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A CONTINUITY PROPERTY WITH APPLICATIONS TO

THE TOPOLOGY OF 2-MANIFOLDS(1)

BY

NEAL R. WAGNER

ABSTRACT.   A continuity property is proved for variable simply connected

domains with locally connected boundaries.   This theorem provides a link between

limits of conformai mappings and of retractions.   Applications are given to the
2

space of retractions of a compact 2-manifold  M , where it is shown that the space

of deformations retractions is contractible and the space of nullhomotopic retrac-
2

tions has the same homotopy type as M .  Other applications include a proof that
2

the space of retracts of M   (with a natural quotient topology) is an absolute

neighborhood retract, and a type of global solution to the Dirichlet problem.

0. Introduction. This article contains proofs for the results announced in

[23]. The basic tool for this work is a continuity property for variable simply

connected domains with locally connected boundaries (Theorem 2.2), which pro-

vides a link between limits of conformai mappings and of retractions. Preliminary

material on conformai mapping theory appears in § 1, including a continuity prop-

erty for a fixed domain (Theorem 1.1) similar to Theorem 2.2.

In §§3 and 4, we use Theorem 2.2 to analyze two components of the

space of retractions of an arbitrary compact 2-m'anifold M2. In §3, we con-

struct a contraction of the space of deformation retractions of M2, while in §4

we show that the space of nullhomotopic retractions of M2 has the same

homotopy type as M2. The methods of §4 are similar to those in [21] and

[22]. In both §§3 and 4, the construction is essentially that first given by

Alexander [2], [11, p. 524], as modified for retractions by Borsuk [4] and the

author (Remark 3.2). Only in five cases (the 2-sphere, disk, annulus, projective
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plane and Mô'bius strip) does this work provide a complete analysis of the global

properties of the space of retractions.  For example, even in cases as simple as

the torus or the disk with three holes, the space of retractions has a complicated

infinite array of components [24].

In §5, we give the set of retracts of M2  the quotient topology deter-

mined by the projection from the space of retractions, and prove that the space

of retracts is an absolute neighborhood retract (Theorem 5.5). We also give a

version for retracts of the continuity property (Theorem 5.4).

Finally, in §6 we present two global forms of the continuity property: a

canonical form of the Schoenflies theorem and a type of simultaneous solution

to the Dirichlet problem.

Part of the material in §3 appeared in the author's doctoral dissertation at

the University of Illinois, Urbana-Champaign. The author would like to thank

his advisor, Mary-Elizabeth Hamstrom, and the referee of [21] for a number of

very useful ideas. He would also like to thank C. W. Neville and J. M. Gray for

encouragement.

1. Preliminaries on conformai mapping. In this section we introduce con-

cepts from conformai mapping theory which will be used in §2. As basic refer-

ences for this section, see [1], [10], and [15]. Throughout this paper, B2 will

denote the closed unit ball in the Euclidean plane E2, and Ca will denote the

circle with center at the origin and radius a. The symbol A(J, K) denotes the

closed annular region bounded by simple closed curves / and K, where / lies

in the bounded complementary domain of K. In particular, A2 is used for

A(C1, C2). The abbreviations bdry, cl, int, im, diam, and dist are used respec-

tively, for boundary, closure, interior, image, diameter, and distance.

Let G be a bounded simply connected domain in E2. A point v S F =

bdry(G) is accessible from  G if there is an embedding e: [0,1]—>GUF

suchthat e([0, 1)) C G and e(l) = v. An accessible point of F consists of a

point vEF and an equivalence class of embeddings, where we take ex   equiva-

lent to e2  if and only if there is an embedding e  as above which has image

points in common with et   and e2  arbitrarily close to v. By an abuse of

language, we shall refer to v or to  (v, e) as an accessible point.

Given distinct accessible points (p1,e1) and (v2, e2) of F, it is easy to

find a mapping E: [- 1, 1] —>GUF such that

£((-1,1)) CG,     E(-l)=vt,     E(l)=v2,

and, for some  e > 0,

*(-*)"• «iO   and   E(0 = e2(t),

for all t S [1 - e, 1], The set E{[- 1,1]) is called a cross cut and splits G
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into two components. A closed H-interval of F is the collection of accessible

points of F which are accessible from one of the above two components [15, p.

59]. Thus E splits the accessible points of F into two //-intervals with only

the endpoints (Uj.ej) and (u2>e2) in common.

A decreasing sequence  {//„}  of//-intervals containing at most one acces-

sible point is said to determine a prime end of G.  There is a corresponding de-

creasing sequence {G„}  of subdomains of G  such that the accessible points of

F accessible from G„  are exactly those in Hn  and such that P=C\d(Gn) is

contained in F.  The set P depends only on the prime end determined by {//„},

and we say that P belongs to this prime end. If the set which belongs to a

prime end consists of one accessible point, we say the prime end is of the first

kind.

The following known theorem is reminiscent of the result in [18, p. 262],

where conditions are given equivalent to the existence of a conformai homeomor-

phism /: int(ß2) —> G.

1.1. Theorem (Continuity property for a fixed domain). Let G

be a bounded simply connected domain with boundary F, and let D be a closed

disk contained in  G.  The following are equivalent.

(a) The boundary F is locally connected.

(b) The prime ends of G are all of the first kind.

(c) There is a continuous surjection f:B2 —> G U F which is a conformai

homeomorphism on int(/?2).

(d) There is a retraction y of 2i2\int(D) with image E2\G.

(e) There is a canonical retraction   \¡t of /T2\int(D) with image E2\G

mapping G\int(D) onto F.

1.2. Remark.  Compare this theorem with Theorems 2.2 and 5.4. See

[26, p. 112] for three other topological conditions (one appearing in the proof

below) equivalent to (a) through (e) above.  The equivalence of (b) and (c) is

an old result due to Carathéodory and others. A direct proof that (a) implies (d)

was originally given by Borsuk [3]. In condition (e) above and in Theorem 2.2

(e), the word "canonical" means that, for any boundary F and any disk D in

G, we are giving a procedure for constructing a unique retraction  \p with the

desired properties.

Proof.   To prove that (a) implies (b), assume F is locally connected.

Whyburn proves [26, p. 112] this is equivalent to saying each v S F is accessible

from all sides from  G, meaning that given any cross cut in  G, v is accessible from

either (or both) of the resulting components which has v on its boundary. It is

then easy to see that (b) is true [15, p. 65]. The proof that (b) implies (c) can

be found in [15, p. 67].
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Figure 1

Next, we give a constructive proof that (c) implies (e). Without loss of

generality we can assume that the closed disk D is the closed unit disk B2.

Let g: A2 = A(C1, C2)—>A(f~1(Cl), Cj) be a homeomorphism which is a

radial contraction of a map conformai on the interior of the annulus. (See

Figure 1.) Assuming we specify that / fixes the origin, the maps / and g

and hence h=f°g are only determined up to a rotation, but the construction

which follows is independent of rotations. Let \: A2 —*■ C2  be the obvious

radial retraction. We define a retraction  ^  of E2\ int(Z?2) onto E2\G by

setting  \¡/  equal to A°X°ft-1  on (G U F)\int(52)  and  i//  equal to the

identity on £"2\ G.  The continuity of \p  only needs checking on F, and it is

continuous there because h  is continuous on C2.

