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ABSTRACT.   The main result is that if   {T(t): t > 0} is a strongly con-

tinuous semigroup of scalar type operators on a weakly complete Banach space

X and if the resolutions of the identity for   T(t)   are uniformly bounded in

norm, then the infinitesimal generator is scalar type.   Moreover, there exists a

countably additive spectral measure  K( ■ )  such that   T(t) = { exp (Kt)dK(K),

for   t > 0.   This is a direct generalization of the well-known theorem of Sz.-Nagy

about semigroups of normal operators on a Hubert space.   Similar spectral repre-

sentations are given for representations of locally compact abelian groups and for

semigroups of unbounded operators.   Connections with the theory of hermitian

and normal operators on Banach spaces are established.   It is further shown that

R   is the infinitesimal generator of a semigroup of hermitian operators on a

Banach space if and only if  iR   is the generator of a group of isometries.

1. Introduction. In this paper we study strongly continuous semigroups

{71(f): t > 0}  of scalar type operators on a Banach space and extend some well-

known results about semigroups of normal or selfadjoint operators on a Hilbert

space. The main result (Theorem 5.3) generalizes Sz.-Nagy's theorem about semi-

groups of normal operator [12, Theorem 22.4.2] or [19, §XI 3]. We do not

assume that the resolutions of the identity for the operators T(t) generate a

bounded Boolean algebra of projections; this is obtained as a result. If one assumes

this, a much simpler proof of the main theorem could be given.  However, this

would be quite restrictive since in general the resolutions of the identity for two

commuting scalar type operators do not always generate a bounded Boolean

algebra of projections, even on a reflexive space (see [16]).

In §6 we extend a theorem of Foias, [11] on semigroups of scalar type

operators on a Hilbert space. In §7 we study the continuity of f(T(t)), as a
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function of r, for a wide class of functions /   This gives a result on the continuity

of the resolutions of the identity for T(t) as a function of t.   In § 8 it is proved

that a strongly continuous semigroup of hermitian operators on a Banach space

has a self-conjugate infinitesimal generator A  (i.e., iA  generates a group of isom-

etries). This extends the theorem of Hille and Sz.-Nagy on semigroups of self-

adjoint operators on a Hilbert space [12, Theorem 22.3.1] or [19, §XI 2].  In

§9 we give a spectral representation for semigroups of unbounded scalar type

operators with real spectra.  In §10 the Godement-Naimark theorem about unitary

representations of locally compact abelian groups is extended to the case of rep-

resentations by circled scalar type operators.  It is further shown (§11) that the

functional calculus of Hille-Phillips-Balakrishnan and the fractional powers of

Yosida, defined for generators of uniformly bounded semigroups, agree with the

most natural definitions when the generator is scalar type.

In what follows X will be a complex Banach space with dual space X*.

An operator in X will be a linear transformation (not necessarily bounded) with

domain and range contained in X. B(X) is the algebra of all bounded operators

on X. We shall denote the domain, spectrum, resolvent set, and resolvent (evalu-

ated at X) by 1XT), a(T), p(T), and RÇK; T) respectively. If T and S are

operators in X, we say that T is an extension of S (written T 3 S or S C

7) if V(T)21XS) and  Tx = Sx for every xeV(S).

Our terminology concerning semigroups of operators will be that of [8,

Chapter VIII]. For definitions and results on spectral operators, we refer to

[8, Part III].

(1.1) Definition.   If re ß(X), the numerical range  V(T) of T is

defined by

V(T) = {x*Tx: xGX,x*eX*, llx*ll = llxll = x*(x) = 1}.

This is what is called "the spatial numerical range" in [6], and differs from,

though is closely related to, the numerical range defined by Lumer [14] via semi-

inner-products.

(1.2) Definition. If 7 G ß(X), then T is said to be hermitian if the

numerical range of T is real.

This notion was shown to coincide with the one previously introduced by

Vidav in [20], namely, that

11/ + itTW = 1 + o(0   as t —► 0,      t real.

It is obvious that, on a Hilbert space, the hermitian operators are the selfadjoint

operators.

A family F of bounded operators on X is said to be hermitian-equivalent

if there is an equivalent renorming of X under which all the operators in F

become hermitian.
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(1.3) Definition. Let A be a closed subalgebra of B(X) containing the

identity /. Then A is said to be a V*-algebra if every operator T S A can be

written as R + if with R and / hermitian operators in A. A will be under-

stood to be equipped with the (Vidav-)involution  *:R + U —> R - U.

A theorem of Vidav [20] has been sharpened by Berkson, Glickfeld and

Palmer (see [6] ) to the following form.

(1.4) Theorem.   A is a  V*-algebra if and only if A is a C*'-algebra

under the Vidav-involution.

2. Semigroups with scalar type generator. We prove the equivalence of the

condition that the infinitesimal generator be of scalar type with the existence of

a certain representation for all the operators in the semigroup as integrals with

respect to one spectral measure.

(2.1) Theorem.  Let  {7X0} be a strongly continuous semigroup of oper-

ators on X.   Then there is a countably additive spectral measure K(-) on the

Borel sets of the plane with

°XtdK(k),    r>o,no =fe

if and only if the infinitesimal generator C of {71(0} is a scalar type operator.

If this is the case, K( • ) is uniquely determined as the resolution of the identity

for C, and each  T(t) is a scalar type operator.

Proof.  The "if' part is Theorem 3.1 of [4].  To prove the converse,

assume  T(t) = /eXf dK(X), t>0. Since  7(1) is a bounded operator, the ex-

ponential function must be K( • )-essentially bounded. Hence there is a real num-

ber y such that K({\: Re X > y}) = 0. Let A  be defined by

V(A)= \x: lim   f \dK(X)x exists},
t      (t-»»-'en )

Ax - lim   f  \dK(X)x,      x S V(A),
n->oo Je

where en = {X: |X| < «}. Then A  is a scalar type operator with resolution of

the identity £(•)> and a(A) C {X: Re X < y}. If ju>7. then RQi;A) =

SQi - X)-l dK(\) by [8, XVIII, 2.11(h)].

On the other hand, if ß is sufficiently large, then

RQx; C> = fe-^Tityx dt,      xGX,

by [8, VIII 1.11]. Therefore

x*R(jti; Qx = f" f   _   e(X-M)id(x*A:(X)x>fr,      jc e X, x* 6 X*.
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An application of Fubini's theorem gives

x*RQi; Qx=x* (—^-r-dK(X)x,
J fl ~ A.

and hence R(p; C) = RQi\ A), therefore  C = A.  This proves the "only if part

as well as the last sentence of the theorem.

(2.2) Corollary. Let  {7(0} be a strongly continuous semigroup of

operators on X with scalar type infinitesimal generator C whose resolution of

the identity is K{ ■ >   Then S e B(X) commutes with every  T(t), for t>0,

if and only if S commutes with every projection K(d).

Proof.  The "if part follows easily from Theorem 2.1. Assume S e B(X)

commutes with every  T(t). Let /x be sufficiently large so that RQx; C) =

J^°e_Mir(0 dt.   Therefore S commutes with R(jjl; C), and hence with all the

projections in the range of its resolution of the identity.   But  RQi; C) =

f(p - X)-  dK(k); hence S commutes with all projections of the form

K({\: l/G*-X)eS}, i.e., with every K(a) with pio. But K({fi}) = 0

since m G p(C); hence S commutes with every K(q). This completes the proof.

