea = Zn knen be a spectral representation of a.

If ap  exists, then by the proof of Lemma 2.3 aP = Za kPtea = Z„ kpnen  is

a spectral representation of ap.

Lemma 3.2.   Let a be a positive element in A and 0 < p, q < °°. If

a" exists, then  kq\p/q = \afp.

Proof.   This is clear.
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Lemma 3.3.   Let aEA and 0 < p < °°.   Then the following statements

are equivalent:

(i) aEAp.

(ii)   [aYEAv
(hi)   [a]p'2EA2.

If any of these conditions holds, then   \a\p = Y,ß \\fß[a]pfß\\, where {fß}

is a maximal orthogonal family of hermitian minimal idempotents in A.

[a].

Proof.  Let   [a] = 2a kQiea = 2„ knen  be a spectral representation of

(i) <=> (ü) This follows from the equality  |a|^ = Z„ kp = l[a]p|r

(ii) <=> (iii) This Mows from the equality  Ifaf^ = Z„ kp = \[afl2\\.

If any of these conditions holds, then by Lemma 2.2, we have

k|-£*;-E ii[«F/2<gi2
a a

= ZllWp/2/JI2=Zll/ßW%H.
,fU -„,,,

This completes the proof.

Lemma 3.4.   £er a be a positive element in A and f a hermitian mini-

mal idempotent in A.   Then

(i) \\fapf\\ > \\faf\\p (Kp<°o).

(a)\\fapf\\<\\faf\\p (0<p<l).

Proof.   Let a = Za kaea be a spectral representation of a.

(i) Clearly we can assume that  1 < p < °°. Then by Holder's inequality and

Lemma 2.1. we have

Wll = IkW - Z \\eaaÁf\\2 =Z *a||ea/||2
a a

<(Z^lka/ll2y/p(Z i\eaf\p\e-w

= (Z lkaa^2/||2y/P(||/||2)(P-1)/P = ||/ap/||1/P.

(ii) Replacing a by ap  and p by  1/p in (i), we get (ii).

Lemma 3.5.  Let aEAp and {fß} be a maximal orthogonal family of hermi-

tian minimal idempotents in A.   Then

(i) \a\p<Xß\\afß\\p (Kp<2).

(ii) \a\p>i:ß\\afß\\p (2<p<oo).

// [a] =~Znknen  is a spectral representation of [a], fftew   |a|p =

Z„ HaeJP (0<p<°°).
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Proof,  (i)   If l<p<2, then by Lemma 3.4(h), we have  \\fß[a]pfß\\<

\\fß[a]2fß\\p/2 - \\afß\\p. Therefore (i) follows now from Lemma 3.3.

(ii) This can be proved similarly.

If  [a] = Z„ knen, then  \\aej = l|e„a*ae„||'/2 = fc„.  Therefore   |a|p =

Z„ ||aen||p (0 < p < °°). This completes the proof.

Lemma 3.6.  Suppose a, b EA and  1 < p < °°, then the following state-

ments hold:

(i) // aEAp and S is a right centralizer on A,  then Sa E Ap and

\Sa\p<\\S\\\a\p.

(ii) If aEAp and bEA,  then   \ab\p < \\b\\ \a\p and  \ba\p <\\b\\ \a\p.

Hence ab and ba are in Ap.

(iii) // a, b are in Ap, then  \ab\p < |a|p \b\p.

Proof.  Clearly we can assume that  1 < p < °°.

(i) Suppose  1 < p < 2.  Let   [a] = Za kaea be a spectral representation

of [a]. Then by Lemma 3.5, we have

\Safp < Z W(Sa)ea\\p < \\S\\P Z Waea\\p = \\S\\p\a\p.
a a P

If 2<p <°°, let   [&] = Za kaea be a spectral representation of  [SA]. Then

by a similar argument, we have  |5a|p < ||5|| |a|p. This proves (i).

(ii) This follows easily from (i) and Lemma 3.1(v).

(iii) This follows from (ii) and Lemma 3.1(f).

Lemma 3.7.   Let aEAp and {fß} a maximal orthogonal family of

hermitian minimal idempotents in A.  Then

(3.2) Z II V/,?IIP < l<      O < P < °°).
ß

Proof.   Let  W be the partial isometry associated with a and b = W[a]v*.

