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ABSTRACT. The stability of certain sets of multiplicity is studied with
reference to special classes of differentiable functions. Kronecker sets are pro-
duced as examples of instability. The most difficult theorem uses probability
theory and an estimation of Kolmogoroff’s e-entropy in a certain space of
functions.

This paper investigates differentiable transformations of two classes of sets
encountered in harmonic analysis, Kronecker sets and M-sets [4, Chapitre VII];
[S, Chapitre V]. The first theorem completes one proved in [7], and the second
and third are then technical variations. The fourth is of a different nature and
leaves open some difficult questions. By Cf,, we denote the set of functions in
C'[0, 1] with positive derivatives.

THEOREM 1. Let K be a compact subset of Cﬁr, in the C'-metric. Then
there is a closed set E C [0, 1], such that each set f(E), fEK, isan M-set,
but E can be transformed onto a Kronecker set by a mapping of the form

o(x) = 4x + 2k~ 2nz ! sinn x.
1

After the proof of Theorem 3 it will be clear that ¢ could be chosen so
that ¢ is monotone, or ¢ has bounded variation and admits an absolutely
convergent Fourier expansion. But an observation by Katznelson will show that
both properties cannot always be attained.

The Riemann-Lebesgue lemma plays a major role in the following disguised
form. (Henceforth e(x) =e27™™.) To estimate integrals [de(uf(t))dt, where
f isin K, we effect a change of variable, so the integral becomes
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b
fa e(us)g'(s) ds, with a = f(0), b = (1),

and the functions g’ are equicontinuous and uniformly bounded. Thus the inte-
grals tend to O as u increases, uniformly with respect to f. If the derivatives
f' are allowed to vanish, the conclusion is still valid for intervals [r, s] C [0, 1]
on which f'>8 or f'< -§. In place of equicontinuity we can specify bound-
ed variation, since the variation of g' is comparable with that of f’' when |f’]
=26>0.

1. Unfortunately a direct construction of E and ¢ appears hopeless, so
we adopt some of the machinery used in [9]. (In spite of the apparent complica-
tions, the main point of the construction is just the Riemann-Lebesgue lemma as
set forth above.) Thus (F}) is a dense sequence in the real Banach space C[0, 1],
while (g,) is chosenin C'(T), the periodic version of C', and g, has mean-
value 1 and support [~k~1, k™!] modulo 1.

The idea of the construction is to form a sequence of absolutely continuous
measure u;, beginning with Lebesgue measure, so that

| fetustemgs @) - fetusemmet@n] < e+ -4

forall real u and all f in K. Then the w*limit of p, is carried by a set
E, and plainly f(E) isan M-set for all f in K. To obtain the last property
of E we write ¢, for the kth partial sum of the series representing ¢ and
Mr+1 = 8k 41Ok 19 +1~Fiy ). Under the condition lg, — ¢l <\k™1y;t,
the w*-limit is carried by a set £ on which e(y;¢ — F;) — 0 uniformly:
¢(E) is a Kronecker set.

Now g;,, isin C!(7) and has an absolutely convergent Fourier expan-
sion g, () = Za,e(nt), with ¢y =1 (and a, >0 if there were any advan-
tage in this). Hence the difference to be treated is a sum

X 0, [Nt oy 1 — Ny (@),

where we have written y = n,,,. Moreover p, is actually a C' function on
[0,1]. Now 0<e; <f' <c, foreach f while 2<g},,<6. Suppose
that ¢, ., were chosen first, and then 3c,lul <|nly. We could write nyy; ., —
uf = tnyy, with Y in a certain compact subset of Cf,_, independent of y.
Similarly, if ¢, lul = 7Inly, we write nyg, ,, —uf = tuy. In either case, the
Riemann-Lebesgue lemma would apply for large y, because |nly =>y.

