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TOPOLOGICAL SEMIGROUPS AND REPRESENTATIONS
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JAMES C. S. WONG

ABSTRACT.   Let   S  be a topological semigroup (separately continuous

multiplication) with identity and   W(S)  the Banach space of all weakly almost

periodic functions on   S.   It is well known that if  S — G   is a locally compact

group, then   W(G)  always has a (unique) invariant mean.   In other words, there

exists   m e W(G)*   such that   ||m|| = m(l) = 1   and   m(lsf) = m(rsf) = m(/)

for any   s e G, f e W(G)  where   lsf(t) = f(st)  and   rsf(t) = f(ts), t£&

The main purpose of this paper is to present several characterisations (functional

analytic and algebraic)   of the existence of a left   (right)   invariant mean on   W(S).

In particular, we prove that   W(S)  has a left   (right)   invariant mean iff a certain

compact topological semigroup  pÇS)^  (to be defined)   associated with   5  con-

tains a right   (left)   zero.   Other results in this direction are also obtained.

1. Notations and terminologies.  Let S be a topological semigroup (sepa-

rately continuous multiplication) with identity e (see L. deLeeuw and I. Glicks-

berg [3](x) for definition),/x (5) the Banach algebra of all absolutely summable

functions on S with usual /j-norm and convolution as multiplication (8i * 02(s)

= 2S s =s ö1(s1)ö2(s2), for any 0X, 02 G /,(5) and s G S, see M. Day [2,

p. 521]) and let p(S) be the set of all 0 G /X(S) such that 0 > 0, Ptj =1

and {s G S: 6(s) > 0} is finite.  Each 0 G p(S) is called a finite mean (Day

[2, p. 513]). With convolution as multiplication p(S) is a semigroup.

Consider the Banach space  W(S) of all weakly almost periodic functions

on S with supremum norm [3, §5, p. 80]. An element m G W(S)* is called a

mean if ||«z|| = «z(l) = 1. m is (left) [right] invariant if (m(lsf) = m(f))

[m(rsf) = m(f)] m(lsf) = m(rsf) = m(f) for any s G S, f G W(S) where

lsf(t) = f(ßt), rsf(t) = f(ts), tes.  We shall often use the notation  LIM (RIM)

for left invariant mean (right invariant mean).

If B is a Banach space and   B(B) the algebra of all bounded linear opera-
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tors in B, then   B(B)  is a topological semigroup under operator multiplication

and the weak operator topology  (WO) [3, §3, p. 71]. Any subsemigroup of

B(B) containing the identity operator is called a semigroup of operators.

Let S be a semigroup of operators in B, S is called weakly almost periodic

if for each x E B, the set {Tx: TES} has compact closure in the weak topol-

ogy of B.   It is known that if S is weakly almost periodic, then the weak oper-

ator closure, S   of S in   ¡5(5) is a compact topological semigroup with weak

operator topology [3, Theorem 3.1, p. 72].

2. Main theorems.

Theorem 2.1. Let S be a topological semigroup, with identity e.for each

9 E p(S), define Te = 2S 6(s)rs (the sum is actually finite).  Then the map

T: p(S) x W(S) -*■ W(S) defined by  T(d, f) = Tef is a representation of the

semigroup p(S) as a weakly almost periodic convex semigroup of operators in

W(S).  The closure p(S)" of {Te: 0 G p(S)} in the weak operator topology is

a compact convex topological semigroup in the same topology.O  Moreover, the

following statements are equivalent.

(1) W(S) has a left invariant mean.

(2) The semigroup p(S)u  has a right zero; that is there exists some

V G p(S)"  such that  UV = V for any  U E p(S)u.

(3) The continuous bounded functions C(p(S)u) on p(S)^  has a mul-

tiplicative left invariant mean (see Mitchell [14, §1, p. 117] for definition).

(4) C(p(S)u) has a left invariant mean.

Proof. Clearly, each  Te : W(S) —*■ W(S) is a bounded linear operator in

W(S). Also if 0X,02 Ep(S),

T«x*9% =   loi* 62(s)rs =   Z      Z    0i(M02(*2>-s
S J       S|S2=i

=   11   ox(Sl)02(S2)rSi o r¡2
sl      s2

=   £   h(h>,. •   £   62(s2)r    = Te   o Te
«1 * H 2 12

Hence T is indeed a representation. Since p(S) is convex in /x (S), {Te :

6 G p(S)} is convex in B(W(S)). By definition of Te, {Tdf: 0 G p(S)} is

contained in   CO {rsf: s E S} for each / G W(S) (CO A  denotes the convex

(2)  Unfortunately the notation  p(S)     is a little ambiguous since  p(S)  can also be

considered as a topological semigroup (say under the weak topology of  /j(S))  and  p(S)w

the weakly almost periodic compact if icat ton of  p(S).  However we shall have no occasion in

this paper to consider the above situation and no confusion will arise.
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hull of A  in a vector space).  But {rsf: s G S}  and hence  CO {rsf. s G S}

has compact closure in the weak topology of  W(S)   (Krein-ámulian theorem

[4, p. 434] ).  It follows that {Te /: 0 G p(S)} also has compact closure in the

same topology or {Te: 0 G p(S)} is weakly almost periodic. By [3. Theorem 3.1,

p. 72], p(5)w  is a compact topological semigroup in the weak operator topology.

Next assume (1) holds and let m be a left invariant mean on  W(S).  There

exists a net of finite means 6a G p(S) such that 6a —> m in weak* topology

of  W(S)* (the finite means are weak* dense in the set of means; see for example

[2, §3] or apply the Hahn-Banach theorem). Consider the net  Tñ    in p(S)w
a

which is WO compact, we can assume  T0   —*■ V (WO), using a subnet if neces-
a

sary. We claim that   V a right zero of p(S)u. We first show that rsV = V

for any s G S.   Since  Te   -*■ V (WO), rsTe    -*■ rsV (WO).  Hence for each

s G S, fe W(S), (rsTe )f -* (rsV)f weakly and a fortiori pointwise.  But for

each tes,

irJeJfO) = Te fits) =   £ ea(o)raf(ts) =  £ Oa(o)f(tso)
0 a

= 6a(ltsf)^m(ltsf) = m(f).

