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ABSTRACT.   The object of this paper is to show that there exists a poly-

nomial Pn(x) of degree  < 2n — 1   which interpolates a given function exactly

at the zeros of nth  Tchebycheff polynomial and for which   \\f — Pn\\ <

Ckwk(iln> f) where   wfc(l/n, /) is the modulus of continuity of / of fcth

order.

1. Introduction.  The classical theorems of D. Jackson extend the Weierstrass

approximation theorem by giving quantitative information on the degree of ap-

proximation to a continuous function in terms of its smoothness. Specifically,

Jackson proved

Theorem 1.   Let f(x) be continuous for  \x\ < 1 and have modulus of

continuity w(t).  Then there exists a polynomial P(x) of degree n at most

suchthat   \f(x)-P(x)\ <Aw(l/n) for   \x\ < 1, where A is a positive numer-

ical constant.

In 1951 S. B. Steckin [3] made an important generalization of the Jackson

theorem.

Theorem 2 (S. B. Steckin).   Let k be a positive integer; then there exists

a positive constant Ck such that for every fE C[-\, +1]   we can find an

algebraic polynomial Pn(x) of degree n so that

(1.1) Hf-Pn\\<Ckwk(l/n,f),

where wk(l/n, f) is the modulus of continuity of f(x) of kth order.

During personal conversation in Poznan, S. B. Steckin raised the following

Presented to the Society, April 20, 1973; received by the editors March 23, 1973 and,

in revised form, December 7, 1973.

AMS (MOS) subject classifications (1970).   Primary 41A0S, 41A25.

Key words and phrases.   Polynomial approximation, modulus of continuity, Hermite

interpolation, typical means, Tchebycheff nodes.

Copyright © 1974, American Mathematical Society
419



420 A. K. VARMA

question concerning Theorem 2:  Does there exist an algebraic polynomial Pn(x)

of degree  Cn (C> 1) interpolating at n  points and which satisfies (1.1)?  The

case k = 1   was previously raised by P. L. Butzer [1] and solved consequently

by G. Freud [2]. The object of this paper is to prove that an algebraic inter-

polatory polynomial satisfying (1.1) does exist. The approach we have adapted

is to modify the classical Hermite-Feje'r interpolation polynomials on the Tchebycheff

nodes.  Moreover the degree of the new interpolation process is still  2n - 1.  It

may be interesting to point out that recently the author [5], [6] has solved the

problem of obtaining a trigonometric polynomial which interpolates a given 2rt

periodic continuous function at xk = 2kir/n, k = 0, 1, •••,» — 1, and for

which (1.1) is also true.

2. It is well known that the Hermite-Feje'r interpolation polynomial of de-

gree < 2n - 1  is defined by

(2.1) H„ \f, x] = ¿ f(xkn)(l - xxkn{-~^\

where

(2.2) xkn = cos((2Â; - 1>/2h),     k = 1, 2, • • •, n,

are the zeros of Tchebycheff polynomial   Tn(x) = cos (n arc cos x).  Let us ex-

press Hn\f, x)   as a linear combination of T0(x),  Tx(x), • • •, T2n_x (x).  For

this purpose we define

(2-3) C0(f)=l-tf(xkn),      Cj(f) = 2-±f(xkn)Tj(xkn)

for / = 1, 2, • • •, 2n - 1.  A simple computation shows that

*.*.**%'wfe¿)m
This representation of Hn \f, x]   suggests the definition

(2.4) Rn(f) - K \f> x] = jfj   Cj(jyXjMTj(x),

where M is an arbitrary fixed positive integer and

(2.5) <*om ■ 1.   %m + a2n-j,M - L     7 = 1, 2, • • •, «,   ajM = 0,   j> 2n.

A simple example of ay- M satisfying (2.5) is given by

%M = (2» -ffl((2n -jT +/M),     / = 0, 1, • • •, 2« - 1,
(2.6)

= 0, / > 2n.
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For our purpose we make further restrictions on cl¡m. We denote

Hm = 0 - «amVA     7 = 1,2, — , 2/1,
(2.7)

= 0, / = 0.
Let us suppose that

(2.8) \Hf+1M - ^m1 = 0(l/nM+1),     j = 1, • • •, 2n - 1,

and

(2-9>    I^+i^-2m/,m+^-i^I=0(1/«m+2),     /-l,...,2n-J.

We also require that

(2-10) 1-^ = 0(1//^),

(2.11) \oij+x>M-2ajiM+a._iM\=o(\ln2),     j = 1, •. •, 2w - 1.

We now state our main theorem,

Theorem 3. Let f(x) be continuous for   \x\ < 1.  Then Rn(f) as de-

fined by (2.4) and (2.5) saf/s/y

(2.12) Rn \f, Xin] = f(xin),      i - 1, 2, • • •, n,

and
■

(2.13) Rn[l,x] = l.

