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ABSTRACT. The space G# of conjugacy classes of a topological group
G is the orbit space of the action of G on itself by inner automorphisms. For
a class of connected and locally connected groups which includes all analytic [Z]-
groups, the universal covering space of G# may be obtained as the space of con-
jugacy classes of a group which is locally isomorphic with G, and the Poincaré
group of G# is found to be isomorphic with that of G/G’, the commutator quo-
tient group. In particular, it is shown that the space G# of a compact analytic
group G is simply connected if and only if G is semisimple. The proof of this
fact has not appeared in the literature, even though more specialized methods are
available for this case.

I. Definitions and elementary properties. Two elements x, y of a topolog-
ical group G are called conjugate, and we write x = y, if there is an element
t € G such that y = tx¢~!. The equivalence class of a point x under this re-
lation is called the conjugacy class of x, denoted I.. A subset of G which isa
union of conjugacy classes is invariant under inner automorphisms and will be said
to be invariant.

If G acts on itself by inner automorphisms, the inner automorphisms deter-
mined by the center Z(G) of G are trivial and G/Z(G) acts effectively on G.
The orbit space under the action of G or G/Z(G) is called the space of con-
jugacy classes of G, denoted G¥. If G is the direct product of groups G;, then
G*# is homeomorphic with the Cartesian product of the spaces G}* (see [5, p. 130]).

The space G* of a compact analytic group G is homeomorphic with the
orbit space T/W of the action of the Weyl group W on a maximal toroid T of
G [1,p.95]. If G is semisimple, G¥ may be obtained by identifying certain
boundary points of a compact convex polyhedron in the Lie algebra of T (see
[2, Example 6]). Some elementary proofs and [11, p. 231] give the following:

LEMMA 1. If G is a compact analytic group, then G* is compact, Haus-
dorff, second countable, and locally arcwise simply connected.
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The natural map p: G — G* may not be closed if G is not discrete, and
G/Z(G) is not compact. From [4, p. 303], we have the following:

PROPOSITION 2. If G is a connected, locally compact group, then the fol-
lowing are equivalent:
(i) the natural map p: G — G¥* is closed,
(ii) each neighborhood of e contains an invariant neighborhood of e (the
[SIN] property);
(iii) G is the direct product of a compact group and a vector group.

ExaMmpLEL. Let H be the subgroup of SL(3, R) consisting of matrices
of the form .

1 r .
Mr,s,)={0 1 s
0 01

It is easily checked that
M@, b, )M(, s, £)M(@a, b, ¢))™! = M(r, s, t + as — br)
and that
M@, b, )M, s, DM, b, )" (MG, s, £))"! = M(, 0, as — br).

An element of the form M(0, 0, ¢) is central,and D = {M(0,0,n): n € Z} is
a discrete central subgroup. The conjugacy class of a noncentral element M(, s, ¢)
is {M(, s, w): w €R}. In particular, {M(1/n,0, w): w € R} is a conjugacy
class for each n € Z*. Hence, H is not an [SIN] group. The quotient group
H/D has compact conjugacy classes and is not an [SIN] group.

ExaMpLE 2.In the group H of Example 1, consider the subgroup G =
{M(m, n, t); m, n € Z; t € R}. The conjugacy class of a noncentral element
M(m, n, t) is {M(m, n, t + kd). k € Z; d the greatest common divisor of m
and n}. The space G* is normal, because each component of G#* is homeo-
morphic with R/dZ for some d € Z. The component of e is exactly the
center, so that G is an [SIN] group which is not the direct product of a vector
group and a compact group.

For connectedness, we have

PROPOSITION 3. Suppose that p is a closed map or that G is locally
connected or that each conjugacy class is connected. Then G¥ is connected if
and only if G is connected.
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PrOOF (of the nontrivial implication). Let C be the (invariant) compo-
nent subgroup of G. If C # G, there is an open and closed set E which does
not meet C If p is closed, then p(E) is an open and closed set which does
not meet p(C).

In the other two cases, consider the space (G/C)* and the diagram:

G » G/C »(G/C)*

G#*
If G islocally connected, then G/C and (G/C)# are discrete. If each con-
jugacy class is connected, then G/C = (G/C)* is totally disconnected [8, p. 60].
But in either case, (G/C)* is connected, hence, trivial. Thus, G = C,
Clearly, if x, y €G and z € Z(G), then x = y if and only if zx = zy.
This suggests that we define an action of Z(G) on G¥ by

*) zI, = I,,.

This action of Z(G) on G¥ constitutes a transformation group, in the sense of
[11], except that G¥ may not be a Hausdorff space.

LeEMMA 4. If D is a closed subgroup of Z(G), then the orbit space G*ID
is homeomorphic with (G/D)¥.

