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ABSTRACT. The object of this paper is to show that there exists a poly-
nomial Py(x) of degree < 2n —1 which interpolates a given function exactly
at the zeros of nth Tchebycheff polynomial and for which |If — P,ll <
Cxwi(l/n, f) where wg(1/n, f) is the modulus of continuity of f of kth
order.

1. Introduction. The classical theorems of D. Jackson extend the Weierstrass
approximation theorem by giving quantitative information on the degree of ap-
proximation to a continuous function in terms of its smoothness. Specifically,
Jackson proved

THEOREM 1. Let f(x) be continuous for x| <1 and have modulus of
continuity w(t). Then there exists a polynomial P(x) of degree n at most
such that |f(x) — P(x)| < Aw(1/n) for x| <1, where A isa positive numer-
ical constant.

In 1951 S. B. Steckin [3] made an important generalization of the Jackson
theorem.

THEOREM 2 (S. B. STECKIN). Let k be a positive integer; then there exists
a positive constant C, such that for every f€ C[-1, +1] we can find an
algebraic polynomial P,(x) of degree n so that

@a.1) If = P,ll < Gw,(1/n, f),

where wi(1/n, f) is the modulus of continuity of f(x) of kth order.

During personal conversation in Poznar, S. B. Stetkin raised the following
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question concerning Theorem 2: Does there exist an algebraic polynomial P,(x)
of degree Cn (C > 1) interpolating at n points and which satisfies (1.1)? The
case k=1 was previously raised by P. L. Butzer [1] and solved consequently
by G. Freud [2]. The object of this paper is to prove that an algebraic inter-
polatory polynomial satisfying (1.1) does exist. The approach we have adapted
is to modify the classical Hermite-Fejér interpolation polynomials on the Tchebycheff
nodes. Moreover the degree of the new interpolation process is still 27 — 1. It
may be interesting to point out that recently the author [5], [6] has solved the
problem of obtaining a trigonometric polynomial which interpolates a given 2w
periodic continuous function at x;, = 2kn/n, k=0,1,+++,n— 1, and for
which (1.1) is also true.

2. It is well known that the Hermite-Fejér interpolation polynomial of de-
gree < 2n -1 is defined by

T,(x) \?
1) H,[f, x] = é'_-_‘l o) -xxk,,)<n—(x—_m>
where
22 Xpp=cos(Zk—1n/2n), k=1,2,*++,n,

are the zeros of Tchebycheff polynomial T,(x) = cos(n arc cos x). Let us ex-
press H,[f, x] as a linear combination of Ty(x), Ty(x),***, T,,_, (x). For
this purpose we define

_1¢ 2 &
23) Col) =5 2 Fen) GO = 2 2 fGn)Tii)
for j=1,2,++°,2n—1. A simple computation shows that
2n—1 .
= 2n -
g =8 Gn(%)5e
This representation of H, [f, x] suggests the definition
2n=1
@4 R)=Rolfi 3] = 5 GOy T
where M is an arbitrary fixed positive integer and
Q) %u=1 oytay, ;y=1 Jj=1,2,2,n oa,=0 j>2n
A simple example of «; ), satisfying (2.5) is given by
G = Q=M@= +M), 7=0,1,00, 201,
=0, j=2n.

(2.6)
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For our purpose we make further restrictions on «a; ;. We denote
B =A=e)iM, j=1,2,++,2n,

2.7
=0, j=0.
Let us suppose that
2.8 Wiy 1 01 = 5,0 =0(1/aM*Y),  j=1,ee, 201,

and

(29 oy pr =20 F g gl =02, j=1,40,2m—1.
We also require that

(2.10) 1 =a; 5 = O(1/nM),

@10 oy pr =200 o5y 4l =002, j=1,-++,2m-1.
We now state our main theorem,

THEOREM 3. Let f(x) be continuous for |x| <1. Then R,(f) as de-
fined by (2.4) and (2.5) satisfy

(2'12) Rn[ﬂ xin] =f(xin)’ i=1,2,¢°°,n,
and
(2.13) R,[1,x] =1

Moreover under the assunptions (2.7)—(2.11) we have (f # polynomial of degree <m—1)

(2.19) IR, () = FIl < Cpywypg 1 (1, ).

It is easy to verify that the choice of o p given by (2.6) satisfies all the
requirements needed in Theorem 3.