3. Semigroups of positive scalar type operators. A real (respectively posi-

ri've) operator is an operator whose spectrum is real (respectively nonnegative).  If

all the operators in a semigroup are real operators, then they are automatically

positive since  a(7(20) = [o(r(0)]2  for every  t > 0. We give a generalization

of the Hille-Sz.-Nagy theorem. This is proved for all Banach spaces (weakly com-

plete or not), and without any assumptions about the uniform boundedness of

the resolutions of the identity for the operators in the semigroup.

(3.1) Theorem. Let  {R(t)} be a strongly continuous semigroup of posi-

tive scalar type operators on X.   Then the infinitesimal generator A  is scalar

type with spectrum contained in some interval  (- °°, co0]. Moreover there is a

countably additive spectral measure G( ■ ) defined on the Borel sets of the real

line such that

R(t) = J_m eXtdGÇK),     t > 0.

G( • ) is uniquely determined as the resolution of the identity for A.

Proof.  Let Et{-~) be the resolution of the identity for R(t).  Let « be

any positive integer, then

R(l) = R(lln)"=rX>dElln(\).
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Hence E^B) = Ex ;„({X: X" G S}) for any Borel set S   of the real line, therefore

E1/n(ß) = E^S"), and R(l/n) = A1/n dE^X).

Let m be an arbitrary positive integer, then

R(m/n) = R(Un)m = f\m'ndE1(\).

By the strong continuity of  {R(t)}, we get

R(t) = ftfdE^X),     t > 0.

^({O}) = 0, for if x G £^({0})*, then R(t)x = Af dE\(\)E\({0})x = 0

for any t > 0,  and hence by the strong continuity x = 0.

Define  G(5) = ¿^(exp 5)  for any Borel set 5. Thus G(-) is a countably

additive spectral measure since £'1({0}) = 0. Moreover

R(t) = J_oo eXfdG(X),      r > 0,

where  co0 = log max o(R(l)). The same is obviously true for t = 0.  It follows

from Theorem 2.1 that A  is a scalar type operator, and that G(-)  is uniquely

determined as the resolution of the identity for A.

(3.2) Corollary.   With the same notation as in Theorem 3.1, let S G

B(X), then the following conditions are equivalent.

1. 5 commutes with R(t0) for some t0>0.

2. S commutes with every R(t) for t>0.

3. S commutes with every projection  G(ß).

Proof.  It follows from the proof of Theorem 3.1 that the range of G(-)

is the same as the range of Et (•). for any  r0 > 0; hence (1) implies (3).

Other implications are obvious.

(3.3) Corollary. Let  {R(t)} be a strongly continuous semigroup of

positive scalar type operators on X.   Then there is an equivalent renorming of X

under which all the operators R(t), t>0, as well as all the projections in their

resolutions of the identity become hermitian.  If X is given as a Hilbert space,

the new norm can be chosen to be a Hilbert space norm, and hence the operators

R(t), t > 0, become selfadjoint.

Proof.  Let G(-) be as in Theorem 3.1. Then, by a result of Berkson

[3, Lemma 2.3], there is an equivalent renorming of X under which all the

projections G(5) become hermitian. Hence all the operators R(t), Et(8) become

hermitian.  The last sentence in the corollary follows from [15, Theorem 6].
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4. Polar decomposition. In the case of a Hilbert space, a semigroup  {N(t)}

of normal operators can be written as the product of a semigroup of positive self-

adjoint operators and a semigroup of unitary operators. We prove here an analo-

gous result for semigroups of scalar type operators on a weakly complete space X.

First we prove a lemma establishing a "polar decomposition" for a single bounded

scalar type operator on a Banach space X. This decomposition was proved by

Foias [11] for scalar type  operators on a Hilbert space by a proof valid only in

a Hilbert space.  A bounded operator is said to be circled if its spectrum is includ-

ed in the unit circle   {X: |X| = 1}.

(4.1) Lemma.   Let T be a bounded scalar type operator on a Banach

space X with resolution of the identity E( • ).   Then there are unique operators

R, U such that

(i)  T = RU=UR;
(ii)  U is a circled scalar type operator;

(iii) R  is a positive scalar type operator;

(iv)  UE(0) = E(0)U = E(0).

The decomposition expressed by the double equality (i) is unique under (ii)', (iii),

and (iv), where (ii)' is the condition that U is only circled (not assumed to be

scalar type). Moreover R  is uniquely determined by (i), (ii)', and (iii) only.

Proof.  Let

R = f\X\dE(X),      U= ju(X)dE(k),

where m(X) = X/IXI for X ¥= 0,  and «(0) = 1. Properties (i)—(iv) are then

easily verified.

To prove the uniqueness, let R l   and  U1   be a pair of operators satisfying

(i), (ii)', and (iii).  Since Rl   and  U1   commute with  T,  they commute with

E(b) for every Borel set 5, and hence with R  and  U.   Let  A  be the full

commutative algebra generated by R, U, Ry   and  Ul   and let " be the Gelfand

mapping of A. Then  T = RÛ = R1Ui. The spectrum of any operator in  A

(viewed as a member of A) is the same as its spectrum if considered as a member

of B(.X), since  A  is a full subalgebra. Thus R  and Ê x   are positive-valued

functions, while  U and  01   take values in the unit circle.  Therefore È =

\f\ = R1   and hence R-Rt   is quasi-nilpotent, but the commuting operators

R and R x   are each scalar type.  It follows from the uniqueness of the canonical

decomposition of spectral operators [8, Theorem XV 4.5] that R1- = R.

If condition (iv) is also satisfied, then for any x G X,

T(U- U{yx = UR(U- U^ = U(T- 7> = 0.
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Thus (U- Uj)x belongs to the null space of T, which is the range of £"(0).

Thus

(U-U^ = E(Q)(U- U^ - 0,

by condition (iv). Therefore,  U = Ul   and the proof of the lemma is complete.

Remark.   In [10, Theorem 5.2], Foguel obtained the above decomposition,

but claimed the uniqueness without condition (iv).  The following counterexample

shows that this is false even if T is a normal operator on a Hilbert space, R

positive selfadjoint and  U unitary.

(4.2) Counterexample.  Let X be I2 and let

T(xv x2, x3,--) = (0, x2, x3, ■ • • ),

R = T,      Ul = /,

2v*l> *2> *3> " * ' ) = (tt^j, X2, X$, ),

where a is any complex number with   \a\ = 1.  Then  T — RUt = Ufi,  i =

\,2;T = R is positive; Ul  and U2 are unitary.

Note that condition (iv) is automatically satisfied when  T is one-to-one,

since £"({0}) = 0 in this case.

(4.3) Definition.  Let  T be a scalar type operator, R  and  U the unique

operators defined in Lemma 4.1. Then R  will be called the positive part of T,

U the circled part of T and the decomposition T = RU will be called the

polar decomposition of T.