Then a = W[a] = b[a]'/2. It follows from Cauchy's inequality that

(3.3) Z Ufßafß\\p < (Z \\fßb\\2pY(Z \\[a]vVß\\2p\\

By Lemma 3.3 and Lemma 3.4, we have

(3.4) Z UM % \\2p = Z Wfß[a]fß\f < Z \\fß[a] %\\ = \a\p
ß ß ß

By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have

Z ll/^||2p <Z Wfß(bb*ffß\\ = \b*\2p = \b\2p
(3.5) ß      P ß P

<\[aYA\22Pp = \a\Pp.
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Substituting (3.4) and (3.5) into (3.3), we get (3.2).  This completes the proof.

In order that  I • |p  be a norm on Ap (1 < p < °°), it is sufficient now to

show the triangle inequality.

Lemma 3.8.   Let a, b EAp, then  \a + b\p < |a|p + \b\p (1 <p < °°).

Hence a +bEAp.

Proof. We can assume  1 < p < *>. Write   [a + b] = Za kaett and [a + b]

= W*(a + b) (see (2.8)).  Then by Lemma 3.5, Lemma 3.7 and Minkowski's in-

equality, we have

\a + b\p= (ZiM« + *KiipY/p

< (Z WeJr-aejrY» + (Ç H*XKJIP)1/P

<\W*a\p + \W*b\p<\a\p + \b\p.

This completes the proof.

Now we have the main result of this section.

Theorem 3.9.   For  1 < p < °°, A    is a dual A * -algebra which is a dense

two-sided ideal of A.

Proof.   By a similar argument in the proof of [4, p. 265, Corollary 3.2],

we can show that A    is complete. (We use maximal orthogonal families of

hermitian minimal idempotents instead of orthonormal bases.) Hence A    is an

A -algebra which is a two-sided ideal of A.  It follows from Lemma 3.1(iv) that

A    contains the socle S of ^4.  Since S is dense in A, so is A . We claim

that, for each a in Ap> a belongs to the closure of aAp  in Ap. In fact,

let   [a] = ZT. j k¿e¡ be a spectral representation of  [a]   and   W the partial

isometry associated with a. Put /„ = Z"=1 e¡ (n = 1, 2, • • •). Then

Mp
\a-afn\p<\[a]-[a]fn\p = Z    Vi

i=n +1 \i=n+l

Since aEA , it follows that  \a -afn\p^>-0 as n -> °°. Hence by [5, p. 29,

Lemma 8 (3)], A    is a dual algebra. This completes the proof.

We shall need the following result.

Corollary 3.10. Let {ey} be any orthogonal family of hermitian minimal

idempotents of A and x EAp (Kp < °°), then  Z7 eye is summable in   \'\p

and especially when [e } is a maximal family x = *Ly eyx in Ap.

Proof.  This follows from Theorem 3.9 and Theorem 5.2 in [12].

Finally we remark that many statements and proofs in this section are similar

to those given in [4] and [11].
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4.  The algebras Al  and A2. We have a characterization of a proper

./7*-algebra.

Theorem 4.1.  The algebra A2 is a proper H*■algfbra.  Conversely, every

proper H*-algebra is of the form A2 for some dual B*-algebra A.

Proof.   Let a, b EA2 and  {fß} a maximal orthogonal family of hermi-

tian minimal idempotents in A. Then fßb*afß = Xßfß for some constant X^.

We claim that  Z^ X^  is absolutely summable and independent of the choice of

{fß}. In fact, let x,yEAfß. Then y*x = (x, y)ßfß for some constant

(x, y)ß. It follows from [7, p. 261, Theorem"(4.10.3)] and [7, p. 263, Theorem

(4.10.6)] that (x, y)ß defines a complete inner product on Afß  such that

Of, x)ß = IMI2. Now by Lemma 2.2 and the proof of [10, p. 30, Lemma 4], we

can show that  Z^ X^ is absolutely summable and independent of {fß}. Define

(4.1) («. ¿) = ZX„      (a,bEA2).
ß

Then by the proof of [10, p. 31, Lemma 5], ( , ) is an inner product on A2

such that (xa, b) = (a, x*b) and (ax, b) = (a, bx*) for all jc in A. Also

|a|2 = (a, a). Therefore A2  is a proper /7*-algebra.