In other words (rsTg )f—*■ m(f) *1  pointwise.  Hence  (rsV)f = >«(/)• 1

for any s G S, f G W(S).  Consequently  (rsV)f = Vf = m(/) • 1  for any

seS, fe W(S) (putting s = e).  Therefore rsV = V for any s G 5.   (Note

that the use of the identity e can be avoided, the same arguments as above

applied to  Ta   -+ F (WO) ensure that Vf=m(f)-1.) It follows that T0V=V
a

for any 0 G p(S).  Since {Te: 6 G p(5)} is WO dense in p(5)"  we must

have  UV = V for any  U G p(S)w  and (1) implies (2).

Incidentally  Vf is the constant function m(f) • 1.  Conversely assume (2)

and let   F be a right zero of p(S)u, then rsV = V for any s G S.   There is

a net 6a G p(5) such that  Te   —*■ V (WO).  We can assume  6a  (or a subnet

of 0a) —»■ m in weak* topology of  W(S)* for some mean m  on  W(S). We

set out to prove that m  is a left invariant mean.  As above, for each s G S,

f G W(S), (rsTe )f —*■ (rsV)f = Vf weakly and hence pointwise.  In particular

we have  (rsTeJf(e) -*• Vf(e).  But

(rje)f{e) =  Z 0a(a)/(*a) = *«(?,/) - «(/,/)
a

for any s.   Hence m(lsf) = m(f) = Vf(e) and m  is left invariant. There-

fore (1) is equivalent to (2).

(2) and (3) are equivalent by a result of Mitchell [15, Corollary 2, p. 121].

Note that the definition of topological semigroup in [15] requires jointly con-
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tinuous multiplication. However his result [15, Corollary 2, p. 121] remains valid

for separately continuous topological semigroups and separately continuous repre-

sentations.  (See footnote (2) in [15, p. 120].)

Clearly (3) implies (4).  On the other hand, let C(p(S)w) have a left in-

variant mean, then the pair p(S)w, C(p(S)u) has the common fixed point

property on convex compacta with respect to ^-representations by affine maps,

by [I, Theorem 1, p. 128]  (see [1, §2]   for these terminologies).  Now consider

p(S)w acting on itself on the left by left multiplication (U, V)^-UV. Y = p(Sf

is a compact convex subset of a separated locally convex space  (B(W(S)) with

WO topology).  For each  U, the map   V —* UV is clearly continuous and affine.

Moreover if h  is an affine continuous function on  Y, then the function  U —*■

h(UV) belongs to  C(p(S)w)  for any   V G p(S)"\  Consequently the map

(U, V) -*■ UV of p(S)u x p(S)" -> p(S)"  is an /1-representation.  By [1,

Theorem 1, p. 128] there exists some   V E p(S)w  such that  UV = V for any

U E p(S)w. Thus p(S)w  has a right zero which in turn implies (3) by what we

have proved above.  This completes the proof of the theorem.

Remark. In the proof of (2) implies (1) above, if we do not use the identity

e, we can only prove that m(ltsf) = m(ltf) for any s, t E S, f G W(S). That

is m  is left invariant on all functions of the form ltf, t E S, f G W(S) since

lts     ls    *r

There is a one-to-one correspondence between the right zeros of p(S)0}

and the left invariant means on  W(S) (if any of them exists at all).  Let

$: W(S)* -*■ B(W(S)) be defined by <S>(m)(f) = m(f) • 1. Clearly 4> is a bounded

linear operator and an isometry (into). In fact we have the following theorem.

Theorem 2.2. m is a left invariant mean on   W(S) iff $(m) is a right

zero of p(S)w. Moreover, the restriction of i> to the convex set of left invariant

means on   W(S) is an affine homeomorphism onto the convex set of all right

zeros of p(S)w  when they are endowed with the weak* topology of W(S)*

and the weak operator topology of B(W(S)) respectively.

Proof. Referring to the proof of the preceding theorem, if m is a LIM

on  W(S), there is a right zero   V of p(S)w  such that   Vf = m(f) • 1  or

Vf = $(m)/ for any / G W(S). Thus $(m) = V is a right zero of p(S)w.

Conversely, if  F is a right zero of p(S)u}, there is a  LIM m on  W(S) such

that m(Lf) = Vf(t) for any  t E S, f E W(S) (because   T0 f(t) -> Vf(t),
a

with 9a as in the proof of (2) implies (1) in Theorem 2.1). Hence   Vf(t) = m(ltf)

= m(f) since m  is a  LIM. Thus  Vf = m(f) • 1 = &(m)f or  V = <ï>(wz).

Finally ma -*• m weak* in  W(S)* iff ma(f) -*• m(f)  V/ G W(S) iff

ma(f) • 1 -► m(f) • 1  weakly in  W(S) V/ G W(S) or *(ma) -*■ $(m) (WO)
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in  B(W(S)).  Since the left invariant means and right zeros of p(S)w  are clearly

convex, the theorem follows immediately.

It is interesting to observe that Theorem 2.1 remains valid if we interchange

the words "left" and "right" throughout.  Surprisingly, the proof is analogous

but not symmetrical due to the asymmetry (between left and right translations)

in a semigroup.

Theorem 23. Let S be a topological semigroup with identity e; then the

following statements are equivalent.

(1) W(S) has a right invariant mean.

(2) The semigroup has a left zero, that is, there exists some   V G p(S)U}

such that  VU = V for any   U G p(S)w.

(3) C(p(S)tJ) has a multiplicative right invariant mean.

(4) C(p(S)u) has a right invariant mean.

Proof. In view of the above remark, we give the proof here for comparison.

Assume that  W(S) has a RIM m.   Let 6a G p(S) with Ba —*■ m in weak*

topology of  W(S)* and let  Te    (or a subnet of Te ) -*■ V (WO) for some

V e p(S)u. Then for each s G^S, Td (rsf) -» V(rJ) weakly hence pointwise.

But

Te(rtm) =  Z 0*(P)f<fos)  =   £ Oa(a)rs(ltf)(a)
a a

= ea(rs(ltf)) - m(rs(ltf)) = m(ltf) = m/frö

(m¡(f) thus defined is called the left introversion of / by m; it is known that

m¡(f) e W(S) if / G W(S) and m G W(S)*. See for example [3, Lemma 5.13,

p. 87]).  Hence   V(rJ) = m,(f) for any s G S, f G W(S).  In particular

V(rsf) =Vf= m¡(f) or   Vrs = V for any s G S.   Consequently   VU = V

for any  U G p(S)LJ.  Note that m  and   V are connected by the relation

Vf = m¡f which is not necessarily a constant function.   On the other hand if  V

is a left zero of p(S)™, then  VrJ = Vf for any s G 5, / G Fi/(S).  Let ju

be any mean in  W(S)* and let m = V*¡x.  Since   F/ > 0 if / > 0,  F(l) = 1

(which is true for any operator in p(S)w), V*ß = ß ° V is always a mean on

W(S). But m(rsf) = ß(Vrsf) = ß(Vf) = m(f) or m is a RIM on  W(S).