(4.4) Theorem.   Let  {7(0} be a strongly continuous semigroup of scalar

type operators on X having their resolutions of the identity uniformly bounded

in norm, and let R(t) and U(t) be the positive part and the circled part of

T(t) respectively.   Then

1. {7(0} U {R(t)}U {U(f)} is a commutative family;

2. each of {^(0} and   {U(t)} is a strongly continuous semigroup;

3. there exists a countably additive spectral measure G(- ) on the Borel

sets of the real line such that R(t) = fekt dG(K),  t > 0.

Moreover if {T(t)} is of type oj0,  then   {R(t)} is of the same type co0,

and G((- °°, co0]) = /.

Proof.   Let Et( • ) be the resolution of the identity for  7"(0  and let

ll£'i(S)ll<M for all r>0 and all Borel sets S.

First we prove that  T(t) is one-to-one for every  t > 0 and hence condi-

tion (iv) of Lemma 4.1 is automatically satisfied for the operators  7X0-  We will

prove this for  7(1),  a similar proof holding for any  t.   If n is any integer > 1,

then
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7(1) = 7X1/«)" = f\ndElln(X),

and hence E^S) = £,1^n({X: X" G 5}), for every Borel set S.  In particular

£'1(0) = £'1/n(0). If xGE^X, then  7(l/«)x = 0 for all « > 1, and hence

by strong continuity x = T(0)x = 0, i.e., ^({O}) = 0.

Let Ft(-) be the resolution of the identity of R(t) and let

We begin by showing that 5(0 = 7?(0 for t rational. Note that for any positive

integer n, and any i > 0, 7X«0 = (7X0)" ■ (R(t))"(U(t))n  and an application

of Lemma 4.1 gives R(nt) = (R(t))", U(nt) = (U(t))n. Therefore

R(l) = R(lln)n = fx"dF ¡n(\),

and hence Fj(ô) = F^n{X: X" G 5}, for every Borel set 5. Therefore if S  is

any Borel subset of the set of nonnegative real numbers Fi¡n(o) = Fj({X:

X1'" G 5}).  But the same is true for the resolution of the identity of 5(1/«) and

hence 5(1/«) = R(l¡n). It follows that S(m/n) = R(m/n) for any positive in-

tegers m  and n.

Now we prove the existence of circled operators  V(t) such that  7(0 =

S(t)V(t) = V(t)S(t), and that   {V(t): t > 0}  is a strongly continuous semigroup.

The uniqueness of the polar decomposition would then imply that R(t) = 5(0,

V(t) = U(t). Let
OS

e„ = [1/«, »o),   x„ =F1(en)X,   X0= \J Fx(pn)X.
n=l

Then X0  is dense in X since F^e^—>7 strongly. Also for any  t and any

positive integer «, 5(0I^„  is invertible, hence the range of 5(0 contains X0.

Thus 5(0 is one-to-one with dense range, and thus  V(t) = 7(05(0"1   exists as

a linear operator defined on S(t)X, not as yet known to be bounded. We will

show that  V(t) extends to a bounded operator (necessarily unique), also denoted

by  V(t). This is trivial for t rational since then

V(t)x = 7(05(0" *jc = T(t)R(t)~ lX - U(i)x,      x G S(t)X.

If t is irrational, let   {tn}  be a sequence of rational numbers with  tn —► t.

Then (5(f„))_ lx -+ (5(0)" l*  for xGXQ  since for x G Xk,

WJTlx = JJfc X'SbW*     (5(0)"^ = _Q x-W^yx.

Therefore  7(r„)(5(r„))" *jc —> 7(0(5(0)"*Jf  since   {Il7(i„)ll}  is bounded by

the Banach-Steinhaus theorem, and  7(r„) —► 7(0  strongly.  Hence  U(tn)x —*■

V(t)x, xGXq. But, for any x G X,
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lÜCigxl = ||/«(X>ffifi|(X)x|| < 4Mb II.

Thus, by [8, II  1.18],  U(tn) converges strongly to a bounded operator on X,

still called  V{t) by abuse of language; moreover  HF(0ll < 4M.

Also  V(t) commutes with ES(Ô) for any s>0  and any Borel set 6,

since  U(tn) does. It follows that  V(t) commutes with 7(s) and S(s), in

particular with 5(0- Hence

Kt) = s(.t)V(.t)=v(t)S(t).

{V(t)} is a semigroup, for if x G X0, t, s any positive real numbers, then

V(t + s)x = T(t + s)S(t + s)"1* = 7(07(s)5(0"15(s)-1x

= 7(s)F(05(s)-1je = V(t)V(s)x.

Next we prove that the  V(t) are circled. This is obvious for rational r.

If t is irrational, let tn be a sequence of rational numbers with r„ —► t. Since

the operators U(tn) are circled, and  U(tn) —► V(t) strongly, it is enough to

show that p(V(t)) intersects each component of the complement of the unit

circle (by the argument in [4, Theorem 2.2] ). Therefore it is enough to show that

0 G p(V(t)). Let s > 0 be such that t + s is rational. Then  V(t)V(s) -

V(t + s) = U(t + s) is invertible and hence   V(f) is invertible since   V(t) and

V(s) commute.

Since  7X0 = S(t)V(t), and 5(0, V(t) commute, the uniqueness of the

polar decomposition shows that for all t > 0

R(t) = 5(0 - JxV^iX),      U(t) = V(t).

We proved above that  U(tn) —*■ V[t) strongly if  {t„} is a sequence of rational

numbers, tn —► r.   The same proof now gives U(tn) —► U(t) strongly for any

sequence   {tn} with tn —► t, and hence   {U(t)} is strongly continuous. The

weak (and hence strong) continuity of the semigroup   {R(t)} is evident.

Part (3) follows from Theorem 3.1. We have

117X011 < l*(f)l lü(0l <4Mlli?(0 II,

and

11/2(011 < IIC/(0_1ll 117X0« <4MII7X011.

It follows that   {R(t)}  and   {7X0}  a10 0I" the same type co0. This ends the

proof of the theorem.

5. The main result. The special case where the operators  7(0 are circled

was considered by Berkson [4].  His result generalizes the well-known theorem

of M. H. Stone on unitary groups of operators on a Hilbert space (see [12, p.598]

or [19]). We will use Berkson's result and hence state it here for convenience.
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(5.1) Theorem [4]. If {U(t): -°°<t <<*>} is a strongly continuous

group of circled scalar type operators on a weakly complete Banach space X

such that their resolutions of the identity are uniformly bounded in norm, then

the infinitesimal generator B is a scalar type operator, and U(t) = f~0OeltX dHQC),

where H(-) is the resolution of the identity for - iB.

We note that the corresponding result for semigroups (rather than groups)

of circled operators is a direct consequence of the above since every such semi-

group   {U(t): t > 0} can be extended to a strongly continuous group satisfying

all the conditions above by defining U(f) = U(- t)~1  for t < 0.

The following lemma is needed for the next result.

(5.2) Lemma.   Let   {7(0} be a uniformly continuous semigroup of

scalar type operators on X.   Then the infinitesimal generator C is a scalar type

operator.  Let K(-) be the resolution of the identity for C and E¿-) the

resolution of the identity for T(t).  Then the range of K(-) is the same as the

range of Et( • ) for t > 0 small enough, and hence

sup {IIK(5)II: 562} = sup {\\Et(5)\\: 5 G S},

for such  t,  where 2 is the class of Borel sets of the complex plane.