Conversely, let B be a proper //"*-algebra.  Then B is a dense two-sided

ideal of some dual fi*-algebra A. We can show that B = A2   and this completes

the proof.

Lemma 4.2.  Let  1/p + l/q = 1, where  1 <p, q < °°. If aEAp and

bEAq, then abEAi  and  \ab\l < \a\p\b\q.

Proof.   Suppose first that 2 <p < °°, 1 <q < 2.  Let   [b] = Za kaea

be a spectral representation of  [b]. Also write   [ab] = W*ab. Then by Lemma

3.3, Lemma 3.5 and Holder's inequality, we have

W\x = Z Hejtó] ea\\ = Z \KW*abea\\

(4.2)

<\W*a\p\b\q<\a\p\b\q.

By a similar argument, we can show that (4.2) holds for  Kp<2, 2<q<°°.

We now identify At.

Theorem 4.3.   At = {xy: x, y E A2}.

Proof.   If a EAlt then by Lemma 3.3, [a]54 EA2. Let  W be the
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partial isometry associated with a. Then a = W[a] =(W[a]V2)([a]Vl)E{xy:x, yEA2}.

The converse follows from Lemma 4.2 and this completes the proof.

Let aEAx. Then by Theorem 4.3, a = c*b  for some b, c in A2.

Define

(4.3) tr a = (b,c)      (aEAJ,

where  (b, c) is given by (4.1).

Lemma 4.4.  Let a E A ¡, {fß} a maximal orthogonal family of hermitian

minimal idempotents in A and \ßfß - fpf^  Then tr a is well defined,

tr a = ZßXß = 2ß(afß,fß) and  |tr a| < |a|j.

Proof.   By the proof of Theorem 4.1,  Z^ X^ is absolutely summable and

independent of {fß}. It is clear that  tr a =Z(3 \ß = Z^ (afß,fß). Therefore

tr a is well defined.  By Lemma 3.7, |tr a| < Z^ \\fßafß\\ < |a|j.

5. The uniform convexity of Ap  (1 <p < °°). For each a in A, we

define a linear operator La  on A2  by

(5.1) La(x) = ax      (xEA2).

Since  |ax|2 < ||a|| |jc|2, it follows that La  is bounded on A2.  Let (,) be

the given inner product on A2.

Lemma 5.1.   Let a be a positive element in A.  Then La is positive and

Lar = (Lj (0<r<oo).

Proof.   This is clear.

We now establish [4, p. 260, Lemma 2.6] for Ap.

Lemma 5.2.  Let a and b be two positive elements in A and 0 < r < °°.

// (a + b)r,ar and br are in Av  then

(i) tr (a + b)r < tr a* + tr b" (0 O < 1).

(n) tr (a + bf > tr ar + tr br (1 < r < <*>).

Proof.   We assume first that  0<r<l.  Let S = La, T = Lb  and

U = La+b.  Then by the proof of [4, p. 260, Lemma 2.6], there exist operators

C and D on A2  such that

||q| < 1,      ||£>|| < 1,      CUV* = SVl,     DUVl = T*,

Let {fß} be a maximal orthogonal family of hermitian minimal idempotents in

A. Then by Lemma 5.1, we have
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tr (a + bY = Z (ífl + b)rfß, fß) = Z Wß, fß)

(5.2)
- Z icu-1%, cur'%) + z (Dir'%, Dur%).

ß ß
Since C(a + b)r'2EA2  and CUr'2fß » C(a + b)rl2fß, it follows from (5.2)

that

tr (a + b)r = \Qfl + b)r'2\22 + \D(a + b)rl2\\

(5.3)
= |(C(a + b)"l2)*\\ + |(D(a + b)r'2)*\22.

Let a = Za kaea  be a spectral representation of a.  Since  (C(a + b)rl2)*ea =

(CUr/2)\ = (a + byl2C\, it follows from [4, p. 252, Lemma 2,1] that

((C(a + by'2)*ea, (C(a + bp2)\) = ((a + byc*ea, C*eJ

< ((a + b)C\, C*eJ = (aea, ej = kra = (a'ea, ea).