For the intermediate range, say c;lul < |nly <c,lul, we construct ¢, .,
that is we choose 7, , to avoid the crossing of the graphs of certain derivatives.
More exactly, nyg .y —uf’ = nyy', with ¥’ = (k + 1)2cos n,, ;X +G,
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where G is confined to a certain compact set I', independent of % For sim-
plicity we drop the factor (k + 1)72, and write ¥ = N4y Suppose 0<n<
1 and Y is so large that G oscillates at most 1 on each interval of length
aY ™). Then, if [a, b] is such an interval and x, x are solutions of the inequal-
ity lcos(Yx) + G(x)| <m, a <x, x' <b, then |cos(Yx") — cos(¥Yx)| < 2.
Thus the inequality defines a subset of [0, 1] of Lebesgue measure <n'/2, say,
uniformly for all G in TI. Equally important, the subset so defined is covered
by 4Y open intervals whose total measure is small. Because sets of small Lebesgue
measure have small u,-measure, a proper choice of Y =n,_, enables us to ob-
tain the necessary estimates. In order to obtain the inequality lg, — ¢y, < k!
we have only to ensure y; ., > ky,.

THEOREM 2. Let L be the subset of C'[0, 1] defined by the inequali-
ties 1 <f'<2 and Var(f') < 1. Then Theorem 1 is valid with L in place of
K.

In the place of equicontinuity, we use integration by parts. The functions
cos(Yx) + G are now characterized by an upper bound on the variation of G;
with the aid of this upper bound, say V, we can estimate that G varies by at
most AY™! onall but AYV of the intervals [qnY ™!, (g + 1)nY '] —thus
allowing only AVn in Lebesgue measure. In fact, analysis of this kind leads to
a stronger theorem.

THEOREM 2a. Let w(k) > 0 and lim kw(k) = + as k — +o. Then
the function ¢ of Theorem 2 an be chosen so that ¢(x) =4 + 2k >w(n,) cos ().
Consequently, if h is positive on [0, ) and lim h(u)u™! = 4o at u=0+,¢
can be formed so that |¢'(x) = ¢ )| <h(x —y|) for small distances |x = y!.

2. The next theorem implicitly concerns Hausdorff measures and to that
extent follows IvaSev-Musatov [3], and more directly [8, pp. 521-522].

THEOREM 3. Let K be a compact subset of Cﬁ_. Then there is a function
@ in Cﬁ_, such that ¢ is increasing and absolutely continuous, and a set E,
such that (E) is a Kronecker set, while each f(E), fEK, is M,.

In the following lemma, & is a positive function on (0, 1) with lim inf h(u)
=0 at 0+g€C'[0,1], and 7>0.

LEMMA. There existsa C!-function 8y, Wwhose graph is composed of ap-
proximately triangular sections over disjoint intervals (a; b,), so that

2hb,~a)<n and | fe@ole, @) - 11e0)ax| <7

forall real u andall f in K,
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PrROOF. The interval [0, 1] can be divided into adjacent intervals J,, = -+,
Js» so small that f,lg] <%n. Suppose that g, has been definedon J,, -+, J,
and that g, and g'l vanish at the endpoints of these intervals. Putting F =
Jy U---UJ, we have by the equicontinuity

| el - 18] < s

when f€K and [u] > U. Now we divide J, +1 into the adjacent intervals
Ry, **, R, whose length depends on U in a manner to be specified momen-
tarly. We form g, on J,,, out of triangular sections over the intervals R,,
**+, R,. These must have the property that

Joaneueax = [ geyax
and

S lex Gl ax <2 [ lgto)lax

for each R. To accomplish this, and for convenience in applying the lemma we
specify that on the base of each triangle ¢ <g(x) <2c or ¢ <—g(x) <2c The
key observation is that the bases of the triangles can be made arbitrarily small,
once Ry,"**,R, are determined from U and K. By the equicontinuity of
the set K we see that when the intervals are small enough, the error allowed in
passing to g, (x)g(x) is at most n/4, when |u| < U and at most 7/2 for all

u. By this inductive procedure we ensure that the error never reaches 7. Be-
cause lim inf 2 = 0, we can choose the subintervals Ry, -+, R, in J; , so
they contribute at most 27"'n to the sum Zh(b; —a,). (For details, see [8,
pp- 521-522].)

