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A LOCAL RESULT FOR SYSTEMS OF

RIEMANN-HILBERT BARRIER PROBLEMS*1 )

BY

KEVIN F. CLANCEY

ABSTRACT.   The Riemann-Hilbert barrier problem (for n pairs of functions)

G«D+ = *~+ g

is investigated for the square integrable functions on a union of analytic Jordan curves

C  bounding a domain in the complex plane.   In the special case, where at each point

íq  of  C  the symbol   G  has at most two essential cluster values   Gj(f0), G2(f0), then

the condition  det[(l— X)Gi(fo) + ^G2(t0)] * 0, for all   f0  in  C and all   \(0 <S

\ < 1), implies the Riemann-Hilbert operator is Fredholm.   In the case, where for

some  r0  in  C and some  X0  (0 < \Q < 1), det[(l - A0)Gj(f0) + \0G2(f0)] = 0,

the Riemann-Hilbert operator is not Fredholm.  An application is given to systems
2

of singular integral equation on  L (E), where  E  is a measurable subset of C.

Let D+  be an open connected region in the complex plane  C with bound-

ary C consisting of m + 1  nonintersecting rectifiable analytic Jordan curves

C0, Cj, •••, Cm. The domain complementary to Z>+UC  is denoted by D~.

It is assumed that C0   is the boundary of the unbounded component of   D~

and that the boundary C is oriented positively with respect to D+. The

notation L^iQ (1 < p < °°) will be used for the Lebesgue spaces of C"-

valued, p-integrable (with respect to arc length measure on C) functions on  C.

In the case p = °°, Z~(t7) will denote the essentially bounded C"-valued

measurable functions on C.   If A  is any nonempty set, then AM    will stand

for the collection of n X n matrices with entries from A.

For /in L^iC) (p > 1) we define the Cauchy transform of / by

Cfiz) = Í2m)-1fcfit) it - z)-1 dt,  z£C.  Obviously, Cf is a C"-valued function

separately analytic in D+ and D~. Moreover, the nontangential limits of Cf

from D+  and D~ exist a.e. on   C.   These nontangential limits /*  satisfy a.e.

the Flemelj identities

/+(0-r(o=/(o,

/+(o +r(o=i^r'fc m (s - o-1 ds.
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The singular integral  Qf(t) = ÍTTÍ)~1fcfis) (s - O-1 ds  is interpreted as a

Cauchy principal value.  For the definition of the Cauchy principal value the

reader is referred to Muskhelishvili [10, p. 25].  Further, it is an easy consequence

of M. Riesz's theorem on the boundedness of the conjugate integral (see e.g.

Zygmund [14, p. 253]) that the map f —*■ Qf is bounded on LpiQ, for any

p > 1. Of course, this implies that the maps /—»•/* are bounded on LpniC);

for any p > 1.

Let G be in L^niC). We are interested in the Riemann-Hilbert operator

RG: LPniQ -> LpniC) (p > 1) defined by

(0.2) RGf=Gf+-r.

If g is in LpniC), then the problem of solving the equation RGf = g in

LpniC) is equivalent to finding a C-valued function $> separately analytic in

D+  and D~ vanishing at infinity whose nontangential limits  $*   from D±

are in LpniC) and satisfy the classical Riemann-Hilbert barrier problem  G<ï>+ =

The problem under consideration in this paper is the question of when the

operator RG is a Fredholm operator. Recall, a bounded linear operator on a

Banach space is called Fredholm in case it has closed range and the null spaces

of the operator and its adjoint are finite dimensional (Russian authors call such

operators Noetherian). We will deal exclusively with the operators RG on

L2iC) and will be preoccupied with local conditions on the symbol G which

determine whether or not RG  is Fredholm.