Hence (1) and (2) are equivalent.

The equivalence of (2) and (3) follows from a version of Mitchell's result

for topological semigroups with separately continuous multiplication namely [15,

Corollary 2, p. 121] where the words "left" and "right" are interchanged and

the phrase "continuous representation" is replaced by "separately continuous

antirepresentation".
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The last equivalence can be handled in the same way as in Theorem 2.1,

using right multiplication in p(S)ÍÁ}  which is an antirepresentation.

The analogue of Theorem 2.2 is now easily obtained with the help of the

map *: W(S)* -* B(W(S)) defined by #(«)/ = m,(f). Again it is easy to

verify that ^  is bounded linear.  In fact, we have

Theorem 2.4.  m is a right invariant mean on  W(S) iff V(m) is a left

zero of p(S)w.  Moreover, the restriction of ^ on the convex set of right invari-

ant means on  W(S) is an affine homeomorphism onto the convex set of all left

zeros of p(S)^  with respect to the weak* topology of W(S)* and the weak

operator topology of B(W(S)).

Proof. If m is a RIM on W(S), then there is a left zero V of p(S)0}

such that Vf = m,(f) = V(m)f for any / G W(S). Hence V(m) = V. Con-

versely, if F is a left zero of p(S)íú, let m = V*me = me° V where me is

the evaluation at the identity e.   Then m is a  RIM on  W(S).  Now

*(m)/(r) - mt(f)(t) = m(ltf) = V(ltf)(e) = lim  T^QJXe)

= lim Z ea(s)rsltf(e) = lint £ 6a(s)rsf(t) = lim Te fit) = Vfif)
s

where  Te    is any net such that  Te   —*■ V (WO).  Hence V(m) = V.  Now

the map ^  is one-to-one (although not necessarily an isometry) because ^(m) =

V(n) implies m¡(f) - n¡(f) and in particular m(f) = m¡(f)(e) = n{(f)(e) =

n(f) for any / G W(S) or m = n.   Since both the right invariant means on

W(S) and the left zeros of p(S)u   are convex, the proof will be complète if we

can show that for any means ma, m on  W(S), ma —> m weak* in  W(S)* iff

*(ma) ~* ^(m) (WO) in  B(W(S)).  However, this follows from the observations

that (1) for each / G W(S), the weakly closed convex hull cj CLCO{rs/: s G S}

of {rsf: s G S} is weakly, hence pointwise, compact and the two topologies

agree on coCLCOi^/: s G S}. (2) m¡(f) G coCLCO {rsf: s G S} for any mean

m on  W(S). This is clear if m = 0 G p(S).  In general, let 6a —► m co* in

WCS)*  then (ea\f -+ m,/ pointwise and hence w,/G coCLCO{rs/: s G 5}.

(3) ma —> m weak* in  W(S)* iff (ma)¡f —> m;/ pointwise, hence weakly

by (1).

As a simple application of the preceding theorems, we prove the following

result the first part of which is well known (see R. Holmes and A. Lau [10, §4,

Lemmas 6 and 7] ).

Theorem 2.5. If W(S) has a left invariant mean m and a right invariant

mean n, then m = n and it is the unique (left) [right]  invariant mean on
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W(S).  The semigroup p(S)w  contains a unique (left) [right] zero   V  More-

over the kernel K(p(S)™) is {V}.

Proof. Since $>(m) is a right zero of p(5)"  and ^(n) is a left zero of

p(S)w, we have $(m) = ty(n)$(m) = ty(n) or m(f)' 1 = n¡(f) for any

/ G W(S).  In particular «(/) = nt(f)(e) = m(f)   or   m  =  n.   It is clear

that this is the unique left or right or two-sided invariant mean on  W(S).  Let

V = <l?(m), then  V is a right zero and a left zero of p(S)^  since <i>(m) =

^(«).  Therefore   V is the unique left or right or two-sided zero of p(S)^. Now

{V} isa (minimal) two-sided ideal in p(S)w.  Hence K(p(S)w) C{V}.  Since

p(S)i°  is compact, K(p(S)u) is nonempty [3, Theorem 2.3, p. 66].  Hence

K(P(sr) = m.

3. Multiplicative invariant means on  W(S). Since  W(S) is an algebra under

pointwise multiplication [3, Theorem 5.3, p. 82], we can also consider multipli-

cative invariant means  (MLIM) on  W(S) (a mean m on  W(S) is multiplica-

tive if m(fg) = m(f)m(g) for any fige W(S)). The natural compact topological

semigroup to work with is S", the weakly almost periodic compactification of 5

[3, p. 82]. The results in §2 all have their analogues in this new situation.  In

particular we state the following theorem.

Theorem 3.1. Let S be a topological semigroup with identity; then the

following statements are equivalent.

(1) W(S) has a multiplicative left (right) invariant mean.

(2) 5W has a right (left) zero.

(3) C(SW) has a multiplicative left (right) invariant mean.

The proof of Theorem 3.1 is similar to that of Theorem 2.1 (and Theorem

2.3) using the fact that the evaluation functional {ms: s G S} is weak* dense

in the set of multiplicative means on  W(S) where ms is defined by ms(f) =

f(s), f e W(S), (see Mitchell [15, p. 119]) and the fact that each operator   V

in Sw  is multiplicative (as a result, V* maps the set of multiplicative means

in  W(S)* into itself).

It is interesting to observe that the equivalence of (1) and (3) can also be

proved by applying the algebra isomorphism 7: C(SW) —*■ W(S) of [3,

Theorem 13]   (where it is denoted by R) and using [3, Lemma 2.10]   for the

continuous homomorphism r. S —*■ S"  such that r(s) = rs.

However, it should be noted that since 5W  is not convex, the existence

of a  LIM on  C(SW) is not enough to ensure the existence of a multiplicative

LIM on C(S").