It is trivial that (e) implies (d), and assuming (d), a bounded portion of

E2\G is a locally connected continuum [26, p. 26], and so its boundary F is

also locally connected [26, p. 106].    Q.E.D.

For each nonnegative integer n, suppose there is given a bounded simply

connected domain G„  in the plane such that some fixed closed disk D with a

point u0  as center is contained in all the Gn. Let /„: int(/?2) —> Gn  be the

unique conformai homeomorphism mapping the origin to u0  and having positive

derivative at the origin [15, p. 13].

1.3. Definition. The domain G0  is the kernel (relative to uQ) of the

sequence  {Gn:n>\}  if G0  is the largest domain containing u0  suchthat

each compact subset of G0  is contained in Gn  for sufficiently large n.

(Alternatively, we can let G be the set of points with a neighborhood contained

in the G„  for sufficiently large n. The component of G  containing u0 is

the kernel.) The sequence   {G„}   Caratheodory converges (relative to u0) to

G0  if every subsequence of  {G„>   has kernel« G0.

1.4. Theorem (Caratheodory). The sequence {Gn} Caratheodory con-

verges to G0 if and only if the sequence {/„} converges to f0 uniformly on

compact subsets of int(52).
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The same theorem is true for the functions f~l. (See [15] for proofs and

[8] for references.)

We shall also need versions of Theorems 1.1 and 1.4 for a general (second

countable) 2-manifold M2. Our technique will be to lift the simply connected

domain G to the universal covering space of M2\bM2, which will be E2

except for the cases where M2  is the projective plane or the 2-sphere [1, p. 104].

Since G is simply connected and hence contractible in M2, it is not hard to see

that G will lift to homeomorphic copies in any covering space [19, pp. 66-68].

We shall start with a precompact simply connected domain G in M2, and

since we wish to obtain a bounded simply connected domain in E2, we employ

the following strategem:  Attach a collar dM2 X [0,1]   to  bM2, producing a

2-manifold N2, and take the universal covering space of N2\dN2. If we sup-

pose that M2  has been given a conformai structure so as to make it a

Riemann surface (a bordered Riemann surface if bM2 # 0 and including con-

jugates of conformai mappings if M2  is not orientable [1]), then we can extend

this to a conformai structure for N2  as in [1, p. 118]. Finally, we can put a

conformai structure on the universal covering space so as to make the covering

projection conformai [1, p. 119].

If F, the boundary of G, consists of more than one point, then G is of

hyperbolic type [1, pp. 141, 158, 204], i.e., conformally equivalent to int(52).

Let G CE2 be a component of p~i(G), where p: E2 -^N2\dN2  is the

covering projection. While F = bdry(G) need not be homeomorphic to F, F

will be locally connected if F is. Thus by Theorem 1.1(c), there is a continu-

ous function / : B2 —► G U F which is a conformai homeomorphism on

int(/?2). The composition f = p°f gives a continuous surjection of B2  onto

G U F which is conformai on int(/?2). Hence we have the following.

15. Theorem.  In an arbitrary (second countable) 2-manifold M2, let G

be a precompact simply connected domain with boundary F consisting of more

than one point.  Let D be a closed disk in  G containing some u0 €- M2 in its

interior.  Then the five conditions of Theorem 1.1 make sense and are equivalent

in this more general setting.

For each nonnegative integer n, suppose G„  is a precompact simply

connected domain in M2  of hyperbolic type such that each G„  contains some

fixed closed disk D with u0 in its interior. Definition 1.3 may be used in the

same form to define Caratheodory convergence of {Gn}  to  G„.  For each n

let /„  be a conformai homeomorphism of int(Z?2) onto Gn  mapping the

origin to «0. Each /„  is uniquely determined up to a rotation, and a reflection

if M2  is not orientable. Thus we require that the images of the positive *-axis
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under the /„ all make the same angle at u0, and, if M2 is not orientable, we

require that each /„ be directly conformai using a fixed orientation for D and

int(52).

1.6. Theorem.   Using notation above, {Gn}  Caratheodory converges to

G0  if and only if {/„}  converges to f0 uniformly on compact subsets of

int(52).

Finally, we state a lemma which is very useful in work with variable

domains.

1.7. Lemma (Lindelof [10, p. 33]). Suppose an analytic function f is

bounded on some bounded domain G (containing a point u0) by a number

M > 0, and suppose that for some r > 0, there is an arc of the circle C =

{«: \u - u0\ = r}  disjoint from  cl(G), where the arc makes an angle of 2n/k

for some integer k. Suppose, further, there is a number m > 0 such that for

any boundary point w of G inside C, we have hmsupu_>w l/(u)t< m.   Then

\f(uQ)\<(mMk-1)llk.

2. The continuity property for variable domains. In this section we give

an altered version of a theorem of D. Gaier [8, p. 395]. We have added three

new equivalent conditions, but weakened the generality of the theorem.  For

other references, see [8] and [9, p. 27].

For each nonnegative integer «, let G„  be a bounded simply connected

domain in E2  such that each Gn  has locally connected boundary Fn  and

contains some fixed closed disk  D with a point u0  as center. Let /„ : B2 —►

Gn U Fn  be the function given by Theorem 1.1(c), which will be uniquely de-

termined by requiring that fn  map the origin to u0  and that /„  have positive

derivative at the origin. Following [25, p. 337] and [8, p. 394], we give a

definition which introduces a measure of the "smoothness" of the boundary Fn

of our domain Gn.

2.1. Definition. For every S > 0, consider all cross cuts Q in Gn miss-

ing   u0  and of diameter  diam(Q) < 6, and let d(Gn\Q) denote the diameter

of the component of Gn\Q which does not contain u0. Set

77„(5) = sup {d(Gn\Q): diam(ß) < 6}.

One says that the sequence {Fn: n > 1}  Frechet converges to FQ  if

(1) {G„}  Caratheodory converges to  G0  (Definition 1.3), and

(2) limn_5_>orj„(5) = 0.

2.2. Theorem (Continuity property for variable domains). The

following conditions are equivalent.
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(a) The sequence {Fn}  Fréchet converges to F0.

(b) Each accessible point v0GF0 is the limit of a sequence {u„GFn}

of accessible points, and every subsequence of such a sequence has in turn a

convergent subsequence. (See Remark 2.3(1) below.)

(c) The sequence {/„}  converges to f0 uniformly on the closed disk B2.

(d) There are retractions yn (n > 0) of /f 2\int(D) with image E2\G„

such that {(¿>„}  converges to </j0  uniformly on E2\int(D).

(e) There are canonical retractions  i/>„ (n > 0) satisfying (à) such that

each  i]/n  maps G„\int(D) onto Fn.

23. Remark. (1) Since each Fn  is locally connected, all prime ends are

of the first kind, and the notions of "prime end" and "accessible point" coincide

(see Theorem 1.1). We say that a sequence {vn G Fn}  of accessible points

converges to an accessible point v0 S F0  if there are representing embeddings

en  for vn (n > 0) suchthat {en}  converges to e0 uniformly on [0, 1].