Proof.  We can take t Ç> 0) small enough so that  117(0 -/!'< 1, and

hence  log 7(0 = - 2~= j(7 - 7(0)"/«  is a (bounded) operator. It is well known

(see, e.g., [8, proof of VIII 1.2]) that the infinitesimal generator C is given by

C=t~1 log 7X0,   and hence   C = ft'1 log X dEt(X).   Therefore   C  is a

scalar type operator with resolution of the identity K( • ) given by

K(8) = Et{X: r' log X G 5},      5 G 2.

Moreover,  7(0 = exp tC, and hence

EJa) = K{\:etXGà},      a G S.

This proves the lemma.

Next we take up the main theorem.

(5.3) Theorem. Let  {7(0: t > 0} be a strongly continuous semigroup

of scalar type operators on a weakly complete Banach space X,  with the oper-

ators 7(0, t > 0, having their resolutions of the identity uniformly bounded in

norm.   Then the infinitesimal generator C is scalar type.   There exists a spectral

measure K(-) on the Borel sets of the plane such that

7X0 = fetzdK(z),     t > 0.

K( • ) is uniquely determined as the resolution of the identity for C.
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Proof. Let R(t) and U(t) be the positive and the circled parts of 7(0

respectively, and let M>0 besuchthat ll/f((ô)ll <M for all t > 0, and all

Borel sets 5, where Et(-) is the resolution of the identity for 7(0- The res-

olution of the identity for U(t) has its range contained in that of Et( • ) and

hence the semigroup {U(t)} satisfies all the conditions of Theorem 5.1. There-

fore there is a spectral measure H( ■ ) defined on the Borel sets of the real line

such that

HM * H *ltXdH(X).

Moreover R(t) = 5_®etil dG(X), where  G(• ) is a spectral measure defined on

the Borel sets on the real line, G((co0, °°)) = 0, where co0  is the type of

{7(0}-  Let A  and iB be the infinitesimal generators of  {R(t)}  and   {U(t)}

respectively. A  and B are scalar type with resolutions of the identity G( • )

and H( ■ ) respectively.  Since each  U(s) commutes with all R(t), t > 0,

Corollary 3.2 implies that  U(s) commutes with G(a) for every Borel set a.

Another application of 3.2 implies that G(a)  commutes with H(ß) for any

Borel sets a and ß.

Let en = [- n, «]   and let Xn = G(en)H(en)X.  Then Xn  is invariant

under  7(0, ^(0, ^(0 and their resolutions of the identity.  U"= i Xn  is a

dense linear manifold in X since G(en) and H(en) both converge strongly to

7, and are uniformly bounded.  Let Sn  denote the restriction of 5 to Xn  for

any operator 5 in X with V(S)2X„- Therefore   {R„(t)}, {Un(t)}, {T„(t)}

are uniformly continuous semigroups of scalar type operators on Xn  with in-

finitesimal generators A„, iBn, Cn  respectively. Moreover  7n(0 = R„(t)Un(t),

so Cn = An + iBn  for all positive integers «.  It follows from Lemma 5.2 that

Cn  is a scalar type operator. Let Kn(-) be its resolution of the identity.

Therefore

C„ = fxdKn(X),        Bn=f\dHn(\),

An = /xrfG„(X),     7„(0 = fextdKn(X).

Hence An  and Bn  are scalar type with real spectra. Since  Cn= An + iBn,

we get, from [3], that

An = J*Re XdK„Çk)   and Bn = Jim XdKn(K).

It follows that

G» - Kn(a x RQ),     Hn(ß) = Kn(R0 x ß),
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where a, ß are any Borel sets of the real line R0. Therefore Kn(a x ß) =

Gn(a)Hn(ß). By Lemma 5.2, the range of Kn(-) is equal to the range of En(t)

for t Ç> 0) small enough. Hence

sup {ll£n(70ll: n = 1, 2, 3, • • • , ;r a Borel set} <M.

For each ttGE, define K(ii) on U"=,*„ by K(n)x = Kn(jCfx, xG

Xn. First we show that this is well defined. Suppose x G Xn n Xm and « <

m.  Then

Km(axß) = G(a)H(ß)\Xm,   and   AT„(a x ß) = G(a)H(ß)\Xn.

By standard measure-theoretic results we can show that Xn is invariant under

Km and Km(8)\Xn = Kn(8), for any Borel set 5. We will show that K(n)

extends to a bounded projection, still called K(n), that K( • ) is a countably

additive spectral measure and that K( • ) is the tensor product of G( • ) and

H(-) in the sense that K(a x B) = G(a)H(ß) for any Borel sets a, ß of the

real line.

Let X0 = \Jn°=1Xn. If 7T is any Borel set and jcGZ0, then x6I„

for some positive integer «,  and   ll/T(7r)x;ll = ll/Tn(7r)xll <Afbcll.  Therefore K(n)

has a unique extension to a bounded linear operator, still called K(n), with

\\K(n)\\ <M   It is routine to see that ^(7r) is a projection, that Ar(7r n S) =

K(n)K(8) and ^(tt U S) = K(n) + K(8) - K(tt)K(8) for any Borel sets S.w.

One can easily show that K(a x ß) = G(a)H(ß) for any Borel sets a, ß of the

real line.  To show that K(-) is countably additive, let   {itn} be a disjoint

collection of Borel sets in the plane and let tt = U^=17r„.  If jc G Xk, then

OO OO

K(ß)x = Kk(n)x = Z Kk(irn)x - Z *(*>
n=l n=l

Therefore
oo

/q»c = Z ^(7r„>,      for * G XQ.
n=l

An application of [8, Theorem II 1.18] shows that  ^=lK(irn) converges strong-

ly to a bounded operator which is obviously K(n).

Since G((co0, °°)) = 0, then K((u0, <*>) x R0) = 0, and hence fetK dK(X)

is defined and bounded on X.   But

7X0I*„ = fetXdKn(k) = [/efX^(X)]|j„.

Hence  7(0 = fetX dKÇX),  t>0. It follows, by Theorem 2.1, that the infinites-

imal generator   C is a scalar type operator with resolution of the identity K( ■ ).
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The uniqueness of K(-) follows also from 2.1. This ends the proof of the

theorem.

Remark.  The problem can be easily reduced to the Hilbert space case if

we assume that G( • ) and H( • ) generate a bounded Boolean algebra of pro-

jections  E. This is the case if in particular we assume that the resolutions of the

identity, Ef( • ), generate a bounded Boolean algebra of projections, or if X is

one of the spaces Lp  (1 < p < °°) since in such space any two commuting

bounded Boolean algebras of projections generate a bounded Boolean algebra of

projections as shown by McCarthy [17]. Let  A  and  W  be the algebras gener-

ated by  E in the uniform and weak topologies respectively. X can be equiva-

lently renormed so as to make all the operators in  E hermitian as shown by

Berkson [3]. We suppose such a renorming is carried out.  A  becomes a com-

mutative  F*-algebra, and hence  W,  the weak closure of A,  is a commutative

F*-algebra as shown by Palmer [18, Corollary 2.9].  It follows (see [5, Theorems

3.1, 3.2]) that there is an isometric  *-representation 0 of W onto a von Neumann

algebra of operators on a Hilbert space   Y, and the restriction of <p to any

bounded subset of W is bicontinuous in the weak-weak and the strong-strong

operator topologies.  Now 0(G( • ))  and 4>(H( ■ ))  are two commuting spectral

measures with values in  B(Y), and hence can be "amalgamated" in the manner

of Berberian [1, §11].  If F() is their "amalgam," then 0-1(F(-))  gives the

required spectral measure K( • ).