PrOOF. Consider the diagram:
G/D — (G/D)*

\‘G# —G*D

I1. Stability subgroups for the action of Z(G) on G¥*. The stability sub-
groups for the action (*) are conveniently described in terms of the sets I I~ !
For each x € G, the set I I7! is invariant and inversion-invariant and
e€ LI 1 C (G, G), the algebraic commutator subgroup. The following theorem,
which was proved by Gotd in [6], will be used to show that the main result of
this paper (Theorem 16) holds for analytic [Z]-groups:

G

THEOREM 5 (GoTd). If G is a compact semisimple analytic group, then
there is an element x € G such that II;' = G.

In a more general situation, we have the following relationship between the
algebraic and topological structure of the conjugacy classes:

PROPOSITION 6. Suppose that the set I I L s locally compact in its rela-
tive topology. Then I, C LI7'I, C x(G, G). Moreover, if the set I I]* is
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closed under the group operation, then it is a closed invariant subgroup of G
contained in (G, G).

PROOF. The second part follows from [8, p. 35], for then I ;! isa
locally compact subgroup.

For the first part, let U, V be neighborhoods of e with U N I 1!
compactand V2 C U Let w€E L,z €' N w™'V, and let {w,} bea net
in I, converging to w. Then, eventually,

wz €EVww Vv NILIT' =v2nLI' cunL It

Thus, wz isin the closed set U N LI;! and w = wzz™! € [ I7'1,.
ExaMmpLE 3.If G is the affine group, {(j ): r €ER*,s €ER},and x =

(¢ D,then e €I ,and LI7' =1, UI7' U {e} = G, G) (see [8, p. 350]).
We now identify the stability subgroups for the action (*).

LEMMA 7. If D is a closed subgroup of Z(G), then the set D, = D N
LIZ' =D N xI7' is the stability subgroup in D of I, € G*.

PROOF. An element d € D is in the stability subgroup if and only if it
translates some (and hence, every) conjugate of x to another conjugate of x.
Then, for some s, t € G, d = sxs~ x4 = s7lds = xs7 x5,

These stability subgroups are related to the zeros of characters of finite-
dimensional irreducible representations:

COROLLARY 8. Let m be a finite-dimensional irreducible representation of
G andlet x €G. If trace(n(x)) # 0, then Z(G) N I, I7! C kernel(m). If
moreover, w is faithful, then the stability subgroup of I, € G¥* under () is
trivial.

PROOF. Let z € Z(G) N I I}, then Schur’s lemma shows that trace(m(x))
= trace(n(zx)) = trace(n(x))trace(n(z))/trace (n(e)).

COROLLARY 9. If G is a compact semisimple analytic group and x € G
is a regular point, that is, a point whose centralizer has minimum dimension, then
D, is isomorphic with a subgroup of the Weyl group W of G.

PrROOF. There is a maximal toroid T which contains x (and Z(G)) (see
[1]) and for each d € D, there is exactly one nT € W such that dx =
nxn~!, This correspondence effects an isomorphism between D, and an Abelian
subgroup of W.

ExamrLE 4. If G = SU(2), there is only one conjugacy class with a non-
trivial stability subgroup, that of (5 ). The Weyl group is of order two.
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III. The Poincaré group of G¥. The relationship between the structures G¥#
and G°® = G/G', where G’ is the closed commutator subgroup of G, is a con-
sequence of the fact that the natural map from G to G® factors through G¥
(see [8, p. 358]).

LEMMA 10. The map q: G¥ — G® defined by q(I,) = xG' is continu-
ous, open and surjective.

A connected and locally connected space S will be said to be simply con-
nected if, for each covering space (U, f) of a space T and continuous map
g: S — T, there is a unique continuous map h: § — U such that fe h =g
and A(s) = u, where s and u are prescribed points such that f(u) = g(s).

This is the definition used by Hochschild [10], and is equivalent to that
used by Chevalley [3], except that we do not require the Hausdorff property.
The stability of this lifting property under two types of maps which appear leads
to sufficient conditions for the spaces G* and G to be simply connected.
For analytic [Z]-groups, we show that these spaces are arcwise simply connected
if they are simply connected.

A space is said to be locally simply connected if each point has a simply
connected neighborhood. A connected space has a simply connected covering
space if and only if it is locally simply connected (see [10] and [3]).

LEMMA 11. Let G be a group which acts on a simply connected space M
with a fixed point m. Then the orbit space M|G is simply ¢onnected.

Proor. Consider the commutative diagram
M

p

r/ M|G '

U ——7————> T

where f is a covering, g is continuous, g’ = go p and A’ is a specified lift of
g. To show that there isa map A as indicated, we show that 4’ is constant on
G-orbits. Since A’ is the unique map taking m to A'(m) and satisfying fo A’
= g, precomposition of A’ with an action of G does not alter 4’ that is 4’

is constant on G-orbits.