(2) It is not hard to see that condition (b) makes sense and is equivalent to

(a) even in the more general case considered in [8, p. 395], where only F0  is

assumed locally connected and the convergence is assumed uniform only on

int(52). We choose to include condition (b) here because it may be of interest

in its own right.  For the proof of Theorem 2.2, we could partly refer to [8],

but instead we shall outline an independent proof, relying on Lindelöf's lemma

(Lemma 1.7) rather than the Dirichlet integral that is used in [8].

(3) We could increase the similarity between Theorems 1.1 and 2.2 by

changing condition (a) of Theorem 1.1 to lim6_v0T70(5) = 0, which is clearly

equivalent to the local connectedness of F0 [8, p. 394]. Similarly, condition

(b) of Theorem 1.1 could also be altered.

Proof that (a) implies (b). Assume (a) is true and (b) is not true. The

Caratheodory convergence implies the first condition of (b), so we can assume

there is a sequence {vnGFn: n> 1}  of prime ends with no convergent subse-

quence. Using the map f0, we define standard simple closed curves J(a) and

standard radial arcs A(y) in G0  to be images under f0  of circles Ca (a < 1),

and of rays from the origin making an angle  y, respectively.

By taking a subsequence of {vn}  (but keeping the same notation), we

claim that we can choose a sequence  0 < cvj < a2 < a3 < • • •   converging to

1  and an e > 0 such that

(1) for all n, each point of J(an) can be joined to the corresponding

point of F0 by a portion of a standard arc of diameter less than  1/n  lying

except for its endpoints in G0  but outside J(an),

(2) for all n,J(an) is a subset of G„,

(3) for all n, each point of Fn  is within ßn  of F0, where ßn =
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dist(/(a„), F0) (note that ßn < l/n), and

(4) for all representing embeddings en  of v„   such that en(0) = u0,

there is a terminal arc of en([0, 1]) outside J(an) having diameter greater than

or equal to  e.

In condition (1) we use the fact that F0  is locally connected, and in con-

ditions (2) and (3) we take subsequences. If (4) were not true, we could con-

struct a convergent subsequence of {u„}  using the standard arcs .4(7).

For the rest of this proof, assume that n is fixed and assume that en  is a

fixed representing embedding for vn. For each angle y, we use A(y) and en

to attempt to construct a representing embedding ey for vn  as follows:

(5) Trace along A(y) to J(an) (using parameter values in [0, 1 — an]

and the map f0). Then, if possible, connect up with that point of en([0, 1])

outside J(an) with largest parameter value (denoted ty) using an arc of diam-

eter less than or equal to  2/n.   Finally, finish the embedding along en([0, 1]).

(See Figure 2.)

By (1), (2), and (3), ey and ty exist for some y.

(6) Set r0 = sup {ty : 0 < y < 2tt} , and choose a fixed angle y such that

e    exists and such that en([ty, t0]) has diameter less than  l/n.   For this

fixed 7, denote the intersection of .4(7) with /(a„) by q.

(7) Choose points q, q" £/(a„)  such that   \q - q'\, \q - q"\, and

\q' - q"\ all lié between  S/n and 15/«  and such that the arc q'qq" of J(an)

has diameter less than  50/«.   (Here and later in the proof, we might have to

insist that « be sufficiently large.)

By (1) and (3), we can find points s', s" S Fn  and arcs q's   and q"s"

of diameter less than  2/« whose interiors lie outside J(ctn) and inside  Gn. By

(5) and the construction of ey, the arcs q's' and q"s"  do not intersect

ey([0, 1]). Thus the arc Qn = s'q'qq's" is a cross cut in G„  of diameter less
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than 60/«.  But the portion of ey([0, 1]) from q to vn  has diameter greater

than or equal to  e. Thus for any S > 0, we can choose n large enough so that

diam(ô„)<5. Hence

Vn(5)>d(G„\Qn)>e>0,

and so clearly condition (2) of Definition 2.1 does not hold.

Proof that (b) implies (c).  We shall sketch a proof modeled after that in

[10, pp. 59—62]. We wish to show that {fn: n> 1}  is equicontinuous on

Cy (= bdry(Z?2)). Suppose otherwise. Then by shifting to subsequences (but

keeping the same notation), we can find distinct points rn  and sn  of Cj

(« > 1) such that the sequences {rn}  and {s„}  both converge to some r0 E

Cj, and such that rn  and sn  correspond to distinct prime ends an   and bn

of Gn, where {an}   and {bn}   converge (as sequences of prime ends-see

Remark 2.3) to distinct prime ends a0  and b0  of G0. One of the arcs with

endpoints rn  and sn  is constricted to r0  as n  tends to infinity, and denote

the corresponding//-intervals in Fn  by An. Denote the complementary//-inter-

vals in F„ by B„ (« > 1).

(1) We can label the//-intervals determined by a0  and b0  with A0  and

B0  so that the sequences {An)   and {/?„}  converge in the sense of condition

(b) to A0  and B0, respectively. (In this and other proofs, each numbered

statement is an assertion whose proof is clear or follows the statement.)

For the labeling, choose a prime end w0  in F0  not equal to either a0

or b0. Condition (b) shows that w0  is the limit of a sequence {vv„}  of prime

ends. By taking a subsequence, we can assume that w„ G An  or wn €= Bn  for

all n. We label the //-interval containing w0 with A0 in the first case and with

B0 in the second case.

In order to show that condition (b) holds for the sequence {An}   and for

v40, let v0 be any prime end of A0. By condition (b) in the original form,

there is a sequence {u„SF„}  converging to v0. We claim that vnGAn  for

all but finitely many «.

In proving this last claim, we assume that w0  (used in the labeling) lies

in A0, that v0 is neither a0, w0,nor b0, and that all prime ends come

equipped with representing embeddings starting at u0. It is not too hard to show

that for sufficiently large «, we can assume that terminal portions of the images

of representing embeddings for a0, b0, v0, and w0  are disjoint.  For sufficiently

large n, we construct a simply connected subdomain G'n  of G„  using

(i) terminal portions of the embeddings for an  and bn,

(ii) for a sufficiently close to 1, that portion of the standard simple closed

curve J(a) not intersecting the embeddings for w„   or vn  and terminating in
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intersections with the embeddings for an  and bn, and

(iii) the //-interval An.

This construction uses the uniform convergence of the representing embeddings.

Because wn GAn, we have u0 GGn, since the embedding for wn   starts at uQ

and does not meet bdry(G^). Using similar reasoning, we must have vn GA„

for sufficiently large «, completing the proof of the claim.

To finish the proof of (1), we know that a sequence  {vn G An}  must have a

subsequence converging to some v0 G F0, and as above it is not too hard to

show that v0GA0. Similarly, we see that {Bn}  converges to B0  in the

sense of condition (b).

Choose a prime end c0  in the interior of AQ  such that, as a point, c0 is

not an endpoint of F0, i.e., c0  does not have arbitrarily small neighborhoods

whose boundaries intersect F0  in a single point [26, p. 64]. (The non end-

points are dense in F0.)

For each e > 0, let V(e) denote the open disk centered at c0 with radius

e, and let W0(e) denote the component of V(e)\F0 whose points can be con-

nected to c0  with an arc in  V(e)\F0  representing c0  as a prime end.

(2) There is an  ex > 0 such that for all e satisfying 0 < e < e(, any

neighborhood of c0  inside   V(e) has boundary intersecting F0  in more than

one point.