Therefore  |(C(a + b)rl2)*\\ < tr ar.  SimUarly  |(D(a + b)r/2)*\22 < tr br. Hence

by (5.3), we have tr (a + b)r < tr ar + tr b''. The case   1 < r < °° can be

proved in a similar way and the proof is complete.

By using maximal orthogonal families of hermitian minimal idempotents

and a similar argument in the proof of [4, p. 259, Lemma 2.5], we have:

Lemma 5.3. Let a be a positive element in A and b a hermitian element

in A such that a + b and a - b are positive. Suppose (a + b)r, (a - b)r

and a* are in Av  Then

(i) tr (a + b)r + tr (a - b)r < tr ar (0 < r < 1).

(ii) tr (a + by + tr (a - b)r >tiar (1< r < °°).

Now we have the following result.

Theorem 5.4.   Let a and b be two elements in Ap and  1/p + l/q = 1.

Then

0) 2p"1(la|p + \b\»p) < |a + bpp + \a- b\p < 2(|a|p + \b\p)      (0<p<2)

CO |a + ô|^ + |a-ft|^<2(|a|p + |i|p'î/P                                    (1<P<2)

(iii) 2(|a|p + I6Ç) < |a + b\p + \a - b\p < 2p~1(\afp + \b?p) (2<p<~)

(iv) 2(|a|p + \b\Pp)*/P < |a + bfp + \a - b\*p                                (2 < p < -).

Proof.   This can be proved by using Lemma 5.2, Lemma 5.3 and the proof

of [4, p. 261, Theorem 2.7]. We omit the details.
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As observed in [4], we have:

Corollary 5.5.   For  1 < p < °°, Ap  is uniformly convex and reflexive.

6. The conjugate space of A .   In this section, we always assume that

1 <p < oo and   \/p + \/q = i.  Let A* be the conjugate space of Ap. We

shall show that Ap = A* in a natural way.

For each a. in Ap  (1 <p <°°), we define

Í6-1) Fa(x) = trax      (xEAq).

Theorem 6.1. For each a inAp (l<p<°°), FaeAq and WFJ =

K-
Proof.  By Lemma 4.2, Fa is well defined. It is clear that Fa E A*

and  ||Fa|| < |a|p.  By a similar argument in the proof of [11, p. 786, Proposition

3.26], we can show that  ||Fa|| > |a|p. This completes the proof.

We now establish a converse of Theorem 6.1.

Theorem 6.2.   For  1 < p < °°, every continuous linear functional F

on Aq  is of the form Fa for some a in Ap,  where Fa  is defined in (6.1).

Proof. We assume first that p = 1 and FEA*, = A*. Then it is clear

that FEA*. Since A2 is a Hilbert space, by the Riesz representation theorem,

there exists some a in A2 such that F(x) = (x, a*) — tr ax for all x in A2.

By the proof of Theorem 6.1, we can show that aEAl   and so F = Fa.

Now we consider the case 1 <p < *> and assume FEA*. Then FEA*.

Hence by the proof of [8, p. 103, Theorem 2], there exists a right centralizer S

on A2 such that

(6.2) F(y) = trSy      (yEAJ.

Let {ea} be a maximal orthogonal family of hermitian minimal idempotents in

A and {Ey} the direct set of all finite sums ea + ea + • • • + ea . Define

Fy  on Aq  by

(6-3) Fy(x) = F(Eyx)      (xEAq).

Since S(Eyx) = (SEy)(Eyx) = ((SEy)Ey)x - (SEy)x and EyxEAv by (6.2)

and (6.3) we have

(6-4) Fy(x) = tr S(Eyx) = tr (SEyyx      (x E Aq).

Since SEy = (SEy)EyEAp, by (6.4) and Theorem 6.1,  \SEy\p = ||i"7|| < \\F\\.

Therefore {SEy} is a bounded set in Ap.  Since A    is reflexive (Corollary 5.5),

we can assume that SEy—+a  weakly for some a in Ap. Hence aea=Sea

for all a. Therefore by (6.2), F(eax) = tr aeax.  For each x in Aq> by
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Corollary 3.10, x=Zaeax   in  H .  Hence it follows that F(x) = tr ax (xEAq).

This completes the proof.

Remark.  Some arguments in the above proof are similar to those in the

proof of [3, p. 130, Theorem III. 12.2].
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