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ABSTRACT.   The stability of certain sets of multiplicity is studied with

reference to special classes of differentiable functions.   Kronecker sets are pro-

duced as examples of instability.   The most difficult theorem uses probability

theory and an estimation of Kolmogoroff's  e-entropy in a certain space of

functions.

This paper investigates differentiable transformations of two classes of sets

encountered in harmonic analysis, Kronecker sets and Af0-sets   [4, Chapitre VII] ;

[5, Chapitre V]. The first theorem completes one proved in [7], and the second

and third are then technical variations.  The fourth is of a different nature and

leaves open some difficult questions.  By  Cl+  we denote the set of functions in

C1 [0, 1]   with positive derivatives.

Theorem 1. Let K be a compact subset of C\, in the Cl-metric.   Then

there is a closed set E C [0, 1], such that each set /(£), f&K, is an M0-set,

but E can be transformed onto a Kronecker set by a mapping of the form

oo

<fi(x) = 4x + £ k~2n^1 sin n^x.
l

After the proof of Theorem 3 it will be clear that ip could be chosen so

that <p   is monotone, or <p   has bounded variation and admits an absolutely

convergent Fourier expansion.  But an observation by Katznelson will show that

both properties cannot always be attained.

The Riemann-Lebesgue lemma plays a major role in the following disguised

form.  (Henceforth e(x) = e2l"x.)   To estimate integrals /0e(w/(f))dt, where

/ is in K, we effect a change of variable, so the integral becomes
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fbe(us)gXs) ds,   with a = /(O), b = /(l),

and the functions g' are equicontinuous and uniformly bounded. Thus the inte-

grals tend to 0 as « increases, uniformly with respect to /.  If the derivatives

/' are allowed to vanish, the conclusion is still valid for intervals   [r, s] C [0, 1]

on which /' > 5  or /' < -5.  In place of equicontinuity we can specify bound-

ed variation, since the variation of g'  is comparable with that of /' when |/'|

>8>Q.

1.  Unfortunately a direct construction of E and ip appears hopeless, so

we adopt some of the machinery used in [9]. (In spite of the apparent complica-

tions, the main point of the construction is just the Riemann-Lebesgue lemma as

set forth above.)  Thus (Fk) is a dense sequence in the real Banach space C1 [0, 1],

while (gh) is chosen in C1 (T),   the periodic vers ion of C1, and gk  has mean-

value 1 and support   [—k~l, k~l]   modulo 1.

The idea of the construction is to form a sequence of absolutely continuous

measure pk, beginning with Lebesgue measure, so that

\fe(uf(x))nk+l(.dx) - fe(uf(x))ßk(dx)\ <(k+ l)"4

for all real u and all f va. K.  Then the w*-limit of ¡ik is carried by a set

E, and plainly /(£) is an Af0-set for all f in. K.  To obtain the last property

of E we write <pk  for the kth partial sum of the series representing ¡p and

%+i =Zk+i(yk+iVk+rFk+i)vk- Under the condition  l^-iK'r1^1,

the w*-limit is carried by a set E on which e(yk<p - Fk) —► 0 uniformly:

tp(E)  is a Kronecker set.

Now gk+1 is in CX(T) and has an absolutely convergent Fourier expan-

sion gk+1(t) = Sa„e(nr), with a0 = 1 (and an>0 if there were any advan-

tage in this).  Hence the difference to be treated is a sum

Z a„ fe(uf(x))e(ny<pk+1 -nFk+í)¡ik(dx),

where we have written y = nk+ï. Moreover ¡ik is actually a  C1   function on

[0,1]. Now  0<Cj </' <c2  for each / while  2<</fe+1<6.  Suppose

that yk+i   were chosen first, and then 3c2\u\<\n\y. We could write   ny<pk+l -

uf=±ny\p, with  \p  in a certain compact subset of C\, independent of y.

Similarly, if Cj|«| > l\n\y, we write nyyk+1 -uf— ±u\¡i. In either case, the

Riemann-Lebesgue lemma would apply for large y, because  \n\y >>\

For the intermediate range, say c3\u\ < \n\y <c4|u|, we construct vfc+1,

that is we choose nk+i> to avoid the crossing of the graphs of certain derivatives.

More exactly, nyip'k+1 - uf' = ny\jj', with  ^' = (k + l)-2cos nk+1x + G,
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where  G is confined to a certain compact set  V, independent of k.   For sim-

plicity we drop the factor (k + l)-2, and write   Y = nk+1.  Suppose  0 < rj <

1  and  Y is so large that G oscillates at most 77 on each interval of length

itY~l. Then, if  [a, b]   is such an interval and x, x' are solutions of the inequal-

ity    lcos(yjc) + G(x)\ < r?, a <x, x <b, then  |cos(Yx) - cos(yx)| < 2t?.