PrROOF OF THEOREM 3. First we will prove that R,(f) as defined by
(2.4) and (2.5) is an interpolation polynomial in x of degree < 2n—1 satisfying
(2.12). For this purpose we express

n—

n—

1 2 1
@3.)) R,[f, x] = ,Z; C(Noy, 4y Tx) + ;=§1 Gy, Tj()-
In view of the fact that
32 T2n—j(xin) = —I;‘(xin), Czn_j(f) = —Cl(f)9 j=1,°°,n,

we obtain, on using (2.5) and (3.1),

R %] = Co() + :g' T, i)
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From the definition of Ci(f) as given in (2.3) it follows that

n—1
G + i; CNT(x;,) = fxs), i=1,°°,n

Therefore we obtain R, [f, x;,]1 = f(x;,), i =1, *++,n. This proves (2.12).
(2.13) is an immediate consequence of (2.3). Forif f(x)=1 then Cy(f)
=1, G()=0,j=1,°°,2n—-1
Next we hope to prove the existence of a positive constant L independent
of n and x such that

(3.3) IR, 111 < LIIfIL.

To prove this we need some preliminary notation and estimates. We denote the
Fejér kernel by

i=1
O =1+73 (-Doosid, j=2,3,+++,
(3.42) =
t,0)=1.

Associated with this kernel we introduce
It is easy to verify that
(3.5) G+ Drjyq 10 - 2j13,5©) + G = )1y 4(8) = 2 cos jO cos j,,

and

n
. I, . (O] =n, =1,2,cc0,
(3.6) é‘r,’k( N=n j=1,2
From (2.3) and (2.4) it follows that
n
(3.7) RIf, %] = 2 fGin)Pin(®),
where
(3.8) P, ()= |1 +2 ;;1 & T4, )T ()]
Now we prove that
n
(3.9) kzl IP,m(x)l <L,

from which (3.3) follows on using (3.7). For this purpose we express (3.8) in
terms of 7;4(6) as defined in (3.9). On using (3.5) we obtain

12 =1
Prp®) = 1;21 @4 1,0 = 2001 + 04y 47y 0) + 73 1 Oty ar
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On using (2.10), (2.11) and (3.6), (3.9) follows immediately. This proves (3.9)
and in turn (3.3). By proving (3.3) it follows easily that R, [f, x] converges
uniformly to f(x) on [~1, +1] for every continuous function on [-1, +1].
Here our aim is to obtain error estimates (2.14). The proof of (2.14) is based on
following [4]

THEOREM 4 [S. B. STECKIN]. Let P be a natural number and U, (n =
1,2, ***) be a linear method of approximation of functions having the following
properties:

(D) for any function ¢(0) € C,,, U, @) < Lyligll;

(ii) for any function §@0) € C,, for which )@)€ Cyps llp — U, @)l
< Lplig®PNnP, n=1,2,+++. Then for any function $@) € C,, we have
¢ = U@l < Bp(Lo + Lp)Wp(I/", 9).

First let us choose U,, to be typical means of fourier series given by

2n-1
(B10) X100, 0) = 520 + :Z; (@, cos j0 + b, sin JO)(1 ~ M /(2n)),

where aj’s, by’s are fourier coefficients of ¢(6). From a theorem of A. Zygmund
[7] it follows that conditions (i) and (ii) are satisfied for P=M—-1 (M > 1)
and, therefore, we conclude from Steckin’s theorem that

(3.1 l) Iin,M(¢’ 0) - ¢(0)I < CMWM_I(I/n, ¢).

Theorem 4 and (3.11) described above lead to a simple proof of (2.14).
The representation of R, [f, x] as given by (3.7) suggests that we consider a
trigonometric polynomial

n 1 2201 .

(312) 4,[p,0] = kgl 0O 7 + 7 FZI @; 5 €08 j(O — Okn)
where
(3.13) #(0) = f(cos 6) = f(x).

From (3.12) it follows that
(3.14) 4,[1,0] =1,
(3.15) A, [cosiu, 8] = cos i = —,,_,(cos i + cos(2n — i)0],
for i=1,2,+++,2n—1. From (3.10); (3.12)—(3.15) it follows that

An[XZn,M(t)’ 0] -in,M(e)
=-(1 + cos 2nb)

2n-1

i=-l a; cos ifay,_[(1 =M [(2n)M)
2n=1
+sin 270 ), ag;sinifa,, (1 -M/2n)M).

