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ABSTRACT.   The space   G     of conjugacy classes of a topological group

G   is the orbit space of the action of  G  on itself by inner automorphisms.   For

a class of connected and locally connected groups which includes all analytic \Z\-

groups, the universal covering space of  G     may be obtained as the space of con-

jugacy classes of a group which is locally isomorphic with   G, and the Poincaré
# i

group of   G     is found to be isomorphic with that of  GIG , the commutator quo-
#

tient group.   In particular, it is shown that the space   G     of a compact analytic

group   G   is simply connected if and only if  G   is semisimple.   The proof of this

fact has not appeared in the literature, even though more specialized methods are

available for this case.

I. Definitions and elementary properties. Two elements x, y  of a topolog-

ical group G are called conjugate, and we write x « y, if there is an element

t G G such that y = txt~x. The equivalence class of a point x under this re-

lation is called the conjugacy class of x, denoted Ix. A subset of G which is a

union of conjugacy classes is invariant under inner automorphisms and will be said

to be invariant.

If G acts on itself by inner automorphisms, the inner automorphisms deter-

mined by the center Z(G) of G are trivial and G/Z(G) acts effectively on G.

The orbit space under the action of G or G/Z(G) is called the space of con-

jugacy classes of G, denoted G#. If G is the direct product of groups G¡, then

G# is homeomorphic with the Cartesian product of the spaces Gf (see [5, p. 130]).

The space G* of a compact analytic group G is homeomorphic with the

orbit space  T/W of the action of the Weyl group  W on a maximal toroid  T of

G   [I, p. 95].  If G  is semisimple, G* may be obtained by identifying certain

boundary points of a compact convex polyhedron in the Lie algebra of T (see

[2, Example 6]).  Some elementary proofs and [11, p. 231] give the following:

Lemma I. If G is a compact analytic group, then G* is compact, Haus-

dorff second countable, and locally arcwise simply connected.
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The natural map p: G —*■ G*  may not be closed if G  is not discrete, and

G/Z(G) is not compact.  From [4, p. 303], we have the following:

Proposition 2. If G is a connected, locally compact group, then the fol-

lowing are equivalent:

(i) the natural map p: G —*■ G# is closed;

(ii) each neighborhood of e contains an invariant neighborhood of e (the

[SIN] property);

(iii) G is the direct product of a compact group and a vector group.

Example 1. Let H be the subgroup of SL(3,R) consisting of matrices

of the form

It is easily checked that

M(a, b, c)M(r, s, t)(M(a, b, c))_1 = M(r, s, t + as - br)

and that

M(a, b, c)M(r, s, t)(M(a, b, c))"1^. «. 0)_1 = M(0, 0, as - br).

An element of the form M(0, 0, t) is central, and D = {M(0, 0, n): n G Z}  is

a discrete central subgroup. The conjugacy class of a noncentral element M(r, s, t)

is {M(r, s, w): w G R}.  In particular, {M(\jn, 0, w): w E R}  is a conjugacy

class for each n G Z+. Hence, H is not an [SIN] group. The quotient group

H¡D has compact conjugacy classes and is not an [SIN] group.

Example 2. In the group H of Example 1, consider the subgroup G =

{MQn, n, t); m, n G Z; t G R}. The conjugacy class of a noncentral element

M(m, n, t) is {M(m, n, t + kd): k G Z; d the greatest common divisor of m

and «}. The space G* is normal, because each component of G*  is homeo-

morphic with R/ dZ for some d G Z  The component of e is exactly the

center, so that G  is an [SIN] group which is not the direct product of a vector

group and a compact group.

For connectedness, we have

Proposition 3. Suppose that p is a closed map or that G is locally

connected or that each conjugacy class is connected.  Then G# is connected if

and only if G is connected.



THE SPACE OF CONJUGACY CLASSES 347

Proof (of the nontrivial implication).  Let  C be the (invariant) compo-

nent subgroup of G.  If C =£ G, there is an open and closed set E which does

not meet  C   If p is closed, then p(E) is an open and closed set which does

not meet p(C).

In the other two cases, consider the space (G/C)# and the diagram:

«-   — G/C->(G/C)#

'G#

If G  is locally connected, then G/C and (G/C)# are discrete.  If each con-

jugacy class is connected, then G/C = (G/C)# is totally disconnected [8, p. 60].

But in either case, (G/C)# is connected, hence, trivial. Thus, G = C.

Clearly, if x, y G G and z G Z(G), then x « y if and only if zx m zy.

This suggests that we define an action of Z(G) on G* by •

(*) zh=hx-

This action of Z(G) on G* constitutes a transformation group, in the sense of

[11], except that G*  may not be a Hausdorff space.

Lemma 4. If D is a closed subgroup of Z(G), then the orbit space G#/D

is homeomorphic with  (G/D)#.