It is clear that (2) is true because c0  is not an endpoint of F0. Using this

same fact, it is not too hard to show (3) below.

(3) For all e satisfying 0 < e < et, there are points arbitrarily close to c0

outside d(W0(e)).

(4) There is an  e2 < eY   such that for all  e satisfying 0 < e < e2  there is

a positive integer N(e) such that if z0 G W0(e) ft V(e/2) and « > N(e), then

any prime end of Fn  representable with an arc from z0  inside   V(e) must lie

in An.  (See Figure 3.)

If (4) were not true, then, starting with a fixed representing embedding e0

for c0, we can construct (taking another subsequence) a sequence {vn GBn}

of prime ends with representing embeddings en  which agree with e0  to within

1/«  of c0. This sequence clearly converges to c0, giving a contradiction to (1).

Choose a fixed z0 G lV0(e2) ft V(e2/2) satisfying (4), and hence also (3).

For each n>N(e), let W„(e) denote the component of V(e)\Fn  containing

(5) There is an e satisfying 0 < e < e2, a 6  satisfying 0 < 5 < e/2, and

a positive integer N such that z0 G W0(e) ft V(e/2), and such that there is a

fixed arc R  of the circle C={m:Ih-z0I = 8}  which is disjoint from

cl (Wn(e)) for all n>N.  We assume that R makes an angle of 2n/k for

some integer k.
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Figure 3

Choose  e < e2   such that z0 G W0(e) ft V(e/2). (It is easy to choose such

an e after first choosing an arc from z0  inside W0(e2) which represents c0

as a prime end.) Using (3), choose 5 < e/2  and R  such that R  is disjoint

from d(W0(e2)). The problem we encounter with (5) is that  Wn(e) may be

drastically larger than W0(e) for all «.  Let G(e) be the set of all points with

a neighborhood contained in ^„(e) for sufficiently large «.  It is clear that

bdry(W0(e)) is disjoint from G(e), so the kernel of {^„(e)}  with respect to z0

(which is the component of G(e) containing z0-see Definition 1.3) will be

contained in W0(e). Now G(e) may have other components outside W0(e),

but since e < e2, it is not too hard to see that G(e) will be contained in

W0(e2). (By condition (b) and the Caratheodory convergence, a separate compo-

nent of G(e) can only occur if portions of Fn  extend arbitrarily closely to

bdry(K(e)), for increasing «.) It is now not hard to choose an TV so that (5) is

true.

Set gn(u)=f-^(u) -r0,for u G W0(e) and n>N.  Let mn  be the

supremum over all w in bdry(Wn(e)) of the numbers lim sup {\gn(u)\:

u —► w, u G Wn(e)} . By (4), mn  tends to  0 as «  tends to infinity. Using

(5) and Lemma 1.7, we see that   l^„(z0)l < (m„2fc_1)1/fe. Thus as «  tends to

infinitely (k fixed), gn(z0) tends to zero. On the other hand, gn(z0) must

converge to föl(z0) — r0, i.e../^1^) = ro- This is true for infinitely many

z0 G G0, so we have a contradiction. Thus the set of functions {/„:«> 1}

is equicontinuous on Cl.
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The remainder of the proof follows as in [10]. In brief, a subsequence of

{/„}  converges uniformly on C1. Hence {/„}  converges pointwise on Cl,

since otherwise there would be subsequences of {/„} converging to distinct ana-

lytic functions on  int(52).  It follows that {/„}   converges uniformly on Ct

and hence on B2, and clearly it converges to f0.

Proof that (c) implies (e).  Without loss of generality, we can suppose

that each Gn  contains the closed unit disk B2  and that each /„  fixes the

origin. For each «, define gn: A2 —>-A(f~1(C1), Cj) as in the proof that (c)

implies (e) in Theorem 1.1, and suppose that each gn  maps (1, 0) to f„~\l, 0).

Note that hn=fn°gn  fixes the point (1,0) and that {f~l(l, 0)} converges

to f^l(l, 0). By condition (c) it is clear that the sequence of simple closed

curves {/ñ'CCj)}  Frechet converges to /^(Cj). Results about mappings of

annular regions between simple closed curves show that {gn}  converges to g0

uniformly on A2. (See [11], [14], [16] and [22].) Thus {«„}  converges to

h0  uniformly on A2. For each «, define a retraction  \¡/n  of E2\int(B2)

onto E2\Gn  as in the proof of Theorem 1.1. Arguing by contradiction, it is

not hard to prove that the sequence {tyn}  converges to  \p0 uniformly on

F2\int(52).

Proof that (e) implies (d).  This is trivial.

Proof that (d) implies (a). Assume (d) is true and (a) is not true.  From

(d) it is easy to see that {G„}  Caratheodory converges to  G0. If (a) is not

true, then part (2) of Definition 2.1 must fail. Thus, for each «  there is a cross

cut Qn  of Gn   such that as «  tends to infinity, diam(ß„) tends to zero, but

d(Gn\Qn) and dist(Qn,u0) do not tend to zero. The retraction <pn  fixes the

endpoints of Qn, but moves some interior point a distance which does not tend

to zero as «  tends to infinity. This is clearly a contradiction to the uniform

convergence of {¡pn:n>l}.   Q.E.D.

As in §1, we shall need extensions of Theorem 2.2 to an arbitrary (second

countable) 2-manifold M2. For each nonnegative integer «, let Gn  be a pre-

compact simply connected domain in M2  with locally connected boundary Fn

consisting of more than one point. For each «, let f„: B2 —> Gn U Fn  be the

mapping given by Theorem 1.5, normalized as in the discussion preceding Theorem

1.6. Using the universal covering space as in the proof of Theorem 1.5, we get

the following result.

2.4. Theorem.   The five conditions of Theorem 2.1 make sense and are

equivalent in this more general setting.

3. The space of deformation retractions. In this section and the next, we

study the space R(M2) of retractions of an arbitrary compact 2-manifold M2,

where the compact-open (= sup-metric) topology is used. The continuity property
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of §2 was developed as a tool for the study of R(M2). For material on retrac-

tions, see [5] and [13].

There is a number  e > 0 such that any two selfmaps of M2  within a

distance e are homotopic. (An argument can be given using geodesies.) Also,

it will be clear from work below that the space V(M2) of deformation retrac-

tions of M2  is pathwise connected. Hence  V(M2) is a component in  R(M2).

(See [21] and [22].) We can use Theorem 1.1 to construct a canonical path in

V(M2) from any deformation retraction to the identity map on M2, and then

Theorem 2.2 implies the following principal result of this section.

3.1. Theorem. For any compact 2-manifold M2, the space V(M2) of

deformation retractions of M2 is contractible in itself.

As a prototype for the construction used in this section and in the proofs

of Theorem 4.2 and Lemma 5.3, we have the following, due in its first forms to

Alexander [2] and Borsuk [4].

3.2. Remark [21, p. 320]. Let M be a manifold with boundary bM and

let bM X [0, 2] C M be a collar of the boundary. For t G [0, 1], let pt be

the retraction of M which is the identity outside  bM X [0, t) and projects

bM X [0, r]   to  bMX{t}. Let ht : M —* pt(M) be the homeomorphism

given by the identity outside  bM X [0, 2)  and by mapping bM X [0, 2]

linearly to bM X  [t, 2]. Then the homotopy 0f given by ®t(f) =

ht° y° hjl op, provides a deformation of R(M) in itself such that the

image of 0j   consists of retractions of M whose images do not meet  bM.