3. With the aid of the lemma we can prove Theorem 3 by modifying the
foregoing analysis. Now we approximate ¢ by sums ¢, each of class €% with ¢ > 0.
Our aimis to set ¢, ; =@, + ¥, with ¥’ >0 and fY" =k"2, for example. To choose
¥ we require an estimate of the My -measure of the sets defined by inequalities
IG + ¢'| <k73; as before G is restricted to a compact subset T of C[O0, 1].
Therefore we apply the lemma to a function # that majorizes a common mod-
ulus of continuity for I'; the number % is to be determined later, but the
change in the exponential integrals can be made as small as we please. At this
step u, is replaced by a measure A =f, - i, and now Y’ is defined tem-
porarily to be piecewise-linear, constant between intervals (@, b;), and Y’ must
increase on (a;, b;) by Ah(b; —a)—of course, AZh(b; —a;) = k2. Onan
interval (g, b;) each function G oscillates at most h(b; —a;) while ¢’ in-
creases at least k"n'lh(b, —a,). Consequently the inequality |G(x) + ¢'(x)I <
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h(b; —a;) defines a subinterval of (z;, b)) of length at most 2k2n(b, —a;). Now
the inequality on g, ¢ <1g <2¢, valid on (g;, b;), and the triangular shape

of g, allow us to conclude that the A-measure of the interval is at most 8k%n
times the [A|-measure of (@, b;), so the total A-measure of the exceptional
intervals can be made small, for all G, and of course the number of intervals
does not depend on G. Once n and Y’ are determined, we have only to ad-
just ¥’ near the endpoints @; and b; to be of class C'. From this point on-
ward the path is clear.

4, Tt is convenient to write FL! for the algebra of Fourier transforms of
L!(-%0, ), with the usual norm, often named 4 or W.

THEOREM 3'. Theorem 3 remains true if we require ¢’ to be of bounded
variation and in FL', but becomes false if we require ¢ to be monotone and
in FL!.

ProOF. To obtain the correct variant of Theorem 3 we replace the graph
of Y’ over (@, b;) by a function of the form a,Ta,t +a;), where a; =
An(b; —a;) as before, a, = (b;—a)™' and ay =-a/b;—a)”'. T vanishes
off [0, 1],and T=x(1 —x) on [0, 1]. Now the norm of the term just de-
scribed depends only on A - A(b; —a;) and not on the length of the interval,
and the same is true of its variation. For the Lebesgue measure of the set
IGG) +¥'(x)l <h(b;—a) the factor k>n is replaced by O(k*n)'/2, but this is of
little importance.

To verify the negative part of Theorem 3', we define the set K C Cf,_ by
the relations

f0)=0, 1<f <2,If'x)-f'OI< Alx -y,

with A monotone and A(x) =1/log 4!, 0<u <e~!. We shall prove that

if p€ECL, ¢ is monotoneand ¢ isin FL!, then—assuming E has measure
O—there is an element f of K, such that ¢ coincides with a function a(s)f(¢)
+b(s), with f in K, on a neighborhood of each element s of E N (0, 1).
From the Riemannian theory of M-sets, it is clear that ¢(E) must be M.

In this construction of f we assume that ¢’ is monotone on [0, 1] but not
necessarily so elsewhere. This increases considerably the difficulty of the construc-
tion.

By an observation of Katznelson [4, p. 22], (0, 1) can be covered by com-
pact intervals I,, on each of which l¢'(x) = ¢'(»)| < nA(lx —y), where 7 is
arbitrarily small, and will be determined as a function of the extreme values of
¢'. Next we can find a doubly infinite sequence **<a_, <a,<a, <--* s0
that the inequality on l¢'(x) —¢'(¥)| is valid on each interval 4. a;4,], and
the limits of (#;) are 0 and 1. Let L be linear on each segment [q;,4;,,]
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and L(a )«p(ai) = 1. The slope of L on [a; a;,,] does not exceed
@4y~ e,y —a) * inf ¢. Now E has measure O, sowe can find an approximation
L,, suchthat L (a,)go( a)) =1, L, is constant on a neighborhood of each point
in EN (0, 1), and on [a;, 4;,,] we have max|L}| <2L". Moreover, L, is
monotone on each segment [aj, “j+1] . Thus Ll(x)cp'(x) has an acceptable mod-
ulus of continuity on each interval [a;, ai“] » and equals 1 at each @;. Hence
the modulus of continuity on [0, 1] can be reduced to A by taking n small,
and the same is true for the extreme values of L,(x)¢'(x). Now we have only
to set f' = thp

It is remarkable that the modulus A cannot be improved. In fact, if A,
is monotone, lim inf A;(x)/A(x) = 0, and K is defined with A, in place A,
then the function ¢ of Theorem 3 azn be constructed so that ¢  is monotone
and ¢ € FL!. The first ingredient in proving this is the lemma to Theorem 3,
applied to A(x) = A, (x)/A(x)—in view of lim inf #(x) = 0. Next we require
a substitute for the triangular function used above and define it for 0 < § < %:

506, x)=0 on (—<,0] and [2,+ ),
SG6, 8)=8506,1)=1,

and S is linear on the intervals between 0, §, 1, 2. Then |IS|; <2, Var(S)
<2, Var(S) < 567!. These bounds yield [ISll, = O(log "), and this is ex-
actly what is needed to achieve the construction of ¢.