(5.4) Corollary.   An operator A in a weakly complete Banach space

X generates a strongly continuous semigroup of scalar type operators with uni-

formly bounded resolutions of the identity if and only if A  is scalar type and

o(A) lies in some left half plane   {X: Re X < co}.

Remark.   We cannot replace "scalar type" by "spectral" in Theorem 5.3.

The following example shows that there are strongly continuous semigroups of

spectral operators with resolutions of the identity uniformly bounded (or even

generate a bounded Boolean algebra), but the infinitesimal generator is not spec-

tral, even when the underlying space is a Hilbert space.

(5.5) Example.   Let X = L2[0,l], and for any x GX, t > 0, let

(7(0x)(s) = {*' + S)>
r + s<l,
t + s> 1.

Therefore  7(0 = 0 for t > 1, and   {7(0}  is a semigroup of operators, nil-

potent for t > 0, hence spectral for t > 0. The resolutions of the identity for

all the operators 7(0 (t > 0)  are identical and trivial, namely Et(8) = 7 or 0

according to whether 0 G S   or not. The semigroup is strongly continuous, for

if x is a continuous function on   [0, 1]   (and hence uniformly continuous),
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and 0 < t < 1, then

117X0* -*ll2 = £ ~'l*(s + t)-x(s)\2ds + r    \x(s)\2ds.

The first integral converges to  0  as t —► 0 by the uniform continuity of x;

the second integral is < t sup {|x(s)|: 0 < s < 1}, hence converges to  0  as

t —► 0. Hence  7(0* —*■ x, as t —*■ 0, for x continuous.  But the continuous

functions are dense in L2[0, 1],  and   {7(0}  is uniformly bounded.  Therefore

7(0*—»"*, as i—"O, for all ï6I2[0,1]   by [8, Theorem II 1.18].  Thus

the semigroup is strongly continuous at  0, and hence strongly continuous every-

where (see [12, Theorem 10.5.5]).

Since  7(0 = 0 for t > 1, we have

f-*oo t

Therefore, the semigroup is of type — °°,  and the infinitesimal generator has

empty spectrum.  The generator cannot be spectral since a spectral operator has

nonempty spectrum (see [8, XVIII 2.1 and 2.2]).

6. Normal operators on Banach spaces and a theorem of Foia§.  In [11],

Foias, proved that any strongly continuous semigroup  {7(0}  of scalar type op-

erators on a Hilbert space, having their resolutions of the identity uniformly

bounded, is similar to a semigroup   {N(t)}  °f normal operators. We give a similar

result for weakly complete Banach spaces and show that it reduces to Foias/

result in Hilbert spaces.  First we define a normal operator on a Banach space.

(6.1) Definition.  A bounded operator on a Banach space X is said to be

normal if it is a scalar type operator with all the projections in the range of its

resolution of the identity hermitian.

This definition differs from Palmer's [18], but is equivalent to it in weakly

complete spaces, and in general any operator normal in the sense of 6.1 is normal

in the sense of Palmer (see [18, Theorem 5.1]). According to his definition a

bounded operator  7 is normal if and only if 7 = R + U, where R, J are

hermitian, and   {e,tR : - °° < t < °°} U {e'tJ: -°°<t<°°} is contained in a

commutative   F*-algebra.

(6.2) Theorem.  Let   {7(0} be a strongly continuous semigroup of scalar

type operators on a weakly complete Banach space X,  with their resolutions of

the identity uniformly bounded in norm.   Then X can be equivalently renormed

so that every  7(0 becomes normal. Moreover, if X is given as a Hilbert space,

the new norm can be chosen to be a Hilbert space norm.

Proof.   From Theorem 5.3, we get  T(t) = feXt dK(k), where K(-) isa

strongly countably additive spectral measure. Therefore X can be renormed so
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as to make  K(8) hermitian for every Borel set S   [3, Lemma 2.3].  If X is a

Hilbert space, the new norm can be chosen to be a Hilbert space norm [15,

Theorem 6].  Since the range of the resolution of the identity for  7(0,  for any

t > 0, is contained in the range of K( ■ ), the result follows.

(6.3) Corollary (Foias/ Theorem). If {7(0} is as in Theorem 6.2,

and if X is a Hilbert space, then   {7(0}  is similar to a semigroup   {N(t)} of

normal operators, i.e., there exists a regular positive selfadjoint 7 G B(X) such

that T(t)=A~1N(t)A.

Proof.  Let  I • I  be the new Hilbert space norm under which the projec-

tions K(8)  are hermitian, and let <•, •> be the inner product compatible with

this norm. The original norm and inner product are denoted by   II • II  and ( •, • )

respectively.  Let B be the bounded operator defined by  (Bx, y) = (x, y).

Therefore B is positive selfadjoint in the original norm, for the numerical range

of B is  W(B) = {(Bx, x): llxll = 1} = {\x\2: llxll = 1}, which is positive.  It

is also obvious that B is invertible.  Let A  be the positive square root of B,

hence <x, y) = (Ax, Ay).

If 8  is any Borel set, then AK(8)A~l   is selfadjoint in the original norm

since its numerical range is given by

W(AK(8)A-1) m {(AK(8)A-lx, x): llxll = 1}

= {^(SM-1*, K(8)A-lx>: \A~lx\ = 1},

which is the (necessarily nonnegative) numerical range of K(8) with respect to

the new norm.  Let N(t) = AT(t)A~l, therefore N(t) = feXt d(AK(\)A-1)

which is obviously normal.

7. A perturbation theorem.

(7.1) Theorem. Let  {7(0} be a strongly continuous semigroup of scalar

type operators on a weakly complete Banach space X,  with the operators  7(0

having their resolutions of the identity Et( • ) uniformly bounded in norm

by M>0. Then f(T(t)) —» f(T(t0)) strongly, as t —* tQ, for every bounded

Borel function f such that the closure of its set of discontinuities is an Et (•)-

null set.

Proof.  Let x G X, and let / be a function satisfying the condition

above. The result to be proven amounts to showing that the function t —►

f(T(t))x is continuous at  t0. Since this is a function between metric spaces, it

suffices to prove that j\T(tn))x —► fiT(t0))x whenever the sequence   {tn}

converges to t0.

First we prove the result for continuous functions f.   By the principle of

uniform boundedness, there is a K > 0 suchthat ll7(r0)ll<K, and H7(f„)ll<K,
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for all «, and hence all the spectra a(T(tn)) and o(T(tQ)) are contained in the

disk D = {X: |X| < K}. Let K(-) be the resolution of the identity for the

generator C of {7X0}- Then there is a half plane it = {X: Re X < co0} con-

taining D, such that K(tt) = I. Let g be a bounded continuous extension of

f\D to all of the complex plane. g(exp tn\) —► g(exp r0X) pointwise for X G

7T. Since g is bounded, the bounded convergence theorem for vector measures

gives

JV(exp t„\)dK(K]x -*> JV(exp t0\)dK(\)x,      xGX.