There is a string of papers by I. B. Simonenko [13], see also the 6 refer-

ences in [13], which establish that the question of deciding when RG  is

Fredholm is a local question, i.e. depends only on the behavior of the symbol

G in a neighborhood of each point on C.  More recently, other authors

Douglas and Widom [7], Douglas and Sarason [6] and Douglas ([4], [5]) have

investigated similar local questions for the special case where the operator RG

acts on Z2(T); here, T denotes the unit circle in  C. These authors, notably

hi [6], [5], use function algebra and C*-algebra methods.

Our concern will be with sybmols G where the cluster behavior of G at

points r0 in C is particularly nice. We will assume that for some points t0

in C there are at most two matrices X that satisfy

.... -v For every e > 0  and neighborhood N of r0  the set

{t G C:   ||G(0 — X|| < e} HN has positive measure.

In equation (0.3) and in the remainder of this paper the norm of an n X n

matrix A, denoted by  \\A\\, will refer to the norm of the matrix considered as

an operator on C"  with the Euclidean metric.
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In spite of the fact that the class of symbols under consideration appear

restrictive our investigations have applications to systems of singular integral

operators on L2iE), for measurable E C C, when the coefficients admit con-

tinuous extension to C.  We briefly discuss this application in §4.

§ 1 of this paper is concerned with developing technical machinery aimed

at reducing the problems to the generic case where  C = T.   § 2 gives sufficient

conditions for the operators RG  to be Fredholm.  In §3 sufficient conditions

are given which guarantee that the operator RG  is not Fredholm.   §4 contains

applications and remarks.

The author would like to thank Edward Azoff for valuable discussions, in

particular, for simplification in the proof of Lemma 2.1.

1. Technical preliminaries.   It is easy to verify that the operator RG:

LpiC) -* LpiC) is Fredholm if and only if the operators RG: Lpiq) —►

LPÍC¡), i ■ 0, 1, '",m, are Fredholm; here, we have set G¡ equal to the

restriction of G to C¡  (see, e.g. Simonenko [13, Lemma 7]).

For J = 0, 1, '",m, there is a conformai map ßt from the bounded

domain D- interior to C¡ to the unit disc in the complex plane.  The maps

ßt extend to be one-to-one analytic maps of C¡ to  T. (See Nehari [11, pp. 179

and 186].) The argument in Simonenko [13, Lemma 8] can be used to establish

that RG.: LpniQ -+ L>H(Ct) is Fredholm if and only if R^^i : LP(T) -

Z£(T) is Fredholm.

The notations Hp  (1 < p < °°) will be used for the usual Hardy spaces

on the unit circle and Hp  the  C"-valued analogues.  The map /—► /+  on

Z2(T) is precisely the orthogonal projection of Z2(T) onto H2.  If G is in

Lm 00»tnen ^e Toeplitz operator with symbol G is the operator  TG  de-

fined on Hn  by  TGf= (G/)+.  It is easy to establish that  TG  is Fredholm

on Hn  if and only if RG  is Fredholm on Z2(T).

Simonenko [13, Theorem 1] has established that the Riemann-Hilbert

operator RG: LpiC)—+Lpi<C) is Fredholm if and only if for every  r0  in C

there is a neighborhood 7V(r0) and Gt   in Z^ (C) suchthat 7?G      is

Fredholm and G | N(t0) = GtQ. Douglas [5, Corollary 4.7] has given a C*-

algebra proof of the corresponding result on H2. In view of the remarks in

the first part of this section these localization results for Riemann-Hilbert

operators on L2iC) and Toeplitz operators on H2  are equivalent.

The following lemma appears in the scalar case in Brown and Halmos [1].

The simple proof, which we include for completeness, is due to Widom.

Lemma 1.1. Suppose G is in Z^CT) and for some e>0, Re G(0>

ela.e.   Then  TG  is invertible.
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Proof.  For S > 0 small, we have almost everywhere

11/ - SG(0II < 11/ - SRe G(0II + S ||G(0II < 1.

It follows that  T6G = 5TG  is invertible.  This completes the proof.

2. RG Fredholm. Throughout this section it will be assumed that at every

point t0 G C the symbol  G has at most two cluster values Gj(r0), G2(r0)

satisfying (0.3).