5. THEOREM 4. There existsa set E C [0, 1] such that f(E) isan M-
set for every f in Cf,_ with f' in FL!, but E can be transformed onto a
Kronecker set by a function ¢ in C\. and with ¢ in every class Lip®, 0 <
a<i

Although this theorem does not attain the precision of the others, it is
stronger in naming a specific metric property of E that ensures the existence
of many functions ¢; in fact this property is a C},_-invatiant. As ECJ0, 1],
each function f in the theorem coincides on E with a series Eane"”" , with
p(f) =21 + InDla,] < ee.

LEMMA. Let S, betheset p(f) <1 and 0 <r<?%%. Thenany sub-
set of S;, whose elements have uniform distances at least r, contains at most
exp Ar-2/3 log r~! elements.

ProoF. Toeach f in.S; we associate three functions f,, f,, and f,
in S;, whose sum is f. The sum of the Fourier series over the indices n, with
Inlr >4, is f,; the terms in which Infr <4 and (1 + InDla,| <r?*/3 give
fp; and of course f,=f~f, f,, Now |f,l <r/4 and f, can be neglected
entirely. Next lfbl <Br2/3 log 7' and Ilf,,ll 2 "< Br'/3. Thus the functions

i 3f are uniformly bounded in uniform and Lip!/2-norm, and have uniform-
ly bounded variation. By a theorem of Clements [2, p. 423], at most
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exp Ar2/3 log ! of the functions r~1/3f, can have nutual distances >r*/3/4.
Finally, the remainder f, contains at most r2/3 terms in its Fourier expansion,
and these are chosen among < 9r! possible values of n. Thus f, is contained
in one of exp Ar2/3 log r! linear subspaces, each of real dimension at most
2r7213; also |f,] <1. An elementary estimation of volumes in Euclidean space
of dimension 27~2/3 yields a further factor exp Ar~2/3 log 7! [10, p. 163].

6. The construction will be carried out for a fixed a in (0, %), but the
refinement necessary for the stronger conclusion will be plain. Let m, =
[Q +o)s! +5] and n,=(s+1)! for s>4, let M be the union of the intervals
[mg, ng], and F the set of all sums Z,, €, 27 (g, =0or1). Toeach s

there corresponds a splitting of __E _i{\to subsets of diameters at most 2-2 " S*1
and mutual distances at least 2 " °. Observe that m_, , — (1 + a)n, —> + oo,

whence F admits a diffeomorphism of class Lip'*® onto a Kronecker set, and
so does every set that is Cf,_-equivalent to F [6]. In fact E will be such a set.
To define this diffeomorphism, let us first of all introduce the notations
=25, N,=2"" and F, for the part of F corresponding to the inter-
val mg<m<ng, Thus F; isa progression of Ny terms and difference d,
say {qd;, 0 <q <N} Suppose that |yl <s7'd;,, 1<q <N, Then F}
is the sequence whose first term is 0 and gth termis (¢ —1)d, +y, +---
+ Va-15 0<g <N, In an obvious manner E = ZFy isa C! image of F=
ZF;, andisa Cf,_ image if we omit the displacements y, for a few initial val-
ues of s. Let ug be the uniform probability measure on F3 and u the con-
volution IT* s, sothat u is carried by E We have to consider integrals I(f; u) =
Je@fiOWAdr) with f € C}. Now I(f, w) = 0(1) as u—> oo along the “safe” intervals
defined by the inequalities ud, <s™', udN,>s; thisis true forany f in C1 [7].