96 J. C. S. WONG

4. The convex semigroup p(S)03. In this section, we shall study in detail

the semigroup p(S)w.  Since p(S)w  is compact and convex, we already know a

lot about its structure.  For example, the kernel K(p(S)i0) is nonempty and con-

sists entirely of projections [3, Theorem 7.2].  Let Su  be the weakly almost

periodic compactification of S and r: S —*■ Sw  be defined by r(s) = rs and

7: C(SLJ) —*■ W(S) the induced isomorphism [3, Theorem 5.31] such that 7h =

h o r, h G C(S"). 7 is in fact an algebra isomorphism and isometry.  For the

semigroup p(S)w, we cannot expect an isomorphism between  C(p(S)") and

W(S) because in general the semigroup p(S)0J  is too "large" for this to happen.

While S is dense in 5W  (which makes 7 isometric, hence injective), p(S)œ  is

only the closed convex hull of S (more precisely of {rs: s E S}) and hence of

Su.  However, W(S) is always a homomorphic image of C(p(S)w) as indicated

in the following theorem.

Theorem 4.1. Let i: Sw -*• p(S)tJ  be the inclusion map and 77: S —►

p(S)w  the composition  i ° r.   The induced map t? : C(p(S)w) -* C(S) defined

by rjF = F ° 77, F E C(p(S)™) is a continuous algebra homomorphism of

C(p(S)w) onto W(S). The kernel Ker rf of r} is precisely the ideal of all F

in  CQjfê)03) which vanish on Su  and rf induces an algebra isomorphism 77

of C(p(S)w )/Ker 77 onto   W(S) such that 77 = tj o jr where it is the natural

surjection of C(p(S)") onto  C(p(S)w)IKer 7?.

S -A. s" -*•» p(S)"

COKS)" )/Ker r7

Proof. It is easy to see that 77 is a continuous homomorphism.  Since

■% = C¿~r =7 °~,n maps C(p(S)w) into  W(S).  Let / G W(S) and define

F by F(U) = me(Uf) = Uf(e), then F E C(p(S)") and 77F = F o 77 = /

since F o n(s) = F(rs) = (rsfje) = f(s). Therefore  r?  maps C(p(S)w) onto

W(S).  Obviously 77  is an algebra homomorphism and  Ker 77  is an ideal.  Now

F E Ker 77  iff 77T = F o 77 = 0 iff F(rs) = 0 VsGS or equivalent^ F = 0

W(S) ¿- C(S") •£ C(p(S)")
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on S™  since {rs: s G S} is dense in S". The last statement is trivial (in view

of the Open Mapping Theorem).

Now let m(p(S)) be the space of all bounded functions on p(S) with

supremum norm.  For each / G W(S), define a function xf G m(p(S)) by

r/(0) = (/, 0) = 2S f(s)6(s), 0 G p(5).  Let  W be the (norm) closed subalgebra

of m(p(S)) generated by  r/, /G W(S).  In [15, §5] Mitchell showed that the

algebra  W is translation invariant and that   W has a multiplicative left invariant

mean iff  W(S) has a left invariant mean.  In what follows, we shall unify this

result of Mitchell's with the results in [3, §4] and in the present paper by show-

ing that  W is actually isomorphic to the algebra  CQjfê)0*).

As in [3, §4], if 5j is a weakly almost periodic semigroup of operators in

B, CB(5j) is defined to be the (norm) closed subalgebra of C(St) generated by

the constants and all functions of the form:

F(U) = (Ux, x*),   xeB,   x* e B*.

We shall be mainly concerned with the special case when B = W(S) and

Si = {Te: 6 e p(S)}.  Let /: 5, -*• St = p(S)"  be the inclusion map (closure

taken in WO topology of  B(W(S))). By [3, Lemma 4.8, p. 77], the induced

map T- COKS)") "** C^i) maps the algebra C(p(S)w) isomorphically and

isometrically onto  Cß(5j) = CW/S)(iSx).

Observe that p(S) is a topological semigroup when p(S) is endowed with

the weak topology of /,(5).  Moreover if we define  T: p(S) -*■ St   by  7/(0) =

Td, 9 e p(S), then  T is a continuous homomorphism with respect to the weak

topology of /j(S) and the weak operator topology of  B(W(S)). Continuity

follows from the fact that if 8a -* 6  weakly in l^S), then for any ß G W(S)*,

f e W(S),

KTeJ) = ß(Z Oa(s)rj) = £ da(s)ß(rsf) -> £ d(s)ß(rsf) = ß(Tgf)
\s /        s s

since s —► ß(rsf) is a bounded function on S (actually it is even a function in

W(S)).

Theorem 4.2. Let T: C(Sj) —► C(p(S)) be the induced map such that

TF = Fo T, FeC(S,), te  T maps the algebra C^^Sj) isomorphically

and isometrically onto   W.

Proof. Observe that for each / G W(S), rf is a continuous function on

p(S) (with weak topology of /i(5)). Therefore   W C C(p(S)).  Clearly  f is an

algebra homomorphism. Since T is onto, T is an isometry. In fact
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lirFII = sup{\TF(d)\: 0 G p(S)} = sup{\F(Td)\: 0 G p(S)}

= sup{|F(7e)|: Te G5J = ||F||.

Suppose F is a function in  C(Sy)  of the form F(U) = p(Uf), p E W(S)*,

f E W(S). We have for any 0 G p(S),

TF(6) - F(Te) = p(Tef) = £ 6(s)p(rsf) - 0¿r/, 0) = r(prf)(d)
s

where /¿,/(s) = p(rj) and /¿r/ G W(S) by [3, Lemma 5.13, p. 87].  Hence

TF = r(prf) E W or F E T    (W) which is a norm closed subalgebra of

C(Sl ) containing the constants. (W always contains the constants.) Therefore

cw(S)(si) c T~l(W). On the other hand, for any / G W(S), we can define F

in  CÇSj) by F(t/) = me(Uf) = Uf(e), U E 5t. Then  7>(0) = F(Te) =

Tef(e) = (/, 0) = t/(0) or  Tf=TFE f^^S^) which is a norm closed

subalgebra of C(p(S)).  Consequently  W C f^^S^). This implies that  W

is exactly the image of CM,(iS)(,S'1) under  T and the proof is complete.

Since  C(p(S)u) is isometrically isomorphic to  C^/^iSi) under J, it is

also isometrically isomorphic to   W under  T ° J. Moreover, we have

Corollary 4.3. Let p(S) have the weak topology and St = {Td:d E p(S)};

then the following statements are equivalent.

(1) C(p(5)") has a (multiplicative) left invariant mean.

(2) C^/^JSj) has a (multiplicative) left invariant mean.

(3) W has a (multiplicative) left invariant mean.