Comparison of the resolutions of the identity now shows that

Jkexp tn\)dK(X) =g(T(tn))=f(T(tn)),

for n = 0, 1, 2, • • • . This proves the theorem for continuous f.

The proof of the theorem in the general case can now be based on the ar-

gument of [8, Theorem XVII 4.3].

(7.2) Corollary.   With the same notation as above, if Et (da) = 0,

then Et (a)x = lim^, Et(a)x for every x G X.

(7.3) Corollary.   With the same notation as above, the functions t —►

Re 7(0, and t —► Im 7(0 are strongly continuous.

8. Semigroups of hermitian operators. We show that a strongly continuous

semigroup of hermitian operators on a Banach space X has a self-conjugate gen-

erator A  (see definitions below). This generalizes the Hille-Sz.-Nagy theorem.

We follow Palmer [18] in making the following definitions.

(8.1) Definition. An operator R is said to be self-conjugate if iR gen-

erates a strongly continuous group of isometries.

This definition agrees with the usual definition of selfadjoint operators on

a Hilbert space via the well-known theorem of M. H. Stone on unitary groups

(see [12, p. 598] or [19]). Also in the case R  is bounded, R  is self-conjugate

in the above sense if and only if R  is hermitian (see [6] ).

(8.2) Definition.   An operator R  is said to be symmetric if the set

{x*Rx: x G V(R), x* G X*, llx*ll = llxll = x*(x) = 1}

is a subset of the real line.

This definition agrees with the usual one on a Hilbert space.

(8.3) Theorem.  If {7(0} is a strongly continuous semigroup of hermi-

tian operators on X,  then the infinitesimal generator A  is self-conjugate. In

particular A  is maximal symmetric.
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Proof.  We start by showing that A   is symmetric.  Let x G V(A), x* G

X*  with   llx* II = llxll =x*(x) = L  Then x*7(0x  is real for every  t > 0, and

hence x*^4x = limf_>0(x*7(i)x - l)/r  is real, i.e., A   is symmetric.  Since A  is

also closed and densely defined, it follows from [18, Lemmas 3.1, 3.2] that A  is

either self-conjugate or else its residual spectrum contains at least one of the non-

real half planes.  But a(A) is contained in some left half plane   {X: Re X < co0},

thus A  is self-conjugate.  It follows again from [18, Lemma 3.2] that A  is

maximal symmetric.  This ends the proof of the theorem.

If X is weakly complete, then a strongly continuous semigroup of hermitian

operators consists of scalar type operators.

(8.4) Theorem. Let {7(0} be a strongly continuous semigroup of oper-

ators on a weakly complete Banach space X. Then {7(0} is a hermitian-equiv-

alent family if and only if every  T(t) is scalar type with real spectrum.

Proof.  The "if part is established in Corollary 3.3 and is valid in arbitrary

Banach spaces. To prove the "only if part we notice that for any  t > 0,  the

operators  7(0", « = 0, 1, 2, • • • ,  can be made simultaneously hermitian since

(7(0)" = 7(«0- Hence  7(0 is scalar type by [3].

Remark.   The "only if is not valid in all Banach spaces as shown by the

following example.

(8.5) Example.  Let X = l00, and for each t > 0, let  7(0 be the

operator represented by the diagonal matrix  diag(ef, et^2, e'^3, • • • ), Thus

{7(0}  is a uniformly continuous semigroup with generator A =

diag(l, 1/2, 1/3, • • • )• Each  7(0  is hermitian since if r is a real number, then

117 + irT(t)\\ = II + ire'\ = 1 + o(r)   as r -*• 0.

However, no 7(0, except  7(0) = I, is spectral (see [9]).

Remark.   Unlike the Hilbert space case, there is a self-conjugate operator

A  on a reflexive Banach space X that generates a semigroup which does not

consist entirely of hermitian operators.  Indeed, if A   is any bounded hermitian

operator which is not scalar type on a reflexive space X (see [14] ), then A

generates the semigroup   {etA : t > 0}.  If etA   is hermitian for every  t > 0,

then etA   is scalar type for every  t > 0 by Theorem 8.4, and A  is scalar type,

a contradiction.

9.  Semigroups of unbounded operators.  In [7] Devinatz extended the

Hille-Sz.-Nagy theorem to semigroups of unbounded selfadjoint operators on a

Hilbert space. Here we extend this result to semigroups of unbounded scalar type

operators with real spectra on a Banach space. This gives an unbounded version

of Theorem 3.1.
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(9.1) Theorem.  Let   {T(t):t>0} be a family of scalar type operators

(possibly unbounded) with spectra on the real line.  Suppose   {7(0} satisfies the

following conditions.

(i)  T(t + s)C T(t)T(s), t,s>0;

(ii) For every x G C\t>0V(T(t)) and every x*GX*, the function

t —► x*7(0x is continuous.

Then there exists a unique spectral measure E(-) on the Borel sets of

[0,°°) sachthat T(t) = fXf dE(X). Moreover,  C\t>oO(T(t)) is dense in X.

There is a projection P G 8^0 such that T(t)x —► Px (as t —► 0), for every

x g nt>0v(T(t)).

Proof.   Let E(-) be the resolution of the identity for  7(1)  and F(-)

be that for  7(1/2).  It follows that

7(1) Ç (TQÁ))2 = £ X2dF(X).

But  7(1)  is scalar type; so we must have equality. This implies that a(7(l))  is

nonnegative, and a similar argument shows that a(7(0) is nonnegative, for every

t > 0. Also E(8) = F(yJE), or equivalently F(a) = E(a2), where 5  and a

are any Borel sets included in   [0, °°). Therefore

T(X) = £><ffi(X),

since the operator defined by the integral is scalar type whose resolution of the

identity agrees with that of 7(1/2).  Similarly

7(1/«) = f°\ll"dE(\).

It follows from property (i) that

T(m/n) C (7(l/«))m = f\m/HdEQi).
— «'o

Again we must have equality.

Let 5(0 - /„"V dE(X); then we have proved that 7(0 = 5(0  for all

rational t > 0.

Let en = [0, n],Xn= E(en)X, X«, = U"=,*„-  Hence I„  is dense in

X,  every Xn  is invariant under 5(0, for t > 0, and 5(01^,,  is bounded,

for t > 0. To prove the same for  7(0, let t > 0 and choose a rational number

s > t, and x G Xn. Hence

x G V(S(s)) m V(T(s)) C V(T(s - 07(0) Ç 0(7X0)-

Moreover if x* G X* belongs to the annihilator of Xn, i.e., x*(Xn) = 0, then
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x*7(0x = lim {x*7(s„)x: s„  rational, sn —* t)

= lim [x*S(sn)x: s„  rational, sn —*■ t} = 0.