Proof. Consider the diagram:

G/D->(G/D)#

■G#/D

II. Stability subgroups for the action of Z(G) on G*. The stability sub-

groups for the action (*) are conveniently described in terms of the sets J^/^"* •

For each   x G G, the set IxIxl   is invariant and inversion-invariant and

e G IxI~l C (G, G), the algebraic commutator subgroup. The following theorem,

which was proved by Goto in [6], will be used to show that the main result of

this paper (Theorem 16) holds for analytic [Z] -groups:

Theorem 5 (Goto). If G is a compact semisimple analytic group, then

there is an element x E.G such that IxIxl = G.

In a more general situation, we have the following relationship between the

algebraic and topological structure of the conjugacy classes:

Proposition 6. Suppose that the set IxIxl  is locally compact in its rela-

tive topology.  Then Tx CIxI~lIx C x(G, G). Moreover, if the set IxI~l  is
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closed under the group operation, then it is a closed invariant subgroup of G

contained in (G, G).

Proof. The second part follows from [8, p. 35], for then IxIxl   isa

locally compact subgroup.

For the first part, let  U, V be neighborhoods of e with  D n IXI~X

compact and  V2 C U.   Let wG^.zG Ç1 n w_1 P» and let iwi^ ^e a net

in Ix  converging to  w.  Then, eventually,

wtz g Vww'1 v n ixi~l = v2 n z^1 c ¡y n /,/->.

Thus, wz is in the closed set  D n Z^/"1   and w = wzz~l G IXI~XIX.

Example 3.If G is the affine group, {(£ j): r G R+, s G /?}, and x =

(J }), then e G 7X, and Z,/"1 = Ix U J"1 U {e} = (G, G) (see [8, p. 350]).

We now identify the stability subgroups for the action (*).

Lemma 7. If D is a closed subgroup of Z(G), then the set Dx = D n

IxI~l = D n xl~l   is the stability subgroup in D of Ix G G*.

Proof. An element d G D is in the stability subgroup if and only if it

translates some (and hence, every) conjugate of x to another conjugate of x.

Then, for some s, t G G, d = sxs^tx^t-1 — s-1ds = xs-1f;c-1f-1s.

These stability subgroups are related to the zeros of characters of finite-

dimensional irreducible representations:

Corollary 8. Let it be a finite-dimensional irreducible representation of

G and let x G G.  If trace(îr(^)) ¥= 0, then Z(G) O IxI~l C kernel(7r).  If

moreover, ir is faithful, then the stability subgroup of Ix G G* under (*) is

trivial.

Proof. Let z G Z(G) n IXI~X, then Schur's lemma shows that trace(ir(x))

= üace(n(zx)) = trace(7r(x))trace(îr(z))/trace(7r(e)).

Corollary 9.  If G is a compact semisimple analytic group and x G G

is 0 regular point, that is, a point whose centralizer has minimum dimension, then

Dx is isomorphic with a subgroup of the Weyl group  W of G.

Proof. There is a maximal toroid T which contains x (and Z(G)) (see

[1]) and for each d G Dx  there is exactly one nT G W such that dx =

nxn~l. This correspondence effects an isomorphism between Dx andanAbelian

subgroup of W.

Example 4. If G = SU(2), there is only one conjugacy class with a non-

trivial stability subgroup, that of  (¿ _í¿). The Weyl group is of order two.
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III. The Poincaré group of G*. The relationship between the structures G#

and Ga = G\G\ where G'  is the closed commutator subgroup of G, is a con-

sequence of the fact that the natural map from G to G"  factors through G*

(see [8, p. 358]).

Lemma 10. The map q: G* -* Ga defined by q(fx) = xG' is continu-

ous, open and surjective.

A connected and locally connected space S will be said to be simply con-

nected if, for each covering space (U, f) of a space  T and continuous map

g: S —* T, there is a unique continuous map h: S —* U such that f° h = g

and h(s) = », where s and u are prescribed points such that f(u) = g(s).

This is the definition used by Hochschild [10], and is equivalent to that

used by Chevalley [3], except that we do not require the Hausdorff property.

The stability of this lifting property under two types of maps which appear leads

to sufficient conditions for the spaces G# and Ga  to be simply connected.

For analytic [Z] -groups, we show that these spaces are arc-wise simply connected

if they are simply connected.

A space is said to be locally simply connected if each point has a simply

connected neighborhood. A connected space has a simply connected covering

space if and only if it is locally simply connected (see [10] and [3]).

Lemma 11. Let G be a group which acts on a simply connected space M

with a fixed point m.   Then the orbit space MjG is simply connected.

Proof. Consider the commutative diagram

where / is a covering, g is continuous, ¿ = g ° p and h' is a specified lift of

¿. To show that there is a map h as indicated, we show that h' is constant on

G-orbits.  Since h' is the unique map taking m to h'(m) and satisfying / ° h'

= ¿, precomposition of tí with an action of G  does not alter tí', that is tí

is constant on G-orbits.