If M is compact, we can vary the amount a retraction is moved according

to the distance it overlaps onto  bM X [0, 1). In this way, we can prove the

following result.

3.3. Theorem (Elbowroom construction). // M is a compact mani-

fold with boundary  bM and if bM X [0, 1] CM is a collar, then there is a

strong deformation retraction of R(M) onto the space of retractions of M with

images in M\(bM X [0, 1)).

Proof of Theorem 3.1. The proof is similar to the proof that (c) implies

(e) in Theorems. 1.1 and 2.2. Let L2  be the manifold obtained from M2  by

filling in each hole with an open disk. We shall show in Theorem 3.4 below that

for any y in  P(Af2),Z,2\im((¿>) consists of a simply connected domain con-

taining each of the open disks. We work in the universal covering space of L2

(which we assume to be E2; if it is S2, the proof is similar), and project the

construction down into L2, handling each hole separately.  Thus without loss of

generality, we assume that M2  is E2\int(B2) and that L2  is E2. (This is

not compact, but all functions will be fixed outside a bounded portion of E2.)
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Given a deformation retraction <p of E \int(ß2), we can use Remark 3.2 or

Theorem 3.3 to assume that im(t¿>) is disjoint from the boundary (which is C1 here),

and we can assume that im((¿>) is bounded in E2.

First, we show how to produce a canonical deformation retraction |x of

/?2\int(52) onto /32\im((¿>), such that each stage of the deformation is itself a de-

formation retraction of E2\int(B2). As in the proof of Theorem 1.1, let « be the

unique continuous function from   A2 = A(CV C2)   onto the closure of

/J2\(im(i/J) U B2) which is a radical contradiction of a map conformai on the in-

terior and which fixes the point (1,0) G Cx. For each t G [0,1 ], let \ be the

retraction of A2 onto A(Cl+t, C2) which projects A(CV Cl+t) radially onto

Cl+t. Define a retraction %t of .r72\int(S2) by setting %t = ho\foh~1 on the

closure of E2\(im(<p) U B2) and letting iff fix the points of im(t¿>). For each rG

[0,1], %t is clearly a retraction (it is idempotent) and clearly continuous (the case

r=l is contained in the proof of Theorem 1.1). To prove continuity of %t in t

when t = 1, show that, given e>0, there is a number   r < 1    such that

sup{l£f(«)-£1(H)l:uG/22\int(ß2)}<e for all r satisfying r<t<l. This is not

hard to show using the facts that h is uniformly continuous on A2 and that \

moves the points of this annulus radially out towards C2.

Thus, %t gives a canonical path in the space of deformation retractions of

/J2\int(52) from the identity to a canonical retraction £j of E2Mnt(B2) onto

im(i¿>). Setting ot = ¡p ° %t (a retraction for each t because im(£() contains im(i¿)),

we obtain a path from y to %x =o-j,and £x_f gives a path from %x to the iden-

tity on /32\int(o2). Theorem 2.2 shows that these canonical paths give the desired

contraction of £>(£2\int(ß2)).   Q.E.D.

The next result characterizes the deformation retracts of M2 and thus general-

izes a theorem of Borsuk [3], [5, p. 132].

3.4. Theorem. Let M2 beany compact 2-manifold and let m be the num-

ber of its boundary curves. Let L2 be a compact 2-manifold without boundary

containing disjoint open disks D¡ (Kj<m) suchthat M2 =L2\\J{Dj}. Let R

be a subset of M2 such that

(1) R is connected, locally connected and closed, and

(2) G=L2\R consists of simply connected components Gj with D¡CG¡

(Kj<m).

Then we can conclude that

(i) R is the image of a deformation retraction  Ç of M2, and

(ii) if R is the image of a retraction $ of M2, then y is a deforma- '

tion retraction, and there is a canonical deformation in V(M2) from <p to the

identity.

Conversely, let M2 and L2 be as above, and let <p be a deformation
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retraction of   M2.    Then   R = im (<p)   satisfies (1) and (2) above.

Proof.    If   R C M2   satisfies (1) and (2) above, then (i), (ii) follow

from the proof of Theorem 3.1.

For the converse, let \p G V(M2). Condition (1) of the theorem is clear.

Suppose the universal covering space of L2  is E2, with covering projection p,

and let N2  denote the plane less the infinite collection of disjoint open disks

p~1(D]), for  1 </ < m.  The space N2  is a covering space of M2, and since

tp is a deformation retraction, it will lift to a deformation retraction  \p of N2

[19].
First, suppose G = L2\R  contains a component H which is not simply

connected. Then we can produce a simple closed curve J in H which is not

contractible in //, hence also not contractible in L2, since im(<¿) is connected.

Thus p~x(J) will consist of an infinite collection of closed embeddings of E1

in E2, each of which separates E2. This contradicts the fact that im(i//) is

connected. Hence each component of G is simply connected.

Next, suppose H is a component of G which does not contain any of

the disks £>.-. Let //' be a component of p~l(H). Since H is simply con-

nected, //' will be open and bounded. The retraction  \¡i, when restricted to

cl(Z/'), would map cl(//') into E2\H' and fix the points on the boundary.

Using the Brouwer fixed point theorem [5, p. 12], it is easy to see that there

can be no such map.

Finally, if any component of G contains more than one of the disks D,,

then we could use the first part of this theorem to construct a deformation re-

traction of I2 with k holes (k < m) onto R.  Thus L2 with k holes

would have the same homotopy type as L2 with m holes, which is not true.

The case in which the universal covering space of L2  is 52  can be

handled as above by embedding L2  minus a hole in E2  and arguing separately

if m = 0.   Q.E.D.

4. The space of nullhomotopic retractions. The nullhomotopic retractions

of a compact 2-manifold M2  are exactly those with contractible image, and the

space of these retractions, with the compact-open (= sup-metric) topology, is a

component in the space  R(M2) of all retractions of M2. (As noted in [22,

pp. 611—612], this follows because any two sufficiently close selfmaps of M2

must be homotopic and because the space of nullhomotopic retractions is path-

wise connected, as will be shown below.)

4.1. Definition.   Let A be the canonical embedding of M2  into its space

of retractions which maps each point of M2  to the constant retraction to that

point. Denote by L(M2) the component containing the image of A, and restrict

the range of A to L(M2). Finally,let ev: L(M2)—*-M2 be the evaluation map
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which takes a retraction to the retraction evaluated at a basepoint of M2.

It is clear that   L(M2) is exactly the space of nullhomotopic retractions of

M2.

4.2. Theorem.  For any compact 2-manifold M2, the embedding A:

M2 —► L(M2) is a homotopy equivalence with homotopy inverse the evaluation

map ev.   Thus, the space   L(M2) of nullhomotopic retractions of M2  has the

same homotopy type as M2.

In outline, the proof is similar to the proofs in [21] and [22], except that

here instead of Michael's selection theorem, we use the following result, which

will also be needed in §6.