By the Hahn-Banach theorem,  7(0x G Xn, i.e., Xn  is invariant under  7(0-

Moreover  7(0I^„  is closed, everywhere defined, and hence is bounded by the

closed graph theorem. To show that  T(t)\X„ = S(t)\X«„ let xGX«,, hence

x G Xn  for some positive integer «, and let   {tk} be a sequence of rational

numbers with tk —► t. Therefore

x*7(0x = lim x*T(tk)x
fc->oo

= lim x*S(tk)x = x*S(t)x,      x* G X*.
k-*<*>

Therefore  7(0x = 5(0x.  To prove that  7(0 = 5(0, first suppose that x G

V(S(t)), then E(en)x—*x, and

T(f)E(en)x = S(t)E(e„)x - /VdÉXX)x

->/o0°Xíd£(X)x = 5(r)x,

Since  7(0 is closed, it follows that x G V(T(t)), and  7(0x = 5(0x; thus

7(0 2. 5(0-  But since both 7(0 and 5(0 are scalar type operators, we must

have  7(0 = 5(0-

The uniqueness of E(-) follows from the fact that if 7(0 = i^X' dG(X),

then G() is necessarily the resolution of the identity for  7(1).

Dt>0V(T(t)) is dense in X since it obviously contains X„.

Let P = E((0,°°)) =I-E(0).  If xGf\V(T(t)), {t„}  is a sequence of

positive numbers converging to 0, and k denotes the characteristic function of

(O,«»), then

T(tn)x = ftfdEQCjx -* fk(X)dE(X)x = Px.

Therefore lim^o 7(0x = Px.

10. Circled representations of locally compact abelian groups.  In what

follows we extend the Godement-Naimark theorem about unitary representations

of LCA (i.e., locally compact abelian) groups (see [13]).  Here we assume that

the resolutions of the identity of all the operators generate a bounded Boolean

algebra of projections. It is conceivable that the theorem is true under weaker

assumptions, e.g., that the resolutions of the identity are only uniformly bounded

(10.1) Theorem.   Let G be an LCA group and s —* U(s) be a repre-

sentation of G in   B(X), where X is weakly complete, and each  U(s) is a
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circled scalar type operator with resolution of the identity Es(-).  Assume that

the projections Es(8), for s G G, S  Borel set, generate a bounded Boolean alge-

bra of projections   E   77ie« there exists a unique countably additive spectral

measure F( • ) defined on the Borel sets of G,  the dual group of G,  such that

U(s) = f (s7ï)dF(y),      s G G.

Proof.  A proof could be given by modifying the proof of the Godement-

Naimark theorem (see [13]), i.e., by basing the demonstration on an induced rep-

resentation of the Banach algebra L1(G). Instead we shall show how the prob-

lem can be reduced to the Hilbert space case.

Let  A  and  W be the uniformly closed and weakly closed algebras of

operators generated by  E respectively. Assume X is renormed (by an equiva-

lent norm) so that all the operators in   E are hermitian. Then  A  becomes a

commutative   F*-algebra, and hence, by [18, Corollary 2.9],  ill is a  F*-algebra.

It follows (see [5]) that there is a  ""-isomorphism 0 of W onto a von Neumann

algebra of operators on a Hilbert space H, with <j> bicontinuous on bounded

sets if both  B(X) and   8(77)  are given the strong operator topology or the weak

operator topology. Therefore s —► <j>(U(s)) is a unitary representation of G,

and by the Godement-Naimark theorem there is a countably additive spectral

measure K( ■ ) defined on the Borel sets of G  and taking values in the hermitian

projections of 0(W)  such that

<KU(s)) = fô (T^i)dK(y),      s G G.

Let F(-) = (¡>~1(K(-)), then F(-) is a countably additive spectral measure

defined on the Borel sets of G  since (j>~l   is strongly continuous on bounded

sets. Therefore

U(s)= fô(s7y~)dF(y),      s G G.

The uniqueness of F( ■ ) follows from the fact that the Fourier-Stieltjes

transform of a (scalar-valued) measure determines the measure uniquely.  Pre-

cisely if x G X, x* G X*, and F¡(-) is any spectral measure satisfying the

desired conditions, then

f(s7y)d(x*F1(y)x) = x*U(s)x = f(^)d(x*F(y)x),

for all s G G.  Hence x*F1(8)x = x*F(8)x, for every Borel set S CG  and

every x G X, x*GX*. Therefore F1(-) = 7?(-)-

For the next result we need the following lemma which is probably well

known but no proof of which seems to exist in the literature.  It is the converse

of a standard result.
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(10.2) Lemma. Let K be a subset of an LCA group G, and let (x, ya)—► 1

uniformly on K for every net {ya} which converges to  0 i«  G.   77¡en  K is

compact.

Proof.  Given e > 0, there exists a neighborhood  V of 0 in G  such

that  |(x, 7) - 11 < e, for all xGK,yG V.  We can assume that  V has a finite

Haar measure, for otherwise we can replace   V by its intersection with a neigh-

borhood of 0 of finite measure.  Let f=kv, the characteristic function of  V.

Then fGL^G), and

iftx) - p(V)\ = |/ô (xTy)f(y)dy - f, j\y)dy\

< Sv ŒD - 11^7 < m(V),      xGK,

where p. is the Haar measure on G.  Hence  \j\x)\ > (1 - e)p(V), for all x G

K.   But p(V) > 0 and / vanishes at infinity; therefore  K is compact.

(10.3) Corollary.    With the same notation as in (10.1), the representation

s —► U(s) is uniformly continuous if and only if F(-) is supported by a com-

pact subset of G.

Proof.  Let K = mçpF(-). If K is compact, then (s, y)—>(s0,y)

uniformly on K as s —> s0. It follows that

f(s7y)dF(y)~* f(^y)dF(y)

uniformly as s —► s0. Conversely if the representation is uniformly continuous,

then for every e > 0, there exists a neighborhood  V of 0 in G  such that

\\U(s)-I\\<e, for all s G V.   But

U(s)-I= f[(s~y)-l]dF(y),

hence

sup |(s, 7) - 11 = II U(s) - 7ILD < Il U(s) -I\\<e,      s G V,
y&K v

where   II • llsp  denotes the spectral radius. Therefore  (s, 7) is continuous in s,

uniformly for 7 G K, and so K = K is compact.

11.  Operational calculus. An operational calculus for infinitesimal genera-

tors A  of strongly continuous semigroups was developed by Hille and Phillips

(see [12, Chapter XV] ). This was defined for a certain class of functions / such

that ]\A) is always bounded.  Balakrishnan [2] extends the calculus to a bigger

class of functions and allows f(A) to be unbounded.  This calculus also gives a
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definition for certain fractional powers of A  which were developed independent-

ly by Yosida and others (see [21]). These two definitions of fractional powers

are equivalent.

On the other hand, there is a natural operational calculus for (not necessarily

bounded) scalar type operators developed by Bade (see [8, Chapter XVIII]). If

A = /X dEÇX), then j\A) is defined by j\A) = ¡f(X) dE(X), for any Borel

measurable function /

It is the purpose of this section to show that the two calculi coincide for

scalar type operators A  whose spectrum is included in a left half plane or, equiv-

alently, generate a strongly continuous semigroup.