Lemma 2.1. Suppose that for some rQ in C

detlXGjfto) + (1 - X)G2(r0)] =É 0,   for 0 < X < 1.

Then there is a neighborhood Nt    of t0, e > 0, and^invertible matrices P, Q

such that for almost every t in Nt , Re(PG(t)Q) > el.

Proof. Set M = G1(t0)G2ml(t0). Obviously, det[X/ + (1 -XyM] * 0 (0 <

X < 1). There exists an invertible matrix  W such that  WMW'1 = S + N is in

Jordan canonical form, where S is diagonal and N is a nilpotent.  Since

det[X/ + (1 - X)S] =£ 0 (0 < X < 1) it is clear that there is a unitary matrix

U (in fact, diagonal) such that Re U> ul and  Re ¿75 > ul, for some a > 0.

The nilpotent N is similar to ßN, for any ß # 0. This follows because N and

ßN have the same Jordan form. Indeed, by considering the block form of S

and N, for any ß > 0 there exists an invertible matrix  Vß such that

VßNVß1 = ßN and  VßSVJ1 = S.   Clearly, by taking ß small enough, we have

Re¿7>7/ and ReiUVßWMW-1Vß~1)>yI, for some y > 0.  In other words,

if P=UVßW and Ô = Gf1^^-1^-1, then Re (PG((/„)Q) > yl, for / =

1,2.

The lemma follows since almost every value of G(0 in a neighborhood of

r0 can be made arbitrarily close to Gj(r0) or G2(r0) by taking the neighbor-

hood small enough.  This completes the proof.

Douglas and Widom [7] have asked the following question:  Given a com-

pact convex set  K  of invertible matrices do there exist invertible matrices P,

Q such that  Re PKQ > el> 0, for all K in K?  Lemma 2.1  answers this

question affirmatively when K is a line segment.

The main result of this section is

Theorem 2.1. Let  G  be in  L^¡ ÍC) and suppose that for every t0

in  C there are at most two cluster values Gj(r0), G2(r0) satisfying (0.3).

Assume further, that det[XGj(f0) + (1- X)G2(r0)] ¥= 0, for all t0  in C and

0 < X < 1.  Then the operator RG defined by (0.2) on L2iC) is Fredholm.

Proof. In view of the remarks in § 1 we can assume C = T and establish

that  TG  is Fredholm.  It follows from Lemma 2.1 that for every point  r0  in
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T there exist invertible matrices Pt    and  Qt    and a neighborhood A^     such

that H(t) = PtQG(t)Qt0  satisfies  Re Z7(0 > el > 0, for almost all  t in Nt .

Define,

ÍG(0,       ,€*„.
to()      Ufa),       t£Nt.

'*o

and

Then

(H(t), tGNt ,

rGi0     Tpto THto TQto

and since  TP   , Tn     are obviously invertible and  Tu     is invertible by Lemma

1.1, it follows that  TGf    is invertible.  Consequently,  TG  is locally Fredholm

and, therefore, by Simonenko [13, Theorem 1] or Douglas [5, Corollary 4.7] the

operator  TG is Fredholm. This completes the proof.

3. RG  not-Fredholm.  In this section we will obtain sufficient conditions

on G which guarantee that the operator RG   on L2(C) is not-Fredholm.  The

investigation involves a localization to Hardy spaces of representing measures for

H°°. This technique was first used by D. Sarason (private communication) in

the study of Toeplitz operators on H2.

The maximal ideal space of the algebra Z°°(T) is denoted by X.   The

space X is normally fibered over the unit circle, so that, X=  Urn =i^\>

where, the fibre X^  consists of the homomorphisms of Z°°(T)  that assign the

value X to the function x(e'0 = elt-  The notation  Y will be used for the

maximal ideal space of H°°. For X in  T, the fibre   Yx  consists of the

homomorphisms of IT"  which assign the value  X to x- The "algebra on the

fibre" A A  is the restriction of H°°  (the space of Gelfand transforms) to the

fibre Xx.