Moreover under the assumptions (2.7)-{2.11) we have (f^ polynomial of 'degree <m-l)

(2.14) \\Rn(f) -/II < C^.^l/n.A

It is easy to verify that the choice of a- M given by (2.6) satisfies all the

requirements needed in Theorem 3.

Proof of Theorem 3. First we will prove that Rn(f) as defined by

(2.4) and (2.5) is an interpolation polynomial in x of degree < 2« - 1   satisfying

(2.12).  For this purpose we express

(3.1) Rn\f, x] =j:  Cj(f)ajtMTj(x)+2j"t'i (fflqMTfit).

In view of the fact that

(3.2) T2n_j(xin) = -Tj(xin),      C2n_j(f) = -Cj(f),     /=1, ••-,",

we obtain, on using (2.5) and (3.1),

»ti
RnV- Xin\ =C0(f)+Z   Cj(f)Tj(xin)

/=1
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From the definition of C¡(f) as given in (2.3) it follows that

C0(f) + "Z  Cj(f)Tj(xin) = f(xin),      i = l,...,«.

Therefore we obtain Rn\f, xin] = f(xin), i = 1, • • •, n. This proves (2.12).

(2.13) is an immediate consequence of (2.3). For if f(x) = 1 then C0(f)

= 1,  Cj(f) = 0, / = 1, « • •, 2« - 1.
Next we hope to prove the existence of a positive constant L independent

of «  and x such that

(3.3) ll*„|y]ll</4fll.

To prove this we need some preliminary notation and estimates. We denote the

Fejér kernel by

tj(6)=l+r¿Z (j-i)cosi6,     7 = 2,3,. -.,
(3.4a) '   *

Associated with this kernel we introduce

(3.4) Ti>k(9) = %tj(o + ekn) + tj(d - ekn)).

It is easy to verify that

(3.5) (j + l)Tj+Xtk(0) - 2JTjtk(8) + (j- l)7,._1)fc(0) = 2 cos/0 cos/0fc„,

and

(3.6) j>//fc(ÍOI = w,     /=1,2, «...

From (2.3) and (2.4) it follows that

n

(3-7) Rn\f,x] = g f(xkn)Pkn(x),
fc=i

where

(3-8) Pkn(x) = \Y+22%\jiMTj(xkn)Tj(x)^.

Now we prove that

(3.9) I^WKi.

from which (3.3) follows on using (3.7).  For this purpose we express (3.8) in

terms of fjtiSP)   as defined in (3.9). On using (3.5) we obtain

j 2«-l

Pkn(x) "ñ ¿5   (0!Z+1'M " 2Cll'M + al-^^lTl,k{e) + T2»,k(d)a2n-ljl-
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On using (2.10), (2.11) and (3.6), (3.9) follows immediately. This proves (3.9)

and in turn (3.3).  By proving (3.3) it follows easily that Rn \f, x]   converges

uniformly to f(x) on  [-1,+1]   for every continuous function on   [-1,+1].

Here our aim is to obtain error estimates (2.14). The proof of (2.14) is based on

following [4]

Theorem 4 [S. B. Steckin] . Let P be a natural number and  Un  (n =

1,2,.'.) be a linear method of approximation of functions having the following

properties:

(i) for any function  <¡>(d) E C2n,   \\Un(<p)\\ < ¿o||0||;

(ii) for any function  0(0) e C2„ for which <j>(p\d) E C27r,   ||0 - Un(<j>)\\

< Lp\\^p)\\lnp, h = 1, 2, ♦...   Then for any function  0(0) EC2ir  we have

110 - U„m < Bp(L0 + Lp)wp(lln, 0).

First let us choose  Un  to be typical means of fourier series given by

(31°) *2„.jií(0. 0) = \ao +   Z  (ßj cos jd + b¡ sin/0)(l -jMl(2rif),

where a-'s, fiy's are fourier coefficients of  0(0).  From a theorem of A. Zygmund

[7] it follows that conditions (i) and (ii) are satisfied for P = M - 1   (M > 1)

and, therefore, we conclude from Steckin's theorem that

(3.11) \X2n>M(4>, 6) - 0(0)| < CMwM_x(\¡n, 0).

Theorem 4 and (3.11) described above lead to a simple proof of (2.14).

The representation of Rn \f, x] as given by (3.7) suggests that we consider a

trigonometric polynomial

Í 2    1 )

(3.12) ^[0,0]=¿0(0fc„)|U| "t   o:/>McoS/(0-0fc„)j

where

(3.13) #0)=/(cos 0) =/(*).