First we give a very brief description of the Hille-Phillips-Balakrishnan cal-

culus.  Let   {7X0} be a strongly continuous semigroup of type  cj0  with infin-

itesimal generator A. It is desired that ft(A) should be  7(0, for /f(X) = e'\

Accordingly, if 0 is the Laplace-Stieltjes transform fi of a measure p, i.e., if

<l>(X) = pÇX) = f~eXtdp(t), then <p(A) is defined by

<KA) = f~T(t)dp(t).

This definition makes sense for the class S  of countably additive measures on

the Borel sets of  [0, <*») for which

Hjuii = /°°ii7xoiiííiMi(o<00-

With  II -Il  as a norm, and convolution as multiplication, 5  becomes a Banach

algebra. Hille and Phillips extended this calculus to a class of functions, larger

than   {p.: p G S}, but we will not discuss this extension here.

To explain Balakrishnan's calculus, let   L be the closed ideal of S  con-

sisting of measures which are absolutely continuous with respect to Lebesgue

measure. We shall not distinguish between measures in   L  and their Radon-

Nikodym derivatives (with respect to Lebesgue measure), as this does not lead to

confusion. If 0 is a Borel function, let C^ be the operator defined by

p(C0) = {/G L<t>f = g   for some g G L},

C<pf=g.    where <¡>f = g.

Let  M be the set of all Borel functions 0 for which V(C^) is dense in   L.

For every 0 G M, the operator <¡>(A) is defined as follows.  First define 7(0; A)

by the equations

0(7(0; A)) = {f(A)x: fE 0(C0), x G X],

7X0; A)f(A)x= g(A)x   if 0/ = g, x G X.
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7(0; A) can be shown to be well defined. (¡>(A) is, then, defined to be the small-

est closed extension of 7(0; A). It follows that <p(A) is a closed operator, and

is bounded if and only if 0 = p for some p G S, and if this is the case, the

definition of (¡>(A) agrees with the Hille-Phillips definition. So the Balakrishnan

calculus extends that of Hille-Phillips.  The algebra M  contains all polynomials

and certain fractional powers.

If A  is a scalar type operator with a(A) contained in a left half plane,

and resolution of the identity E( • ),  then A  generates a strongly continuous

semigroup   {7(0},  and the Balakrishnan calculus gives a definition for 004), for

0 G M.  Moreover, the Bade calculus defines 0(4)  to be /0(X) dE(X).

(11.1) Theorem. Let A be a scalar type operator with o(A) contained

in a left half plane {X: Re X < co0}, and resolution of the identity E(-). Then

the Balakrishnan and the Bade operational calculi agree on  M.

Proof.  <p(A) will always denote the operator given by the Balakrishnan

calculus.  First we consider the case 0 = /x, with p G 5.  Then

x*0O4)x = ¡~x*T(t)xdp(t)

" JT / ,. /Xd(x*E(X)x)dp(t),     xGX, x* G X*.
•'0   •> o{A )

Fubini's theorem can be applied to interchange the order of integration since etX

is integrable with respect to the measure  \x*E(-)x\ x \p\. We have then

x*<KA)x= faiA)<l>(X)d(x*EÇX)x),

and

<KA)= f (4.<KX)dE(X).
Jo (A)

Now let 0 G M, and set B = /0(X) dE(X). Let z G 0(7(0; A)). There

exist x GX, and / and gG L  such that z = f\A)x, and <pf = g.

7X0; A)z = g(A)x = fg(X)dE(X)x

= /0(X/(X)d7f(X)x.

Therefore Bz exists and Bz = 7(0; A)y (see [8, XVIII 2.11]), i.e., 7(0; A) C

B, and hence 0(/l) C B.

We will show that 0(7(0;/!))  contains E(8)X, for every compact set S.

For every point X0  with Re X0 < co0  we can find f0 G V(C^) with /0(X0) ^

0, for otherwise /(X0) = 0 for all fGXKÇ,p) which is dense in   L, and hence
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/(X0) = 0 for all fG L. Let g G Ll [0, °o), and set fit) = e   "°g(t), then

fGL, due to the fact that e_fcJ°ll7(0ll  is a bounded function of t.   Therefore

g\XQ - co0) = /(X0) = 0, for all gGLl [0, °o), which is impossible. Thus, for

every X0 with Re X0 < co0, there is an f0 G L with /0(X0) # 0, and hence

/0  never vanishes on a suitable disk S0 = {X: IX - X0| < e0}. Choose h0 G L

suchthat  ll«0-/0ll is small enough so that h0  never vanishes on 80  and

h0 G V(C^); this is possible since 0(C0) is dense in  L. If x GE(8Q)X, then

x = h0(A)y, where y = /^(^(X))"1 dE(X)x, i.e., E(80)XC 0(7(0; ¿)).  If

6  is any compact set, it can be covered by a finite number of disks with the

property above; hence

E(8)X Ç 0(7(0; A)) Ç 0(004)).

To prove that B ■ 004), let x G V(B), and put x„ = E(en)x, where

e„ = {X: |X| < «}. Then x„ G 0(7(0; .4)), x„ —* x, and 0O4)x„ = Bx„ —> Bx.

Therefore x G 0(004)) and 0O4)x = Bx, i.e., 5 C 0(^1). Hence B = 004).

This ends the proof of the theorem.

Fractional powers of an operator (- .4)  such that A  generates a strongly

continuous uniformly bounded semigroup were defined and developed by Phillips,

Balakrishnan, and Yosida (see [21, IX 11]).  If 0<o<l, then (-A)a  is

defined to be the negative of the generator of the semigroup   {7(r, a): t > 0}

given by

f(t, a)x = Ç ft Js)T(s)xds,   for t > 0,

7X0, a) =7,

where

I~ f°       exp (zX - tza)dz   for X > 0,
27TI   Ja-/~

0   for X<0,

a being any positive number, and the branch of za  being the principal branch,

i.e., Re(za)>0 for Re(z)>0.

Let A  be a scalar type operator with resolution of the identity E( • ), and

spectrum contained in the half plane   {X: Re X < 0}. Then A  generates a

strongly continuous uniformly bounded semigroup   {7(0}, and the calculus des-

cribed above gives a definition for (- A)a.

(11.2) Theorem.   With the same notation as above,
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Proof.   7(0 = f0(A)e    dE(X), and hence

x*7(r, a)x = £j    ) fta(s)e°xd(x*E(X)x) ds,     xGX,x*GX*.

But  l/r>a(s)eiX|</ftt(s) for all s G [0, oo) and X G a04), since fta  is non-

negative. Moreover fôfta(s)ds = 1  (see [21, p. 262]), hence fta(s)esX  is

integrable with respect to d\x*E(X)x\ds.   So, Fubini's theorem can be used to get

x*f(t, cfr = fg(A) f~e*%a(s)dsd(x*E(X)x).

Direct computation yields f^esXftCi(s)ds = exp {- t(- X)01}. Therefore

*&*■/#„% exP {" ** X)a} dE(V-
Jo (A)

The generator Âa  of the semigroup   {t(t, a): t > 0}  is consequently given by

4 = fo(A) - (- MC dE"(X), and hence (-^f = -vla = /ff(il)(- Xf <Œ(X).
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