Thus the inequality defines a subset of [0, 1 ] of Lebesgue measure ^t?1 '2, say,

uniformly for all G in T.  Equally important, the subset so defined is covered

by AY open intervals whose total measure is small.  Because sets of small Lebesgue

measure have small p.k-measure, a proper choice of Y = nk+i   enables us to ob-

tain the necessary estimates. In order to obtain the inequality  \tpk - <p\yk <k~l

we have only to ensure yk+1 > kyk.

Theorem 2.   Let L be the subset of C1 [0, 1]   defined by the inequali-

ties  1 </' < 2 and Var(/') < 1.  Then Theorem 1 is valid with L in place of

K.

In the place of equicontinuity, we use integration by parts.  The functions

cos(yix) + G are now characterized by an upper bound on the variation of G;

with the aid of this upper bound, say  V, we can estimate that  G varies by at

most AY'1   on all but AYV of the intervals  [qnY'1 ,(q + l)nY~l]-thus

allowing only A Vit in Lebesgue measure.  In fact, analysis of this kind leads to

a stronger theorem.

Theorem 2a. Let w(k) > 0 and lim kw(k) = +°° as k —* +°°.  Then

the function <p of Theorem 2 can be chosen so that <p'(x) = 4 + 2fc-2u(«fc) cos (n^).

Consequently, if h is positive on   [0, °°) and lim h{u)u~x = +°° at u = 0+, tp

can be formed so that  \ip'(x)-tp'(y)\ <h(\x-y\) for small distances  |JC-.y|.

2. The next theorem implicitly concerns Hausdorff measures and to that

extent follows Ivasev-Musatov [3], and more directly [8, pp. 521—522].

Theorem 3. Let K be a compact subset of C\.   Then there is a function

<P in C\, such that <p'  is increasing and absolutely continuous, and a set E,

such that ip(E)  is a Kronecker set, while each f(E), fGK, is M0.

In the following lemma, A  is a positive function on (0, 1) with lim inf h(u)

= 0 at Q+,g€C*i0,1], and tj>0.

Lemma.  There exists a C1-function gv whose graph is composed of ap-

proximately triangular sections over disjoint intervals (a,., b¡), so that

Z/î(ô,-af)<T7   and    \fe(ufix))\gl(x)-l]g(x)dx

for all real u and all f in K

<TJ
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Proof.   The interval [0, 1] can be divided into adjacent intervals Jv • • •,

Js, so small that fj\g\ < lir).  Suppose that gx   has been defined on Jx, • • •, Jt

and that gl   and g\  vanish at the endpoints of these intervals. Putting F =

J1 U • • - U J¡ we have by the equicontinuity

\iFe(uf{x))\gx{x) - l]g(x)dx <r?/8

wnen /E/Í  and  \u\> U.  Now we divide   Jl+1   into the adjacent intervals

Rlt ■ • • , Rn  whose length depends on  U in a manner to be specified momen-

tarily.  We form gl   on Jl+l   out of triangular sections over the intervals Rlt

• • • , Rn.  These must have the property that

JRgi(x)gix)dx = jRg(x)dx

and

fR\gl(x)gix)\dx <2 SR\g(x)\dx

for each R.  To accomplish this, and for convenience in applying the lemma we

specify that on the base of each triangle c < g(x) <2c or c < -g(x) < 2c.   The

key observation is that the bases of the triangles can be made arbitrarily small,

once R ¡, • • • , Rn  are determined from  U and K.   By the equicontinuity of

the set K we see that when the intervals are small enough, the error allowed in

passing to g1(x)g(x) is at most rj/4, when  \u\ < U and at most 77/2  for all

u.  By this inductive procedure we ensure that the error never reaches 77.  Be-

cause lim inf h = 0, we can choose the subintervals Rlt • • •, Rn  in JJ+1   so

they contribute at most  2~l~lrj to the sum  2h(b¡-a¡). (For details, see [8,

pp. 521-522].)

3. With the aid of the lemma we can prove Theorem 3 by modifying the

foregoing analysis. Now we approximate y by sums t^, each of class C2 with <p£ > 0.

Our aim is to set ipk+1 = ^ + \¡/, with \p" > 0 and JV>" = k~2, for example. To choose

$ we require an estimate of the /Ltfc-measure of the sets defined by inequalities

\G + \p'\ <k~3; as before G is restricted to a compact subset  T of C[0, 1].