4.3. Lemma (Existence of cross sections [20, p. 55]).  Let (X,r,Y)

be a locally trivial fibre space [20, p. 3], [19, p. 90]   such that  Y is separable

metric and the fibre   F is an absolute retract [13, p. 95].  Then any partial cross

section defined on a (possibly empty) closed subspace A of Y extends to a

cross section, i.e., a map e: Y —*■ X such that t ° e is the identity on   Y.

Using Theorem 3.3, we can assume that each retraction in   L(M2) has

image missing bM2, and this assumption will hold for the rest of this section.

Let  S  denote the collection of all simple closed curves / in M2  which bound

a closed disk B(J) in AÍ2  and which do not meet bM2. (The disk B(J) is

uniquely specified unless M2  is the 2-sphere.) The set  S, with the Fre'chet

topology (Definition 2.1), becomes a separable metric space [22], and using the

methods of [14], it is not hard to see that  S  is an absolute neighborhood re-

tract (ANR). (In [14, Lemma 11], it is shown that the space of embeddings of

B2 into E2 which are analytic on int(52) is an ANR. This space has as a re-

tract the subspace consisting of embeddings fixing the origin and having positive

derivative at the origin. The space  S is locally homeomorphic to the latter

space.)

For any <p G L, let  S(<fi) denote the space of all / G 5  such that im(</>)

is contained in int(B(J)), the interior of the disk which / bounds. Each S(y)

is nonempty [22, Lemma 1], is contractible in itself [22, Lemma 2(b)], and is

clearly open in S. Hence [13, p. 96]   S(<p) is an absolute retract for each <p.

Let  8 be the subspace of L X S consisting of all (y, J) such that / G S(<p),

and let t: B —► L be the restriction of the projection onto the first coordinate.

4.4. Lemma.  The triple (B,t, L) is a locally trivial fibre space with

fibre the absolute retract S(A(u0)), where u0 is a basepoint of M2.

Proof. Let y0 G L. Let  Ü be a neighborhood of <¿>0 in   L  small

enough so that for fixed J0 G S  and some  e0 > 0, we have, for all i/j G U,
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im(i¿) C B(JQ) and dist(im(ip),/0) > e0.  For each \p G U, let g    be a homeo-

morphism of B(J0)\im(ip) onto B(J0)\im(ipQ) which is a radial contraction of

a map conformai on the interior. It is easy to adjust g    to a unique homeo-

morphism (still termed g) which is the identity on /0. (See [21] and [16, p.

45].) Then extend g    to M2\im(<¿>) by the identity map. The map g   induces

a homeomorphism of   S (¿)   onto    S (<¿>0), and this in turn induces a homeo-

morphism « of r-1(U) onto  UX S(>p0), given by h(ip, K) = (<p, g^K)). The

continuity of «  and h~l   follows from Theorem 2.2, using the technique in

the proof that (c) implies (e). Because   L is pathwise connected (as will follow

from work below), it is clear that the fibres are all homeomorphic to  S(A(u0)).

Q.E.D.
Proof of Theorem 4.2.  By Lemma 4.3 (with A  empty), there is a

cross section e: L —► B, and if t2  is the projection onto the second coordi-

nate, then for each tp G L,t2 ° e($) is a canonical simple closed curve bounding

a disk which contains im(t¿) in its interior. (We are still assuming that im(i/?)

misses bM2, for each jiEL)

The rest of the proof is similar to that in [22, p. 612], but we give a

sketch here. For each ¡p G L, let f^: B(t2 ° e(<p)) —► B2  be a conformai map

which takes ip(uQ) to the origin. The map /    is determined only up to a ro-

tation and possibly a reflection (if Af2  is not orientable), but the construction

which follows is independent of rotations and reflections. The map /  o <¿j o /-1

is a retraction of B2, and thus [21, Theorem 1.1] is homotopic to the constant

retraction to the origin. The homotopy is similar to that in Remark 3.2, and is

given by

#»"**-•£• ^°/^1 °Kl ° Pt>

where pf projects A(Cx_t, Cx) radially to C1_i,and ht is a radial homeo-

morphism of B2  onto pt(B2). We define a retraction ipt piecewise on M2

for each t.  Set

*,(*) =nl°^t° fJpc),   for   x G B(t2 o 4jp))

and

^W =f*1 ° K o f¥ o ^s),   for   x G M2\int(5(r2 » e(^))).

These definitions agree on the intersections of the domains, which is the curve

t2 » e(tp), so together they define a homotopy from ip to A(f~l(0, 0)) =

A(ip(u0)) = A o eu(i¿>). Theorem 2.2 shows that this defines a homotopy from the

identity map on   L to the map A ° ev. Clearly ev ° A equals the identity

map on M2.   Q.E.D.
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4.5. Remark.   As in [22], Theorem 4.2 generalizes to an arbitrary (second

countable) 2-manifold M2, provided M2  is given a metric in which it is com-

plete, and provided we use the sup-metric topology on the space of retractions

of M2.

5. The space of retracts. In this section we consider the set of retracts

(= images of retractions) of a compact 2-manifold M2.

5.1. Definition. Let R(M2), D(M2), and UM2) denote, respectively,

the set of retracts of M2, deformation retracts of M2, and retracts of M2

which are images of elements in   L(M2). (Thus  L(M2) consists of the set of

compact absolute retracts in M2 [13].) We give  R(M2) the quotient topology

determined by the natural projection im: R(M2) —>• R(M2) which maps a re-

traction to its image. The sets D(M2) and  L(M2) aie given topologies as sub-

spaces of R(M2).

5.2. Remark.   This topology on R(M2) is strictly larger (= more open

sets) than that of the Hausdorff metric. This follows because Fréchet convergence

implies convergence in the Hausdorff metric, while simple examples show that the

reverse implication is not true. (Since our retracts are compact, convergence in

the Hausdorff metric is the same as the concept of "convergence" in [26, p. 10],

i.e., the limit superior and the limit inferior are equal.  See [12] and [17, pp.

50-58].)

For the statement of the following useful lemma, note that we define a

submanifold of M2  to be a compact subset which is a 2-manifold.

5.3. Lemma.  A subset R CM2 is a retract of M2 if and only if there

is a submanifold N2  of M2  such that

(i) R is a deformation retract of N2, and

(if) AT2  is a retract of M2.

Proof.  If (i) and (ii) hold, then clearly R is a retract of M2. Suppose

that R is a retract of M2. For now, we shall assume that R is disjoint from

bM2. Given u0Gbàry(R) and given an embedding e0:/=[0, 1] —*M2

representing u0  as a prime end (of the first kind, since R  is locally connected),

we can construct a continuous function E: IX I —*■ M2  with the following

properties:

(1) E(t, 0) = e0(t), for all tGI,

(2) for each t G /, E(' , t) is an embedding representing a prime end of

R, and

(3) E restricted to   [0, 1) X / is an embedding into M2\R.

Two functions E and E ' satisfying (2) and (3) overlap properly if

exactly one of E(t, l)=E'(t, 0) or E(t, 0)=E'(t, 1)  holds, for all t G I, and
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otherwise the images under E and E' of  [0, 1) X / are disjoint.