We will be using many of the properties of X, Y, Xx, YK  and A A.

Hoffman's book [9, Chapter 10] is the best reference for these properties.  In-

deed, we will need the following facts:

(i)  X is the Shilov boundary of the algebra H°°  and if y is a homomor-

phism of H°°   in the fibre FA, then y has a unique representing measure

supported on XA.

(ii) A A is a closed subalgebra of C(XK) whose maximal ideal space is  YK

and whose Shilov boundary is Xx.
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(iii) 7A is connected.

(iv) If  W, V are disjoint closed sets in Xx, then there is an F in A A

such that F\w = 0 and  \F\ = 1   on  V.

Hardy spaces of representing measures have been studied by many authors

(see, Gamelin [8, Chapter 4]  and the references there).  Toeplitz operators on

Hardy spaces of representing measures were studied by Devinatz [3].  For our

purposes we will need the  C"-valued Hardy spaces of a representing measure

p of H°° supported on a fibre Xx.  For convenience we assume the measure

p is supported on the fibre Xt.  Let Lp(p) (1 < p < °°) denote the  C"-

valued Lebesgue spaces.  The notation Hp(p) (1 < p < °°) will be used for

the closure of Aj®C"  in Lpip) and H^ip) the weak*-closure of Aj®C"

in Z"(p).  If P denotes the orthogonal projection of L2(p) onto H2(p) and

<ï>GZ^ (p), then the Toeplitz operator  T^   on Hn(p) is defined by  T^f =

P$f.
Assume now that the fibre Xl   is the disjoint union of a fixed pair of

nonempty closed sets X\ and XJ .   It follows easily from properties (i) and

(iii) above that there is a homomorphism of IT0  with measure pQ  supported

on Xl   such that P0(X\) > 0.

Let Q be the subalgebra of L°°(p0) consisting of functions which are

constant a.e.   [p0]   on X\. We will be concerned with the collection BM

consisting of symbols G in Z^ (ju0) which can be factored in the form

G = GjG2G3, where  GVG3  are invertible elements in  (Ai^    and G2  is

Before stating a theorem on Toeplitz operators with symbols in B M    we

prove

Lemma 3.1. Let $   be in QM .  If det* = 0 on X\ or X\,then

Tq  is not left-invertible on H2(p0).

Proof.  Assume without loss of generality that  det $ = 0 on X^. It is

easy to see that there is an invertible matrix S such that the first column of

* = 5$5_1 is zero on X\. Since, 7^ = TsT^Ts-\   and  Ts, Ts-i   are in-

vertible it suffices to show that  Ty   is not left-invertible.  By property (iv)

there exists an / in ZZ2(ju0),/# 0 and f(X^)= 0.  Let F be the C"-valued

H2ip0) function whose first entry is / and remaining entries are zero.

Clearly, T^F = 0 and this completes the proof.

The following theorem is essentially a result on vector valued "self-adjoint"

Toeplitz operators on H2ip0).

Theorem 3.1. Let G be in BM , G = GyGfí^, where G* G3 are

invertible in  ( A i )m    and G2  is constant with values G2 on X\.  If



SYSTEMS OF RIEMANN-HILBERT BARRIER PROBLEMS 321

det[X0Gj + (1 - X0)G2] ■ 0,for some X0, 0 < X0 < 1, then the operator TG

on Hn(pQ) is not left-invertible.

Proof. Obviously, it suffices to show  TG    is not left-invertible. Wë can

assume by the preceding lemma that G2   are invertible.  Set M = G2(G2)~l.