Proof.  For left invariant means, (1) and (2) are equivalent by [3, Lemma

2.10] applied to the continuous homomorphism /: St —*■ p(S)0}. (2) and (3)

are equivalent because the map  T is onto and  T "commutes" with left transla-

tions (lg o t = T o lTtft) and so we can use the arguments of [3, Lemma 2.10]

(although Sj   is not compact).

For multiplicative left invariant means, the same proof can be used because

both 7 and  T are algebra homomorphisms (i.e. multiplicative).

Remark.  It follows that all possible six combination statements in the

corollary are equivalent by Theorem 2.1 ((3) *=> (4)) which together with this

corollary yield Mitchell's theorem [15, Theorem 3, p. 125].

5.  The semigroup of means on  W(S).  Let m(S) be the Banach space of

all bounded functions on S with supremum norm and X a linear sub space of

m(S) containing the constants such that (1) lsf E X for any s G S, f E X

and  (2) m¡f G X for any / G X, m G X* where m,f(s) = m(lsf), s E S.

m E X* is called a mean on X iff ||m|| = m(í) = 1.
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If m, n e X*, define the Arens product m © n by  (m © «)/ =

m(n¡f) f e X.  X* becomes an algebra with Arens multiplication.  It is easy to

see that if m, n are means on X, so is m © «.   Therefore the set of means Af

on X is a semigroup under Arens product (see [2, §6] for a detailed description

of the special case X = m(S)).  It is clear that the Arens product m © «  is con-

tinuous in the first variable with respect to the weak* topology of X*.  However,

the product is not continuous in the second variable with respect to the weak*

topology of X* even if we restrict ourselves to means on X.  Thus Af with

the weak* topology of X* is in general not a topological semigroup.  (See remark

after Lemma 3 in [2, §6].)

When X = W(S), the situation is more satisfactory as the following theorem

shows.

Theorem. The set M of means in  W(S)* is a compact convex semigroup

under Arens product and the weak* topology of W(S)*.  The map ty: W(S)*

—* B(W(S))  such that   ty(m) =  my   (as in Theorem 2.4)  is an  isometric  iso-

morphism of the Banach algebra  W(S)* (with Arens product) into   B(W(S)).

Moreover, the restriction (also denoted by *) of V to M is an affine

homeomorphism of M with weak* topology of W(S)* onto p(S)0J  with weak

operator topology of B(W(S)).  The induced map $: C(p(S)w) -*■ C(Af) is an

isometric isomorphism between the algebras  C(p(S)") and C(M) which com-

mutes with left translations (lm o \J/ = ^ o l^,my, m G Af).

Proof. Ai is clearly a convex semigroup under Arens product and is weak*

compact in  W(S)*. We first show that the product m © « is continuous in the

second variable with respect to the weak* topology of WfS)*.  Let m, na, n G Af

and assume na —*■ « weak* in  W(S)*, then (n^f -+ n¡f pointwise on S for

any / G W(S).  Now (na)¡f, n¡f all belong to the weakly compact set

w CLCO {rsf: s G S} on which the weak topology  (of  W(S)) and the pointwise

topology coincide (see the proof of Theorem 2.4).  Hence  (na)¡f -*" n¡f weakly

in  W(S) and  (m © na)f = m((na)¡f) -*■ m(n¡f) = (m © «)/ for any / G W(S)

or m © «a -+ m © « weak* in  W(S)*. Therefore Af is a compact topologi-

cal semigroup under Arens product and weak* topology of W(S)*.

Clearly ||¥(/n)|| = ||m,|| < ||m||.  In fact ||*(m)|| = ||m||, since

»mil = sup{|/«(/)|: 11/11 - 1} < npfliR,/!: 11/11 = 1} = \\m,\\

as S contains identity.  Moreover, >P  is an algebra homomorphism since

*(m © «) = (m © n)¡ = m¡ ° n¡ = *¡f(m) ° y(n) (essentially because ls and

m¡ commute).  Therefore ty is an isomorphism into.

Let m be any mean on  W(S), then there is a net 0a  in p(S) such that

6„ -*■ m weak* in W(S)*. Then T0 f —*■ m,f pointwise on 5 and hence
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weakly in  W(S) for any / G W(S). (Because both  Tg f and mtf belong to

w Cl£0{rsf: s E S}.) Hence  Te   -* m¡ (WO) and m, G p(S)w.  Conversely

if T E p(S)u, then  Ta   -* T (WO) for some net 0„ G p(S).  Let  m be any
"ct

weak* cluster point of 6a  in  R^S)*, then m  is a mean on  W(S) and it is

easy to verify that m¡ = T.   Consequently * maps Af onto p(S)to. That *

is a homeomorphism with respect to the appropriate topologies can be proved by

using the same arguments as in the proof of Theorem 2.4. The last statement of

the theorem is now trivial.

6. Applications to fixed point theorems.  Let K be a compact convex sub-

set of a separated locally convex space E with continuous dual E*. An affine

action of S on K is a map   S xK —> K denoted by (s, x) —*■ sx, s E S,

x G K such that

(1) For each s E S, the map x —*■ sx is an affine mapping of K into

itself.

(2) (st)x = s(tx) for any s, t E S, x E K.

The action is called separately (jointly) continuous when the map S x K

—* K is separately (jointly) continuous.  In this section, we shall consider mainly

separately continuous actions.   Let AF(K)  denote the space of all affine continu-

ous functions on K, then AF(K) is a norm closed linear subspace of C(K) and

AF(K) separates points of K (see Argabright [1] or Phelps [18]). We shall

need the following lemma which is also of independent interest.

Lemma 6.1. The functions in AF(K) determine the topology of K.   That

is, if xa, x E K and h(xa) -*■ h(x) for any h E AF(K), then xa —> x in K.

Proof. For any x* E E*, the restriction of x* to K is in AF(K).

Hence x*(xa) -* x*(x) and xa —>• jc weakly in K which is compact.  There-

fore xa —•> x in K.

For each x E K, h E AF(K), define a function  Txh on S by Txh(s) =

h(sx).  By separate continuity of the action, Txh E C(S). We say that the action

is right uniformly continuous (weakly right uniformly continuous) iff for each

h E AF(K), the map x —*■ Txh is continuous from K into  C(S) when  C(S)

has the norm (weak) topology.

Lemma 6.2 Let Sx K —*■ K be a separately continuous affine action of

S on K which is right uniformly continuous (weakly right uniformly continuous),

then  TxhE A(S) (W(S)) for any x E K, h G AF(K).