We now construct finitely many mappings Ex, E2, • • • , En   satisfying (2)

and (3) above and satisfying

(4) EfdO, 1) X (0, 1)) is disjoint from E¡([0, 1) X (0, 1)) unless i =/,

(5) each E¡ overlaps properly with exactly two others (in the two ways

above), and

(6) each prime end of M2\R  is represented by E(( • , t) for some i

and t.

The compactness and local connectedness of bdry(R)  insure that this

construction may be carried out. Because R  is an ANR, we see that M2\R

can only have finitely many components. (We are still assuming that R  is dis-

joint from bM2.) This fact is proved for the case M2 = E2  in [5, p. 138].

It follows that R  and the images of the E¡ must form a compact 2-manifold

with boundary the union of the arcs E¡(0, 1). Using the technique in the proof

of Theorem 3.1, it is easy to produce a deformation retraction from this mani-

fold onto R.

In order to prove condition (ii) of the lemma, we define the 2-manifold

N2 to be N2 =R U (^,£,.([2/3, 1) X /)). Let <p be a retraction of M2

with image R.  From <p, we shall construct a retraction  \p of M2  with image

N2.

In the above work, we have constructed a half-open collar   [0, 1) X bN2

given by a continuous function p: / X 3A/2 —>M2  which is a homeomorphism

except on {1} X bN2, where it provides a one-to-one correspondence between

points and prime ends of M2\R.  In this notation, #2  is R U ([2/3, 1) X bN2)

and bN2  is the same as {2/3} X bN2.

We define the retraction  ip piecewise on the following four closed subsets

of M2:  (i) N2, (ii)   [1/3, 2/3] X bN2, (iii)   [0, 1/3] X bN2, and (iv)

M2\(N2 U (0, 2/3) X bN2). On N2, we take  \¡/ equal to the identity map,

and on the subset in (iv), we set  \¡i = <p. For the subset in (ii), we map   [1/3,

2/3]   linearly onto   [2/3, 1]   (sending  1/3  to  1  and fixing 2/3) and project

using p, so that  [1/3, 2/3] X bN2  is projected by  \p onto ([2/3, 1) X

bN2) U bdry(/?), which is a subset of N2. For the subset in (iii), map   [0, 1/3]

linearly onto  [0, 1] (fixing 0 and sending  1/3 to  1), project by p into M2

and follow by <p suitably restricted. (Thus  \¡j  takes {1/3} X 3A^2  onto

bdry(/?) and {0} X bN2  into R by the map ¡p.) It is clear that these defini-

tions agree on the intersections of the domains, so together they give a continuous

map  i//, which is also clearly a retraction with image N2. (See Figure 4.)

If R meets 3M2, attach a collar te 3Af2 and carry out the above con-

struction in such a way that if a point (t, u) GIX bN2 belongs to M2, then

the whole interval  [t, 1) X {«}  belongs to M2. We omit the details.   Q.E.D.



388 N. R. WAGNER

The following theorem shows that the quotient topology of Definition 5.1

is natural in other ways. Notice the similarities with Theorems 1.1 and 2.2.  In

the statement below, for each submanifold N2  of M2, let L2  be the mani-

fold obtained by filling in each hole of N2  with an open disk.
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Figure 4

5.4. Theorem (Continuity property for retracts).  Let M2  be a

compact 2-manifold, and for each nonnegative integer n, let Rn  be a retract of

M2.   Then the following are equivalent.

(a) The sequence {/?„: « > 1}   converges to R0 in the topology of

Definition 5.1.

(b) There is a submanifold N2 of M2  which is a retract of M2 and

an integer n0  such that for n = 0,n> «0, N2 contains Rn and L2\Rn

consists of simply connected domains, a domain  G„ for each hole of N2, and

for each hole,  {bdry(G„): « > n0}  Fréchet converges to bdry(G0).

(c) With N2,n0,L2 and Gn  as in (b), if /„: B2 —* cl(G„) is the

corresponding map conformai on int(B2) (normalized as in the discussion

before Remark 1.6), then for each hole of N2, {/„: n > n0}  converges to f0

uniformly on B2.

(d) For each n, there is a retraction <pn  of M2  with image Rn  such

that {ipn:n>l}  converges to i/?0  uniformly on M2.

(e) There is a submanifold N2 of M2 which is a retract of M2 and an

integer n0  such that for « = 0, « > «0, there are deformation retractions  \¡j„

of N2  with image Rn  suchthat {\¡/n:n>n0}  converges to  i//0  uniformly

on N2.

Proof.  It is clear from the definition of quotient topology that (a) is

equivalent to (d). The fact that (b) implies (c) is clear from Theorem 2.2. The

proof that (c) implies (e) can be carried out using the construction in the proof

of Theorem 3.1. Assuming (e), Theorem 3.4 shows that L2\Rn  consists of a

simply connected domain Gn  for each hole of A^2. Since each  \¡in (n = 0,

n > n0) is a deformation retraction of N2, these maps lift to the covering space
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of N2  given by taking the universal covering space of L2  and omitting the

lifted holes. This will be the plane with holes, and now Theorem 2.2 implies the

Fréchet convergence of {bdry(G„): « > «0}  to bdry(G0) for each hole of N2.

Hence we get (b). It remains to show that (d) and (e) are equivalent.

Assuming (e) again, let <¿>: M2—*N2  be a retraction and set ipn =

\[/„ o ip. It is clear that (d) holds.

Finally, assuming (d), construct N2  from R0  as in the proof of Theorem

5.3. Choose e less than dist(/?0, M2\N2) such that any two selfmaps of N2

within a distance  e are homotopic in N2. Choose «0  such that n> n0

implies tpn  is within e of <p0. Thus for all n>n0,Rn CN2  and <¿> I   2  is

homotopic to ip I   2  in N2. Since jR0  is a deformation retract of N2  and

<p I   ,  is a retraction, we see by Theorem 3.4 that <¿> I   ,   is a deformation re-*0 N2 ' 0 iV2

traction. Hence <p I   ,  is a deformation retraction of N2  for n>nn.     Set-
,      « N2 °

ting  i//„ = <p I   2, we get (e).   Q.E.D.

5.5.   Theorem.  For any compact 2-manifold M2,(i) the space  R(M2)

of retracts of M2  is an ANR (for metrizable spaces [13, Chapter 3]),

(ii)  The space D(M2) of deformation retracts of M2  is an AR, and

(iii)  The space L(M2) of compact AR subsets of M2  is an ANR with a

homeomorphic copy of M2, im(A(Af2)), as a deformation retract, and thus

L(M2) has the same homotopy type as M2.

Proof.  Let R be a retract of M2  and choose N2  as in Theorem 5.4.

Suppose L2=N2U (\J{Dj-. 1 </ < m}) and L2\R = U{Gy: 1 </ < m}

are as in Theorem 3.4. If R  is disjoint from bdry(D) for all / and if

bdry(G) is disjoint from bdry(Gfc) for / # k, then at the member R, the

space  R(M2) is locally homeomorphic to a product of copies of the ANR

A(B2, E2) described below (one copy for each hole of N2), and hence

[13, p. 97] is locally an ANR at R.  The rest of the proof is needed to take

care of the fact that R  may not be nicely situated in M2.

(1) Let  A'(B2, E2) denote the space of maps of B2  into E2  which

are conformai homeomorphisms on int(Z?2). This space was shown to be an

ANR in [14, Lemma 9].