Clearly, M isin(?M    and  TG    is left-invertible if and only if TM  is left
_    n 2 _        ^

invertible.  On X x the symbol M equals M   =G2ÍG2)   .  Choose an

invertible S so that SM~S~X is in the Jordan canonical form. It follows that N=

SMS-1 is in &M   and is in Jordan canonical form at each point of Xx. Moreover,

TG    is left-invertible if and only if TN is left-invertible.  If N*  denote the

values of N on X\  (W+ = identity) and if the diagonal entries of N~ are

rhi'rh.2' '"'tlnn'tnen byrechoosing S if necessary we can assume  X0 +

(1 - Xo)^! = 0.  Consider the self-adjoint Toeplitz operator  T    on H2ip0)

where (/? = 1   on X|    and <p = iT.   on X~. The operator J   is not left-

invertible. (Devinatz, [3, Theorem 1]. Actually, Devinatz'stheorem is only proven

for the case of representing measures of Dirichlet algebra, however, the proof lifts

to the case under consideration here.) The triangular form of A^ makes it obvious

that TN is not left-invertible. This completes the proof.

The next step is to obtain a theorem for the operators RG on L2iC) from

Theorem 3.1. We work first with the case where C=T.

Again it is assumed that the fibre X1 has been partitioned into a fixed pair of

nonempty closed sets X\ and p0 is a representing measure of a homomorphism

of H°° supported in Xj such thatp0(X*)>0. The notation S will denote the

subalgebra of Z°°(T) consisting of functions whose Gelfand transforms are con-

stant on X\. Clearly, (9)A C   Cf. If G is in (5^, then G* will denote the

values of G |X*. The main theorem concerning Toeplitz operators with

symbols in u M   is the following:

Theorem 3.2. Assume that G is in  uM   and that for some X0,0<X0<1,

det[X0G+ +(1-X0)G~] =0. Then TG is not-Fredholm on H2n.

The proof will involve some results of Rabindranathan [12] which we now state.

Lemma3.2 iRabindranathan [12, Lemma 4.1]). Let i> be an invertible

element in Z^ (T). Then $ = UA, where A is an invertible element in H^

and U is unitary valued a.e.

The following result is a matrix analogue of a result of Douglas and Sarason

[6]. It can easily be derived from Lemma 4.3 of Rabindranathan [12].

Lemma 3.3. Let U be a unitary valued element of L^¡ (T).  Then  Tv

on Z72(T) is left-Fredholm if and only if there is an F in  (ZT° + C)M  Qiere,
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C denotes the continuous functions on  T) such that

lit/-FIL - ess sup ||£/(c") -F(e")ll < 1.
e'feT

The final result needed to prove Theorem 3.2 is the following elementary

lemma.

Lemma 3.4. Suppose p is a representing measure of a homomorphism of

H°°  supported on the fibre Xv  Let U be in L^¡ (u) and unitary valued.

If there exists an F in H^ (p) such that

III/ - FIL = ess sup ||t7(7) - F(y)\\ < 1,
yex1

then  Tu is left-invertible.

Proof of Theorem 3.2. Suppose the operator TG is Fredholm. Then G

is an invertible element in L°£¡ (T) and, therefore, by Lemma 3.2, G = UA

where  ¿7 is unitary and A  is an invertible element in tf^ . The operator

Tu is certainly left-Fredholm and, hence, there exists by Lemma 3.3, an F in

(If + C)Mn  such that   I ¿7- FL < 1.  From the equality

||¿7-F|L = sup ||¿7(7)-F(7)||
y^X

and the fact that t\x  C A^ we obtain an H  in   (Ai)jtf     such that

sup ||f/(7)-Z/(7)ll<l.
yexl

This says that the operator  Tfi  is left-invertible on H2(p)  for any representing

measure p for a homomorphism of H°°   supported on Xl.  In particular,

Tv is left-invertible on H2(p0). However,  U= GÀ~l, where  À~l   is in-

vertible in (At)M    and G is in   Q.M .   (In other words  U is in    BM .)

From the hypothesis det[X0G+ + (1 - X^G-] = 0 and Theorem 3.1 we con-

clude that  TG  is not left-invertible on H2(p0). This contradiction completes

the proof.