Proof. The assertion involving right uniformly continuous actions is due to

A. Lau [12, proof of Lemma 3.1]. We reproduce the proof here for completeness.
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In any case  Txh G C(S). For any s G S, we have

rs(Txh) = TsxhC {Tyh: y G 0(x)-}

where  0(x)~ = [sx: s G S}~ which is compact.

Consequently, if the given action is right uniformly continuous (weakly

right uniformly continuous), then the set {T h: y G 0(x)~*\ being the norm

(weakly) continuous image of a compact set  0(x)~ is norm (weakly) compact

in C(S).  Hence  Txh G A(S) (W(S)).

As in Lau [11], an affine action Sx K —*■ K is called equicontinuous if

for each y e K and P G U  where  Ü  is the unique uniformity which deter-

mines the topology-of K (Kelley [11, p. 197]), there is some  Q G (J  such that

(sx, sy) e P for any s G S whenever (x, y) G Q.  The next result exhibits

some relations between various types of continuity conditions on affine actions.

Lemma 6.3. Let S x K —*■ K be a separately continuous affine action of

S on K, then

(1) If the action is equicontinuous, it is right uniformly continuous.

(2) If the action is right uniformly continuous, it is jointly continuous.

Proof. The first assertion is due to A. Lau [12, proof of Lemma 3.1].  For

convenience of the readers, we give the proof here.  Let « G AF(K). Assume

that the action is equicontinuous.  By compactness of K, h  is uniformly con-

tinuous (Kelley [11, p. 198]).  For any z G K, e > 0, there is some P G (J

where  U  is the unique uniformity which determines the topology of K such

that   \h(x) - h(y)\ < e whenever (x, y) G P.  By equicontinuity, there is some

Q e U  such that (sx, sz) G P for any s G S whenever (x, z) G Q.   Let

y G Q[z] = {y G K: (y, z) G Q}  which is a neighborhood of z  in K, then

\\Tvh - T2h\\ = sup \h(sy) - h(sz)\ < e.

In other words, the action is right uniformly continuous. This established

(1).
To prove (2), assume that the action is right uniformly continuous.  Let

sa —*■ s in S and ya —► y in K.   For each « G AF(K) and  e > 0, we

can find some a0 such that if a > a0, then

sup \h(tya) - h(ty)\ < Vie   and    |«(sa;>) - h(sy)\ < He

by right uniform continuity and separate continuity.  Hence if a > a0

\Ksaya) - h(sy)\ < \h(saya) - h(say)\ + \h(say) - h(sy)\ < e.
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In other words, h(saya) -» h(sy) Vh E AF(K).  By Lemma 6.1, saya

—*■ sy in K.   This completes the proof.

Consider now the convex semigroup p(5)w.  An affine action p(S)u x K

-*■ K (denoted by  (U, x) -*■ Ux) of p(S)"   on K is said to be convex if,

for any  U, V G p(S)w, a, ß > 0, a + ß = 1  and x E K,

(aU + ßV)x = aUx + ßVx.

This is the same as saying that for each x E K, the map  U —* Ux is an

affine mapping of p(S)L0  into K.

The next two theorems show that there is a natural relation between affine

actions of S and convex affine actions of p(S)LJ.  (Examples will be given later.)

Theorem 6.4. Let   S x K —* K be a separately continuous and weakly

right uniformly continuous affine action of S on K, then there is a unique

separately continuous and weakly right uniformly continuous convex affine action

p(S)w x K -*K of p(S)w  on K such that r¡ ° T¡? = Tx for any xEK

where 77: C(p(S)LJ) -* W(S) is the homomorphism defined in Theorem 4.1 and

T^h(U) m h(Ux), h E AF(K), U E p(S)" and x E K.   (That is  T? arises

from the action p(S)w x K -*■ K as Tx from Sx K -* K.)

Moreover if the action S x K —> K is right uniformly continuous, so is

the induced action p(S)w x K -* K.

Proof. Since 5 x K —> K is weakly right uniformly continuous, by

Lemma 6.2, Tx h E W(S) for any h E AF(K), x E K.   Let  U G p(S)w',

xEK.  There is a net 6a E p(S) such that  Te   -* U (WO).  Hence

Te (Txh) —* U(Txh) weakly hence pointwise on S.   Consider the net ya =

2S da(s)sx G K which is compact. We can assume ya (or some subnet) -*

x0 EK.   Let  t E S, then  Te (Txh)(t) *+ U(Txh)(t). Using the facts that (1)

x —*■ tx is an affine transformation on K, (2) h is an affine continuous func-

tion on K and (3) the action S x K -+ K is separately continuous, we have

Te (Txh)(t) = £ ea(s)rs(Txh)(t) = Z ea(s)h(tsx) = h(tya) -*• h(tx0)
s s

and

• Te (Txh)(e) = Z da(S)h(sx) = h(ya) -* h(x0),     h E AF(K).
s

(Notice that the second convergence is not obtained from the first by formally

putting t = e because we do not assume that x —> ex is the identity transfor-

mation of K.   However ex0 = x0   as a consequence since AF(K) separates

points.)
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Therefore for any h G AF(K), U(Txh) = Tx h  and  U(Txh)(e) = h(x0).

Define a map p(S)u x K'■-* K by setting  Ux — x0  where x0  is the

unique point in # determined by h(xQ) = U(Txh)(e), h G AF(K). Then

(*) U(Txh) = TUxh   and    U(Txh)(e) = h(Ux).

Using these equations and the fact that AF(K) separates points of K, it is

straightforward to verify that if U, V G p(S)w', x, 7 G Ä", a, (3 > 0, a + ß = 1,

then

U(ax + ßy) = aUx + ßUy,      (UV)x = U(Vx)

and

(aU + ßV)x = aUx + ßVx.

Hence the map p(S)°* x K—+K such that (U,x) -*• I/x is indeed a convex

affine action of p(S)w  on AT.

Let  Ua-* U (WO) in p(S)", then for any « G ¿Fitf), h(Uax) =

Ua(Txh)(e) -* U(Txh)(e) = h(Ux) and  Uax -» Ux by Lemma 6.1.

If xa -*■ x in K, then  Tx h -* Txh weakly for any h G AF(£") by

weakly right uniform continuity of S x K —*■ K.   Hence h(Uxa) = U(T~ h)(e)

-*■ U(Txh)(e) = h(Ux), for any h G ^F(AT).  By Lemma 6.1 again, Uxa -* Ux.