Therefore we apply the lemma to a function h  that majorizes a common mod-

ulus of continuity for T; the number 77  is to be determined later, but the

change in the exponential integrals can be made as small as we please. At this

step ¡ik  is replaced by a measure X = /! • pk, and now  1//  is defined tem-

porarily to be piecewise-linear, constant between intervals (a¡, b,), and  i//'  must

increase on (a¡,b¡) by Ah(b¡ - a,)—of course, A'LhQ}i -a¡) = k~2.   On an

interval (a¡, bt) each function G oscillates at most h(b¡ - a¡) while  i/>'  in-

creases at least k~2r¡~1h(b¡ -a¡). Consequently the inequality  \G(x) + i//'(x)| <
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h(b¡-a() defines a subinterval of (a¡,b¡) of length at most  2k2r¡(bi-a¡). Now

the inequality on g,  c <±g < 2c, valid on  (a¡, b¡),  and the triangular shape

of gl   allow us to conclude that the X-measure of the interval is at most 8k2ri

times the  |X|-measure of (a¡, b¡), so the total X-measure of the exceptional

intervals can be made small, for all  G,  and of course the number of intervals

does not depend on G. Once 77  and  1//'  are determined, we have only to ad-

just  \¡/' near the endpoints a¡ and b¡ to be of class  C1. From this point on-

ward the path is clear.

4. It is convenient to write FL1   for the algebra of Fourier transforms of

/^(-oo oo),  with the usual norm, often named A  or  W.

Theorem 3'.  Theorem 3 remains true if we require <p' to be of bounded

variation and in FL1, but becomes false if we require tp   to be monotone and

in FL1.

Proof.  To obtain the correct variant of Theorem 3 we replace the graph

of i//'  over (a¡,b¡) by a function of the form aiTXa2t +a3), where al =

A-h(b¡-a¡) as before, a2 = Q>¡-a¡rl   and a3=-ai(p¡-a¡f1.  T vanishes

off [0, 1], and  T = x(l - x) on [0, 1].  Now the norm of the term just de-

scribed depends only on A • h(b¡ - a.) and not on the length of the interval,

and the same is true of its variation.  For the Lebesgue measure of the set

\G(x)+\pXx)\<h(bi-al) the factor k\ isreplacedby OQ^v)1'2, butthisisof

little importance.

To verify the negative part of Theorem 3', we define the set K CC+  by

the relations

/(0) = 0,      1 <f < 2, \f'(x) -f'(y)\ < AQx -y\),

with A monotone and A(w) = 1/log «-1, 0 < u < e~x. We shall prove that

if ipG.C\, <p   is monotone and <p' is in FL1, then—assuming E has measure

0-there is an element / of K, such that <p coincides with a function a(s)f(t)

+ b(s), with / in K,  on a neighborhood of each element s of E C\ (0, 1).

From the Riemannian theory of M0-sets, it is clear that <p(E)  must be M0.

In this construction of / we assume that tp'  is monotone on [0, 1] but not

necessarily so elsewhere.  This increases considerably the difficulty of the construc-

tion.

By an observation of Katznelson [4, p. 22],  (0, 1) can be covered by com-

pact intervals Ir, on each of which  \<p'(x) - ip'(y)\ < rjA(\x -y{), where 77 is

arbitrarily small, and will be determined as a function of the extreme values of

ip'.  Next we can find a doubly infinite sequence  • • < a_l < a0 < at < • • •  so

that the inequality on  \¡p'(x) - <p'(y)\   is valid on each interval   [a;-, a/+1 ], and

the limits of (a) are 0 and  1. Let £ be linear on each segment   [a.-,a+1]
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and L(aj)tp'(aj) = 1.   The slope of   L   on    [a¡, a/+1]    does not exceed

r}A(a}+l _a;)/(ay-+1 -a¡) • inf tp. Now E has measure 0, so we can find an approximation

Lx, such that L-^iß^pifl^) = 1» ¿i   is constant on a neighborhood of each point

in £Ti(0, 1), and on [a¡, a/+1]   we have maxIZ/j < 2L'. Moreover, Lx   is

monotone on each segment   [aj,ai+l]. Thus Z,j(xV(x)  has an acceptable mod-

ulus of continuity on each interval   [a-, a +1 ], and equals  1   at each a-.  Hence

the modulus of continuity on   [0,1]   can be reduced to A by taking 77  small,

and the same is true for the extreme values of L^xyp'ix). Now we have only

to set /' = Lxtp'.