From (3.12) it follows that

(3.14) An[l,6]=l,

(3.15) An [cos iu, 0] - cos i0 = -a2n-¿(cos id + cos(2« - iß] ,■

for / = 1, 2, .♦., 2n - 1.  From (3.10>, (3.12)-(3.15) it follows that

An[X2niM(t),e]-X2niM(6)
2/1-1

= -(1 + cos 2n0)   Z   a, cos ida2n_¡(l - t^^nf)

2n-l

+ sin2«0   Z  *fsin iea2n_Á\ -iMl(2n~f).
i=i
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Since  0(0) is an even function of 0,   its fourier coefficients bt are all zero.

Therefore we obtain

An[X2n,M(t), e]-x2niM(8)

2m —1

= -(1 + cos 2«0)   V  (a. cos id - b{ sin ̂ „.¿l - rMl(2n'f)

+ sin 2nd   £   (b¡ cos id - a¡ sin /0)a2n-/(l - ifl//(2n)Af ).
i=l

On using an integral representation of fourier coefficients we obtain

X2n,M(0)-¿nlX2n,M(t),B]

(3.16) = (l+cos2n0)^ .^ ^^ ^ _ ^

. sin 2«0 2^* ._     C2tt  ......
+ —-—   Z  í5/,aíJ„   0(")sinz(w- d)du,

» i=l ^ "

where

(3.17) i8iiM = ^„.^(l - iMl(2ri)M);

we put

1 2^i r2f
<Wm + 01 sin iudu.

and rewrite

(3.18) F(d) = ^  Z   5/M fa* 0(M + 0)sin /«du,

(3.19) X2niM(d) - An [X2nM(f), 0] = (1 + cos 2nd)F'(d) - sin 2«077'(0).

Now, we need to obtain estimates of 77'(0) and F'(d).   For this purpose we

assume that  0(0)  is (M - 1) times continuously differentiable of function of

0.   Integrating by parts  (M - 1) times we obtain after elementary calculation

that

/_iYw72 + i    2n-i r2n
(3.20) F(d) = ^J-^-   Z  \MjQ   ^M-x\u+d)œsiudu

for M even integer, where

(3.21) ^-\m = \m-

From (3.4a) we obtain
2/1 — 1

2 £ \ ATCOS IU
i=l

2/1-1

-    Z    QH-IM - 2\M + WlJkfW») + 2»A2n-1^2n(")-
1=1



(3.22)
i2i

X
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Therefore on using (3.20) and (3.21) we obtain

F(0) = tLV^.J-0(M-i)(u + 0)

«-i )
Z     0/,M - 2\m + h+ljg&fct) + 2n^2n-lt2n(u)\du-

From (2.7), (3.17) and (3.21) it follows that

\\-i,m - 2\m + \+i,m' = 0(llnM+2),      i = 1, - • •, In - 1,

^„-1=0(1/^+1).

From (3.4a) we obtain   A* \t¡(u)\ du = 2n. On putting these estimates in

(3.22) we obtain   lF(0)l< CHUm~lHlr^. From (3.18) it follows that F(0)

is a trigonometric polynomial of order < 2«. On using a well-known theorem of

S. N. Bernstein (see Zygmund [8, volume 1, p. 118]) we obtain

|F'(0)| < 2cM\\^M-^\\l^-\      \F'(ß)\ < 2c<bUW-1\\lnM-1.

Therefore, under the assumption that 0(M-1)(0) E c2n   we obtain

(3.23) \X2nM(d) -An[X2n(t), 0] I < 6cM\\4>M-1\\lnM-1.

Following a proof similar to that given for (3.3) it follows that for every

0 E c2n we have

(3.24) U„[0,0]l</iMl|0||.

Now we claim that for every ^M-1'Ec2)r  we have

(3.25) |0(ö) -An[<t>, 0] I <BM\\4>W-1\\lnM-1.

This follows from

0(0) - An [0, 0] = 0(0) - X2n>M(d) + X2n>M(d) - An [X2n¡M(t), 0]

+ A„[X2ntM(t),d]-A„[<p,d],

(3.23), (3.24) and (3.11).  This proves (3.25).

(3.24) and (3.25) enable us to apply SteCkin Theorem 4 and we conclude

that   10(0) - An [0, 0] I < BMwM_x(\ln, 0).
But this inequality implies

10(0) - W4H [0» Ö]  + An [0. -*])!< BM™M-1W"« *)'

Since  0(0)=/(cos0)=/(x)  and Rn\f, x] = &4„[0,0] + ¿„[0,-0], we

obtain

(3.26) \f(x) -RnV,x]\< BMwM_ x (1/n, 0).
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It is well known that wM_x(l/n, 0) < cAfwAf_1(l/«, f). We obtain from (3.26)

that

\f(x) ~RnV,x]\<eMwM_x(1/n, f).

This proves (2.14) and thus completes the proof of Theorem 3 for M even

integer. For M-odd positive integer > 1  a similar proof can be given.
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