Consequently the action p(S)w x K —> K defined above is separately con-

tinuous. Let T£h e <Xp(S)") be defined by  T? h(U) = h(Ux), UeP(S)0J,

xeK and he AF(K), then  T?h(U) = U(Txh)(e) (from equations (*)).  Now

if 77: C(p(S)w) -*■ W(S) is the homomorphism defined in Theorem 4.1, then

for any s G 5, « G AF(K),

V(T?h)(s) = (T?h)(n(s)) = (T?h)(rs) = h(rsx) = rs(Txh\e) = Txh(s) = h(sx).

Therefore rj ° Tx   = Tx  for any x G K, which is equivalent to the con-

dition that rsx = sx, s G S, x e K.

Either of these two conditions determines the action p(S)w x K —* K

uniquely.  For if (U, x) —*■ U'X is any separately continuous convex affine

action of p(S)0J  on K such that r. • x = sx, s G 5, x e K, then  Tñ   • x
a

—* U'X for some net 0„ G p(S) such that  Tg   -* U (WO) by separate
Oí

continuity.  By convexity

Te   ** = Z *«(0V* = Z *«(*Xv*) = Z *«(«>* - 7a-
s s s
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Since ya  (or some subnet of ya) -* Ux we have  U'X = i/x for any  U G

píS)"  and x E K.  This establishes the uniqueness.

To show that the action p(S)w x K —*■ K is weakly right uniformly con-

tinuous, let h E AF(K) be fixed.  For each x E K

\\T?h\\ = sup \T?h(U)\ = sap\h(Ux)\ = swp\U(Txh)(e)\

< sup||f/(rxA)|| < H^AH    (since  \\U\\ < 1)
u

= sap\h(sx)\ < sup IAO0I;
s y^K

therefore {T^h-.xEK} is a norm bounded subset of C(p(S)w).  Consider the

map x -* Tjfh of K into  C(p(S)").  Since the action 5 x K -> K is

weakly right uniformly continuous and

T?ah(U) = U(TxJi)(e) -* ü(r,AXe) - ^"ACü)

if U E p(S) and xa —* x in K,it is clear that the same map is continuous

when C(p(S)0J) has the pointwise topology.  Therefore {T?h: x E K} is

pointwise compact and hence weakly compact in  C(p(S)tJ) by Grothendieck's

Theorem (recall that p(S)w  is compact).  As a result the map x —*■ Tj? h  is

weakly continuous which shows that the induced action p(S)w x K —*■ K is

weakly right uniformly continuous.

Finally if S x K —* K is right uniformly continuous, so is the induced

action p(S)w x K —*■ K because

\\T?h - T?m - sup \U(TXh)(e) - U(Tyh)(e)\

< sup\\U(Txh - Tyh)\\ < \\Txh - Tyh\\.

This completes the proof.

Remark 6.5. It is easy to see that a point x E K is a common fixed

point of action S x K —» K (i.e. sx = x Vs G 5) iff it is a common fixed

point of the induced action p(S)" x K —*■ K.

We next show that every "reasonable" action of p(S)0J  on K is induced

by an action of S on K.

Theorem 6.6. Let p(S)w x K —*■ K be a separately continuous weakly

right uniformly continuous convex affine action of p(5)w  on K, then there is a

(necessarily unique) separately continuous weakly right uniformly continuous

affine action S x K —*■ K of S on K which induces p(S)w x K —> K. More-

over if the given action of p(S)0J  is right uniformly continuous, so is S x K -* K.
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Proof. The proof is much simpler than that of Theorem 6.4. Given such

an action p(S)u x K —> K, we define S x K —*■ K by sx = r¡(s)x where  7?

is the homomorphism defined in Theorem 4.1. It is straightforward to verify that

this is a separately continuous affine action of S on K such that  77 ° Tx h =

7^«  for any x G K, h G AF(K). Consider the homomorphism if: q>(S)")

—*■ W(S) of Theorem 4.1. 77  is norm continuous hence weakly continuous. Con-

sequently if xa -> x in K, then  Tx h = 77TJ0« -»• rjT^h = Txh weakly

in  W(S) since the action p(S)u x K —> K is weakly right uniformly continuous.

Hence the action S x K —*■ K defined above is weakly right uniformly continuous.

It is obvious that this action induces p(S)w x K —*■ K (in the sense of Theorem

6.4). The last statement follows from the fact that  77  is norm continuous.

Corollary 6.7. Let K = p(S)w, define the maps S x p(S)" -* p(S)w

and p(S)U3 x p(S)" -> p(S)"  by  (s, V) -*■ rsV and (U, V) -*■ UV where

ses, U, Ve p(S)u, then S x p(S)w -> p(S)w  is a separately continuous

and weakly right uniformly continuous affine action of S which induces

p(S)"x p(S)w -*p(S)".

Proof.  By Theorem 2.1, p(S)™  with WO  topology is-a compact convex

topological semigroup.  It is clear that map p(5)w x p(S)w —> p(S)w  where

(U, V) —*■ UV is a separately continuous convex affine action of p(S)w  on

itself.  For each « G AF(K) C C(p(S)w) - W(p(S)"), T?h(U) = h(UV) =

rvh(U) or  T?h = rvh.   By [3, Theorem 2.7], the map   V-+T¡?h of p(S)0}

into  W(p(S)u) is weakly continuous.  It follows that this action of p(S)w  is

weakly right uniformly continuous.  By the preceding theorem, the map S x p(S)0J

—> p(S)w  where  (s, V) —*■ r.V is a separately continuous and right uniformly

continuous affine action of S which induces the action of p(S)u>.

Remark 6.8.  Corollary 6.7 has an analogue for right uniformly continuous

actions.  Let p(Sy*  be the strong operator closure of {Te : 0 G p(S)} in

B(A(S)) where  Tef = 2S d(s)rsf f G A(S), the space of all (strongly) almost

periodic functions on 5.  p(S)f* is a compact convex topological semigroup (with

jointly continuous multiplication) with the strong operator topology of  8(4(5)).

The actions S x p(S)a -* p(Sf  where  (s, V) -*■ rsV and p(S)a x p(S)a -►

p(S)a where  (U, V) -* UV are jointly continuous and right uniformly con-

tinuous affine actions on S and p(S)a  respectively and the first action induces

the second. We omit the details.

Theorem 6.9. Let S be a topological semigroup with identity, then   W(S)

has a left invariant mean iff S has the following fixed point property:
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(WF)        For any separately continuous and weakly right uniformly

continuous affine action SxK-+KofSona com-

pact convex subset K of a separated locally convex space,

K contains a common fixed point of S.