It is remarkable that the modulus A   cannot be improved.   In fact, if Ai

is monotone, lim inf Aj(x)/A(x) = 0, and K is defined with A!   in place A,

then the function tp of Theorem 3 can be constructed so that tp'  is monotone

and <p e FL1. The first ingredient in proving this is the lemma to Theorem 3,

applied to h(x) = Ax(^)/A(x)-in view of lim inf h(x) = 0. Next we require

a substitute for the triangular function used above and define it for 0 < S < M:

S(S,x) = Q   on (-«>, 0]   and   [2, + °°),

5(S, 5) = 5(5, 1)=1,
and S is linear on the intervals between 0, S, 1, 2.  Then  \\S\\1 < 2, Var(S)

<2, Var^) <55_1. These bounds yield  ||5||j = 0(log S"1), and this is ex-

actly what is needed to achieve the construction of ip.

5.   Theorem 4.  There exists a set ZTC [0,1]   suchthat f(E) is an MQ-

set for every f in C\ with f in FL1, but E can be transformed onto a

Kronecker set by a function <p in C\ and with tp' in every class Lip", 0 <

a<tt.

Although this theorem does not attain the precision of the others, it is

stronger in naming a specific metric property of E that ensures the existence

of many functions  ip; in fact this property is a C\ -invariant. As 2?C[0, 1],

each function / in the theorem coincides on E with a series ~Lanemx, with

p(0 = 2(1 +l"l)|a„|<~.

Lemma. Let Sx be the set p(f) < 1 and 0 < r < V*. Then any sub-

set of S\, whose elements have uniform distances at least r, contains at most

exp AT2!3 log r_1  elements.

Proof.   To each / in .5X  we associate three functions fa, fb,  and fc

in Sj, whose sum is /.  The sum of the Fourier series over the indices n,  with

\n\r>4, is fa; the terms in which |n|r<4 and (1 + |«|)|a„| <r2/3  give

fb\ and of course fc=f-fa~fb- Now  l/a!<r/4 and fa  can be neglected

entirely. Next  \fb\ <Br2'3 logr"1  and ||/¿|| 2<Br1/3. Thus the functions

r~l^3fb  are uniformly bounded in uniform and  Lip1 /2-norm, and have uniform-

ly bounded variation. By a theorem of Clements [2, p. 423], at most
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exp Ar~2l3 log r-1   of the functions r-1 ¡3fb can have mutual distances > r2'3/4.

Finally, the remainder fc contains at most r-2'3  terms in its Fourier expansion,

and these are chosen among < 9r-1   possible values of n.  Thus fc is contained

in one of exp ^4r-2'3 log r-1   linear subspaces, each of real dimension at most

2r-2'3; also  \fc\ < 1. An elementary estimation of volumes in Euclidean space

of dimension 2r-2/3  yields a further factor exp Ar~2l3 log r_1   [10, p. 163].

6. The construction will be carried out for a fixed a in (0, M), but the

refinement necessary for the stronger conclusion will be plain.    Let   ms =

[(1 +a)s! +s] and «s = (s-r-l)! for s>4, let M be the union of the intervals

[ms, ns],  and F the set of all sums SM em 2~m  (em — 0 or 1).  To each s

there corresponds a splitting of F into subsets of diameters at most 2*2    s+1

and mutual distances at least  2   s   . Observe that ms+ j - (1 + a)ns —► + «,

whence F admits a diffeomorphism of class Lip1 +a onto a Kronecker set, and

so does every set that is C\-equivalent to F [6]. In fact E will be such a set.

To define this diffeomorphism, let us first of all introduce the notations

ds = 2   s, NS = TS   s and Fs for the part of F corresponding to the inter-

val ms < m < ns. Thus Fs is a progression of A^ terms and difference ds,

say   {qds,0<q<Ns}. Suppose that  \yq\ <s~1ds,  Kq<Ns. Then F*

is the sequence whose first term is 0 and qth term is (g - l)ds + yx + • • •

+ yq-i,0<q<Ns. In an obvious manner E = 2F* is a C1   image of F =

HFt, and is a C\  image if we omit the displacements y    for a few initial val-

ues of s. Let fis be the uniform probability measure on F* and ju the con-

volution n * /ij, so that ju is carried by E We have to consider integrals I(f, u) =

¡e(uf(t))p(dt) with /e C\. Now I(f, u) = 0(1) as u —► -H» along the "safe" intervals

defined by the inequalities ud, <s , udjfs>s; this is true for any / in C\ [7].