In case C is the union of the contours C0,C1, •••, Cm, then the map

j3:C—>-T (0IC, = /?,.) induces a natural "fibration" of L°°iC) at points of

C. Indeed, if r0 is in C, every partition of X^^ into a pair of closed sets

Xß(t0) and corresponding algebra ö ß(-tQ^ C Z°°(T) consisting of functions

whose Gelfand transforms are constant on Xj^w gives rise to the algebra u f°

consisting of functions / in Z°°(0 suchthat f°ß~l is in (f^'o). The

following corollary is immediate:

Corollary 3.1. Let t0 be in C. Assume G is in   (£ $    (for some

decomposition of X^, A Let G*  be the values of G°ß~1 on Xî,t v.  //
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det[X0G+ + (1 - X0)G"] = 0,for some X0, 0 < X0 < 1, then RG is not-

Fredholm on L2nÍC).

4. Systems of singular integral equations. Let F be a bounded measurable

subset of C and let A, B be in L°£¡ (F). It will always be assumed that A ± B

are invertible in Z^ (F). Consider the singular integral operator S on L2iE)

defined by

(4.1) S As) = Ais) fis) + Bis)Qfis),      s G E.

It follows from the Plemelj identities (0.1) that

Sf= (A + B)f+ +ÍA- B)f-,     / in Z2 (F).

Consider the symbol G in L°£¡ (C) defined by'«-

T42) GXs)= KB-¿Tl(A+B)(s),   SGE,
(4,2) G(S)      \I, s£F.

The following lemma is easily established.

Lemma 4.1. Let S denote the singular integral operator defined by (4.1)

on L2n(E) and G the symbol in L^¡ (C) defined in (4.2).  Then S is

Fredholm on L2(E) if and only if RG is Fredholm on L2iC).

The technique of associating the barrier operator RG, where the symbol  G,

is defined by (3.2), with the operator S on L2n{E) was exploited for the case

n = 1  in [2].  In fact, the results in [2] are motivation for this paper.

Suppose the matrix symbols A, B appearing in L%¡ (£} are restrictions

of continuous matrix functions À, Ê  on  C to F.   In this case the cluster

behavior of the symbol G  appearing in (4.2) is easy to describe.  Let  t0  be

in C.   The matrix ôit0) = iê - lfl(À + ê) (r0) is a cluster value of G at

r0  if and only if every neighborhood of t0  intersects E in a set of positive

measure.  The identity matrix is a cluster value of G at r0  if and only if every

neighborhood of r0  intersects the complement of F in a set of positive

measure. The matrices Git0) and / are the only possible cluster values.

Further, if ß: C—*T is the map introduced in § 1 and X^.^) denotes the

characteristic function of ßfß), then, for r0  in C¡, Xß.(tQ) has a natural

partition into the pair of disjoint closed sets

^•(fo) ~ {7 G xßi(t0y xem ~ ^

and A

xßi(to)=<--yexßi(t0yXßi(E) = o}.

The symbol G belongs to the algebra   u £    relative to this decomposition.
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Our final result is a direct consequence of Theorem 2.1  and Corollary 3.1.

Theorem 4.1. Let S be the singular integral operator defined in (4.1) on

Ln(E). Assume that A, B are the restrictions of continuous matrix functions A,

B defined on C to F.   The operator S is Fredholm if and only if for every

point t0 in C such that every neighborhood of t0 intersects both E and its

complement in a set of positive measure

det'[XG(r0) + (1 - Xy] ¥= 0,     0 < X < 1.

Remarks. Nothing has been said about the index of the operator RG.

Except in the routine case where the symbol G is upper triangular we have been

unable to give a natural computation of the index comparable to the result in [7].

One obstacle is the impossibility of putting a continuous symbol into upper triangular

form in a continuous manner.

Even in the scalar case, when the symbol G is constant on each element

of a partition of Xt into more than two disjoint closed sets, no result corre-

sponding to Corollary 3.1 is known.
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