A(S) has a left invariant mean iff S has the fixed point property:

(SF)        For any separately continuous and right uniformly continuous

affine action SxK-+ K of S on a compact convex subset K of

a separated locally convex space, K contains a common fixed

point of S.

Proof. Assume that  W(S) (A(S)) has a LIM.  Let S x K -» K be a

separately continuous and weakly right uniformly continuous (right uniformly

continuous) affine action of S on a convex compacta K.   For each h E AF(K),

xEK, Txh E W(S) (A(S)) by Lemma 6.2. Therefore the action S x K -*■ K

is an ^-representation of the pair S, W(S) (S, A(S)) in the sense of [1, §2].

By [1, Theorem 1] the action Sx K —*■ K must have a common fixed point in K.

Conversely, let S have fixed point property (WF) ((SF)).  Consider the

affine action S x p(S)w -> p(S)u  where (s, V) -* rsV (S x p(Sf -* p(S)a

where  (s, V) —*■ rsV).  By Corollary 6.7 (Remark 6.8) this action is separately

continuous and weakly right uniformly continuous (right uniformly continuous).

Hence it must have a common fixed point which is also a common fixed point of

the induced action p(S)w x p(S)" -* p(S)w  where  (U, V) -*■ UV (p(Sy x

p(S)a -*■ p(S)a where  (U, V) -* UV).  Such a fixed point is a right zero of

p(S)™ (p(S)a) which gives rise to a left invariant mean on  W(S) (A(S)) by

Theorem 2.1 (its analogue for .4(5)).

In Lau [12, Theorem 3.4], it was proved that A(S) has a LIM iff S has

the following fixed point property

(F) For any separately continuous equicontinuous affine action

of S on a compact convex subset K of a separated locally

convex space, K has a common fixed point for S.

Since every equicontinuous (and separately continuous) affine action is

always right uniformly continuous (Lemma 6.3), it follows from Theorem 6.9

that if A(S) has a LIM, then S has fixed point property (F).  Hence Theorem

6.9 extends [12, Theorem 3.4, necessity condition]. This is only a partial exten-

sion since seimgroups in [12] need not have identity. However the two fixed point

properties (F) and (SF) are in fact equivalent.

For groups, Theorem 6.9 sharpens the famous Kakutani's fixed point

theorem [4, p. 457].
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Now let  LUC (S) (WLUCÍ5)) be the space of all left uniformly continuous

(weakly left uniformly continuous) functions on S. That is / G LUC (S) (WLUC(S))

iff / G C(S) and the map s —► lsf of S into  C(S) is norm (weakly) con-

tinuous (see [16, §§3 and 4]). Mitchell proved in [16] that LUCÍS) (WLUC(5))

has a  LIM iff S has fixed point property  (P2) (respectively (P4)) defined

below.

(P,) For any jointly continuous affine action of S on a compact

convex subset K of a separated locally convex space, K has

a common fixed point for S.

(P4)      For any separately continuous affine action of 5 on a compact

convex subset K of a separated locally convex space, K has a

common fixed point for S.

By [3, Theorem 2.7, left-handed version], A(S) C LUCiS) and   W(S) C

WLUC(5).  Also each right uniformly continuous separately continuous affine

action is jointly continuous (Lemma 6.3).  As a result (P2) =*■ (SF) and clearly

(P4) ■* (WF). Therefore Theorem 6.9 fits in nicely into the pattern of results in

[16, Theorem 3.2 and Theorem 4.4]. (Mitchell also introduced fixed point prop-

erties (Pj) and  (P3) in [16] arising from the study of MLIM.)

It should be remarked that we can also consider multiplicative left invariant

means on  W(S) (A(S)) and characterise their existence in terms of fixed point

properties of similar types of continuous actions (no longer affine) on a compact

Hausdorff space.  Naturally we have to employ the weakly almost periodic com-

pactification Sw  (respectively, the almost periodic compactification Sa). The

whole business is no more than a routine carry over. We omit the details.

7. Conclusion and comments. As a summary, we gather a list of character-

isations of the existence of a left invariant mean on  W(S) in terms of the semi-

groups p(S),  5X ={r9: 0 G p(S)}, 5", p(S)w  and fixed point properties.

Those concerning Su  are actually due to deLeeuw and Glicksberg [3].

Theorem 7.1. Let S be a topological semigroup with identity, the follow-

ing conditions are all equivalent.

(1) W(S) has a LIM.

(2) CW(5)(S,.) has a MLIM or LIM.

(3) W has a MLIM or LIM.

(4) C(p(S)") has a MLIM or LIM.

(5) p(S)w  has a unique minimal right ideal.
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(6) EXE2 = E2 for any Ex, E2 E K(p(S)w).

(7) p(S)0}  has a right zero.

(8) C(S") has a LIM.

(9) 5W  has a unique minimal right ideal

(10) E1E2 = E2 for any projections E1,E2 G K(SW).

(11) S has fixed point property (WF).

(12) p(S)w  has fixed point property  (WF).

Proof. (2), (3) and (4) are equivalent by Corollary 4.3.  (1), (4) and (7)

are equivalent by Theorem 2.1. (2), (5) and (6) are equivalent by [3, Theorem

4.10]   applied to the weakly almost periodic semigroup of operators Sl = {Te :

0 G p(S)}  in B = W(S) and the fact that K(p(S)u) consists entirely of pro-

jections [3, Theorem 7.2].  Also (8) and (9) are equivalent by [3, Lemma 2.8]

while (9) and (10) are equivalent by [3, Corollary 2.4].  By [3, Theorem 5.3],

(1) <=> (8).  Finally (1), (11) and (12) are equivalent by Theorem 6.9 applied to

both S and p(S)w  (recall that C(p(.S)") = W(p(S)")).

Let 5 be a topological semigroup (with identity) such that m(S) has a

LIM, then the space m(p(S)) need not have a MLIM   [15, p. 126].  In fact it

is not clear whether  C(p(S)) can have a MLIM (p(S) regarded as having the

weak topology of /j(5)).  However, in view of Theorem 2.1, C(p(5')c0) (which

is isomorphic to the subalgebra  W of C(p(S))) does have a MLIM and it is

enough to assume that  W(S) (instead of m(S)) has a  LIM.  In this sense, the

compact semigroup p(5)w  is a more suitable tool than p(S), in studying the

algebra  W(S) as far as invariant means are concerned.
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