We can now give some sufficient conditions for the spaces G*  and Ga  to

be simply connected:

Proposition 12. If G is locally connected and G* is simply connected,

then Ga = G/G' is simply connected.
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Proof. By Proposition 3, G  is connected.  Hence, the G'-cosets are con-

nected [9, p. 142]. Use [10, p. 56], and Lemma 10.

Proposition 13. If G is simply connected, then G# is simply connected.

Proof. The stability subgroup of e for the action of G on itself by

inner automorphisms is G. Use Lemma 11.

Proposition 14. Let D be a discrete subgroup of Z(G) and let Dx be

the stability subgroup of Ix G G# under (*). If G* is simply connected, then

(G/Dx)# is simply connected.

Proof. The subgroup Dx  is closed (we have not assumed any separation

properties for G#). Use Lemmas 11 and 4.

Proposition 15. Let D be a discrete subgroup of Z(G) which is gener-

ated by the stability subgroups Dx  under (*). If G* is simply connected,

then (G/Z))# is simply connected.

Proof. Partially order by inclusion the collection of subgroups D* of D

such that the orbit space G#/D*  is simply connected, and use Zorn's lemma.

The uniqueness of lifts in the definition of "simply connected" implies that the

union of the elements of a chain is an upper bound for the chain, and D is the

only possible maximal element because of Proposition 14.

Example 5.In Example 1, the group H is the universal covering group of

H\D and (H/D)#  is simply connected.

We are now ready to prove the main result.

Theorem 16. Let G be a connected and locally simply connected group

with universal covering group G.  If D is a discrete subgroup of Z(G) such

that G = G¡D and D n (G)' is generated by the stability groups Dx  under

(*), and D(G)'/(G)' is discrete in  (G)a = G/(G)', then the Poincarè groups of

G# and Ga are isomorphic with D¡(D n (G)').

Proof. Let Dx = D n (G)' and let /,:(?-»• GIDX and f2: GIDl -*

G ¡D be the natural covering maps. Since D(G)'I(G)' is closed in (G)a, /i((G)')

= (G/ßj)' and f2(fi(p(p)')) = (G/£>)'. Thus, we have the diagram

G-►   (G)#-*    (G)a

f\ J | A
G\DX-» (GIDJ*-► (G/£>!)a

/a I \f* \f%
GID-» (G/£>)#-» (G/D)a
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where /?  is the topological isomorphism induced by /¡, /* and /|   are in-

duced by f2  and other maps are as in Lemmas 4 and 10.

Propositions 13, 15, and 12 show that the spaces (G/Dj)# and (G/Dj)"

are simply connected. It remains to show that D[D1 is a properly discontinu-

ous group of homeomorphisms of these spaces [12, p. 87]. In (G/Z)j)a, D\DX

= (DiGyiD^KiGyiD^, a. discrete subgroup. The action (*) of D/D1 on

(G/Dj)# is also properly discontinuous, because the elements of a D¡DX orbit

are conjugacy classes lying in distinct (G/Z)1)'-cosets (in G, we have (dlx)lxl

C (G)' only if d G IXI¿1@$ = (G)').

Corollary 17. If G is an analytic [Z] -group, the spaces G* and Ga

are locally arcwise simply connected and have isomorphic fundamental groups.

Proof. First of all, the group G  is the direct product of a vector group

and a compact group (Proposition 2), so we may assume that G is compact.

Then G is the direct product of a vector group and a simply connected compact

semisimple analytic group H (see [10] and [13]).  If D is a discrete subgroup

of Z(G) such that G\D = G, then DH/H = D(G)'I(G)'  is discrete [10, p. 6]

and D C\ H = D n (G)' = Dx  for some x G H (Theorem 5). The result fol-

lows from [12, p. 88], because H# is arcwise simply connected (see Proposi-

tion 13, Lemma 1, and [10]).

Corollary 18. A compact analytic group is semisimple if and only if G#

is simply connected.

Proof. A compact analytic group G is semisimple if and only if the

toroid Ga is trivial; use Corollary 17.

Example 6. One maximal toroid of G = £0(4) consists of matrices

Miß, ?) =
lO 0 cos <p   ~ sin <p J

and the nontrivial elements of the Weyl group are represented by the matrices

A = . • B =



352 DENNIS DALUGE

and

C = AB = BA =

One checks easily that

A(M(ß, <p))A~x « M(2n -e,2v- <p),

B(M(ß, v))B-x = Mdp, 0),

C(M(e, vfiCr1 = M(2it -v,2tt- 0),

so that each conjugacy class is represented by a matrix M(6, <p) with 0 < 9 < n

and 0 < <p < 2jt - 0. The space G# may be realized as the small triangle on

the left in the square

(0, 2tt) (2tt, 2tt)

(2rr, 0)

where pairs M(0, <p), M(0, 2ir - ip) on the left-hand boundary must be identified.

The space G# is simply connected, as indicated by Corollary 18.
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