7. In dealing with the exceptional intervals s^d'1 < u < (s + 1)^7+1^7+1'

we encounter a technical difficulty:  the condition p(f) < 1  implies nothing

about the continuity properties of /!  It is most convenient to dispose of this

before entering upon detailed calculations.  Suppose, then, that a is a probabil-

ity measure on the hypercube  Í2 whose coordinates are the displacements y ;

to emphasize the dependence we write I(f, co, u). The norm p defines a sep-

arable Banach space, say ^41, and the functions / belong to the open subset

A\  defined by the condition: /' > 0 on   [0,1]. The set Z on which

I(f, co, «) ¥= 0(1)  is a Borel set in A\ x SI. Following the method of criblage

for analytic sets [1, pp. 121-149], we see that the projection of Z into  Q can

be approximated in a-measure by projections of sompact subsets KCZ. Thus in

proving that the projection of Z has c-measure 0, we can assume that the functions

/ in question have bounded norm p(f}—this much is trivial—and have equicontinuous

derivatives on [~n, 7r] with / > 8 > 0 on an interval [-6,1+5].
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8. To define the numbers y ,  1 <<7 <AÍ, s0 <s < °°, we take the

random variable X0  with density function  sin27rx  over (-1,1)  and  0  out-

side, and characteristic function <l?(y).  Then the variables yq  are mutually in-

dependent and yq  has the distribution   s~1dsX0. It is familiar that the charac-

teristic functions $(tN~x l2^1  converge to that of a Gaussian variable, but it

will be useful to ensure that the corresponding densities are smooth.  Standard

estimates of $,  near °° and near  0, yield   \$(tN~ll2)\N <A\t\~3 for real

t  and N = 1, 2, 3, • • • . Therefore the densities generated by  $(tN~l/2)N

have uniformly bounded derivatives.

Next we use the inequality

fe(uf(t))p(dt) <sup  \fe(uf(t + v))ßs(dt)\,

where  0<u<l.  If s is so large that ßs carried by the interval   [0,5], then

all the functions t—>f(t + v) have equicontinuous derivatives /'> 5, over

0 </ < 1.  In estimating the integrals fe(uf(t))p(dt), when s^dj1 < u <

(s + l)cf7+1 -^T+1   we can admit an approximation /* to / provided  \f*~f\

< s~2ds+lNs+l, and we need only consider s2d~+lN^+l   equally spaced num-

bers u.  To estimate the number of functions /* that will be sufficient we use

the lemma on approximation in Sx, the inequality   1 + a < 3/2, and the re-

lations

log2 às+ iNs+ ! a -(1 + á)(s + 1)!,      log2 d, - -(S + 1)!.

—R
The number of integrals to be checked separately is then < exp ds p where

0 < ß < 1   (for large s). It must be emphasized that this number of integrals

gives a good approximation to all the integrals ¡e(uf(t + v))[is(df), 0 < u < 1.

9. Finally we are ready to estimate the sums

T,e(uf(qds + yx + • ■ • + yq_,)),      0 < q < N,.

These we divide into s6  partial sums, in each of which q  describes an arithme-

tic progression.  Each of these sums can be abbreviated  2zr, 0 < r < s~6Ns,

and our aim is to show that all sums are o(s~6N¿) with probability very close

to  1.

We write z* for the conditional expectation of zr, with respect to the

a-field of z0, • • • , zr_1. A standard calculation yields

E(exp rfcz, - z*\ \ < 4 exp At2s~%,      0 < t < 1,

whence F(ßzr - z*\ > rjs~6Ns) < 4exp - nls~6Ns, where 77, > 0  depends only

on 77 > 0. Now s6exp-r¡ís~6NsexpdjP decreases very rapidly as s in-

creases, because ß < 1  and log N. = log c?"1.
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To end the proof we verify that  \\zf\\„ = 0(1)  uniformly with respect to

all the parameters; for this we need an analytic representation of z*. Let

*"    *w  be tne sum °f w = 1, 2, 3, • • •  independent random variables with

the law X0. Then the conditional distribution of zr, over the field of zQi ■ ■ ;

zr_x   can be realized by e(uf(v + s_1í/ís3^í6)), where  v is measurable over

the given field and  ^6 is independent of t>.  But %s6   has a density function

g whose Fourier transform is $(ts~3)s ,  so z* is given by fe(uf(v+s2dst))g(t)dt.

Now the integral of g(t) over  \t\ > M is at most M~2  by Chebyshev's inequal-

ity. Over   [-M, M\   we integrate by parts, using the inequality us2ds ̂ dj1 • s2ds =

s and the uniform boundedness of g. Moreover the compactness of the functions

/ in A\  implies the equicontinuity properties discussed before. To treat func-

tions of the type ufiax + a2t), with ua2  large and a2  small we write them as

ua2 • a21f(ax +a2t). Then Riemann-Lebesgue can be invoked to obtain a uniform limit
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