Jq=
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Since @(6) is an even function of 8, its fourier coefficients b; are all zero.
Therefore we obtain

An [X2n,M(t)’ 0] - X2n,M(0)
=—(1 + cos 2nf) 2;;' (a; cos i0 = b, sin if)ey,,_ (1 — M [2n)M)
2n-1
+ sin 2nf ;Z (b cos i — a; sin if)a,, (1 = M [@2n)M).
=1

On using an integral representation of fourier coefficients we obtain

X2n,M(0) - An [X2n,M(t)s a]

2p=1
(3.16) — (1 cos ) T, af T ) cos iu ~ O)du
w =
2 = 27 ..
sm nf ; 51,Mfo &) sin i(u — 0)du,
where
3.17) 18, p = gy (1 = M[20)M);
we put
122 2
(3.18) F6) = ¢ ; Sum [, O+ 0)sin iud,
and rewrite

(3.19) X3 14 0) = A, [X;, 1), 6] = (1 + cos 2n8)F'(6) - sin 2n6F '(©).

Now, we need to obtain estimates of F'(9) and F'(9). For this purpose we
assume that ¢(6) is (M —1) times continuously differentiable of function of
0. Integrating by parts (M — 1) times we obtain after elementary calculation
that

2+1 2n—
(3.20) F@o) = () il g; M j oM (u + 0) cos iudu

n

for M even integer, where
(3:21) MU 4y =80

From (3.4a) we obtain
2n—-1

2 ;1 A,y cos iu

2n-1

= 2 Quorar = Puar Ny pt) + 20y it2n (D
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Therefore on using (3.20) and (3.21) we obtain
_1\M/2+1
FO) = (_lﬁz/ﬂ__jz" ¢M-D(y + 6)
(3.22)
x {

2p=1
Z; Qipr = Dy pr + Ny g ppit ) + Mlzn_ltzn(u)zdu.

From (2.7), (3.17) and (3.21) it follows that
n‘i—l,M - 2)‘1',M + Ai’+ l,M' = O(I/nM+2)’ i=1,¢**,2n—-1,
A2n—l =0(1/"M+1).

From (3.4a) we obtain 27 Iz, ()l du = 2m. On putting these estimates in
(3.22) we obtain [F(@)I< cprllg™—1||/n™. From (3.18) it follows that F(9)
is a trigonometric polynomial of order < 2n. On using a well-known theorem of
S. N. Bemstein (see Zygmund [8, volume 1, p. 118]) we obtain

IF'@) < 2c,llo™ =Dl =1,  [F'©)] < 2c,llp®™=nM =1,
Therefore, under the assumption that ¢M~1)(@) Ec,, we obtain
(.23 1 X, 1 ©0) = A, [X5,®, 011 < 6, li6M 1 11/nM 1,

Following a proof similar to that given for (3.3) it follows that for every
¢ €c,, we have

(3.24) 14,19, 011 < B, li¢ll.
Now we claim that for every ¢™—1) €c,, we have
(.25 16(0) — A, [, 01| < By llp™ 1)) /M -1,
This follows from
$(0) = A, [9, 0] = ¢(8) — Xy, 4 (0) + X3 41 (6) — 4, [X; (), 6]
+ A, [X; 5,0, 0] —4,[9, 0],

(3.23), (3.24) and (3.11). This proves (3.25).
(3.24) and (3.25) enable us to apply Stetkin Theorem 4 and we conclude

that 1¢(6) — A4, [9, 0] | < Bywy,_,(1/n, ¢).
But this inequality implies

16(0) — %(4,,[9, 6] + A4,,[p, —0]1)| < Bywy_,(1/n, ¢).

Since @(0) = f(cos ) =f(x) and R,[f, x] = %4,[s, 0] +4,[¢,-0], we
obtain

(3.26) If(x) = R, [f, x]| < Byywy,_,(1/n, ¢).
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It is well known that wy,_,(1/n, ¢) < cpwy,_,(1/n, f). We obtain from (3.26)
that

If(x) = R, [f, x]| < epwy,_,(1/n, ).

This proves (2.14) and thus completes the proof of Theorem 3 for M even
integer. For M-odd positive integer > 1 a similar proof can be given.
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