7. In dealing with the exceptional intervals s™'d3' <u <(s + 1d;},Nytys
we encounter a technical difficulty: the condition p(f) <1 implies nothing
about the continuity properties of f! It is most convenient to dispose of this
before entering upon detailed calculations. Suppose, then, that o is a probabil-
ity measure on the hypercube 2 whose coordinates are the displacements Vg5
to emphasize the dependence we write I(f, w, ). The norm p defines a sep-
arable Banach space, say A!, and the functions f belong to the open subset
A},_ defined by the condition: f'>0 on [0, 1]. The set Z on which
I(f, w, u) # 0(1) isa Borel set in A} x . Following the method of criblage
for analytic sets [1, pp. 121—149], we see that the projection of Z into £ can
be approximated in g-measure by projections of sompact subsets X C Z. Thus in
proving that the projection of Z has o-measure 0, we can assume that the functions
f in question have bounded norm p(f)—this much is trivial—and have equicontinuous
derivatives on [-m,7] with f'>8 >0 on an interval [-5,1 +35].
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8. To define the numbers Vg 1<q <N, sy <5<, we take the
random variable X, with density function sin?zx over (-1,1) and O out-
side, and characteristic function ®(y). Then the variables yq are mutually in-
dependent and y, has the distribution s7'd X,. It is familiar that the charac-
teristic functions ®(N~1/2)N converge to that of a Gaussian variable, but it
will be useful to ensure that the corresponding densities are smooth. Standard
estimates of @, near o and near 0, yield [®(N"!/2)N < A|¢|=3 for real
t and N=1,2,3,---. Therefore the densities generated by &N “L%H)N
have uniformly bounded derivatives.

Next we use the inequality

Jetwttonmu@n) <sup |fetufte + vuytan),

where 0 <v <1. If s isso large that p carried by the interval [0, 8], then
all the functions ¢ — f(¢ + v) have equicontinuous derivatives f ">8, over

0 <t <1. In estimating the integrals fe(uf(t))u(d?), when s~'d;!<u<

(s + 1)d5} N1, we can admit an approximation f* to f provided |f*-f|
<s72d,, N, ,, and we need only consider s’d;},N;}; equally spaced num-
bers u. To estimate the number of functions f* that will be sufficient we use
the lemma on approximation in §,, the inequality 1 + & < 3/2, and the re-
lations

logydg (Nopy =—A +a)s + 1), logydy=—(+ 1.

The number of integrals to be checked separately is then < exp d;ﬁ where
0<pB<1 (for large s). It must be emphasized that this number of integrals
gives a good approximation to all the integrals fe(uf(t + v))u(df), 0<v<1.

9. Finally we are ready to estimate the sums
Zeflad, +y, ++ - +y,_1) 0<q<N,

These we divide into §6 partial sums, in each of which q describes an arithme-
tic progression. Each of these sums can be abbreviated Zz,, 0 <r <s °N,,
and our aim is to show that all sums are o(s’6Ns) with probability very close
to 1.

We write z} for the conditional expectation of z,, with respect to the
ofield of 2y, -+ ,z,_;. A standard calculation yields

2z, -2}

whence P(|Zz, — z¥| > n~6N,) < 4exp — 1,5 SN,, where 7, >0 depends only
on 7> 0. Now sSexp—n,5"SNexp d;*# decreases very rapidly as s in-
creases, because § <1 and log N, = log d3.

Elexpt ) <4exp At’s~SN,, 0<:<],
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To end the proof we verify that [|z#|,, = O(1) uniformly with respect to
all the parameters; for this we need an analytic representation of z¥. Let
wl/ 2£w be the sum of w=1, 2,3, - independent random variables with
the law X,,. Then the conditional distribution of z,, over the field of z,, - - -,
z,_, can be realized by e(uf(v + s 'd;s3£6)), where v is measurable over
the given field and £.6 is 1ndependent of v. But £6 has a density function
g whose Fourer transform is ®(ts~3)*%, so z} is given by [fe(uf (v +s%d))g(dt.
Now the integral of g(f) over [|t| > M isat most M2 by Chebyshev’s inequal-
ity. Over [-M, M] we integrate by parts, using the inequality us’d, >d;" - s%d, =
s and the uniform boundedness of g'. Moreover the compactness of the functions
f in Af,_ implies the equicontinuity properties discussed before. To treat func-
tions of the type ufla, + a,t), with ua, large and a, small we write them as
ua, * @;'f(a; +a,?). Then Riemann-Lebesgue can be invoked to obtain a uniform limit.
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