(2) Let  k(B2, E2) denote the subspace of k'(B2, E2) consisting of

maps which fix the origin and have positive derivative at the origin. This space

is clearly a retract of A'(B2, E2), and hence [13, p. 97] is an ANR.

For L2  as above (without boundary) and any uxGL2,let  A(52, Z.2)•

denote the space of maps of B2  into L2  which send the origin to Mj.are

conformai homeomorphisms on int(/?2), and send the positive x-axis to a fixed

direction at ux.
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(3) The space  A(B2,L2) is an r-image of A(B2,E2) and hence [5, p.

87] is an ANR. Also it follows from Theorem 2.2 that  A(B2, L2) is homeo-

morphic to the space  D0(L2\{Mj})  of those deformation retracts of L2\{Wj}

whose images miss some neighborhood of uv

To prove (3), we first describe a canonical shrinking of a map /G

A(B2, E2) by a factor ß (0 < ß < 1). Let g0 be the obvious radial homeomor-

phism of B2  onto ß • B2  and set ß • f: B2 —► L2  equal to (/I .  2) ° gß.

(Notice that for ß < 1, the image of ß • f is a proper subset of the image of

int(52) under /. Notice also that ß • /G A(B2, E2).) Let p: E2 -^ L2  be

a conformai universal covering projection such that p maps the origin to ux

and the positive x-axis to the fixed direction at u x. (The proof is similar if the

universal covering space of L2  is S2  or int(fí2).) We now define an r-map

from A(B2, E2) onto  A(B2, L2) by sending / to p ° (ß • f), where we

take the largest value of ß for which the image map belongs to  A(B2, L2).

(In order to construct a right inverse to our r-map, we need the facts that a

simply connected domain in L2  will lift under p  to homeomorphic copies,

and that the functions in  A(B2, E2) and  A(B2, L2) are uniquely determined

by the image of int(fi2).)

For distinct points uv u2, • • • , um G L2, define  A*m*  to be the space

of all m-tuples (fv /2, • • • ,fm) such that each f¡ belongs to  A(B2, L2)

(sending the origin to w.) and such that /j(int(jB2)) is disjoint from fk(int(B2))

for / =£ k.

(4) A(m)  is a retract of the product of m  copies of the ANR A(B2, L2),

and hence [13, p. 97] is an ANR. (This can be proved using a shrinking pro-

cedure similar to that described after (3) for maps in  A(B2, L2).)

(5) The space  D(A/2) is a retract of the space

D0(L2\{u1,u2,'" ,um})

consisting of deformation retracts missing a neighborhood of each Uj. (Here

UjGD: for each /.)    The latter space is homeomorphic to  A^m\ and hence

D(A2) is an ANR.

The retraction in (5) is not hard to construct using the method in the

proof of Theorem 3.3. Here we use Remark 3.2 to move a retract a varying

distance depending on how far it overlaps onto the disks D,.

Finally, Theorem 5.4 shows that the space  R(M2) is locally homeomor-

phic to  D(A2)  (for varying AT2), and hence [13, p. 98]   R(M2) is an ANR.

Parts (ii) and (iii) of the theorem follow from corresponding statements about

V(M2) and  L(M2) (Theorems 3.1 and 4.2).   Q.E.D.

6. Global forms of the continuity property. In Theorem 3.1, Lemma 4.4,

and the proof of Theorem 5.5, we encountered global forms of Theorem 2.2.
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There are other similar results, and in this section we present two which seem

interesting. Throughout, we assume that M2  is an orientable Riemann surface

[1] with a continuous nonvanishing vector field. Thus, M2  must be noncom-

pact, or with nonempty boundary, or must be the torus.  (See [6] for other

applications of vector fields on 2-manifolds.)

Let F be the collection of all locally connected continua in   M2   such

that each F G F is the boundary of a simply connected domain GF, and give

F the topology of Frechet convergence (Definition 2.1). The space   F is locally

homeomorphic to a G6  subset of a separable Banach space [14, pp. 278-279]

and hence is locally complete. As in [22, Lemma 2(a)], we see that  F is a

topologically complete separable metric space.  The results which follow also hold

for subspaces of F, for example, the space of simple closed curves bounding a

disk.

Let  G be the subspace of   F X M2  consisting of all  (F, u) such that

uGGF, and let t: G—► F be the restriction of the projection onto the first

coordinate.  Each fibre  t"ï(F)  is homeomorphic to  int(B2)  and hence is an

AR. It follows from Theorem 2.2 that  (G, r, F )   is a locally trivial fibre space.

Thus by Lemma 4.3, there is a cross section e: F —► G. If r2  is the projec-

tion onto the second coordinate, then t2 ° e: F —>M2  allows us to select

continuously a canonical point uF from  GF for each F G F.

6.1.  Definition.   For each F G F, define fF: B2 —► GF U F to be

the canonical continuous surjection which is a conformai homeomorphism on

int(B2), which maps the origin to uF, and which maps the direction of the

positive x-axis to the direction given by the vector field.

Let g be the homeomorphism of  F X int(B2) onto  G defined by

g(F, u) = (F, fF(u)). Let  A  denote the space of all maps /: B2 —*■ M2  which

are conformai homeomorphisms on int(ß2), and let p: A —► F be the natural

continuous projection which maps / to the image of Cx   under /.  We can now

easily derive the next result, which might be called a "global form of the Schoen-

flies theorem."

6.2. Theorem. Using notation above,

(i) The homeomorphism g satisfies r ° g = T1,the projection onto the first

coordinate, i.e., (G, r, F) is equivalent to the trivial fibre space (F X int(ß2), r1, F)

and

(ii)  the injection from  F into  A which maps F to fF is a continuous

right inverse for the projection p.

One can see from Theorem 2.2 that the solutions to the Dirichlet problem

on a Riemann surface for simply connected domains with locally connected

boundaries change continuously if the boundary values change continuously and
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the boundaries change continuously in the topology of Fre'chet convergence

(see [7]).   For a global statement of the above, we need the vector field.  Let F»

GF) and fF be defined as above and let  G be the set of all (F, u) G F X

M2  such that u G GF U F.   For each F G F, suppose there is given a continu-

ous function bF: F—>El   such that the function B defined on   F by

B(F) = bF° (fF \c ) is continuous, where the range of B is the space of con-

tinuous real-valued functions on Cx   with the sup-metric topology. (For exam-

ple, one could use any continuous real-valued function b  defined on the union

of the members of  F  and set bF = b \F.) We now have a global form of a

solution to the Dirichlet problem.

6.3.  Theorem. Using notation above, there is a unique continuous real-

valued function h defined on   G such that for fixed F G F, «(F, • ) is

harmonie on  GF and agrees with  bF on F.

Proof.  For each F G F, let kF: B2—»F1   be continuous on B2,

harmonie on int(52) and agree with bF°(fF\c) on C¡. Then kF » fFl =

hF is harmonie on GF, agrees with bF on F, and is continuous on GF U

F.  We define h(F, u) = hF(u), for F G F and uGGFUF. Arguing by

contradiction, we see that h  is continuous.   Q.E.D.

Added in proof. Robert Cauty of Paris, France has independently obtained

the results of §4 using completely different methods.
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