We can now give some sufficient conditions for the spaces G¥ and G% to
be simply connected:

PROPOSITION 12. If G is locally connected and G¥ is simply connected,
then G® = G|G' is simply connected.
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ProOF. By Proposition 3, G is connected. Hence, the G'-cosets are con-
nected [9, p. 142]. Use [10, p. 56], and Lemma 10.

PROPOSITION 13. If G is simply connected, then G¥ is simply connected.

ProoF. The stability subgroup of e for the action of G on itself by
inner automorphisms is G. Use Lemma 11.

PROPOSITION 14. Let D be a discrete subgroup of Z(G) and let D, be
the stability subgroup of I, € G* under (»). If G* issimply connected, then
(G/Dx)# is simply connected.

PrOOF. The subgroup D, is closed (we have not assumed any separation
properties for G¥). Use Lemmas 11 and 4.

PROPOSITION 15. Let D be a discrete subgroup of Z(G) which is gener-
ated by the stability subgroups D, under (*). If G* is simply connected,
then (G/D)* is simply connected.

PrOOF. Partially order by inclusion the collection of subgroups D* of D
such that the orbit space G¥|D* is simply connected, and use Zorn’s lemma.
The uniqueness of lifts in the definition of “‘simply connected” implies that the
union of the elements of a chain is an upper bound for the chain, and D is the
only possible maximal element because of Proposition 14.

ExAMPLE 5.In Example 1, the group H is the universal covering group of
HID and (H/D)* is simply connected.

We are now ready to prove the main result.

THEOREM 16. Let G be a connected and locally simply connected group
with universal covering group G If D isa discrete subgroup of Z(a) such
that G = G/D and D N (5)' is generated by the stability groups D, under
(%), and D@GY/(G) is discrete in (G)* = G/(G), then the Poincaré groups of
G* and G® are isomorphic with D|(D N (G)).

PrROOF. Let D, =D N (G) andlet f;: G — G/D, and f,: G/D, —
G/D be the natural covering maps. Since D(G)'/(G)' is closed in (G)?, £,((G))
= G/D,) and f,(f,@@G))) = (G/D). Thus, we have the diagram

G—— GFf—— @
| | | #
G/D, —— (G/D,)* —— @GID,)"*
I N4 3

G/D —— (G/D)* —— (G/D)"
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where f7 is the topological isomorphism induced by f;, fz# and f; are in-
duced by f, and other maps are as in Lemmas 4 and 10.

Propositions 13, 15, and 12 show that the spaces (5/Dl )# and (5/D1)"
are simply connected. It remains to show that D/D, is a properly discontinu-
ous group of homeomorphisms of these spaces [12, p. 87]. In (5/Dl)", D/D,
= (D(a)'/Dl)/((E')'/Dl), a discrete subgroup. The action (*) of D/D; on
(5/D1)# is also properly discontinuous, because the elements of a D/D, orbit
are conjugacy classes lying in distinct (5/1)1 Y-cosets (in G, we have @r)r;!
C @) onlyif dE€LI;'G) = G)).

COROLLARY 17. If G is an analytic [Z]-group, the spaces G¥* and G°
are locally arcwise simply connected and have isomorphic fundamental groups.

PrOOF. First of all, the group G is the direct product of a vector group
and a compact group (Proposition 2), so we may assume that G is compact.
Then G is the direct product of a vector group and a simply connected compact
semisimple analytic group H (see [10] and [13]). If D isa discrete subgroup
of Z(G) such that G/D = G, then DH/H = D@G)'[(G)' is discrete [10, p. 6]
and DNH=DnN (5)' = D, for some x € H (Theorem 5). The result fol-
lows from [12, p. 88], because H# is arcwise simply connected (see Proposi-
tion 13, Lemma 1, and [10]).

COROLLARY 18. A compact analytic group is semisimple if and only if G¥*
is simply connected.

PrROOF. A compact analytic group G is semisimple if and only if the
toroid G® is trivial; use Corollary 17.
EXAMPLE 6. One maximal toroid of G = SO(4) consists of matrices

cos & —sin @ 0 0

sin® cos @ 0 0
M@, ¢) =

0 0 cos ¢ =—sin ¢

0 0 sin g cosy

and the nontrivial elements of the Weyl group are represented by the matrices

0100 0010

1 000 0 001
A= ,B:

0001 1 000

0010 0100
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and

C=AB=BA =

- O O O
o = O O
o O = O
O O O =

One checks easily that
AME, DA™ = M7 - 0,27 - ),
BM@, p)B~ = My, 0),
M@, 9))C' = MQ2n — 9,27 - 0),
so that each conjugacy class is represented by a matrix M@, ¢) with 0 <0 <=

and 0 < ¢ <2m — 0. The space G¥ may be realized as the small triangle on
the left in the square

(0, 21[) (21'1’, 21()
l
0,0 - @m, 0)

where pairs M(0, ¢), M(0, 27 — ¢) on the left-hand boundary must be identified.
The space G¥ is simply connected, as indicated by Corollary 18.
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